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Abstract — Drug sample comparison is a process used by the 

French National Police to identify drug distribution networks. The 

current approach is based on a manual comparison done by 

forensic experts. In this article, we present our approach to 

acquire, formalise, and specify expert knowledge to improve the 

current process. We use an ontology coupled with logical rules to 

model the underlying knowledge. The different steps of our 

approach are designed to be reused in other application domains. 

The results obtained are explainable making them usable by 

experts in different fields. 

Keywords — Artificial Intelligence, Symbolic AI, Ontology, 

Forensic.  

I. INTRODUCTION 

The fight against drug trafficking has been one of the 
French government's priorities since the end of 2019 and has 
led to the creation of the National Stup plan. This plan 
comprises 55 measures, including the use of new indicators to 
understand consumer habits and dealers' methods. The work 
described in this article is part of this plan and aims to support 
scientific experts in the decision-making process for narcotic 
profiling.  

As part of the fight against drug trafficking, several arrests 
may be made, often accompanied by seizures. Forensic 
experts perform several analyses on samples from a seizure. 
They aim to correlate different samples from different seizures 
to identify trafficking networks best. To do so, experts use 
sample matching to pair samples according to their 
characteristics. Paired samples constitute an ensemble called 
a batch. The sample characteristics used are represented by 
different data, namely: macroscopic data (e.g., sample 
dimension, drug logos), qualitative data (e.g., list of active 
substances), quantitative data (e.g., dosage of substances) or 
non-confidential seizure data (e.g., date, place of seizure). 
This data concerns cannabis samples and tablets such as 
amphetamine. In France, such data is stored in the national 
STUPS© database. 

In this context, we present an approach for modelling both 
business domain knowledge and the analysis rules used in that 
domain. Our approach also covers the application of these 
rules to real data. The purpose of this work is to be used in a 
decision-making support process for reducing the workload of 
experts. 

This article is structured as follows: Section II presents the 
scientific background and definitions needed to understand 
this article. Section III presents the related works. Sections IV 
and 0 present our approach and the results we obtained by 

applying it to drug samples’ comparison. Section 0 discusses 
our approach compared to the works exposed in section III. 
Finally, section VII presents our conclusions along with future 
works. 

II. SCIENTIFIC BACKGROUND AND DEFINITIONS 

A. Symbolic artificial intelligence 

Symbolic Artificial Intelligence (AI) aims to represent and 
reproduce human cognitive reasoning using symbols in the 
form of knowledge representation systems [1]. Symbolic AI 
requires formal and explicit representations of a knowledge 
domain and mechanisms for deducing implicit knowledge 
from explicit facts. To do so, different logical languages can 
be used. We will introduce Description Logics (DL) [2] as it 
is used in our approach. 

1) Description Logics 

DLs are a subset of First Order Logic (FOL) [3]. Unlike 
FOL, DLs are generally decidable. In other words, specific 
algorithms (called decision procedures) can be applied over 
DL rules and will (generally) return a result in a finite time. 
DLs are used for knowledge representations in specific 
domains, primarily because of the adaptability of their 
expressiveness and their overall decidability.  

In DL, languages are characterised by a set of constructors. 
Constructor combinations determine a language's 
expressivity. The more constructors are used, the more 
expressive a language becomes. However, raising 
expressiveness increases the execution time of decision 
procedures. 

The basic (i.e., the minimal) description language is the 
Attributive Language with Complement (𝒜ℒ − 𝒞) language 
[2]. With this language concept descriptions are specified 
using atomic concepts as unary predicates and atomic roles as 
binary predicates. Using this language, concepts can be 
defined as: 

• the universal concept (⊤) 

• the bottom concept (⊥) 

• the atomic negation of an atomic concept A (¬A) 

• the intersection of two concepts C and D (𝐶 ⊓ 𝐷) 

• a concept with value restriction (∀𝑅. 𝐶) 

• a concept with limited existential quantification (∃R. ⊤) 

• the complement of a concept 𝒞 (¬𝒞) 

Starting from the 𝒜ℒ − 𝒞 language, additional 
constructors can be added to form more expressive languages. 
For example, by using the union constructor (noted ⊔ ) a 



concept C can be defined as equivalent to the union of two 
other concepts, A and B: 𝐶 ≡ 𝐴 ⊔ 𝐵. The complete list of 
available constructors is out of the scope of this article and is 
provided in [2]. 

2) Ontology 

An ontology is an explicit and formal specification of a 
shared conceptualisation of a knowledge domain [4]. 
Ontologies are expressed using DL [1] languages  and used 
for knowledge representation. An ontology comprises two 
main parts: the Terminological Box (TBox) and the 
Assertionnal Box (ABox). The TBox describes the 
terminological knowledge, i.e., the concepts and their 
properties. The ABox contains the instances of the concepts 
of the concept described in the TBox. A knowledge box (KB) 
is the combination of a TBox and an ABox. 

An ontology is made to be easily sharable and reusable. 
This is a very interesting characteristic because it reduces the 
work required to describe the related domain knowledge.  

3) Reasoner 

A reasoner [5] is an algorithm that can validate and enrich 
ontology knowledge at a TBox or an ABox level. As an 
example, consider three concepts C1, C2 and C3 defined in 
the TBox. If the transitive relation r links C1 to C2 and, C2 to 
C3 a reasoner will infer that C1 is also linked to C3 by r due 
to its transitive characteristic.  

Implementing deduction processes is based on decision 
procedures, i.e., algorithms complying with the following 3 
properties:  

• Stop: The algorithm must give the result in a finite time. 

• Correctness: The inferences produced are consistent with 
the associated semantics, meaning that what is 
syntactically true is also semantically true. 

• Completeness: All valid formulas can be demonstrated on 
the syntactic level. 

One of the most used decision procedures is the Tableaux 
algorithm adapted for DL [6]. It is based on rebuttal evidence, 
i.e., a logical formula is verified by demonstrating that its 
negation is a contradiction. 

B. Semantic Web 

The Semantic Web (SW) is "a vision for the future of the 
Web in which information is given explicit meaning" [7]. It is 
an ensemble of standards and technologies for defining 
computer processable knowledge representations. A complete 
description of the SW technologies is out of the scope of this 
article. The sections below provide a short overview of those 
used in our approach. 

1) Ontology in Semantic Web 

a) Web Ontology Language 

Web Ontology Language (OWL) families are ontology 
description languages based on DL that extend RDFS [8]. 
OWL 2 [9], the last version of OWL, defines three profiles 
enabling users to take advantage of certain features. Each 
profile has its own expressivity. From the least to the most 
expressive, these profiles are: 

• OWL2 EL: allows subclass axioms with the intersection, 
existential quantifier, all, nothing, and closed classes with 

a single member. It does not support negation, 
disjunction, universal quantifier, or inverse properties.  

• OWL2 QL: allows sub-properties, definition of sub-
classes and domains/scopes. It does not support closed 
classes.  

• OWL2 RL: allows all axiom types, cardinality restrictions 
(on scope only ≤1 and ≤0), and closed classes with a 
single member. It does not allow some constructors 
(universal quantifier and negation on domain, existential 
quantifier and union of classes for scope). 

b) TBox and ABox 

Ontology TBox explicitly describes concepts of a 
particular domain using classes. A class indicates the 
necessary and sufficient conditions for an instance to belong 
to this class. Each class may have a set of data properties 
representing a concept's features. For example, a sample of 
cannabis may have a weight and/or a height feature. Relations 
between concepts are represented by object properties 
between the corresponding classes. 

Besides the TBox, the ABox contains class instances (also 
called individuals). An instance can be seen as an object 
belonging to a class. To belong to a class, an instance must 
respect conditions defined in the TBox for this class. In this 
object, data properties have real values (from real data), and 
object properties link the instances together.  

c) Reasoners 

Different reasoners are used in SW. For example, Pellet 
[10] or RacerPro [11] are based on the Tableaux algorithm. 
They are both open-source reasoners based on OWL-DL.  

The different DL constructors supported by these 
reasoners are different. On the first hand, Pellet supports 
𝒮ℛ𝒪ℐ𝒬(𝐷)  constructors and, on the other hand, RacerPro 
supports 𝒮ℋℐ𝒬 constructors. 

2) SPARQL 

SPARQL Protocol and RDF Query Language (SPARQL) 
[12] is a set of specifications that provide languages and 
protocols to query and manipulate RDF [13] graphs. SPARQL 
syntax is made of different clauses to refine queries. In 
particular, the WHERE clause is used to query data according 
to a certain condition. For example, the following query is 
used to find mothers with at least one child over the age of 10: 

SELECT DISTINCT ?mother 

WHERE  

{  

?mother a :Mother. 

?mother :hasChild ?child . 

?child :age ?age 

 

FILTER(?age > 10) 

} 

 

A SPARQL variable starts with a question mark. The 
above example uses three variables: ?mother, ?child and ?age. 
The FILTER clause is used to filter out all children under the 
age of 10. 

C. Domain Knowledge and Analysis Rules 

The approach described in section IV required experts’ 
knowledge. We consider this knowledge as being composed 
of two parts: the Domain Knowledge and the Analysis Rules. 
The Domain Knowledge comprises our KB namely the 
descriptive knowledge of the domain i.e., the concepts of the 



domain, their relations, and their features (the TBox), along 
with concepts’ instances (the ABox). For example, Domain 
Knowledge contains the statements: the Sample concept is part 
of the Seizure concept of and has several macroscopic features 
(modelled as object properties such as weight, height etc.). It 
also contains several instances of these concepts. 

The component Analysis Rules contains the rules 
corresponding to the reasoning process used by the experts to 
deduce facts. It therefore completes the domain knowledge. 
For example, if two samples have the same features and are 
seized on close dates, then it is possible to conclude that these 
samples come from the same dealer. 

III. RELATED WORK 

A. Forensic science 

Analysis of drug data has been the object of several works. 
Our work relates to drug distribution network detection and 
drug profiling. This domain aims to match drug samples 
according to their characteristics to identify distribution 
networks. Different studies were conducted according to the 
drug type, for example, heroin ([14], [15], [16], [17], [18] and 
[19]), cocaine ([16], [17], [18]), MDMA or fentanyl ([20], 
[21] and [22]). Other works are more general and review the 
different methods used in forensics ([23] and [24]). 

The evolution of trends has also been the subject of various 
studies ([25] and [26]). This work seeks to analyse how 
different substances have been used by drug producers over 
the years. The results of these studies are useful for making 
assumptions about future trends. This helps the authorities to 
consider proactive measures. 

Finally, there are publications on the use of AI in forensic 
science, field in which AI is an assisting tool attempting to 
overcome the limits of human biases in traditional approaches. 
Different uses of AI are reviewed in [27]. [28] focuses on the 
benefits and limitations of the use of AI methods in the 
forensic field. 

To the best of our knowledge, only statistical approaches 
have been used to process the data and assist the forensic 
experts. No previous approach considers formal and explicit 
experts' knowledge modelling while comparing drug samples. 

B. Knowledge Graph Completion 

Knowledge Graph Completion (KGC) is a field that deals 
with enriching incomplete knowledge graphs [29]. This field 
is linked to our approach in the sense that the expert analysis 
rules are used precisely to complete knowledge of the domain. 
Many approaches based on statistical methods exist ([29] and 
[30]). For example, R-GCN [31] is based on messages passing 
between neighbour nodes according to the different relations 
in the graph. More traditional approaches can also be 

considered. [30] divided traditional approaches into heuristic, 
latent-feature, and content-based approaches. With statistical 
approaches, results are challenging to explain, making them 
unusable in critical domains such as medical or legal fields. 

To the best of our knowledge, only a few methods based 
on a purely symbolic approach exist. For our approach, we 
have taken inspiration from such an existing method [32]. In 
this approach, SWRL [33] rules are used to enrich the 
knowledge base. The disadvantage of this approach is that 
links are automatically added to the knowledge base, leaving 
the expert no choice.  

IV. OUR APPROACH 

  Our approach comprises four main steps: knowledge 
acquisition, domain knowledge modelling, analysis rules 
modelling and ontology querying. Each step is described in the 
following sections. The overall process is illustrated in Figure 
1. 

A. Knowledge acquisition 

The knowledge acquisition consists in acquiring the 
required knowledge of the application domain. By exchanging 
with the domain experts, the knowledge engineer builds two 
corpuses (i.e., natural language descriptions), one for each part 
of the domain knowledge (Domain knowledge and Analysis 
rules). Hence, he must obtain a set of concept definitions and 
a set of analysis rules (both in natural language). 

This Knowledge Acquisition step is subject to the 
knowledge acquisition bottleneck [34]. It refers to the problem 
of slow and inaccurate knowledge acquisition while 
exchanging with the experts. Several factors impact the 
knowledge bottleneck, such as difficulties in understanding 
the business domain or lack of expert cooperation. Therefore, 
to facilitate exchanges with the experts, it is a good practice to 
follow a methodology such as the one described in [35]. This 
kind of methodology helps to identify key concepts and 
relations that will be used when modelling the ontology (see 
IV.B.1). For example, the knowledge engineer can seek to 
answer the following questions: 

• What queries must the ontology allow answering? 

• Who will use and maintain the ontology? 

• What concepts are used, and what is their definition?  

• What are the necessary and sufficient conditions for an 
instance to belong to a class? 

Additionally, analysing databases allows for identifying 
additional knowledge and constraints. For example, the names 
of the tables of a relational database can help to identify 
certain concepts. In the same way, the presence of foreign 
keys can help to find concept relations. The conclusions drawn 
from the database analysis must always be validated by the 

Figure 1: Steps from knowledge acquisition to ontology querying. 



experts. We assume that the knowledge engineer is not able to 
judge the relevance of the discovered knowledge by himself.  

B. Domain knowledge modelling 

The second step deals with modelling the knowledge 
according to the definitions obtained previously. This step is 
divided into three sub-steps: Ontology modelling, Ontology 
populating and Ontology enrichment.  

1) Ontology modelling 

The first sub-step is called Ontology modelling. It consists 
of modelling the ontology TBox according to the definition 
obtained during the Knowledge acquisition step (see IV.A). 
The process is the following: 

1. For each concept, create a class in the ontology TBox 
having the same name as the concept (e.g., Person). 

2. For each class, identify the concept properties in the 
associated concept definition. For each of these 
properties, create a data property whose domain is the 
class associated with the concept and whose range is 
the property's data type (e.g., xsd:string). The name of 
the new data property is the name of the concept 
property (e.g., class Person may have the data 
property age). 

3. From each definition, identify relations between 
concepts. For each of these relations, create an object 
property and set its domain and range by the 
definitions. The name of the object property depends 
on the nature of the relation between the two concepts. 
Generally, the name of object properties starts with a 
verb like “has…” or “is…” (e.g., hasFather). 

It is a common practice to create an inverse object property 
for each object property (some applications may require not to 
create it). This inverse object property will have a name 
beginning with an inverse verb (e.g. has becomes is..of i.e. 
hasFather becomes isFatherOf) and its domain (respectively 
its range) corresponds to the range (respectively the domain) 
of the starting property. 

Another good practice is to add a comment describing the 
concept for each TBox class. To do so, the knowledge 
engineer can use the descriptions of the concepts obtained 
after the Knowledge acquisition step. This comment can then 
avoid ambiguity when the ontology is used by another user. 

2) Ontology populating 

The next sub-step, Ontology populating, consists in 
instantiating the different TBox classes with data. The 
technical processes used to carry out this task depends on the 
application and the nature of the data. It is then difficult (even 
counter-productive) to give a precise action plan for this step. 
However, we can give you a summary of the main processes 
involved. 

The first process is to retrieve the useful data from the 
different databases. To do this, the knowledge engineer must 
explore the data, possibly with the help of an expert who is 
familiar with the data. The notion of usefulness implies using 
only required data for concept instantiations. Handling only 
required data reduces the workload in the next processes and 
the risk of errors when instantiating concepts. Naturally, this 
data may be different if the project evolves and the TBox 
needs to be modified. 

The second process consists of transforming the data to fit 
the TBox description. This process is particularly useful for 
switching from one datatype to another or to clean the data. 
Consider a trivial case where an ontology class has a data 
property representing a date (e.g., xsd:datetime) but this data 
is stored as a string in the database. In this case, the 
transformation process will convert the data from a string to 
an xsd:datetime format. Another example is when special 
characters are present in strings (such as accents). If these 
characters are not allowed (for some reason) then they are 
removed during this process. 

The final process aims to use the transformed data to 
instantiate the TBox. Triplets will then be added to the original 
graph to form the ABox. It is also during this step that the 
graph can be loaded in a triplestore that supports SPARQL 
querying.  

3) Ontology enrichment 

The final sub-step is the Ontology enrichment. It uses the 
populated ontology obtained from the previous sub-step. The 
knowledge described by this ontology may be incomplete. 
This may be due either to a lack of understanding of the 
domain by the knowledge engineer or to their choice not to 
describe all the knowledge. It may make sense not to describe 
all the knowledge explicitly to simplify the previous step. For 
example, if an object property is transitive, then it is not 
necessary to specify this property between all the instances of 
the concepts concerned. The ontology enrichment stage will 
add the missing properties. 

This enrichment is achieved by using a reasoner to infer 
new knowledge. The choice of reasoner is therefore important. 
It must support all the semantics of the language chosen to 
describe the ontology. For example, if the language chosen is 
OWL-RL, the reasoner chosen must support the restriction on 
cardinalities. 

C. Analysis rules modelling 

The Analysis rules modelling step consists of using the 
analysis rules obtained from the Knowledge Acquisition step 
to create SPARQL requests (see section IV.C.2). These 
requests will then be used to query the ontology. 

This step is divided into two sub-steps: Logical rules 
modelling and Rules translation. 

1) Logical rules’ modelling 

This first sub-step aims to create logical rules from the 
natural language description of the analysis rules. The purpose 
of this step is to ensure that the rules do not contradict each 
other. Using a logical formalism eliminates any ambiguity that 
might be caused by descriptions in natural language. 

The logical rules are written using DL (see section II.A.1). 
The set of constructors must then be chosen to be large enough 
to model all the analysis rules correctly, but not too large 
because it would impact the reasoning time.  When finding the 
right set of constructors before modelling is complex, we 
suggest starting with a large set and then reducing it, once the 
rules have been modelled, to keep only the essential 
constructors. This step also involves using a reasoner to verify 
whether the rule set is consistent. As for the Ontology 
enrichment step (see IV.B.3) the reasoner must be chosen by 
the chosen constructors. 



To model logical rules, the knowledge engineer must 
identify the elements involved in the natural language 
formulation of the rules (i.e., concepts, object properties, data 
properties etc.). These elements must necessarily be part of the 
ontology TBox. Indeed, as the SPARQL requests obtained 
from the logical rules will be used to query the ontology all 
the elements used in the logical rules must be correctly defined 
in the ontology. Therefore, the TBox must be revised if it is 
impossible to match an element of an analysis rule with an 
element of the ontology (i.e., the Knowledge acquisition and 
Ontology modelling steps must be redone). 

The different identified elements are then translated into 
DL rules. To do so, concepts are translated into unary 
predicates and data properties and object properties are 
translated into binary predicates. 

2) Rules translation 

The final sub-step of Analysis rule modelling is the Rules 
translation. The logical rules obtained from the previous sub-
step are translated into SPARQL queries. These queries will 
be used by the ontology querying step (see section IV.D). 

As queries are used in the context of decision support, they 
must not directly modify the ontology. Instead, each query 
must indicate whether the rule is satisfied or not. A possible 
way to do this is to return a Boolean indicating if the rule is 
satisfied. 

As an example, consider a DL rule stating that two persons 
are siblings if they have the same father: 

𝑆𝑖𝑏𝑙𝑖𝑛𝑔𝑠(𝑝2, p3) ≡ Person(𝑝1) ∩ Person(p2)
∩ Person(p3) ∩ 𝑖𝑠𝐹𝑎𝑡ℎ𝑒𝑟𝑂𝑓(𝑝1, 𝑝2)
∩ 𝑖𝑠𝐹𝑎𝑡ℎ𝑒𝑟𝑂𝑓(𝑝1, 𝑝3) 

The following SPARQL Query can then be obtained from 

this rule (we do not specify the prefix to simplify reading): 
 
 

SELECT ?p2 ?p3 ?siblings 

WHERE  

{  

 ?p1 a :Person . 

 ?p2 a :Person . 

 ?p3 a :Person . 

 

 ?p1 :isFatherOf ?p2 . 

 ?p1 :isFatherOf ?p3 . 

 

 BIND((?p2 != ?p3) as ?siblings) 

} 

The above query selects all the pairs of instances of the 
Person class that have the same father and indicates if they are 
siblings. This query can be improved, for example by 
excluding all cases where ?p1 and ?p2 refer to the same 
instance. In this case, only the siblings would be displayed and 
therefore there would be no need to use the ?siblings variable. 
This example shows that the selected information in the query 
depends on the experts' needs to make a decision. 

The knowledge engineer can follow a guideline to 
construct the WHERE clause of the query. Each unary 
predicate P(x) of the DL rule is translated in a statement ?x a 
:P. Each binary predicate of the form B(x, y) is translated in a 
statement ?x :B ?y. A BIND clause can be used inside the 
WHERE clause to set the value of a Boolean variable. 

D. Ontology querying 

The final step of our approach is Ontology Querying. It 
consists of querying the ontology with the previously obtained 
SPARQL requests. The result of each request is presented to 
the experts to help them decide. Results must be clearly 
displayed, i.e., an expert must understand intuitively which 
result belongs to which request. Result presentation is thus 
crucial as it must highlight only the relevant elements for the 
experts. 

V. RESULTS 

In this section, we present the results we obtained by using 
our approach in the context of the Stup plan for semi-
automatic matching of drug samples (see section I). 

A. Knowledge acquisition 

The domain knowledge acquired by exchanging with the 
experts is composed of 20 concept definitions. As an example, 
a Sample is defined by the experts as follows: 

A drug sample is extracted from a sealed sample. A sample 
is characterised by a sample number and its drug type 
(“cannabis”, “cocaine”, “miscellaneous” or “amphetamine 
and derivatives”). A sample has macroscopic characteristics 
(internal and external appearance, height, width etc.), active 
principles and cutting products. Experts can also comment on 
the sample. In addition, a sample may be grouped with other 
samples in a batch. In the case of narcotics on which a 
chemical profiling analysis is carried out, each sample is 
associated with a chemical profile. 

We show in section V.B how this description and the 
STUPS© data are used to obtain a populated ontology. 

Concerning the analysis rules, a set of nine rules has been 
obtained describing the conditions that two samples must have 
to be matched. Here is one of these rules: 

Two samples match if their drug types are the same. 

We show in section V.C how this rule is then translated 
into a DL rule and a SPARQL request. 

B. Domain knowledge modelling 

The first step to model the domain knowledge is the 
Ontology modelling step. To do so, we used the domain 
knowledge expressed in natural language obtained previously. 
Using the above definition of a sample, we specify the 
following object properties for the Sample concept: 

• hasExternalAspect (range: Aspect) 

• hasInternalAspect (range: Aspect) 

• hasActivePrincipal (range: ActivePrincipale) 

• hasCuttingProduct (range: CuttingProduct) 

• hasChimicalProfile (range: ChimicalProfile) 

• isCloseTo (range: Sample) 

• comesFrom (range: Sealed) 

Additionally, the following data properties are added to 
the Sample concept: 

• sampleNumber (rdfs:range xsd:string) 

• drugType (rdfs:range: {“cannabis”, “cocaine”, 
“miscellaneous”, “amphetamine and 
derivatives”}) 

• comment (rdfs:range xsd:string) 

• height (rdfs:range xsd:float) 

• width (rdfs:range xsd:float) 



• diameter (rdfs:range xsd:float) 

• thickness (rdfs:range xsd:float) 

• length (rdfs:range xsd:float) 

The Sample concept contains other data properties 
corresponding to other macroscopic characteristics which are 
not provided here but can be found in the ontology TBox 
provided below. 

Using the definition of all the other concepts, we modelled 
an ontology TBox made of 20 concepts, 45 object properties 
and 40 data properties. Each concept is annotated with its 
definition. This ontology TBox can be found on GitHub 
(github.com/SebastienGuillemin/StupsOntology). Our 
ontology complexity is SROIQ(D) [36]: 

• S is an abbreviation for ALC. 

• R refers to the use of roles. 

• O refers to value restriction (owl:oneOf) 

• I is used for inverse properties. 

• Q is used for cardinality restrictions. 

• (D) refers to the use of datatype properties. 

After modelling the ontology, we performed the Ontology 
populating step.  This step uses data from the STUPS© to 
instantiate the ontology TBox. Explaining the program to 
retrieve and transform the data is out of the scope of this article 
but it is available on GitHub 
(github.com/SebastienGuillemin/etl). When populating the 
ontology, 68,972 instances were created, 20,001 of which 
were Sample instances. Figure 2 shows an example of a 
Sample instance and its relations with other instances. 

To perform the Ontology enrichment, we loaded the 
populated ontology in a triplestore. We chose GraphDB which 
comes with several reasoners compatible with the complexity 
of our ontology. We chose the OWL-Max reasoner among the 
different reasoners available because it considers all the 
constraints used to define our TBox  
(graphdb.ontotext.com/documentation/10.3/owl-
compliance.html). This Ontology enrichment added 382,205 

new relations between instances in our ontology (increasing 
from 284,638 to 666,843). We have only measured the 
creation of relations concerning the data properties and object 
properties modelled in our ontology. 

C. Analysis rules modelling 

The next step is to model the analysis rules. Using the 
knowledge acquired during the step described in V.A we will 
consider the following analysis rule:  

Two samples match if their drug types are the same. 

 We show how this rule is converted into a DL rule and 
then into a SPARQL request. From this analysis rule, we 
identify that the ontology elements to consider are the Sample 
class and its drugType data property. These elements are 
present in the previously obtained ontology TBox thus we can 
continue.  

 The resulting DL rule must be made of the unary predicate 
Sample and the binary predicate drugType. We obtain the 
following DL rule: 

𝑚𝑎𝑡𝑐ℎ(𝑠1, 𝑠2) ≡ S𝑎𝑚𝑝𝑙𝑒(𝑠1) ∩ S𝑎𝑚𝑝𝑙𝑒(𝑠2)
∩ drugType(s1, dt1)
∩ drugType (s2, dt2) ∩ dt1 = dt2 ∩ s1
≠ s2 

Each rule of our corpuses of nine rules is converted into a 
DL rule in the same manner. 

Once all the analysis rules have been modelled using DL, 
they are translated into SPARQL requests. The above DL rule 
is  translated as follows (once again, we do not specify the 
prefix to simplify reading) 

SELECT ?s1 ?s2 ?match 

WHERE  

{ 

 ?s1 a :Sample . 

 ?s2 a :Sample .  

 ?s1 :drugType ?dt1 . 

 ?s2 :drugType ?dt2 . 

 

 FILTER(?s1 != ?s2) 

 BIND ((?dt1 = ?dt2) as ?match) 

} 

Here, the ?match variable indicates whether ?s1 and ?s2 
can be matched. We translated the DL unary predicate Sample 
by using the SPAQRL keyword “a”. Thus, the two first lines 
of the WHERE clause ensure that ?s1 and ?s2 are :Sample 
instances. We then retrieve their respective drug type. To do 
so, we translate the binary predicate drugType into the relation 
:drugType. The drug type of ?s1 (respectively ?s2) is bound 
to ?dt1 (respectively ?dt2). Then, we ensure that ?s1 and ?s2 
are not the same :Sample instance by using the FILTER 
clause. Finally, if ?dt1 and ?dt2 have the same value the 
?match variable is bound to True. Otherwise, ?match is bound 
to False. 

This translation process from DL rules to SPARQL 
requests is applied to all analysis rules.  As we have 9 analysis 
rules, we end up with nine SPARQL requests. 

D. Ontology querying 

The final step of our approach consists of querying the 
ontology using the previously defined SPARQL request. We 
will illustrate this step by using the following analysis rules: 

• Two samples match if their drug types are the same. 

Figure 2. Graph visualisation of a sample instance (in red). 

Cutting products are displayed in light blue, external aspect in 

dark blue, sealed in yellow and active principle in light green. 

https://github.com/SebastienGuillemin/StupsOntology
https://github.com/SebastienGuillemin/etl
https://graphdb.ontotext.com/documentation/10.3/owl-compliance.html
https://graphdb.ontotext.com/documentation/10.3/owl-compliance.html


• Two samples match if they have the same chemical form. 

• Two samples match if their macroscopic features (i.e., 
height, width) differ by less than 5%. 

 

Each of these rules has been translated into DL and then 
into SPARQL. In order not to overload the article, we will not 
detail these steps for these rules. 

We also consider the following samples: 

 Sample 1 Sample 1 

Sample number 1 2 

Drug type Cannabis Cannabis 

Chemical form Resin Resin 

Width 200 millimetres 150 millimetres 

Height 100 millimetres 100 millimetres 

 

Each SPARQL request of each rule is applied to these 
samples. This conduct to the following results : 

• Two samples match if their drug types are the same: True. 

• Two samples match if they have the same chemical form: 
True. 

• Two samples match if their macroscopic features (i.e., 
height, width, etc.) differ less than 5 per cent. 
o Width: False. 
o Height: True. 

Using these rules, experts can decide whether samples 
match or not. For example, in this case, they can consider that 
the width characteristic is not relevant and conclude that the 
two samples match. 

VI. DISCUSSION 

Our work proposes an approach to acquire expert 
knowledge and use it to help experts during their decision 
process. An important aspect of our approach is that it does 
not directly modify the ontology, leaving the experts to make 
decisions. To the best of our knowledge, our approach is the 
first to use expert knowledge in the sample-matching process. 
Other works were based on statistical approaches (as exposed 
in section II). 

The overall process, from knowledge acquisition to 
analysis with rules, is independent of the application domain. 
Then, using it in other domains requiring analytical expertise 
is possible. Nonetheless, some steps may require the use of 
other methodologies. It is the case of TBox modelling, which 
is based on Noy and McGuinness’s guide [35]. 

Results presented in section 0 show how our approach 
assists the experts. For each potential match (i.e., a pair of 
samples), the result of each rule is displayed to the author. 
Experts exploit the different results to decide. 

So far, our approach is only limited to results’ display. 
Moreover, our approach relies on SPARQL queries that can 
tend to slow down the overall process. Also, translating some 
analysis rules into SPARQL requests can be an arduous task. 
As part of our future work, we’ll investigate replacing 
SPARQL queries with a simpler translation method. 

VII.  CONCLUSION AND FUTURE WORKS 

We presented an approach based on ontologies and logical 
rules for decision support in comparing drug samples. We 
have defined a general process composed of four main steps, 
each step being designed to ease its reproducibility.  

Our approach has been successfully tested for assisting 
forensic experts in drug samples’ comparison. Still, it has 
some limitations, that will be addressed in future works. 
Firstly, additional support to experts can be provided by 
allowing them to rank the different rules i.e., in the form of a 
hierarchy. Such ranking would enable controlling the impact 
(or the score) of each rule on the suggested decision. The most 
important rules would then have the greatest impact (or score) 
on the suggestions made by our approach. 

Secondly, rather than using SPARQL queries, we could 
directly enrich the reasoner rule set with our logical rules 
obtained during Logical rules’ modelling (see section IV.C.1). 
This would eliminate the need to execute queries one by one 
over the populated ontology. Thus, the whole process would 
be more fluid by removing one step. However, the time 
needed by the reasoner to make inferences could increase to a 
greater or lesser extent. This depends on the number of rules 
and their expressivity (i.e., the DL constructors chosen). 
Reducing the expressivity of the underlying TBox can help in 
limiting the reasoning overhead. Additionally, inferences 
produced by the reasoner must not automatically be 
materialised in the KB. The experts must be the only ones to 
decide what to add to the populated ontology. So, it will be 
necessary to provide a mechanism for experts to decide 
whether the matching should be added to the ontology. 

Finally, matches are based solely on analysis rules which 
may not always be appropriate. In fact, in the actual process 
used by the experts, their intuition plays a very important role. 
Unfortunately, this intuition cannot be formalised in the 
analysis rules. One possible way of simulating expert intuition 
would be to use statistical approaches (e.g., neural networks). 
These statistical approaches could then be coupled with the 
approaches presented above to improve decision suggestions. 
Moreover, we can imagine that statistical models would allow 
suggesting new facts (e.g., additional relevant analysis rules) 
to the existing KB. This new knowledge would then be 
accepted or refuted by the domain experts. Approaches 
combining neural networks and symbolic AI belong to the 
domain of neuro-symbolic AI [37]. It seeks to benefit from the 
advantages of both areas without the disadvantages i.e., the 
learning capacity of neural networks and the explicability of 
symbolic AI.  
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