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Abstract

This paper addresses the Particle Shifting Technique (PST) in the SPH schemes. Improving the accuracy of SPH
schemes leads to particle clustering along the flow streamlines which turns to be detrimental for the simulations.
PSTs aim at avoiding this adverse effect by slightly disordering the particles, allowing to retrieve a regular particle
distribution within the kernel interpolation support. The gain in accuracy is such that this technique is now commonly
adopted by the SPH practitioners, however the conditions that should be respected by a PST are not clearly discussed
in the literature. In this paper, such conditions are exposed and their fulfillment by the main existing PSTs of the
literature is analyzed. None of these existing PSTs fully satisfying these conditions, a novel PST is introduced. The
proposed PST is validated for three different SPH schemes on 2D and 3D test cases, in presence of free-surface and
solid boundaries.

Keywords: Smoothed Particle Hydrodynamics; Particle Shifting Technique

1. Introduction

The Smoothed Particle Hydrodynamics (SPH) method suffers from the presence of anisotropic particle
structures inherent to its Lagrangian feature [22, 39, 17, 25]. While this effect appears when improving
the scheme accuracy, it tends paradoxically to degrade the kernel interpolation due to the irregular particle
distribution obtained within the compact support. The Particle Shifting Technique (PST) sounds as a
suitable tool to remedy this problem as it is increasingly discussed in the SPH literature [22, 37, 39, 17,
31, 25, 11, 33, 32]. The principle of the PST is to move slightly the particles from their Lagrangian
trajectories in order to recover a regular particle distribution in space. This is achieved by adding a small
perturbation δu within the velocity field [22, 25, 32] or by introducing a modification δr in the particle
positions [39, 17, 11, 33].

The first PST was introduced by Monaghan [22] in the compressible SPH context in order to avoid
particle clustering. The PST velocity δu introduced in that paper was Galilean invariant and was applied to
update particle positions exclusively, i.e. without being taken into account in the continuity and momentum
equations. In [17], a new PST was introduced within the projection-based Incompressible SPH (ISPH)
formalism, compatible with the presence of a free-surface. It was achieved by using a PST displacement
δr based on Fick’s law, providing a shifting of the particles from areas of high concentration to those of
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low concentration. Since the introduction of a PST based on Fick’s law, various adaptations have been
performed for different SPH schemes: (i) using Arbitrary Lagrangian Eulerian (ALE) formalism by Oger et
al. [25], (ii) using δ-stabilization term by Sun et al. [33, 32], (iii) in the ISPH context by Khayyer et al. [11],
(iv) in another context to initialize correctly an SPH simulation using the particle packing algorithm derived
by Colagrossi et al. [8]. Although these PSTs have been validated through various challenging test cases,
the conditions that should be respected by a PST have not been addressed clearly in the SPH literature.

This paper aims at proposing a list of conditions that any PST should verify from our point of view, and
then to introduce a methodology to build it. To this end, a theoretical study of already existing PSTs is
carried out in one dimension, derived from the results obtained by Quinlan et al. [27] about the truncation
error of SPH operators. Thereafter, a methodology that fulfills these conditions is introduced together with
a novel PST law satisfying them. The theoretical results are obtained in one dimension. Therefore, verifying
them numerically in two and three dimensions is crucial, as outlined in Sections 4, 5, 6 and 7.

Specifically, Section 4 addresses this verification without free-surface or solid boundary, and the validation
of the proposed PST is performed for three Weakly-Compressible SPH schemes briefly reminded in Section
4.2. In Section 5, the theoretical results of Quinlan et al. [27] are extended close to a free-surface for the
needs of the present paper. The extension of the proposed PST in presence of a free-surface is then presented
and validation is performed. In Section 6, the theoretical results are verified in presence of both a free-surface
and a solid boundary using the moving ghost particle method to model the solid boundaries. Finally in
Section 7 the validation is performed using a boundary-integral method to model the solid boundaries.

2. PST in the SPH literature

2.1. Monaghan [22]

The first PST was proposed by Monaghan [22] in order to avoid particle clustering. It reads:

δuMON
i = 2ε

∑
j∈Di

Vjρj

(
uj − ui
ρi + ρj

)
Wij , (1)

where ε is a parameter, typically set to ε = 0.5. δu, u, ρ and V stand for the PST velocity, the Lagrangian
velocity, the density and the volume associated the particles, respectively, while W is the kernel and Di
the kernel support. This PST has the advantage of being Galilean invariant. In [22], δuMON

i was used
to update the particle position exclusively, i.e. without any modification of the continuity and momentum
equations, leading to the so-called XSPH method.

Note that by construction of δuMON
i and its use to update the particle position exclusively, the following

properties are ensured with the XSPH method: (i) the center of mass moves equivalently with or without
this added PST velocity, (ii) the linear and angular momentum are conserved. Despite these properties,
there is no clear reason for which δuMON

i could point towards zones of low concentration of particles, as it
is not derived from Fick’s law.

2.2. Lind et al. [17]

In [17], a PST based on Fick’s law was introduced, using the gradient of the particle concentration ∇Ci.
∇Ci was computed through the approximation of ∇1 as defined in Eq. (2) (i.e. with C ≡ 1) corresponding
to a vector pointing towards the zone of high concentration of particles [8]. Therefore, −∇Ci is a vector
pointing towards zones of low concentration of particles and sounds as a relevant basis of a PST.

∇Ci =
∑
j∈Di

∇iWijVj . (2)

Nevertheless, the following modified expression firstly derived by Monaghan [23] to prevent tensile in-
stability was preferred in [17]:
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∇̂Ci =
∑
j∈Di

[
1 + 0.2

(
Wij

W (∆xi)

)4
]
∇iWijVj , (3)

where ∆xi is the characteristic distance between two adjacent particles. To obtain a displacement, the
concentration gradient approximation ∇̂Ci was then multiplied by 0.5h2, with h the smoothing length of
the kernel support. However, using δri = −0.5h2∇̂Ci as it is may lead to a PST displacement higher than
the smoothing length. To prevent such strong PST displacements, an upper limit of 0.2h was imposed
leading finally to:

δrLEAi =


−0.5h2∇̂Ci if

∥∥∥0.5h2∇̂Ci

∥∥∥ < 0.2h

−0.2h
∇̂Ci∥∥∥∇̂Ci

∥∥∥ otherwise
. (4)

The PST displacement defined in Eq. (4) was also used by Khayyer et al. [11] with the difference that

∇Ci was used instead of ∇̂Ci.
Although the PST was presented in terms of displacement in [17], note that it can also be rewritten as

a velocity term using a time derivation approximation, as:

δuLEAi =


−0.5h

h

∆t
∇̂Ci if

∥∥∥∥0.5h
h

∆t
∇̂Ci

∥∥∥∥ < 0.2
h

∆t

−0.2
h

∆t

∇̂Ci∥∥∥∇̂Ci

∥∥∥ otherwise
, (5)

where ∆t denotes the time step.

2.3. Oger et al. [25]

The ALE formalism originally derived by Vila [37] was studied by Oger et al. [25] in the Weakly-
Compressible SPH context. Using such an ALE formalism, a PST written in terms of velocity was required
because the transport velocity (and consequently the PST velocity) appears explicitly in the SPH equations.
The authors chose the approximation defined in Eq. (2). Multiplying ∇Ci by a characteristic length dchar

was required to obtain a non-dimensional vector. The authors chose dchar = R where R is the kernel support
radius. Then a characteristic velocity U char had to be used and the authors chose U char = Ma c0, with Ma
the Mach number and c0 the nominal speed of sound (both taken as constant in time and space and defined
prior to the simulation). Similarly to Lind et al. [17], the PST velocity was limited using a percentage of
the Lagrangian velocity of the particles. This PST velocity finally reads:

δuOEAi =

−Ma c0R∇Ci if ‖Ma c0R∇Ci‖ < 0.25 ‖ui‖

−0.25 ‖ui‖
∇Ci
‖∇Ci‖

otherwise
. (6)

2.4. Sun et al. [32]

Using the δ stabilization terms, Sun et al. [32] proposed another PST written in terms of velocity. The
characteristic length dchar = 2h was used, and similarly to Oger et al. the characteristic velocity was taken
as U char = Ma c0. The main difference with respect to Eq. (6) resides in the use of ∇̂Ci instead of
∇Ci. Furthermore, the limitation was not based on the Lagrangian particle velocity itself but on using the
expected maximum Lagrangian velocity Umax throughout the fluid domain. Finally, the PST reads:

δuSEAi =


−Ma c0 (2h) ∇̂Ci if

∥∥∥Ma c0 (2h) ∇̂Ci

∥∥∥ < 0.5Umax

−0.5Umax
∇̂Ci∥∥∥∇̂Ci

∥∥∥ otherwise
. (7)
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2.5. Summary of existing PSTs based on Fick’s law

As a summary, different PST velocities using Fick’s law can be designed using the following ideas: (i) use
a vector pointing towards the zone of low concentration of particles ∇̃Ci, (ii) choose a characteristic length
dchar linked to the kernel support, (iii) choose a characteristic velocity U char, (iv) limit the PST velocity
amplitude to a certain value U lim. Then, these PST velocities can be written using the following generic
formulation:

δugeni =


U chardchar∇̃Ci if

∥∥∥U chardchar∇̃Ci

∥∥∥ < U lim ,

U lim
∇̃Ci∥∥∥∇̃Ci

∥∥∥ otherwise ,
(8)

with the parameters listed in Tab. 1.

Characteristic
length dchar

Characteristic velocity
U char

Pointing vector
∇̃Ci

Limitation U lim

Lind et al. [17] h h

∆t
−∇̂Ci 0.2

h

∆t

Oger et al. [25] R Ma c0 −∇Ci 0.25 ‖ui‖

Sun et al. [32] 2h Ma c0 −∇̂Ci 0.5 Umax

Table 1: Summary of the existing PSTs based on Fick’s law.

Then, for the PST velocities in Table 1, dchar is constant for all the particles during the simulation
(without refinement technique), i.e. it is constant in space and time. Because of the fixed relation between h
and R once the kernel chosen, throughout the rest of the paper R will be used instead of dchar for readability
purposes, but the theoretical results obtained in this paper are valid using dchar = h and dchar = R.

U char is also constant in space and time in Oger et al. [25] and Sun et al. [32] since Ma and c0
are constant. It is also the case for the PST velocity derived from Lind et al. [17] with the weakly-
compressible assumption, as the time step computation is based on c0. In contrast, U char varies in time
with the incompressible assumption since the CFL condition is based on the maximum Lagrangian velocity
appearing within the fluid flow. However, it remains constant in space at any instant.

The limitation velocity U lim is also constant in space and time in [32], contrary to [25]. For the PST
velocity derived from [17], U lim behaves similarly to U char.

Furthermore, it is important to note that the PST velocities of Oger et al. and Sun et al. are not
compatible with the incompressible assumption (presence of c0), and that the PST velocity derived from
Lind et al. is expressed differently considering the incompressible or the weakly-compressible assumption,
as above-mentioned.

3. Expected requirements of a PST

This section addresses the conditions that should be fulfilled by a PST from our point of view. The first
condition is to enforce the PST velocity to tend towards zero while refining the spatial resolution, which
stands as a consistency requirement. The second condition is the Galilean invariance of the PST as proposed
initially in [22] with the additional local rotation invariance. The third condition is the independence between
local PST and global behavior of the fluid flow solution.
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3.1. Consistency of the PST velocity

Unlike other numerical methods such as the Finite Volume method for instance, in the SPH method

two convergence criteria are requested: ∆x→ 0 and
∆x

R
→ 0. Practically, the second criterion is impossible

to fulfill as a finite number of neighbor particles is expected within the kernel support. Therefore, SPH
simulations are usually performed using a constant R/∆x ratio. Thus, as far as the PST is concerned, the
first condition that should be imposed is:

lim
∆x→ 0
R

∆x = cst

δui = 0 . (9)

This condition is particularly important for an SPH scheme in which the PST is used to update particle
positions exclusively, i.e. without being taken into account in the continuity and momentum equations, like
in [22] and [33] for example. Note that this requirement can be theoretically alleviated when using an ALE
formalism, since spatial differential operators are included in the continuity and momentum equations to
take into account the additional terms due to the presence of a PST velocity [37, 25, 7]. Nevertheless, in
practice the mass and volume of isolated particles can strongly deviate from their initial values, which causes
some adverse consequences on the solution [7, 21]. Thus, condition (9) is suitable for these two families of
SPH schemes.

In order to establish the convergence property of a PST velocity written using the generic formulation
(8), we start here by studying ∇Ci. From Quinlan et al. [27], the truncation error of the gradient of a
function A can be estimated in one dimension using Eq. (10), where ξ is a measure of the disorder within
the particle distribution.

∑
j∈Di

Aj∇iWijVj −A′i =
Ai
R

[
ξO

((
∆x

R

)3
)

+
1

2

(
ξ2 +

1

12

)
O

((
∆x

R

)4
)]

+A′i

[
ξO

((
∆x

R

)3
)

+O

((
∆x

R

)4
)]

+A′′i R

[
ξO

(
∆x

R

)
+O

((
∆x

R

)4
)]

+ ... . (10)

In our case, we are interested in A ≡ 1, leading to:

∇Ci =
∑
j∈Di

∇iWijVj =
1

R

[
ξO

((
∆x

R

)3
)

+
1

2

(
ξ2 +

1

12

)
O

((
∆x

R

)4
)]

. (11)

Then, multiplying ∇Ci by the characteristic length R leads to the following property:

R∇Ci = O (1) , (12)

when considering a fixed ratio R/∆x.
Therefore, since the velocities U char and U lim introduced in Tab. 1 are O (1), the following conclusions

can be drawn for all the PSTs introduced in Tab. 1:

1. In terms of velocity, δui = O (1) and then:

lim
∆x→ 0
R

∆x = cst

δui 6= 0 . (13)

5
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2. In terms of displacement, δri = O (∆x) and then:

lim
∆x→ 0
R

∆x = cst

δri = 0 . (14)

This property is highlighted numerically in [32].

As a consequence, in order to recover the consistency condition (9) for a PST velocity written in the
generic form (8), a relevant choice is to consider a characteristic velocity such that:

lim
∆x→ 0
R

∆x = cst

U char = 0 . (15)

We can observe that there is theoretically no need for a specific condition regarding U lim, provided that the
property (15) is satisfied. Conversely, if the condition (15) is not fulfilled, another way to comply with the
condition (9) is to ensure that:

lim
∆x→ 0
R

∆x = cst

U lim = 0 . (16)

It can be observed that for the consistency property of the PST velocity, there is no restriction on U char

and U lim of being local or global in space and time.
Note that using ∇̂Ci instead of ∇Ci leads to the same conclusions. In that case, the derivatives of the

function A in (10) are such that: A(2k+1) ≡ 0 thanks to the symmetry of the kernel and
∣∣∣A(2k)

∣∣∣ ≤ Ck
R2k

where Ck depends on the ratio R/∆x and on the choice of the kernel.

3.2. Uniform translation and local rotation invariance

As already mentioned in Section 2.1, the PST introduced by Monaghan has the advantage of being
Galilean invariant. This is the second condition that the PST should verify. Moreover, the PST should be
the same with or without the presence of rotation at any instant.

The quantity R∇Ci (or R∇̂Ci) itself is invariant by uniform translation and local rotation. Then, U char

and U lim should be chosen properly so that δu maintains this nice property. Note that using the local or
global Lagrangian particle velocity does not allow these invariance conditions to be fulfilled. Conversely,
using a relative velocity such that U chari = f (uj − ui) is a sufficient condition (in situations where the
limitation is never reached), and using in addition a similar U limi allows the Galilean invariance to be
recovered in any case. It is important to note that, conversely to the PST velocities introduced in Tab. 1,
U chari and U limi are in this case variable in space and time.

Furthermore, using a first order Taylor’s expansion (at location xi for instance), leads theoretically to:

uj − ui ≈ ∇uxi (xj − xi) = O(∆x), (17)

where ∇uxi
is the velocity gradient at xi. Then, basing U chari and U limi on uj − ui in the generic PST

velocity formulation (8) allows for ensuring both the Galilean invariance and the consistency condition (9)
where u ∈ C1, with a theoretical first order convergence rate.

In addition, with a projection (uj − ui) ·
xj − xi
‖xj − xi‖

, the local rotation invariance is obtained.

To summarize, using any of the characteristic (and limitation) velocities proposed in Eqs. (18)-(20)
in the generic form (8) allows to fulfill (i) the condition of Galilean and local rotation invariance, (ii) the
consistency condition (9).

U chari = min
j∈Di

(∣∣∣∣ωi (j) (uj − ui) ·
xj − xi
‖xj − xi‖

∣∣∣∣) , (18)

6
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U chari =

∣∣∣∣ωi (j) (uj − ui) ·
xj − xi
‖xj − xi‖

∣∣∣∣
i

, (19)

U chari = max
j∈Di

(∣∣∣∣ωi (j) (uj − ui) ·
xj − xi
‖xj − xi‖

∣∣∣∣) , (20)

where ωi (j) is a weight function. In this paper, the weight function is taken such that ωi (·) ≡ 1 but another
function could be chosen to give a stronger weight to the particles j close to the particle i, for instance in
order to smooth out U chari in presence of free-surface reconnection.

3.3. Independence of the PST from the solution

The PST should act with respect to a local measure of the flow dynamics. For example, in a dam-break
test case, the maximum Lagrangian velocity is reached in the fluid front, whereas the dynamics of the flow
is relatively low elsewhere. In such a case, basing the PST on the maximum Lagrangian velocity Umax can
lead to an excessive particle shifting in low dynamics region. This last condition proposed aims at avoiding
such an undesirable property.

R∇Ci (or R∇̂Ci) are some local quantities and therefore do not depend on the global behavior of the
flow. Note that the characteristic velocities proposed in Eqs. (18)-(20) are independent of any global velocity
of the flow and therefore fulfill also the desired local property of the PST.

4. PST enhancements

4.1. Proposition of an improved PST velocity

From the discussion and analysis drawn in Section 3, we derive here the proposition of an enhanced PST.
For the particles located inside the fluid (i.e. far from a free-surface or a solid boundary), we propose the
following PST velocity:

δui = α


−U chari βiR∇̂Ci if

∥∥∥βiR U chari ∇̂Ci

∥∥∥ < 1

2

R

∆x
U limi

−U limi
1

2

R

∆x

∇̂Ci∥∥∥∇̂Ci

∥∥∥ otherwise
, (21)

where U chari and U limi are defined as Eq. (20) with the weight function ωi(j) ≡ 1. ∇̂Ci is the pointing
vector defined in Eq. (3), βi is a coefficient introduced to counterbalance the term of lowest degree appearing

in Eq. (11), and typically βi =

(
R

∆x

)3

. Note that the reference to i appearing in βi is not necessary at

this stage, but it will be needed in Section 5 where the PST close to a free-surface is introduced. Lastly,
α is a shifting amplitude coefficient fixed to α = 0.5 throughout this paper. Theoretically, R∇̂Ci is O (1)

but it is not possible to predict its exact value a priori. To prevent excessive values, a limitation by
1

2

R

∆x
is prescribed. Making these choices, the PST velocity validated in this paper finally reads:

δui = 0.5


−max
j∈Di

(∣∣∣∣(uj − ui) · xj − xi‖xj − xi‖

∣∣∣∣)( R

∆x

)3

R∇̂Ci if

∥∥∥∥∥
(
R

∆x

)3

R∇̂Ci

∥∥∥∥∥ < 1

2

R

∆x
,

−max
j∈Di

(∣∣∣∣(uj − ui) · xj − xi‖xj − xi‖

∣∣∣∣) 1

2

R

∆x

∇̂Ci∥∥∥∇̂Ci

∥∥∥ otherwise ,

(22)

whose properties are summarized in Tab. 2. By construction, the proposed PST verifies the targeted
conditions introduced in Section 3. Furthermore, another advantage of this PST is its compatibility with
the incompressible assumption, thanks to the absence of sound speed terms.

7
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lim
∆x→ 0

δr = 0 lim
∆x→ 0

δu = 0

Galilean
and local
rotation
invari-
ance

Independence
global flow /

local PST

Compatibility
with

incompressible
assumption

PST
based on

Fick’s
law

Monaghan
[22] Yes Yes

Only
Galilean

Yes Yes No

Lind et
al. [17] Yes if

∆x

R
→ 0 No No Derived for

incompressible
Yes

Oger et
al. [25] Yes if

∆x

R
→ 0 No No No Yes

Sun et al.
[32] Yes if

∆x

R
→ 0 No No No Yes

Present
PST

Yes Yes Yes Yes Yes Yes

Table 2: Summary of the theoretical properties of PSTs.

It is important to note that here we mainly focus on PSTs based on Fick’s law written through the
generic formulation (8). However, it is not the only possibility to build a PST. As an example, Adami
et al. [1] derived a PST built through the computation of an acceleration, computed as ∇Pb

ρ where Pb
is a background pressure, numerically chosen as Pb = P0, with P0 the reference pressure. Therefore, this
background pressure gives the magnitude of the PST, implying that the consistency condition (9) is not
fulfilled. In addition, despite its Galilean invariance property, this PST does not allow for recovering the
local rotation invariance and independence from the solution.

4.2. SPH schemes used to validate the present PST

In this work, the PST is validated through different SPH formulations, which are first recalled in the
present section. For all these schemes, the system of equations is closed using the Cole equation of state

p =
c20ρ0

γ

[(
ρ

ρ0

)γ
− 1

]
where γ, ρ0 and c0 are respectively the polytropic constant, reference density and

nominal speed of sound. The C2 Wendland kernel [38] is used with a ratio R/∆x = 4 in 2D and R/∆x = 3
in 3D. Finally, time derivatives are integrated using a 4th-order Runge-Kutta scheme, and the time-step is
computed through the following CFL condition:

∆t=CFLmin
i

Ri
c0

(23)

with Ri the kernel radius associated to the particle i and CFL=0.375

4.2.1. Riemann-based scheme derived from an ALE formalism

Vila [37] derived a weakly-compressible Riemann-based SPH scheme written in ALE formalism. This
scheme, then studied for instance in [25] and [29], is rewritten here using a velocity decomposition:

8
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dxi
dt

= ui + δui , (24)

dVi
dt

= Vi
∑
j∈Di

(uj − ui) ·∇iWij Vj + Vi
∑
j∈Di

(δuj − δui) ·∇iWij Vj , (25)

d (Viρi)

dt
= −Vi

∑
j∈Di

2ρE (uE − uij) ·∇iWij Vj + Vi
∑
j∈Di

ρE (δui + δuj) ·∇iWijVj , (26)

d (Viρiui)

dt
=
−Vi

∑
j∈Di

2 [ρEuE ⊗ (uE − uij) + PEI]∇iWij Vj

+Viρig︸ ︷︷ ︸
Lagrangian part

+Vi
∑
j∈Di

[ρEuE ⊗ (δui + δuj)]∇iWijVj︸ ︷︷ ︸
PST part

, (27)

with uij =
ui + uj

2
, I the identity matrix and g the gravity. ρE , uE and PE are the Riemann problem

solutions at the interface between particles i and j which is supposed to be located at the i− j mid-distance

xij and moving at the velocity u0ij =
u0i + u0j

2
with u0 = u + δu. The MUSCL scheme [36] with the

minmod slope limiter [30] is used to reconstruct the conservative variables

(
ρ
ρu

)
at xij for an increased

accuracy.

4.2.2. Riemann-based scheme with PST velocity in the motion equation only

The second SPH scheme studied in this paper was firstly derived by Parshikov & Medin [26] in a
Lagrangian framework (i.e. without PST). In [15], the Vila scheme was adapted to two phase flows by
canceling the mass fluxes between particles, and the scheme initially derived by Parshikov & Medin was
thus recovered. The only difference with [26] resides in the continuity equation which was written with
density terms instead of volume terms in [15], those two formulations being strictly equivalent. In this
scheme, the stabilization is also performed using a Riemann solver combined with MUSCL reconstructions.

Here, the PST is taken into account in the motion equation exclusively, which reads:

dxi
dt

= ui + δui , (28)

dVi
dt

= Vi
∑
j∈Di

2 (uE − ui) ·∇iWij Vj , (29)

d (Viρi)

dt
= 0 , (30)

d (Viρiui)

dt
= −Vi

∑
j∈Di

2PE∇iWij Vj + Viρig︸ ︷︷ ︸
Lagrangian part

︸ ︷︷ ︸
PST part

. (31)

4.2.3. δ-SPH scheme with PST velocity in the motion equation only
The third SPH scheme used in this work is the δ-SPH scheme, firstly derived in [3, 18]:

dxi
dt

= ui + δui , (32)

dρi
dt

= −ρi
∑
j∈Di

(uj − ui) ·∇iWij Vj + Π
(ρ)
i,δ , (33)

d (Viρi)

dt
= 0 , (34)

ρi
dui
dt

=
∑
j∈Di

(Pi + Pj)∇iWij Vj + Π
(u)
i,δ + Viρig︸ ︷︷ ︸

Lagrangian part

︸ ︷︷ ︸
PST part

. (35)

9
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where the diffusive terms Π
(ρ)
i,δ and Π

(u)
i,δ are:

Π
(ρ)
i,δ = δhc0

∑
j∈Di

ψij ·∇iWijVj , with ψij = 2(ρj − ρi)
xij
||xij ||2

− [〈∇ρ〉Li + 〈∇ρ〉Lj ] , (36)

Π
(u)
i,δ = αhc0ρ0

∑
j∈Di

πij∇iWijVj , with πij =
(uj − ui) · (xj − xi)

||xij ||2
, (37)

with α = 0.01 and δ = 0.1 in the present work unless otherwise specified.

4.3. Validation of the PST consistency

4.3.1. Case of an inviscid flow

This section aims at verifying the validity in 2D of the consistency property (9) studied theoretically in
1D so far. To this end, 2D Taylor-Green vortices for an inviscid flow [35] are considered, the PST being
crucial in this test case [2, 25]. The initial velocity and pressure are given by:

u∗x = sin (2πx∗) cos (2πy∗) , (38)

u∗y = − cos (2πx∗) sin (2πy∗) , (39)

p∗ =
1

2
[cos (4πx∗) + cos (4πy∗)] , (40)

in the square shaped fluid domain of size [0, L] × [0, L]. The superscript ∗ stands for the dimensionless

variables with the reference length L, velocity U , time L/U and pressure ρU2

2 , being U the maximum
velocity in the initial condition. In this case, the nominal sound speed is taken as c0 = 10× U .

Vila Parshikov & Medin δ-SPH

Figure 1: Inviscid 2D Taylor-Green vortices. Top: time evolution of the maximum PST velocity ‖δu‖max
for three spatial resolutions. Left: Vila scheme. Middle: Parshikov & Medin scheme. Right: δ-SPH scheme.
Bottom: convergence rate of ‖δu‖max for the three SPH schemes tested.

10
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Fig. 1 shows the time evolution of the maximum PST velocity ‖δu‖max for three different spatial
resolutions and with the three SPH schemes tested. We observe that the property (9) is verified numerically
for all the SPH schemes tested here. Moreover, the theoretical first order of convergence is retrieved. In
Fig. 2, the pressure field is plotted at different time instants of the simulation for the Vila scheme. While
the initial configuration is Cartesian, we observe that the coherent structures start breaking from the very
beginning of the simulation, and the PST introduced in this paper succeeds in suppressing all of them without
altering the pressure field. When using the finest resolution, we can see in Fig. 3 that the PST is efficient for
the three schemes studied in this paper despite the small values of δu. Note that a deviation of the pressure
values occurs for the SPH schemes in which the PST is taken into account in the motion equation only, i.e.
δ-SPH and Parshikov & Medin. Nevertheless, this wrong effect should be imputed to the absence of δui
terms in the mass and momentum equations within these SPH formulations, rather than to the PST itself.
As a matter of fact, Colagrossi et al. [7] and Sun et al. [32] recently proposed alternative formulations of
the δ-SPH scheme to answer this issue, and we have also developed Riemann-based formulations for which
the theoretical results are retrieved [20].

Figure 2: Inviscid 2D Taylor-Green vortices. Pressure field obtained with the Vila scheme and L/∆x = 100
at tU/L = 0, tU/L = 0.05, tU/L = 0.1 and tU/L = 1.
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Vila Parshikov & Medin

δ-SPH

Figure 3: Inviscid 2D Taylor-Green vortices. Pressure field at tU/L = 0.1 with L/∆x = 400. Zoom in the
center of the square. Left: Vila scheme. Right: Parshikov & Medin scheme. Bottom: δ-SPH scheme.

We check here the gain in the numerical dissipation provided by the PST, through the analysis of
the kinetic energy decay. Fig. 4 shows that the dissipation tends towards zero while increasing the spatial
resolution for the three schemes studied. Note that we aim here at showing that the PST has the same effect
on the numerical diffusion whatever the SPH scheme used, and not to compare the diffusion properties of
these schemes. For instance, the δ-SPH scheme would display a lower dissipation by using a smaller diffusion
coefficient.
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Figure 4: Inviscid 2D Taylor-Green vortices. Kinetic energy decay for three spatial resolutions. Solid: Vila
scheme. Dot-dashed: Parshikov & Medin scheme. Dashed: δ-SPH scheme.

4.3.2. Case of a viscous flow

We propose here to validate the proposed PST for a viscous flow. To this end, the Taylor-Green vortices
at Reynolds number Re = 100 are considered (see e.g. [25] for more details). For the three schemes tested,
the viscous part is discretized using the Monaghan & Gingold operator [24]. Note that, for the δ-SPH scheme
(32)-(35), the artificial viscosity is here replaced by the physical viscosity, meaning that α = 0 in (37), as
proposed in [33] for example.

Because of the presence of viscous terms, the following CFL condition is used for the three schemes
tested:

∆t = min

(
CFLν min

i

R2
i

ν
, CFLmin

i

Ri
c0

)
, (41)

where ν is the dynamic viscosity, CFLν = 0.025, and CFL = 0.375 as in Eq. (23).
In Fig. 5, the maximum PST velocity is plotted for three spatial resolutions and for the three schemes

tested. We have also represented in green dashed lines the theoretical values corresponding to a first order
of convergence at three instants of the simulation. As we can observe, due to the presence of the viscosity,
the maximum PST velocity decreases over time in all the simulations. In addition, for the three schemes
tested, the maximum PST converged while refining the spatial resolution, and the first order of convergence
seems to be recovered all along the simulation. Regarding the kinetic energy, a good agreement with the
analytical solution is found for the three SPH schemes tested, as observed in Fig. 6. Note that (i) for the
Vila scheme, the convergence is obtained from L/∆x = 200 and the solution is very close the analytical one,
(ii) for the δ-SPH scheme the solution is converged from L/∆x = 100 with a small gap in comparison to the
analytical solution.

13
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Vila Parshikov & Medin δ-SPH

Figure 5: 2D Taylor-Green vortices at Re = 100. Time evolution of the maximum PST velocity ‖δu‖max
for three spatial resolutions. Left: Vila scheme. Middle: Parshikov & Medin scheme. Right: δ-SPH scheme.
The values of the theoretical first order convergence at three specific instants are plotted in green dashed
line on each figure.

Vila Parshikov & Medin δ-SPH

Figure 6: 2D Taylor-Green vortices at Re = 100. Time evolution of the kinetic energy for three spatial
resolutions. The analytical solution is also provided. Left: Vila scheme. Middle: Parshikov & Medin
scheme. Right: δ-SPH scheme.

4.4. Validation of uniform translation invariance

In order to check the Galilean invariance property, the Taylor-Green test case is still considered here,
but the initial configuration is modified by adding a translation velocity U0 = 2U in Eq. (38) (where U is
the maximum velocity of the original case).

14
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Figure 7: Inviscid 2D Taylor-Green vortices. Time evolution of the maximum PST velocity ‖δu‖max
obtained with the Vila scheme for three spatial resolutions. Left: original Taylor-Green. Right: Taylor-
Green with uniform translation.

Figure 8: Inviscid 2D Taylor-Green vortices. Distribution of the PST velocity ‖δu‖ at tU/L = 0.1 obtained
with the Vila scheme with L/∆x = 100. Left: original Taylor-Green. Right: Taylor-Green with uniform
translation.

As visible in Fig. 7, whatever the spatial resolution used there is no major differences in the maximum
PST velocity while considering uniform translation or not. Moreover, although small differences can be
noticed, the PST velocity remains globally unchanged (see Fig. 8). Regarding the kinetic energy decay
(see Fig. 9 in which the contribution of the uniform translation has been subtracted), results are similar
with and without applying the uniform translation. Note that these results refer to the Vila scheme but the
conclusions are the same when using the other SPH schemes.
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Figure 9: Inviscid 2D Taylor-Green vortices. Kinetic energy decay for three spatial resolutions using the
Vila scheme. Solid: original Taylor-Green. Dashed: Taylor-Green with uniform translation.

4.5. Comparison with PSTs of the literature

In this section, we propose to compare the PSTs of Tab. 2 numerically. To this end, the Taylor-Green
vortices test case introduced in Section 4.3.1 is considered and the study is performed using the Vila scheme.
The choice of this particular scheme to conduct the comparison is due to (i) the fact that some PSTs of
Tab. 2 do not theoretically fulfill the consistency condition, and an ALE scheme is theoretically suitable to
deal with any arbitrary velocity, and (ii) among the SPH schemes used in this paper, the Vila scheme is the
only one for which there is no deviation of the pressure field, allowing then to compare the pressure field
obtained for each PST to the analytical solution.

In Tab. 2, we outlined that the PST of Monaghan fulfills almost all the targeted conditions asked for a
PST, and in particular the consistency condition. Nevertheless, as we can observe in the left part of Fig. 10,
this condition is not recovered numerically. Furthermore, among the PSTs studied in the present paper, the
PST of Monaghan is the only one which is not based on Fick’s law. As we can see in the right part of Fig.
10, anisotropic distribution of particles remains in the simulation, which deteriorates the obtained solution.

Figure 10: Inviscid 2D Taylor-Green vortices. Results obtained with the Vila scheme and the PST of
Monaghan. Left: time evolution of the maximum PST velocity. Right: Pressure field obtained for the
spatial resolution L/∆x = 400 at tU/L = 0.25. The analytical pressure field is represented in the right-hand
side.
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Regarding the PSTs based on Fick’s law of Tab. 2, the maximum PST velocity is plotted in Fig. 11. As
expected, the consistency condition (9) is not fulfilled, except for the PST derived in this paper. Furthermore,
as shown in Fig. 12, the pressure field obtained with the present PST is closer to the reference solution than
with the other PSTs. More quantitatively, the maximum error on the pressure values is plotted in Fig. 13
for L/∆x = 400. We can observe that both the average value and the amplitude of the error are lower with
the present PST than with the others, showing the superiority of the present PST on this test case.

Present PST Oger et al. PST

Lind et al. PST Sun et al. PST

Figure 11: Inviscid 2D Taylor-Green vortices. Time evolution of the maximum PST velocity obtained with
the Vila scheme and PSTs based on Fick’s law for three spatial resolutions. Top left: Present PST. Top
right: Oger et al. PST. Bottom left: Lind et al. PST. Bottom right: Sun et al. PST.
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Figure 12: Inviscid 2D Taylor-Green vortices. Pressure field obtained with the Vila scheme for the spatial
resolution L/∆x = 400 at tU/L = 0.25 for the present PST (top left), the PST of Oger et al. (top right),
the PST derived from Lind et al. (bottom left), and the PST of Sun et al. (bottom right). In each plot, the
analytical pressure field is represented in the right-hand side.
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Figure 13: Inviscid 2D Taylor-Green vortices. Time evolution of the maximum error on the pressure values
obtained with the Vila scheme with the spatial resolution L/∆x = 400. The results obtained for the four
PSTs based on Fick’s law of Tab. 2 are plotted.

5. PST in presence of a free-surface

5.1. Free-surface detection and normal vector

A special attention has been paid recently to the PST close to a free-surface, both in the incompressible
context [11, 17] and in the weakly-compressible context [32, 33]. The methodology used to perform a PST
in such a region can be divided into two parts (i) detect correctly the free-surface (ii) cancel accurately the
normal component of the PST velocity close to the free-surface, in order to maintain the respect of the
kinematic condition. The terminology used throughout this paper regarding the free-surface is summarized
in Fig. 14.

Figure 14: Definition of the free-surface region (defined by the blue and green particles) and the normal
vector to the free-surface, here with a ratio R/∆x = 4.
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The free-surface detection algorithm from Marrone et al. [19] is commonly used in the SPH community.
The first step of this algorithm consists in calculating the minimum eigenvalue (λi) of the renormalization
matrix [28] defined as:

Li =

∑
j∈Di

(xj − xi)⊗∇iWijVj

−1

. (42)

Then the particles for which λi < 0.2 are considered as free-surface particles while the particles displaying
λi > 0.75 are inner particles. For 0.2 < λi < 0.75, a second step should be performed to distinguish the
free-surface particles from the inner particles: the so-called ice-cream algorithm (see [19] for more details).
Once the free-surface particles detected, the free-surface region corresponds to these particles in addition of
their neighboring particles (located inside the free-surface particle kernel supports), as schematized in Fig.
14.

In order to cancel the normal component of the PST, the normal vector to the free-surface has to be
computed everywhere in the free-surface region. In [19, 11] this vector is evaluated through:

ni = − Li∇Ci
‖Li∇Ci‖

, (43)

while the formulation (44) is preferred in [33, 32] in order to obtain a better accuracy for the particles located
far from the free-surface.

nλi = − 〈∇λi〉
‖〈∇λi〉‖

, 〈∇λi〉 =
∑
j∈Di

(λj − λi)Li∇iWijVj . (44)

In return, an additional CPU time is needed to compute 〈∇λi〉.

5.2. Theoretical study of ∇Ci in presence of a free-surface

The expression for the truncation error (10) is valid wherever the kernel support is filled with particles.
However, for the particles in the free-surface region, the kernel support is truncated. For a particle located
at the free-surface, for which the kernel support is half filled, the truncation error for the gradient of a
function A becomes (see Appendix for the details):∑

j∈Di/2

Aj∇iWijVj −A′i =
Ai
R

[
O (1) + ξO

(
∆x

R

)
+

1

2

(
ξ2 +

1

12

)
O

((
∆x

R

)2
)]

+A′i

[
O (1) + ξO

(
∆x

R

)
+O

((
∆x

R

)2
)]

+A′′i R

[
ξO

(
∆x

R

)
+O

((
∆x

R

)2
)]

+ ... , (45)

where Di/2 stands for the half-filled kernel support. Therefore the approximation of ∇Ci becomes:

∇Ci =
∑

j∈Di/2

∇iWijVj =
1

R

[
O (1) + ξO

(
∆x

R

)
+

1

2

(
ξ2 +

1

12

)
O

((
∆x

R

)2
)]

. (46)

Hence, the conclusions drawn inside the fluid still hold for the particles located at the free-surface. Note

that the term of lowest degree is O (1) in Eq. (46) whereas it is O

((
∆x

R

)3
)

inside the fluid (see Eq. (11)).

Therefore, another conclusion can be made in the presence of a free-surface: R∇Ci is O (1) even if
∆x

R
→ 0.
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5.3. Proposition of a PST in presence of a free-surface

Following the idea of Sun et al. [33, 32] and Khayyer et al. [11], in this paper the normal component of
the PST velocity is progressively canceled in the free-surface region. To preserve an accurate determination
of the normal vector far from the free-surface without computing Eq. (44), the following compromise is
made: (i) for the free-surface particles the normal vector is determined using (43), (ii) the normal vector of
particles in the free-surface region is set equal to the one of their closest free-surface particle neighbor (see
Fig. 14). To summarize, this vector noted ñi is defined as:

ñi =

{
ni if i is a free-surface particle

nj with dji = dFSi if i is a vicinity particle
, (47)

where dji is the distance between the particles i and j and dFSi is the distance between the particle i and
its closest free-surface particle neighbor. The PST proposed in this paper (inspired from Sun et al. [33, 32]
with some slight modifications to account for the PST velocity proposed) is then processed as follows:

• In order to counterbalance the term of lowest degree appearing in Eqs. (11) and (46), the coefficient

βi in Eq. (21) is modified such that βi = (R/∆x)
3

for the inner particles with a linear decreasing in
the free-surface region to reach βi = 1 for the free-surface particles.

• For any particle i in the free-surface region, if λi < 0.4 corresponding to regions of low number of
neighbors, the PST velocity is set to δui = 0.

• For a particle i in the free-surface region, such that λi ≥ 0.4 and dFSi ≤ R/2, the normal component
of δui is totally canceled.

• For a particle i in the vicinity of the free-surface, with λi ≥ 0.4 and dFSi > R/2, the normal component
of δui is gradually permitted.

• No restriction regarding the PST velocity direction is imposed to inner particles.

Finally, the coefficient λ2
i is applied to limit the PST magnitude close to the free-surface. Explicitly, the

PST in the free-surface region reads:

δuFSi =

{
0 if λi < 0.4

λ2
i (δui − σi (δui · ñi) ñi) otherwise

, (48)

where σi = min

[
1,max

(
0,
dFSi −R
R/2−R

)]
and with δui as defined in (21) with the modification brought

regarding the coefficient βi.
Note that the modifications made to the PST to account for the free-surface do not affect neither the

Galilean and local rotation invariance nor the independence of the PST from the solution. Moreover, an
additional consistency property is ensured at the free-surface, as outlined in Tab. 3.
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lim
∆x→ 0

δuFS = 0

Lind et al. [17] No

Oger et al. [25] No

Sun et al. [32] No

Present PST Yes

Table 3: Summary of the theoretical properties of PSTs based on Fick’s law in presence of a free-surface.

5.4. Validation of the PST in presence of a free-surface

To validate the proposed PST in the presence of a free-surface, the rotation of an initially square patch of
fluid is considered [14]. The velocity of the square patch of length L is initialized using u0 (x, y) = (ωy,−ωx)
where ω is a constant angular velocity. The pressure is initialized with the hypothesis of an incompressible
flow by solving a Poisson equation. During the first tests with c0 = 10Umax (Umax being the maximum
velocity), a transfer from the compressible energy to the kinetic one was noticed at the very beginning of
the simulation, probably due to the difference between incompressible initialization and weakly-compressible
assumption. Using fine spatial resolutions (typically from L/∆x = 800) for which the numerical diffusion is
very small, perturbations were then observed at the free-surface. Therefore, the simulations are performed
here using c0 = 40Umax to limit the difference between incompressible initialization and weakly-compressible
assumption, unless otherwise specified. The reference length, velocity, time and pressure are respectively
the square length L, ωL, 1/ω and ρ(ωL)2.
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Vila Parshikov & Medin δ-SPH

Figure 15: 2D rotating square patch. Top: time evolution of the maximum PST velocity ‖δu‖max for three
spatial resolutions. Left: Vila scheme. Middle: Parshikov & Medin scheme. Right: δ-SPH scheme. Bottom:
convergence rate of ‖δu‖max taken as the average in tω ∈ [1.5; 2.5] for the three SPH schemes tested.

The time evolution of the maximum PST velocity is plotted in Fig. 15 for the three SPH schemes
studied in this paper. By contrast with the stationary Taylor-Green case in Section 4, the maximum PST
velocity ‖δu‖max decreases in the end of the simulation and this phenomenon is amplified for the coarse
resolutions. This is due to the presence of thin jets appearing in this test case (see Fig. 16) where the
PST is limited by the small values of λi. The two Riemann-based schemes give similar results in terms of
‖δu‖max whereas the signal is more noisy for the δ-SPH scheme. Nevertheless, the condition (9) is fulfilled
for all the schemes with a convergence order close to the theoretical one (the convergence curve is obtained
by averaging ‖δu‖max /(ωL) between tω = 1.5 and tω = 2.5 to limit the influence of the noise on the
convergence rate measure). For the finest spatial resolution L/∆x = 800, the maximum PST velocity is
only about 1% of the maximum Lagrangian velocity in the fluid (Umax = ωL/

√
2) and as we can see in Fig.

16, this is sufficient for breaking the anisotropic structures without affecting the pressure field.
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Vila Parshikov & Medin δ-SPH

Figure 16: 2D rotating square patch. Pressure field obtained with L/∆x = 800 at tω = 1.2, 2.4, 3.6, 4.8, 6.0
(from top to bottom). Left: Vila scheme. Middle: Parshikov & Medin scheme. Right: δ-SPH scheme.

The time evolution of the pressure at the square center is plotted in the right part of Fig. 17 showing
similar results with the three SPH schemes. Small oscillations are nevertheless observed with the ALE and
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δ-SPH schemes. As already highlighted in [25] and [33], this phenomenon is due to the formulation and
not to the PST itself. As a matter of fact, such oscillations do not occur using the Parshikov & Medin
scheme, while the same level of PST velocity is reached. Furthermore, as shown in the left part of Fig. 17
where kinetic energy decay is plotted, the dissipation decreases as the spatial resolution increases. However,
differences can be noted in comparison with Sun et al. [32], explained by the use of a higher nominal sound
speed. A very similar kinetic energy decay is recovered while using c0 = 10Umax instead of 40Umax (see Fig.
18).

Figure 17: 2D rotating square patch. Left: kinetic energy decay obtained with three spatial resolutions.
Solid: Vila scheme. Dot-dashed: Parshikov & Medin scheme. Dashed: δ-SPH scheme. Right: time evolution
of the pressure at the center of the domain for the three SPH schemes tested with L/∆x = 800 and
c0 = 40Umax.

Figure 18: 2D rotating square patch. Kinetic energy decay using the δ-SPH scheme with L/∆x = 400 and
c0 = 10Umax, and comparison with the results obtained by Sun et al. [32].

6. PST in presence of free-surface and solid boundary: moving ghost particle method

In this section, the proposed PST is adapted in order to deal with solid boundaries using the volume-based
method firstly developed in [16, 9]: the ’moving ghost particle’ method. The validation is then performed
for a jet impinging on a flat plate in 2D.
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6.1. PST adaptation to ghost particles

Using the moving ghost particle method, ghost and fluid particles are considered indifferently in the PST
computation for (i) the computation of ∇̂Ci in Eq. (3), (ii) the free-surface detection, (iii) the determination
of the normal vector to the free-surface. In order to theoretically recover the consistency property (15), the
characteristic velocity U chari (and U limi ) has to be modified. Indeed, in order to respect the free-slip condition,
the ghost particle velocity is mirrored:

uGi,s = ui − 2

(
(ui − us) ·

xGi,s − xi∥∥xGi,s − xi∥∥
)

xGi,s − xi∥∥xGi,s − xi∥∥ , (49)

where us is the wall velocity at the normal projection s of particle i on the wall, xGi,s and uGi,s are the
position and velocity of the ghost particle associated to the couple i− s respectively. Then, we have:∣∣∣∣∣(uGi,s − ui) · xGi,s − xi∥∥xGi,s − xi∥∥

∣∣∣∣∣ = 2

∣∣∣∣∣ui · xGi,s − xi∥∥xGi,s − xi∥∥
∣∣∣∣∣ 6−→∆x→0

0 , (50)

since a fixed wall is considered here, i.e. us = 0.
Consequently, the ghost particles are excluded from the computation of U chari and U limi and the consis-

tency property is recovered theoretically.
In presence of a triple point/line free-surface/solid boundary, the treatment exposed in Section 5.3 is

applied.

6.2. Validation on a 2D jet impinging on a flat plate

In order to complete the validation of the PST introduced in this paper, the test case of a jet impinging
on a flat plate is studied. The interest of this case relies on the presence of both a free-surface and a solid
boundary. Furthermore, an analytical solution is available in 2D (see for instance [4]). This test case has
also been studied using the SPH method in [12] [29] [10]. It consists in a jet of fluid of width H impacting
a plate with an imposed velocity U . Then, the characteristic length, velocity, time and pressure are taken

respectively as H, U , U/H and ρU2

2 . The fluid impacts the plate with an angle α = 30◦ (see Fig. 19). An
inlet condition is used to impose the jet velocity, while outlet conditions are prescribed at a distance taken
as sufficiently far from the impact area (Fig. 19).

Figure 19: 2D jet impinging on a flat plate. Test case description.

In this section, the validation is performed in 2D and the sound speed is chosen as c0 = 11U . As observed
in Fig. 20 in which the maximum PST velocity is plotted, the consistency property is recovered for the three
schemes studied. Using the δ-SPH scheme, ‖δu‖max is constant in time when the steady state is reached.
Using the Vila scheme, we observe a sudden decrease of ‖δu‖max in the beginning of the simulation for the
five spatial resolutions tested, and once the steady state reached ‖δu‖max is lower in average than in the
two other schemes for the coarse resolutions. With the Parshikov & Medin scheme, ‖δu‖max is constant in
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time when the steady state is reached for the coarse resolutions, and with H/∆x = 120 the results are close
to those obtained with the Vila scheme. Despite these differences, the consistency property is recovered and
the convergence rate is about 0.5 in this case.

Vila Parshikov & Medin δ-SPH

Figure 20: 2D jet impinging on a flat plate (ghost particle method). Top: time evolution of the maximum
PST velocity ‖δu‖max for five spatial resolutions. Left: Vila scheme. Middle: Parshikov & Medin scheme.
Right: δ-SPH scheme. Bottom: convergence rate of ‖δu‖max for the three SPH schemes tested.

Vila Parshikov & Medin δ-SPH

Figure 21: 2D jet impinging on a flat plate (ghost particle method). Time evolution of the pressure at the
stagnation point for five spatial resolutions and comparison with the analytical results. Left: Vila scheme.
Middle: Parshikov & Medin scheme. Right: δ-SPH scheme.

The time evolution of pressure at the stagnation point is plotted in Fig. 21. We can see that for the
Riemann-based schemes, the analytical solution is almost obtained (less than 3% of error) with H/∆x = 120.
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Using the δ-SPH scheme, the expected pressure is reached for a coarser spatial resolution, and refining the
resolution allows for reducing the oscillations on the pressure signal. Finally, a good agreement is found in
comparison to the analytical solution, as confirmed by the free-surface, pressure and velocity profiles shown
in Fig. 22.

Vila

Parshikov & Medin

δ-SPH

Figure 22: 2D jet impinging on a flat plate (ghost particle method). Solution obtained at tU/H = 20 and
comparison with the analytical results with the Vila, Parshikov & Medin, and δ-SPH schemes (from top to
bottom). Left: pressure field with H/∆x = 100 and comparison with the analytical free-surface. Center:
pressure profile along the plate for three spatial resolutions. Right: velocity profile along the plate for three
spatial resolutions.

7. PST in presence of free-surface and solid boundary: Boundary Integral Method

7.1. Adaptation of the PST

The solid boundary treatment used in this section is based on a Boundary Integral Method (BIM)
and more especially the CutFace Approach (CFA) proposed by Chiron et al. [6]. Within this approach,
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the intersection surface (noted ∂Di) between the kernel support of particle i and the solid boundary is
discretized with a set of elements noted s. The SPH scheme obtained is briefly reminded in Eqs. (51)-(54):

dxi
dt

= u0i, (51)

dVi
dt

=
Vi
γi

∑
j∈Di

2(uE − ui).∇iWijVj +
Vi
γi

∑
s∈∂Di

(us − ui).nsWisSs, (52)

d (Viρi)

dt
= 0, (53)

d (Viρiui)

dt
= −Vi

γi

∑
j∈Di

2PE∇iWijVj −
Vi
γi

∑
s∈∂Di

(Ps + Pi)WisnsSs + Viρig, (54)

where ns, Ss, γi, us and Ps are respectively the normal vector to s, the surface value of s, the renormalization
factor, the velocity of the solid boundary at the center of s and the pressure value on s.

Therefore, in presence of such a surface-based method for the solid boundary treatment, an adaptation
regarding the PST has to be carried out. Firstly, in the free-surface detection algorithm, the surface terms
have to be taken into account within the computation of the minimum eigenvalues λi in order to distinguish
the particles close to a solid boundary from the particles close to a free-surface. To this end, the modified
renormalization matrix defined in Eq. (55) is used (as introduced in [5]).

LBIM−CFAi =

 1

γi

∑
j∈Di

(xj − xi)⊗∇iWijVj +
1

γi

∑
s∈∂Di

(xs − xi)⊗ nsWisSs

−1

. (55)

Secondly, using Eq. (3) close to a boundary results in a vector always pointing outwards the fluid. To
recover a vector pointing towards the zones of low concentration of particles, the boundary has to be taken
into account within the approximation of ∇̂C. This is achieved through Eq. (56), as:

∇̂CBIM−CFAi =
∑
j∈Di

[
1 + 0.2

(
Wij

W (∆xi)

)4
]
∇iWijVj +

∑
s∈∂Di

[
1 + 0.2

(
Wis

W (∆xi)

)4
]
nsWisSs . (56)

Finally, the normal vector to the free-surface is computed as:

nBIM−CFAi = − LBIM−CFAi ∇CBIM−CFAi∥∥LBIM−CFAi ∇CBIM−CFAi

∥∥ , where ∇CBIM−CFAi =
∑
j∈Di

∇iWijVj +
∑
s∈∂Di

nsWisSs .

(57)
Like with the moving ghost particle method, the terms ui−us (in which the velocity of the solid boundary

appears) are excluded from the computation of U chari and U limi . Indeed, during an impact of fluid on a
solid boundary for instance, at the instant just before the impact, the relative velocity reads (here a fixed
boundary is considered: us = 0):

ui − us = ui 6−→
∆x→0

0 , (58)

and taking these terms into account would lead to: lim
∆x→0

U chari 6= 0.

In a first attempt, this boundary treatment has been implemented only within the Riemann-based
formulation for which the PST is taken into account in the motion equation only (Parshikov & Medin
scheme). Therefore, the validation of the proposed PST in presence of a solid boundary modelled by
the boundary-integral method is performed exclusively using this scheme in the following. Note that the
modifications brought do not affect both the Galilean and local rotation invariance, and the independence
of the PST from the solution.
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7.2. Tangential PST to solid boundary

In a similar way as for the free-surface, a kinematic condition has to be fulfilled at a solid boundary, which
reads uf .ns = us.ns in case of a free-slip condition, where uf and us stand for the fluid and solid boundary
velocity respectively and ns is the normal to the solid boundary. Consequently, in order to ensure this
condition, the normal component of the PST velocity should be deleted close to solid boundaries modelled
by boundary integrals (as proposed in [34] for example). Nevertheless, limiting the PST to its tangential
component can lead in practice to undesired effects, as shown in the right plot of Fig. 23, where the normal
component of the PST is canceled, leading to an anisotropic particle clustering along the boundary. This
wrong effect is absent when not limiting the shifting direction close to a solid boundary (as visible in the left
plot of Fig. 23), which sounds therefore as preferable. In addition, this short distance between the particles
and a solid boundary implies a wrong estimation of the pressure in near boundary areas. Fig. 24 illustrates
this effect, as using a purely tangential PST produces an overestimation of the pressure along the plate,
whereas analytical results are recovered otherwise.

Figure 23: Example of particle distributions obtained without (left) or with (right) limitation of the PST
velocity to its tangential component (Parshikov & Medin scheme with BIM-CFA). Case of a dam-break after
impacting the opposite wall.

Figure 24: 2D jet impinging on a flat plate (Parshikov & Medin scheme with BIM-CFA). Pressure along the
plate at tU/H = 0.2 with H/∆x = 80.
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7.3. Validation of the PST in presence of free-surface and solid boundaries in 2D and 3D

7.3.1. Validation: 2D impinging jet on a flat plate

The use of a boundary integral method is responsible for an additional term in Eq. (56), so that it
is needed to check whether the property (9) is still respected in that case. This is actually confirmed in
Fig. 25, which shows that the maximum PST velocity ‖δu‖max goes towards zero as the spatial resolution
increases, and the convergence rate is about 0.5 (measured once the steady state has been reached). Note
that the differences observed between the surface and volume based boundary methods for the finest spatial
resolution depend on the choice of the norm, L2 here. Indeed, similar results are found for both boundary
methods when using the L∞ norm to compute the convergence rate.

Figure 25: 2D jet impinging on a flat plate. Left: time evolution of the maximum PST velocity ‖δu‖max
for four spatial resolutions (Parshikov & Medin scheme with BIM-CFA). Right: in red, convergence rate of
‖δu‖max for the Parshikov & Medin scheme with the BIM-CFA method (the results with the Parshikov &
Medin scheme with the moving ghost particles method are recalled in black dotted for comparison purpose).

The left part of Fig. 26 shows the time history of pressure at the stagnation point, for which a correct
capture of the pressure peak is obtained, provided that a fine enough spatial resolution is used (H/∆x = 80).
Note that using the surface-based method allows for recovering the analytical results with a coarser spatial
resolution than with the volume-based method (see comparison with Figs. 21 and 22). Furthermore, the
pressure profile along the plate is in good agreement with the analytical results, as visible in the right plot
of Fig. 26.
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Figure 26: 2D jet impinging on a flat plate (Parshikov & Medin scheme with BIM-CFA). Left: time evolution
of the pressure at the stagnation point for four spatial resolutions and comparison to the analytical solution.
Right: pressure profile along the plate for different spatial resolutions and comparison to the analytical
solution once the steady state reached (at tU/H = 20).

The left plot of Fig. 27 displays the SPH pressure field solution obtained, and the analytical free-surface
is also plotted, showing a good agreement. Moreover, the velocity profile along the plate converges towards
the analytical solution while refining the spatial resolution, as shown in the right plot of Fig. 27.

Figure 27: 2D jet impinging on a flat plate (Parshikov & Medin scheme with BIM-CFA). Left: pressure field
with H/∆x = 100 at tU/H = 20 (the analytical free-surface is also plotted). Right: velocity profile along
the plate for different spatial resolutions compared to the analytical solution.

7.3.2. Validation: 3D impinging jet on a flat plate

The impinging jet on a flat plate in 3D is studied in this work with the angle α = 90◦ (see Fig. 19).
The reference solution is taken here as the experimental results obtained in [13] in which pressure profiles
along the plate and the free-surface shape are provided. The Froude number (Fr ≈ 36) involved in the
experimentation allows for neglecting the gravity effect. Furthermore, the Reynolds number (Re ≈ 6.105)
is such that viscous effects can also be neglected in a first attempt. Then, applying the Bernoulli’s equation
along the central flow streamline provides the expected pressure at the stagnation point. Fig. 28 shows that
the property (9) is still verified in that 3D case and the first order of convergence is retrieved. Furthermore,

32



J. Michel et al. / Journal of Computational Physics 00 (2022) 1–40 33

as observed in Fig. 29, the pressure peak converges towards the analytical result while refining the spatial
resolution, although a converged result is not reached yet with H/∆x = 40. Regarding the pressure profile
along the plate at different locations (see Fig. 30), the results obtained with the discretization H/∆x = 40
are close to those measured in [13], but an underestimation of the pressure is still found, especially at
y/H = 0.53. This is also observed numerically by Kvicinsky [13] with the CFD code FIDAP based on the
Finite Element method (Galerkin method). In our case, this pressure underestimation shall be explained by
the spatial resolution used. Actually, since the pressure result is not yet converged at the stagnation point it
is, logically, not the case either elsewhere along the plate. Note also that a spurious asymmetry is observed
in the experiment but, logically, not in the numerical results. Finally, Fig. 31 presents views of the numerical
solution, together with a comparison with the experimental free-surface provided by Kvicinsky [13], showing
a good agreement. Furthermore, we can observe a good particle distribution (considering that the right plot
is a 2D slice of a 3D computation), providing a regular pressure field despite the coarse resolution used.

Figure 28: 3D impinging jet on a flat plate (Parshikov & Medin scheme with BIM-CFA). Left: time evolution
of the maximum PST velocity for three spatial resolutions. Right: Convergence rate of the maximum PST
velocity.
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Figure 29: 3D impinging jet on a flat plate (Parshikov & Medin scheme with BIM-CFA). Time evolution of
the pressure at the stagnation point location for three spatial resolutions and comparison with the analytical
result.

Figure 30: 3D impinging jet on a flat plate (Parshikov & Medin scheme with BIM-CFA). Pressure profile
along the plate at tU/H = 50 at different locations y (y/H = 0, y/H = 0.27 and y/H = 0.53 from left
to right) with the spatial resolution H/∆x = 40 and comparison with the experimental result of Kvicinsky
[13].
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Figure 31: 3D impinging jet on a flat plate (Parshikov & Medin scheme with BIM-CFA). Results obtained
at tU/H = 50 with H/∆x = 40. Left: global view with pressure contour. Right: slice of the flow and
comparison with the experimental free-surface.

8. Conclusion

In this paper, Particle Shifting Techniques introduced in the SPH literature have been briefly recalled and
analyzed and a specific attention has been paid to those based on Fick’s law which allows for the particles to
slightly move from zones of high concentration to zones of low concentration. Then, conditions that should
be verified by a PST (consistency of the PST velocity, Galilean and local rotation invariance, independence
between local PST and global fluid flow) have been exposed. Using a theoretical demonstration in one
dimension, it has been shown that using a PST based on Fick’s law together with a characteristic velocity
based on the Lagrangian velocity of the flow (local or global), as done in the literature, does not ensure the
respect of such conditions. In order to recover theoretically these three conditions, using a relative velocity
instead of the Lagrangian one is sufficient and a novel PST has been then derived and validated on different
test cases. It has especially been shown on a Taylor-Green vortex test case that this new PST is actually
consistent in practice contrary to existing PSTs of the literature, and yields more accurate results.

A theoretical convergence development of SPH gradients close to a free-surface in presence of particle
disorder has then been derived so as to extend the proposed PST to the presence of a free-surface, still
verifying these three theoretical conditions. Finally, the extension of the proposed PST to the presence of a
solid boundary in addition to a free-surface has been performed, both for volume-based (ghost particle) and
surface-based (boundary integral method) SPH boundary treatments, again with targeting the fulfillment
of the three formulated theoretical conditions.

The PST introduced in this paper is not linked to a specific SPH scheme and therefore the validation of its
fulfillment of the three formulated theoretical conditions is performed with three different SPH schemes, all
based on the weakly-compressible assumption. These theoretical conditions have then been actually verified
numerically for these three schemes, in 2D respectively for an infinite domain (Taylor-Green vortices), in the
presence of a free-surface (rotating square patch) and with both free-surface and solid boundary modelled by
the moving ghost particle method (impinging jet on a flat plate) with convergence rates of the PST velocity
between 0.5 and 1 and good agreement with the reference solutions. Finally, the PST has been adapted
to a boundary integral method to model boundaries and validated in 2D and 3D, showing that the three
formulated theoretical conditions were still numerically verified and a good accuracy obtained in comparison
with reference solutions.
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Moreover, this novel PST has the advantage of being independent of the nominal sound speed, contrary to
some PST proposed in the literature, providing it a natural compatibility (a priori) with the incompressible
assumption.

Appendix

The aim of this appendix is to detail the extension of the result (10) in presence of a free-surface. In
1D, a free-surface is characterized by a semi-infinite domain (e.g., if the particle i is located at the free-
surface x = xi, then the fluid domain can be considered as [xi,+∞]). In addition, we consider here that the
particles are not distributed uniformly within the kernel support. To this end, the particles j are assumed to
be located at x̄j positions that are generally different from the positions xj that they would have occupied
in a uniform distribution (as illustrated in Fig. 32) and the volume associated to a particle j is noted ∆xj
(a priori different from ∆x).

x i=x i x j

x j

Figure 32: Parameters used for the theoretical study at the free-surface.

The first step consists in decomposing the continuous expression of the SPH gradient operator on the

intervals
[
x̄j − ∆xj

2 , x̄j +
∆xj

2

]
(note that, in 1D, the gradient is equivalent to a first order spatial derivative),

and using a Taylor expansion on the terms under the integral, which leads to:

∫ xi+R

xi

AW ′dx =
∑

j∈Di/2

∫ x̄j+
∆xj

2

x̄j−
∆xj

2

AW ′dx

=
∑

j∈Di/2

∫ x̄j+
∆xj

2

x̄j−
∆xj

2

[Ai + (x− xi)A′i + ...]
[
W ′j + (x− xj)W ′′j + ...

]
dx,

(59)

where Di/2 stands for the half-filled kernel support. Following the idea of Quinlan et al. [27], the change of
variables:

Ŵi(s) = RW (x− xi) , s =
x− xi
R

, sj =
xj − xi
R

, (60)

is performed on the right hand side of Eq. (59), implying that s ∈ [0; 1] and that the quantity Ŵ is O(1)

(as well as all its successive spatial derivatives). We also define the values ∆sj =
∆xj

R and s̄j =
x̄j−xi

R ,
corresponding respectively to the dimensionless volume and position of the particle j. As made in [27],
the term AiW

′
j can be approximated by AiW

′
j ' AjW

′
j (see [27] for more details). Then expression (59)

becomes:
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∫ xi+R

xi

AW ′dx =
∑

j∈Di/2

AjW
′
j∆xj +

∑
j∈Di/2

(
A′iŴ

′
j +

1

R
AiŴ

′′
j

)∫
(s− sj) ds

+
∑

j∈Di/2

1

2R
AiŴ

′′′
j

∫
(s− sj)2

ds+
∑

j∈Di/2

A′iŴ
′′
j

∫
s (s− sj) ds

+
∑

j∈Di/2

R

2
A′′i Ŵ

′
j

(∫
s2ds− s2

j

∫
ds

)
+ ...,

(61)

where the integrals on the right hand side are evaluated on the interval
[
s̄j − ∆sj

2 , s̄j +
∆sj

2

]
. We then define

the variable ξj =
x̄j−xj

∆xj
, which can be interpreted as a measure of the local particle disorder (if ξj = 0 then

particles are located on a regular lattice; on the contrary, the more ξj differs from 0 the more disordered is
the particles distribution). Calculating the integrals in the expression (61) leads after algebra to:

∑
j∈Di/2

AjW
′
j∆xj −

∫ xi+R

xi

AW ′dx = −A′i
∑

j∈Di/2

Ŵ ′jξj∆s
2
j −

Ai
R

∑
j∈Di/2

Ŵ ′′j ξj∆s
2
j

− Ai
2R

∑
j∈Di/2

Ŵ ′′′j

(
∆s2

j

12
+ ξ2

j∆s2
j

)
∆sj

−A′i
∑

j∈Di/2

Ŵ ′′j

(
∆s2

j

12
+ s̄jξj∆sj

)
∆sj

−A′′i
R

2

∑
j∈Di/2

Ŵ ′j

(
∆s2

j

12
+ (s̄j + sj) ξj∆sj

)
∆sj + ...

(62)

The exact values of the different sums on the right hand side are difficult to evaluate, as they depend on
the exact positions x̄j of particles j which are unknown a priori. In order to estimate these different sums,
the terms ξj and ∆sj are replaced by their mean values ξ and ∆s = ∆x

R and moved outside the summations,
one term ∆sj being retained inside each sum in order to approximate the sums by integrals. Then the
following approximations can be made:
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∑
j∈Di/2

Ŵ ′jξj∆s
2
j ' δ∆s

∑
j∈Di/2

Ŵ ′j∆sj ' ξ∆s
∫ 1

0

Ŵ ′ds (63)

∑
j∈Di/2

Ŵ ′′j ξj∆s
2
j ' δ∆s

∑
j∈Di/2

Ŵ ′′j ∆sj ' ξ∆s
∫ 1

0

Ŵ ′′ds (64)

∑
j∈Di/2

Ŵ ′′′j ∆s3
j ' ∆s2

∑
j∈Di/2

Ŵ ′′′j ∆sj ' ∆s2

∫ 1

0

Ŵ ′′′ds (65)

∑
j∈Di/2

Ŵ ′′′j ξ
2
j∆s3

j ' ξ2∆s2
∑

j∈Di/2

Ŵ ′′′j ∆sj ' ξ2∆s2

∫ 1

0

Ŵ ′′′ds (66)

∑
j∈Di/2

Ŵ ′′j ∆s3
j ' ∆s2

∑
j∈Di/2

Ŵ ′′j ∆sj ' ∆s2

∫ 1

0

Ŵ ′′ds (67)

∑
j∈Di/2

Ŵ ′′j s̄jξj∆s
2
j ' ξ∆s

∑
j∈Di/2

s̄jŴ
′′
j ∆sj ' ξ∆s

∫ 1

0

sŴ ′′ds (68)

∑
j∈Di/2

Ŵ ′j∆s
3
j ' ∆s2

∑
j∈Di/2

Ŵ ′j∆sj ' ∆s2

∫ 1

0

Ŵ ′ds (69)

∑
j∈Di/2

Ŵ ′j (s̄j + sj) ξj∆s
2
j ' ξ∆s

∑
j∈Di/2

Ŵ ′j (s̄j + sj) ∆sj ' ξ∆s
∫ 1

0

2sŴ ′ds. (70)

The change of variables (60) implies that all the integrals in the previous expression are O(1) (in particular
we can notice that the half-filled kernel support implies that all these integrals are a priori different from
zero, despite the kernel function is still symmetrical). The only remaining term to evaluate is the integral∫ xi+R

xi
AW ′dx. To this end, a simple integration by parts is used here leading to:

∫ xi+R

xi

AW ′dx = [AW ]
xi+R
xi

−
∫ xi+R

xi

A′Wdx = −AiWi −
∫ xi+R

xi

A′Wdx. (71)

And the change of variables shows that AiWi = Ai

R O(1) (the other term is at a higher order). Then
expression (62) can be expressed in terms of orders of magnitude. Finally the truncation error for a half-filled
kernel support (e.g., in presence of a free-surface) is given by:

∑
j∈Di/2

Aj∇WijVj −A′i =
Ai
R

[
O(1) + ξO

(
∆x

R

)
+

1

2

(
ξ2 +

1

12

)
O

((
∆x

R

)2
)]

+A′i

[
O(1) + ξO

(
∆x

R

)
+O

((
∆x

R

)2
)]

+A′′i R

[
ξO

(
∆x

R

)
+O

((
∆x

R

)2
)]

+ ...

(72)
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l’hydroplanage. PhD Thesis, Ecole Centrale de Nantes, July 2020.
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