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Abstract. The old film restoration process involves many operations,
one of which is the ability to identify defects that altered the film.
This operation can be formulated as a binary segmentation problem and
solved using state-of-the-art segmentation networks such as DeepLab v3+
or NAS-FPN. While being very powerful at describing the spatial charac-
teristics of defects, these methods fail to take into account the fact that
defects are also temporal anomalies. We therefore propose an architecture
that builds on the correlation layer introduced in FlowNet to compensate
for motion and eliminate potential false positives, features that look like
defects but can be tracked over multiple images and are actually part
of the scene. We also introduce a self-supervised pre-training process of
the network, which precedes a fine-tuning phase to specifically adapt the
detector to each film. Results show that our architecture, while being
more compact and less resource-consuming than state-of-the-art meth-
ods, achieves higher precision and recall.

Keywords: Segmentation · Neural networks · Correlation.

(a) Original frame. (b) Detected defects (in green).

Fig. 1: Detection of defects (1b) in an old film frame (1a) with Efficient
Correl-Net.
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1 Introduction

After more than a century of cinema, films on reels are legion, and the question
arises as to how to preserve these works for the future. Preservation and restora-
tion are necessary for the survival of the great cinematographic classics so that
their condition remains as close as possible to the original version. Inevitably,
with time, human intervention and wear and tear, films deteriorate beyond re-
pair. Fortunately, preservation and restoration techniques can reduce the damage
to these physical media. Restoration can be defined, according to Usai, as “a set
of technical, editorial, and intellectual procedures aimed at compensating for
the loss or degradation of the moving image artifact” [26]. This definition goes
beyond the simple idea of restoring the movie to its original state (assuming
one can give a proper definition of the term “original”), as not all losses can, or
should, be compensated for. As a practitioner himself, Busche [2] argues that
“physical losses in film artifacts (a scratch, for example) are of concern only as
a disturbance of the visual appearance of the image”, which implies that not all
defects should be corrected. The same idea is defended by Philippot [17]: “The
restorer has to distinguish between lacunae that have to be reintegrated and
those that should be left untouched”.

Recent work have considered video restoration as a single task and proposed
end-to-end solutions [6], but they do not really allow a human restorer to guide
the process, which may be problematic with respect to restoration ethics. In-
stead, we choose to consider restoration as a two-step approach in which defects
are first detected automatically, as illustrated in Fig. 1, and then proposed for
validation to a restorer before being corrected using video inpainting techniques
[28, 18]. This allows the restorer to eliminate false positives, to identify unde-
tected defects or to discard a subset of the true positives that he/she thinks
should not be corrected.

Defect segmentation is a particular case of segmentation problems in the
sense that the temporal aspect is essential. Even if blotches somehow have dis-
tinct shapes, their physical origin on the reel (dust, reel deterioration, etc.)
implies these defects can not appear on consecutive frames. In other words, they
can be considered as temporal anomalies, a characteristic that should guide the
detection process.

In this paper, we draw inspiration from the FlowNet architecture [4] and
introduce a convolutional neural network particularly suited for defect segmen-
tation. Given three consecutive frames as input, we build an encoder in which
features are extracted from the three frames separately and then compared using
a correlation layer. We then reconstruct a defect mask using a simple decoder.
We show that the use of these correlations leads to better performances for de-
fect segmentation than state-of-the-art architectures. Furthermore, we propose a
self-supervised pre-training process in which realistic defects are artificially gen-
erated during training, reducing the need for supervised data. A small supervised
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training set is required to fine-tune the network and adapt it to a particular new
film. This paper is organized as follows: we begin by reviewing related work in
Section 2, then detail our method in Section 3 and our experiments in Section 4.

2 Related Work

2.1 Defect Detection before Deep Learning

Early video defect detectors were developed by the BBC to detect impulse noise
[24]; they consist in thresholding the absolute differences between consecutive
frames. However, this method achieves limited results because it does not take
motion into account. In [11], this limitation is overcome by introducing the Spike
Detection Index (SDI), in which motion is compensated before computing the
absolute differences.

To specifically detect line scratches, [9] introduced a method where they are
modeled as damped sinusoids. Detection is performed in a two-step scheme:
subsampling and filtering to gather candidates, followed by Bayesian refinement
to eliminate those that do not fit the damped sinusoid model. Subsequently,
[16] extended [9] by adding an additional verification step, where the values of
neighboring pixels around candidate scratches are examined to distinguish real
scratches from simple edges. To further limit false positives, the same authors
realign in [15] the different mask images using motion estimation and eliminate
candidates that remain vertical, as opposed to real scratches that will distort
(twist effect) with motion compensation. Another method, which was used in
[7] to detect scratches, is morphological closure. The subtraction between before
and after closing images reveals the scratches, which are tracked over several
frames using a Kalman filter. The same idea is also present in [20], but the
frame is first divided into horizontal bands in order to treat the foreground and
the background separately. The detection is thus made easier in homogeneous
areas.

Concerning blotches, the first MRF model of [10] has been reused in [27],
together with another MRF that allows to reinforce the spatial continuity. In
addition, motion compensation is applied to maintain temporal consistency. Also
using motion compensation, the ROD detector [14] compares the current pixel
with its temporal neighbors to detect spatio-temporal anomalies. Other methods,
such as [29], require several steps to detect blotches. After identifying candidates
based on their spatial features, false positives are eliminated by searching for
temporal discontinuities. Median filters are used in [30] to extract candidates at
spots where abrupt spatial changes occur. Then, if these gradients appear only in
the current image, and not in previous and subsequent images, these candidates
are considered as real blotches.
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2.2 Detection and Segmentation by Deep Learning

The first application using neural networks, presented in [8], deals with the
detection of line scratches using the cartoon-texture decomposition. While the
detection of the shape (cartoon) is performed by filtering, the texture is classi-
fied by a neural network taking as input edge images. Another application was
proposed in [22] to detect blotches using motion compensation, SROD detection
[1] and classification of all outlier pixels using a convolutional neural network.
In another three-step approach, [23] creates a descriptor that contains the lu-
minance of three consecutive images, as well as the motion-compensated images
and the Lucas-Kanade optical flow amplitude. In a second step, an SDI detection
is performed and finally, in a third step, its result and the descriptor are passed
as input to a CNN. For both blotches and scratch detection, [31] applies a clas-
sification with an encoder-decoder CNN architecture, with concatenation in the
encoder part. A spatial average is performed at the output of the network before
the last convolution, followed by a thresholding to detect blotches. Scratches are
detected a posteriori by morphological closing of the network output.

Defect detection can also be presented as a standard binary segmentation
problem. Convolutional neural networks have been used for this task since [12].
The problem is formulated as a binary classification at each pixel location, and
the network must produce a dense foreground probability map. Two main char-
acteristics of network architectures can be found in the state of the art. The
auto-encoder architecture is often at the heart of the network; it consists of an
encoder that performs feature extraction like a standard classifier, as well as a
decoder that performs oversampling of the latent space with the encoder interme-
diate feature maps. Several variants of this concept have been proposed, the most
popular being U-Net [19] for skin lesion segmentation. A second common module
in the architecture of segmentation networks is the spatial pyramid of features,
introduced to combine encoder features at different scales to more efficiently
recognize objects at different scales. Spatial pyramid pooling is an example of
this technique, in which multiple convolutions of varying kernel size are applied
simultaneously to the feature map to extract multi-scale information. This idea
is used in DeepLab v3+ [3], one of the highest performing networks, combined
with an auto-encoder architecture. Some of the most recent and successful work,
such as NAS-FPN [5], has attempted to learn how to optimally combine multiple
scales of the feature map.

As is common with deep neural networks, all these architectures can be
adapted to different convolutional backbones (or encoders). The original U-Net
is based on the well-known VGG architecture [21], while NAS-FPN is built over
Efficient-Net [25], a much more recent and performant architecture.



Correl-Net: Defect Segmentation in Old Films using Correlation Networks 5

2.3 Motion Compensation with FlowNet

In order to efficiently detect defects in films, we take inspiration from FlowNet
[4], a neural network originally proposed to predict optical flow from a pair
of consecutive frames in a video. The authors of FlowNet designed a U-Net
architecture capable of finding correspondences between the patches of the two
images using a correlation layer. This correlation layer contains no parameters,
and simply convolves the feature maps computed separately for the two images.
In our case, the correlation layer is very useful to find regions that have no
correlation with the neighboring patches of the previous and subsequent images
of the video, indicating a high probability that they are defects. The correlation
layer should also help to rule out features in the scene that look like defects by
matching them in several consecutive frames.

3 Correl-Net

As previously stated, we formulate defect detection as a binary segmentation
problem.

3.1 Network Architecture

We introduce a generic architecture for defect detection that is called Correl-Net,
and that is depicted in Fig. 2. Correl-Net takes as input three consecutive
frames of size 256×256 and produces a single probability map of the same di-
mension. Overall, Correl-Net is based on a simple U-Net architecture, to which
some modifications have been made. First, the encoder consists of three sepa-
rate feature extractors (one for each input frame) that share the same weights.
Second, correlation layers are applied between the feature maps of frames i and
i−1, and those of frames i+1 and i, the output of which is concatenated with the
feature maps of frame i. Third, skip connections are used to connect the encoder
and decoder, and originate from the central feature extractor in the encoder (the
one for frame i). Correlation layers take the form of the one described in [4]. In
our implementation, we use Tensorflow correlation layers with the following hy-
perparameters: kernel size equal to 3, maximum displacement of 10, input stride
of size 1 and stride of patch of size 1.

Just as U-Net can be adapted to a different backbone, we implemented an-
other version of Correl-Net using EfficientNetB7 [25] as an encoder, also with
three consecutive frames of size 256×256. We place the correlation layers just
after the first convolutional layer in the network, and before the MBConv blocks
that constitute the rest of the encoder. In the rest of the paper, we call this new
version Efficient Correl-Net.
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3.2 Loss Function and Training Details

The loss function for network training is the opposite of the linear approximation
of the Dice coefficient (or F1-score), whose expression is as follows:

Loss (y, ŷ) = −
2
∑
i,j

y(i, j)ŷ(i, j)∑
i,j

y(i, j) + ŷ(i, j)

≈ − 2× TP

(TP + FP ) + (TP + FN)
∈ [−1, 0]

where y(i, j) ∈ {0, 1} and ŷ(i, j) ∈ [0, 1] are the values of the ground truth defect
mask and the network output defect mask, respectively. The values TP , FP
and FN represent, respectively, the numbers of pixels counted as true positives,
false positives and false negatives. This loss function is often a good choice for
segmentation, in the case where there is a significant imbalance between classes
[13], which is the case in our application. The model is trained with Adam
optimizer, with an initial learning rate of 10−5, and reaches convergence after
150 epochs. We use Tensorflow 2 and train our model on an Nvidia RTX A6000.

Fig. 2: Correl-Net architecture. The encoder is composed of three distinct
branches that share the same parameters, one for each input frame (previous,
current and next frames). Correlation layers are used to compare the feature
maps of the current and previous frame branches, and the current and next
frame branches, whose outputs are concatenated with the feature map of the
current frame. The decoder takes the form of the classical U-Net architecture
[19].
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4 Experiments

4.1 Datasets

To the best of our knowledge, there is no publicly available dataset of old films
annotated with defect segmentation masks. As we explained in the introduction,
a restorer’s expertise is a key aspect of the restoration process, which means that
there can be no real ground truth in defect segmentation that would result from
a consensus among restorers. This is the reason why we decided to generate ar-
tificial defects with characteristics close to those of real defects, i.e. with random
sizes, shapes, colors and transparency.

All networks were trained on the DAVIS dataset, using the trainVal data as
training set, the test-dev 2019 dataset as validation set, and the test-challenge
2019 dataset as test set. The defects were generated on the fly during training,
using fractal noise, as described in Fig. 3. The fractal noise allows, after several
treatments, to produce blotches of different sizes whose shape is very similar to
the real defects.

Fig. 3: Artificial defect generation. From left to right: fractal noise generation;
clipping and normalization to gather the darkest and lightest defects; threshold-
ing, then merging with random transparency.

At each learning step, we split the grayscale frames into patches of 256×256
pixels. Then, for each patch, we randomly generate a fractal noise with the
following parameters: shape (256,256), number of periods (8,8), 5 octaves and
a lacunarity of 2. Thus, we obtain a matrix of values between -1 and 1. From
this matrix, we then obtain dark defects by selecting the interval [-0,8; -0,65] as
well as light defects with the interval [0,65; 0,8]. Since real defects are usually
uniform in color, we apply binarization, before merging the defects to the input
image. This process is applied to the three channels of the network in order to
obtain three consecutive patches with different artificial defects.
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4.2 Results on Synthetic Data

In order to quantitatively evaluate the performance of our network, we first
present results on the DAVIS test dataset, to which we have added synthetic
defects, as described in Section 4.1. Table 1 presents a comparison of our method
with several classical segmentation neural networks: a simple U-Net [19], and
the more advanced architectures Deeplab v3+ [3] and NAS-FPN [5]. All of them
have been trained three times and evaluated on the same data as Efficient
Correl-Net, with the three consecutive input frames clustered as a tensor.

Table 1: Comparison of metrics (in percentages) for the test dataset between
four different networks. Efficient Correl-Net is better in all of them.

Network
Metric F1-score Recall Precision

U-Net [19] 96.60 99.37 93.99

Deeplab v3+ [3] 94.77 97.47 92.22

NAS-FPN [5] 99.19 99.46 98.93

Efficient Correl-Net 99.54 99.66 99.41

Table 1 shows that Efficient Correl-Net and NAS-FPN achieve better over-
all performance than U-Net and Deeplab v3+. It is notable that, unexpectedly,
U-Net achieves better performance than Deeplab v3+, which is mainly due to
the design of the latter network. Indeed, the last operation of the Deeplab v3+
decoder consists in a ×4 resizing (using bilinear interpolation) to recover an
output segmentation map of the same size as the initial image, without any ad-
ditional convolution. As a result, the edges of the detected defects are less precise
than with other networks, which is particularly problematic for small defects.

In particular, Efficient Correl-Net performs slightly better than NAS-FPN
with respect to the F1-score. This difference is mainly due to the better preci-
sion obtained by Efficient Correl-Net (99.41 vs. 98.93). Even though this
difference is small, it is of particular interest with respect to the task since, as
previously mentioned, restorers are concerned with preserving the original state
of the film, which implies eliminating false positives manually. To compare the
performances of the networks over the DAVIS test dataset, we also classified
them for each scene. The results with the three metrics are presented in Fig. 4.
Regarding every metric, Efficient Correl-Net is always first with one excep-
tion. It is also interesting to see that, in some cases, NAS-FPN is even worse than
U-Net to detect defects correctly.
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Fig. 4: Rankings of the different networks (from left to right: Efficient
Correl-Net, NAS-FPN, Deeplab v3+, U-Net) for each scene of the DAVIS test
dataset, regarding the metrics (from left to right: F1-Score, Recall, Precision).

(a) Input frame. (b) U-Net. (c) Deeplab v3+. (d) NAS-FPN. (e) Efficient
Correl-Net.

Fig. 5: Visual comparison of defect detections: true positives are highlighted in
green, false positives in blue and false negatives in red. From top to bottom,
zoom on frames extracted from “luggage”, “mermaid”, “rodeo” and “skydiving-
jumping” sequences.
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In order to visualize the differences of detections of the four networks com-
pared in Fig. 4, Fig. 5 shows the defects detected in different frames of the test
set, color-coded to distinguish true positives (green), false positives (blue), and
false negatives (red). A common problem shared by all networks is that back-
ground features can be detected as defects when they are located in regions that
exhibit significant motion (see the example of “rodeo” sequence, in the third row)
or occlusions (e.g. “skydiving-jumping” sequence, in the fourth row). Textured
objects in scenes also tend to cause poor detections (e.g. the woman’s torso
in “mermaid” sequence, on the second line). In all of these cases, Efficient
Correl-Net correlation layer can distinguish real defects from motion and tex-
ture artifacts that look like defects.

4.3 Ablation Study

Efficient Correl-Net has two fundamental differences with the segmentation
networks compared to it in Table 1: (i) the input frames are processed in separate
branches of the encoder with Efficient Correl-Net, whereas they are stacked
and processed in a single branch with U-Net, Deeplab v3+, and NAS-FPN, and
(ii) the use of correlation layers is specific to Efficient Correl-Net.

In order to quantify the impact of these two architectural designs, we defined
an intermediate network that we first mentioned in Section 4.2 and which is
Efficient Tri-Net. Efficient Tri-Net shares the same overall architecture
as Efficient Correl-Net (see Fig. 2) with the exception of the correlation
layers which are not included in Efficient Tri-Net. The feature maps of the
three separate branches are simply concatenated, without any correlation com-
putation.

Table 2: Ablation study between three different networks. Efficient
Correl-Net is better in every metric.

Network
Metric F1-score Recall Precision

Efficient U-Net 99.34 99.64 99.05

Efficient Tri-Net 99.41 99.65 99.17

Efficient Correl-Net 99.54 99.66 99.41

Table 2 provides a quantitative overview of the impact of these changes
on the network architectures. Interestingly, recall remains relatively stable be-
tween Efficient U-Net (99.64), Efficient Tri-Net (99.65) and Efficient
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Correl-Net (99.66). Moving from a single branch (Efficient U-net) to three
separate branches (Efficient Tri-Net) already brings a improvement in pre-
cision (99.17 vs. 99.05). This is due to the fact that the comparison between the
feature maps of the different frames is performed at a lower resolution, which
manages to compensate motions of small objects in the scene in this case.

The use of correlation layers provides an even higher precision (99.41 vs.
99.17) by further compensating motion. The choice of the hyperparameters in
the correlation layer has a significant impact on the number of floating point
operations (flops) in our network. Indeed, choosing a larger patch size and max-
imum displacement could potentially achieve higher precision for Efficient
Correl-Net, but at the cost of a significantly higher number of flops.

4.4 Limitations

Despite the remarkable performance of Efficient Correl-Net, some cases of
failure remains and are illustrated in Fig. 6. The first line is composed of frames
from an underwater sequence, in which the bubbles in the upper left corner
are identified as defects by all networks, including Efficient Correl-Net. The
second line is from a sports sequence in which a large region (player’s hands and

(a) Input frame. (b) U-Net. (c) Deeplab v3+. (d) NAS-FPN. (e) Efficient
Correl-Net.

Fig. 6: Visual comparison of failing defect detections: true positives are high-
lighted in green, false positives in blue and false negatives in red. From top
to bottom, zoom on frames extracted from “sea-turtle”, “volleyball-beach” and
“water-slide” sequences.
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arms) moves quickly and is detected as a defect. The last line is a complicated
case, representing fast movements in a scene with light variations and reflections
on water. Many false positives are detected by all networks, including Efficient
Correl-Net.

4.5 Fine-tuning with an Old Film Dataset

In this section we consider a different dataset which is an old film that has been
manually restored by an independent expert. We obtain “ground truth” defect
masks by comparing the manually restored frame with the original frame. Un-
fortunately, these defect masks can hardly be considered as a reliable ground
truth, as in many cases the restoration process altered pixels that are not in
actual defects but in neighboring regions. We can nevertheless use this data for
qualitative analysis of Efficient Correl-Net performances.

Our self-supervised pre-training on video data augmented with synthetic de-
fects allows Efficient Correl-Net to learn well what a temporal anomaly is.
However, when the same network is used to detect defects in old film, the results
are not satisfactory since the frames are very different from those with synthetic
defects (see Fig. 7b). The recall is very low, which is probably due to the follow-
ing reasons: the image grain is different from the DAVIS dataset, the color and
shape of the defects are distributed differently from the synthetic defects.

This old film dataset contains 3000 images, which we divided into train-
ing (80 % of the frames), validation (10 %) and test (10 %) sets. When train-
ing Efficient Correl-Net on these frames only (without self-supervised pre-
training), the recall improves again, but the precision remains very low (see
Fig. 7c), which is due to the poor quality of the ground truth masks. On the other
hand, to adapt it to a new film, we propose to refine a Efficient Correl-Net
that has been pre-trained on synthetic data. Fig. 7d shows the results we get
after a single epoch of fine-tuning on this new dataset, with a learning rate of
10−6. We get far fewer false positives compared to training directly on the film.

The different examples in Fig. 7 show the improvements due to our two-
step learning. For instance, the brand on the back of the lead runner’s jersey
is detected as a defect (first row) simply using the film data, as it is partially
hidden by the head movements of the second runner in the adjacent images.
In addition, fine-tuning allows for more accurate detection of scratches (second
row), where direct learning on the film groups different parts of scratches as
if they were a single blotch. Conversely, the last examples show that the direct
learning on the film does not manage to detect entirely certain blotches, whether
they are dark (third row) or light (fourth row), only a part of the edges, whereas
the fine-tuning does.
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(a) Central frame of
a group of three de-
fective frames.

(b) Learning only on
synthetic data.

(c) Learning only on
the old film.

(d) Fine-tuning on
the old film after
having learnt on syn-
thetic data.

Fig. 7: Results when fine-tuning on an old film using Efficient Correl-Net:
predictions are applied to the central frame (7a). While the prediction after
pre-training on synthetic data fails to achieve a good recall (7b), many false
positives or missing detections are avoided when fine-tuning on the new dataset
(7d) compared to simply training on this new dataset (7c).
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5 Conclusion

In this paper, we present Efficient Correl-Net, a neural network architec-
ture designed to efficiently detect defects in videos. Efficient Correl-Net uses
correlation layers previously introduced in FlowNet [4] to accurately discrimi-
nate real defects from artifacts due to camera motion. We show that Efficient
Correl-Net achieves slightly better results than the NAS-FPN segmentation net-
work [5]. Specifically, it achieves higher precision thanks to the correlation layer,
which is desirable for a restorer. Although Efficient Correl-Net is trained
on a large video dataset augmented with synthetic defects in a self-supervised
manner, we also show that it can benefit from a fine-tuning process to be more
efficient when applied to a new film.

In addition to the results presented in the previous sections, it is important
to note that Efficient Correl-Net is a much lighter network (75 million pa-
rameters) than NAS-FPN (485 million parameters), which means that Efficient
Correl-Net needs less memory and fewer resources to run.

Although Efficient Correl-Net still has some limitations, for example
with fast moving objects or light reflections, we believe that it is a significant help
to the restorer’s work and an important step towards efficient semi-automatic
restoration of old films. In the near future, we plan to conduct a study with
restoration experts to validate the quality of our defect detection on a wider va-
riety of films, as well as to compare our defect detection to commercial tools used
by restorers. We want to evaluate whether switching to Efficient Correl-Net
would indeed help restorers, for example by decreasing the amount of manual
editing required to correct detected defects.
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