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Abstract—This paper presents a queuing model to
evaluate the performances of cooperation mechanisms in
4G/5G cellular networks. The main contribution is the
proposal of an approximation model with a closed form
formula allowing fast numerical evaluation of throughput
and loss probabilities per service class, while considering
traffic load, radio conditions and the available resources
in each collaborating cell. The proposed queuing model is
successfully applied to the enhanced Inter-Cell Interference
Coordination mechanism with service differentiation in
the context of Heterogeneous Cloud based Radio Access
Networks. Numerical results are compared to Matlab
simulations with realistic radio conditions and user distri-
butions. Through it, decisions on resource allocation among
the cooperating cells to achieve the optimal capacity of
the system become faster and adaptive. In conclusion, the
proposed queue-based model can be used in order to tune
the front-haul links and the core network resources.

Index Terms—Queuing Model, Modeling, Performance,
Inter-Cell, Cooperation, Approximation, Wireless, 5G,
CRAN, HetNet, eICIC, Front-haul

I. INTRODUCTION

Future cellular networks are expected to offer higher
spectral efficiency and capacity for mobile users, while
being more flexible and adaptive for network providers.
For this to happen, the 3GPP LTE-A standards intro-
duced, since Rel-8, advanced interference mitigation
techniques and cooperation mechanisms among neigh-
bouring cells. These include the enhanced Inter-Cell
Interference Coordination (eICIC) and the Coordinated
Multi-Point (CoMP). In addition, two architectural con-
cepts, namely the Heterogeneous Networks (HetNets)
and Cloud (or Centralized) Radio Access Networks (C-
RAN) [1], are being considered and combined for future
cellular networks. The first consists in mixing micro and
macro cells in order to enhance radio conditions for edge
users. The second proposes to split the base station func-
tionalities into two parts according to different scenarios.
For instance, only RF processing can be kept on “light”
base stations denoted by RRH (Remote Radio Heads),
while most of Base Band functions are processed on cen-
tralized and shared Base Band processing Units (BBUs).
These architectural evolutions can ease implementing the

enhanced inter-cell interference mitigation and coopera-
tion techniques by allowing centralized decisions based
on global knowledge over a cluster of cells [1]. They
can also lead to the reduction of both the OPEX and
CAPEX for network providers.
To be efficiently deployed, this evolution requires new
tools and approaches to analyze (and predict), in real
time, the traffic requirements on the front-haul and
the BBU. If not correctly sized, both the front-haul
and the BBU pool may constitute a bottleneck that
limits the RRHs from making full use of the available
radio resources. In the following, we provide a traffic
oriented model based on queuing theory and apply it
to the eICIC/ABS (eICIC/ Almost Blank Sub-frame)
mechanism. It allows deriving real-time performance of
the eICIC/ABS according to traffic and radio parame-
ters. It is an extension of the proposal in [2], where
a Markov chain based model and an approximation
model using the M/G/k/k queue were proposed. In this
paper, we propose an approximation approach using a
general closed form formula considering group arrivals
and loss system with multiple services classes. The
proposed model allows to jointly (i) determine the op-
timal eICIC/ABS configuration that maximizes the cell
throughput and (ii) derive the expected throughput per
service class. The proposed model is then used within
a framework allowing to make fast decisions for the
activation/deactivation of micro cells as well as for the
distributions of sub-frames among macro and micro cells
in case of activation.
The remainder of this paper is structured as follows:
section II is dedicated to the analysis of the related
work in the literature. In section III, we present the
approximation model based on queueing theory and
providing closed form formula. In section IV, we con-
sider a case study and show that the proposed model
provides accurate results compared to system level sim-
ulations. We then show how the proposed framework
(model and algorithm) can be used for eICIC/ABS
configuration in order to make fast decisions on the
activation/deactivation of micro cells as well as for the



distributions of available resources among macro and
micro cells. Then, in section V we present the proposed
model-based optimization for cell coordination in the
context of eICIC/ABS. Finally, section VI concludes the
paper and presents some perspectives.

II. RELATED WORK

In the literature, many works investigated interference
mitigation problems in HetNets using eICIC/ABS (Al-
most Blank Sub-frames). The main objective is to deter-
mine the optimal amount of radio resources that macro
cells should delegate to their associated micro cells while
ensuring maximum capacity. In [3], authors analyzed
the interference using stochastic geometry to derive the
required number of ABSs that guarantee a predetermined
user QoS level. In [4], authors proposed two algorithms
based on proportional fair metrics to dynamically adjust
the number of ABS according to the instantaneous
load conditions. In [5], an analytic framework, based
on stochastic geometry, was proposed to allow micro
cells avoiding interference to their neighboring macro
cells. In [6], authors proposed a game theory based
framework, in which the macro cell motivates small
cells to perform ABS schemes by providing them a
certain amount of monetary revenue. The problem is
formulated as a one-leader multiple-follower Stackelberg
game. In [7], another game theory based approach is
proposed to jointly optimize the ABS scheme and small
cell access control problem. A fuzzy logic system is
adopted in [8] to compute the number of ABS. The
inputs include UE (User Equipment) density, macro
cell throughput and micro cell channel quality. In [9],
the ABS configuration is formulated as a general-form
consensus problem and then solved using the ADMM
(Alternating Direction Method of Multiplier) approach.
In [10], authors developed a mechanism to jointly adjust
the parameters of ABS and the DRX (Discontinuous
Reception) mechanism so as to improve LTE-A perfor-
mance.
After the analysis of the related literature, it turns out
that there is a lack of system level models allowing
to dynamically analyze the eICIC performance. Such
models can allow real-time tuning of the eICIC mecha-
nism based on traffic load and users’ radio conditions’
measurements. It can help, for instance, to dynami-
cally determine the appropriate distribution of available
resources among macro and micro cells. In addition,
most of the available studies mainly focus on maximum
theoretical radio capacity and do not provide results at
traffic and data flow levels.

III. QUEUING MODEL

We consider the M/G/k loss queuing system steady
state distribution with batch arrivals [11]. In this sys-
tem, groups of customers (a customer and a group of
customers in this model refer respectively to a RBG
and a client in our model) arrive at a service station in

accordance with a Poisson process of rate λ. The sizes
of successive arriving groups are independent identically
distributed random variables and independent of the
arrival times.
Let gj , j = 1, 2, ..., k be the group size probability
distribution, and the corresponding tail probabilities is
given by:

qj = gj + gj+1 + ...(j = 1, 2, ..., k) (1)

The service is rendered by a number k of identi-
cal servers, each server being capable of serving one
customer at a time. The system operates as follows:
whenever a group of size j (j = 1, 2, ..., k) finds on
its arrival n (n = 0, 1, ..., k) servers busy, then a number
min(j, k-n) of its members, chosen at random, occupy an
equal number of idle servers and start being served. The
remaining customers, if any, are rejected by the system
(i.e. blocked) and they do not return later. Hence no
queue is allowed to be formed and the blocked customers
are considered as lost to the system. A customer’s
service time (ts) may depend on both the number and the
service times of its group members accepted for service.
However, customers who belong to different groups are
supposed to have independent service times. In [11], D.
Fakinos also considers the equilibrium behaviour of the
M/G/k group-arrival group-departure loss system where
the M/M/k group-arrival loss system is a particular case
of this model. The equilibrium distribution (pn), n = 0,
1, ..., k, of the number of busy servers is given by:

pn =

∑
ν1,...,νn∈N0
ν1+...+nνn=n

∏n
j=1

(qjρ/j)
νj

νj !

∑
ν1,...,νn∈N0
ν1+...+kνk≤k

∏k
j=1

(qjρ/j)
νj

νj !

(2)

where ρ = λ
µ is the traffic intensity of the system such

that µ = 1
ts

refers to the service rate.
From the probability distribution equation (2), we can
derive Xj , the mean throughput for clients of size j. Xj

is given by:

Xj = λ× gj × (

k−j∑
l=0

j × pl +

k−1∑
l=k−j+1

(k − l)× pl) (3)

Next, the proposed queuing model is applied for the
analysis of the considered case study.

IV. EICIC MODEL AND PERFORMANCE ANALYSIS

In this section, we focus our studies on Downlink
and consider a H-CRAN cluster composed of a central
cell and its 6 first tier neighboring cells, numbered from
2 to 7 as shown in Fig 1. All these cells are macro
cells. The cluster also includes a micro cell deployed
within the central macro cell. We focus here our analysis
on users within the central region, covered by both



the central macro and the associated micro cell and
where the eICIC/ABS mechanism is used. Note that the
interference from all the cluster cells is considered to
determine users’ radio conditions. We first consider the

Fig. 1: H-CRAN cluster: 7 macro cells and 1 micro cell

general case where users are randomly and uniformly
distributed over the central region. Algorithm 1 provides
how to derive, for each user u, with a packet size of
(size(u)) in bits, the required RBGs (Resource Block
Groups) according to its radio conditions (for more
details see [2]).

Algorithm 1: How to derive the required RBGs, for
each user, in case of eICIC/ABS

Input: micro cell within a macro cell
Result: RBGs(u) for all users u
(a) Generation of users randomly and uniformly

over the central macro cell;
for each user (u) do

(b) Determine the serving cell:
PRxM (u) = PtxM (u) +G− PLM (u)
PRxm(u) = Ptxm(u) +G− PLm(u)
PRxs(u) = max(PRxM (u), PRxm(u))
(c) Determine the SINR(u) with eICIC/ABS:
SINR(u) = 10log10(

PRxs(u)∑7
i=2 PRxi(u)+No

));
(d) Deduce the MCS(u) corresponding to

SINR(u);
(e) Determine the number of required OFDM

symbols: NSymb(u) =
size(u)
MCS(u) ;

(f) Determine the corresponding number of
RBs: NSubch(u) =

NSymb(u)
7×12 ;

(g) Determine the corresponding number of
RBGs: NRBGs(u) =

NSubch(u)
NRB

;
end

Parameters used in this algorithm are explained in TA-
BLE I.
In the following, we denote by S the total number of
available RBGs in a frame and NRB the number of RBs
within a RBG. These numbers depend on the considered
bandwidth. The parameters that are used for evaluations
are listed in TABLE II [13].

M, m, s, i macro, micro, serving and interfering cells
PRxM received power from the macro (in watt)
PtxM power transmission of the macro (in watt)
G Gain of the antenna per Hz
N0 Thermal noise
PL pathloss model (in decibels): [12]

PLM (u) = 128.1 + 37.6 × log10(R) where
R is in kilometers
PLm(u) = 38+30× log10(R) where R is in
meters

TABLE I: Users generation parameters

Parameter Value
carrier frequency 2 GHz

bandwidth 20 MHz
macro cell radius 3500 m
micro cell radius 600 m

macro cell transmit power 40 dBm
micro cell transmit power 30 dBm
macro cell antenna gain 18 dBi
micro cell antenna gain 6 dBi

client size 1024 bits
nABS 3

S 500 RBGs/frame
NRB 4 RBs

User location distribution Uniform
Number of active users per frame Poisson

TABLE II: Simulation parameters

A. Queuing model and parameters

Let λM (resp. λm) represents the client (i.e. data
bursts) arrival rate to the macro cell (resp. micro cell).
The total client arrival rate is then λ = λM + λm. The
number of RBGs required per each client (according
to its radio conditions) is determined through algorithm
1. This algorithm also defines the client class since we
consider that a client requiring j RBGs belongs to class
j, this means that this client has a batch size equal to j
RBG and it requires j servers.
Let λM,j and JM (resp. λm,j , and Jm) be the arrival
rate of class j and the number of classes in the macro
cell (resp. micro cell). Therefore:

λM =

JM∑
j=1

λM,j and λm =

Jm∑
j=1

λm,j (4)

Let S denote the number of servers in the queuing sys-
tem. S is determined by the the number of RBG within
an OFDM radio frame and depends on the selected radio
bandwidth (S=500 servers for 20 MHz, 1000 servers for
40 MHz, ...). In the presence of a micro cell, these S
servers are allocated among the macro and the micro
cell following nABS : the number of ABS allocated to
the micro cell.
Let SM (resp. Sm) be the number of RBGs (and servers)
within the macro cell (resp. within the micro cell). We
have:

SM = S − Sm and Sm = S × nABS
10

(5)



The behavior of eICIC technique can be modeled as
a Markov chain [2]. However, since it considers batch
arrivals and a relatively very high number of servers,
it generates a very large number of transitions and its
numerical resolution is costly in terms of time and
resources. We then propose and discuss here an approxi-
mation model based on the M/G/k group arrival and loss
system (described in section III).
The proposed M/G/k based approximation model is
defined for both macro and micro cells.
For the macro cell, equation (2) is used with the
following assumptions: k = SM , ρ = ρM = λM

µM
,

λ = λM , µ = µM = 1 (corresponding to one radio
frame). The batch probabilities are obtained as follows:
gj =

λM,j
λ , for 1 ≤ j ≤ JM . The mean throughput per

class, XM,j , is then derived from equation (3). Similar
reasoning is then done for the micro cell to determine
the mean throughput Xm,j by considering k = Sm,
ρ = ρm = λm

µm
, λ = λm, µ = µm = 1.

B. Performance results and analysis

In this section, performance results are provided in
terms of throughput and blocking probability per service
class. Comparisons with system level simulations are
conducted to estimate the accuracy of the proposed
approximation. The used input parameters are derived
from matlab simulations reproducing realistic behavior
of the system (listed in TABLE II). All results are
presented ensuring a 95% confidence intervals.
Two cluster scenarios were analyzed: with and without
a micro cell. Two classes are considered requiring re-
spectively 1 RBG and 2 RBG and such that λM,1 =
50%× λM and λM,2 = 50%× λM .
The M/M/k group-arrival loss system parameters are
derived as follows: λM = λM,1 + λM,2, g1 =

λM,1
λM

,
g2 =

λM,2
λM

, q1 = g1 + g2, q2 = g2 and ρ = λM .
Table III shows the accuracy of the closed form formula,
by comparing the blocking probability (Pb) and the
throughput (Th) per class when the macro is deployed
without micro cell.
Results show that blocking probabilities per class, and
consequently the corresponding throughput, obtained
using the proposed M/M/k based approximations are
quite close to those obtained by simulations.
While varying user arrivals from 50 to 350 per frame,
the relative errors remain less than 1% for both classes.
For higher rates, the relative error remains less than 6%
for class 1 and 4% for class 2. Indeed, given that client
departures from the M/G/k system are asynchronous,
clients of class 2 (composed of two batches) leave
the queuing system faster than in the real system as
simulated, allowing the M/G/k group-arrival and loss
system to serve more batches of class 1. Note that the
relative error in terms of overall throughput remains
below 1% for class 1 and below 3% for class 2.

class 1 class 2

λ Simul
(Pb)(Th)

Approx
(Pb)(Th)

Simul
(Pb)(Th)

Approx
(Pb)(Th)

50 (0) (25) (0) (25) (0) (25) (0) (25)
100 (0) (49) (0) (49) (0) (51) (0) (51)
150 (0) (74) (0) (74) (0) (76) (0) (76)
200 (0) (98) (2.48E-08)

(98)
(0) (102) (4E-08)

(102)
250 (6.72E-04)

(123)
(2.66E-03)
(123)

(0.0119)
(128)

(0.0041)
(128)

300 (6.72E-04)
(147)

(2.66E-03)
(147)

(0.0119)
(152)

(0.0041)
(152)

350 (0.0582)
(164)

(0.0565)
(164)

(0.1842)
(166)

(0.0837)
(161)

400 ( 0.1645)
(165)

(0.1384)
(171)

(0.2793)
(168)

(0.1985)
(162)

450 (0.2614)
(164 )

(0.2112)
(175)

(0.3429)
(168)

(0.2949)
(160)

TABLE III: Comparison between Matlab simulations
and the M/M/k group arrival in terms of blocking prob-
ability and throughput per class (macro without micro)

When the micro cell is deployed and the eICIC mecha-
nism is active, the performances will obviously depend
on the number of allocated ABSs and traffic and radio
conditions. The optimal throughput can only be reached
with optimal ABSs configuration.
To meet this objective, we propose in the following
a model-based framework to ease decisions on the
activation/deactivation of micro cells as well as for the
distribution of sub-frames and clients among macro and
micro cells when these latter are activated.

V. MODEL-BASED EICIC/ABS OPTIMIZATION

In this section, we propose a model based framework
to dynamically decide about the activation/deactivation
of micro cells as well as the optimal amount of radio
resources macro cells should delegate to them. The
main objective here is to maximize the overall system
throughput.
When a micro cell is deployed, all users associated to
it should experience almost no blocking (i.e. blocking
probability ≤ ε). One can assume, without loss of
generality, that radio conditions are always good for UEs
associated to micro cells. Indeed, a UE is associated to
a micro cell only if the latter allows enhancing its radio
conditions. Otherwise the UE will remains associated to
the macro cell. Therefore, one can assume that only one
class of service is available in the micro cell, where all
UEs require 1 RBG (i.e. λm = λm,1).
This optimization issue is formulated as an objective
optimization problem. The decision variables are the
following:

• λm: client arrival rate in the micro cell,
• λM : client arrival rate in the macro cell,
• Sm: the number of sub-frames to assign to the

micro cell and



• SM = S − Sm: the number of resources to assign
to the macro cell.

Note that we deliberately set the client arrival rate to the
micro cell as a variable since this rate (which is part of
the overall arrival rate) should also be optimized together
with the ABS configuration.
Since the radio conditions of edge clients are enhanced
when micro is deployed, in the following, we consider
the mean radio access bearer (RAB) or the MCS effi-
ciency of the clients. The used RAB per class in the
macro and the micro cells influences the optimization
results. Let RABM (j) = CRM (j)×log2(NM (j)) (resp.
RABm(1) = CRm(1) × log2(Nm(1) ) refers to the
mean radio access bearer or the MCS efficiency of the
users of class j in the macro (resp. of class 1 in the micro)
where CRM (j) (resp. CRm(1)) is the mean coding
rate and NM (j) (resp. Nm(1)) is the mean number of
constellation points of the users of class j in the macro
(resp. of class 1 in the micro). These parameters per
class are also extracted from simulations while real radio
conditions are considered. Using the RAB will allow
also converting the throughputs in bits/frame.
Our objective optimization problem is then expressed as
follows:

maximize
Sm, SM , λm, λM

f(Sm, SM , λm, λM )

subject to Sm + SM = S,

λm +

JM∑
j=1

λM,j = λ,

JM∑
j=1

λM,j = λM ,

SM > 0,

Sm ≥ 0,

pbm ≤ ε

(6)

where f(Sm, SM , λm, λM ) represents the overall
throughput expressed in terms of bits/frame and
computed as follows:

f(Sm, SM , λm, λM ) =

JM∑
j=1

αj × j ×XM,j

+ β ×Xm,1

(7)

so that:
αj = NRB × 7× 12×RABM,j ,
β = NRB × 7× 12×RABm,1,
pbm = pSm and
XM,j and Xm,1 are calculated by using equation(3).
Due to the combination of a continuous variable (such
as λm) and discrete variables (such as Sm and SM )
and because the nonlinear expression in the objective
function (XM,j for j=1, ..., JM and Xm,1) and the

constraint (pbm), the maximization problem corresponds
to a mixed integer non-linear program (MINLP). Non
convexity as imposed by discrete variables or non convex
nonlinear functions easily lead to problems that are both
NP -hard in theory and computationally demanding in
practice [14]. For detailed overview of MINLP solvers
and the implemented algorithm, we refer to [15]. A
simple way to solve this problem is to start by fixing Sm
(and thereby SM ) and then, for each value we determine
the optimal λm that maximizes the overall throughput.
Finally, the optimal Sm (and SM ) and λm which offer
the optimal overall throughput are retained.
Our problem corresponds now to a nonlinear program
(NLP) due to the constraint and the objective function
that are not linear. In Matlab, one manner of solving
NLP is by using metaheuristic and a global optimization
algorithm such as GlobalSearch and MultiStart that
allow finding global minima. The following results are
obtained using the GlobalSearch algorithm. It uses a
Scatter Search mechanism for generating start points and
then runs a local solver (fmincon) from multiple start
points. Fmincon is a nonlinear programming solver that
starts at initial point x0 and attempts to find a minimizer
x of the function described in the objective function
subject to the constraints, x0 can be a scalar, vector or
matrix. The objective of Scatter Search is to maintain
a set of diverse and high-quality candidate solutions.
The principle of the approach is that useful information
about the global optima is stored in a diverse and elite
set of solutions (the reference set) and that recombining
samples from the set can exploit this information. The
strategy involves an iterative process, where a population
of diverse and high-quality candidate solutions that are
partitioned into subsets and linearly recombined to create
weighted centroids of sample-based neighborhoods. The
results of recombination are refined using an embedded
heuristic and assessed in the context of the reference set
as to whether or not they are retained [16].
Unfortunately, for our case study, these solvers take
few days to provide results. In order to remedy this
weakness, we propose to use an exhaustive search of
the optimal values on a reduced set. We propose then
algorithm 2 where:
(a) At first, the model-based optimization for eICIC/ABS
determine X? the overall throughput when the micro is
not deployed according to equation (3).
(b) Furthermore, for each percentage of clients to be
attached to the micro cell, the optimization model
determines the minimum number of micro resources
that achieves optimal throughput (determined by using
equation (3)) with a service guarantee equal to (1− ε)%
for micro clients. We note that imax is the maximum
percentage of clients to attach to the micro cell. The
optimization model will therefore vary from i to imax
with a loop step noted ’step’ (the smaller are the initial



value of i and the value of step, the better is the precision
of the optimization model). Then, for each i, the model
varies the number of ABS to be assigned to the micro
cell from the minimum number of ABS (nABS = 1) to
the maximum number of ABS noted ’nABSmax ’. Then,
for each ABS, it determines the corresponding number
of resources and keeps only those which guarantee a
service of (1−ε) % for micro clients. After that, for each
i, it selects the optimal number of micro resources which
corresponds to the minimum that offers the maximum
overall throughput.
After that in (c), it determines the unique i corresponding
to the minimum of Smi maximizing the overall through-
put.
In (d), it deduces the output parameters. Note that when
i < imax, the remaining clients of the micro cell
(imax × λ − i × λ) will be added to arrival rate of the
macro in class JM (λM,JM ), such that the total arrival
rate λ remains constant.
The optimal throughput obtained in (d) corresponds to
the scenario where micro is deployed. Thus in (e), it is
compared to the overall throughput when micro is not
deployed (determined in (a)).

Algorithm 2: How to determine the clients arrival
rate and the number of servers in the micro cell to
achieve the optimal overall throughput

Result: Sm, SM , λm, λM , X
Input: i, imax, λ, JM , λM,j for j = 1, ..., JM , ε,

S, step
(a) Compute the overall throughput in case of

macro without micro (X?);
(b) while i ≤ imax do

Determine the minimum Smi which maximizes
the overall throughput, noted Xi, such that
pbm ≤ ε ;
i = i+ step ;

end
(c) Determine i such that the corresponding
Sm = min(Smi) maximizes the overall
throughput X = max(Xi) ;

(d) Deduce:
λm = i× λ ;
λM,JM = λM,JM + (imax × λ− λm) ;
λM =

∑JM−1

j=1 λM,j + λM,JM ;
(e) Determine the optimal overall throughput X=
max(X?, X) ;

if X = X? then
Sm = 0; SM = S ; λm = 0 ; λM = λ ;

end

According to the traffic load, the proposed based-model
optimization for eICIC/ABS also allows deciding on the
activation/ deactivation of the micro cell in order to
achieve the optimal overall throughput.

In the following, we compare the results obtained by the
algorithm 2 and the Global Search algorithm. We note
in TABLE IV the optimal percentage of UEs accepted to
be served by the micro, λm, and the optimal number of
ABS, nABS , to assign to micro UEs, in order to reach
the optimal overall throughput (X). Let’s remember that
the optimal number of servers assigned to the micro is
Sm = S × nABS

10 where S = 500 for a bandwidth of 20
MHz.
We consider a realistic distribution of clients over the
macro and the micro with a uniform distribution, we
have then: λM,1 = 50% × λ of the clients are at the
center region (class 1) of the macro, imax×λ = 3%×λ
of the clients are at most in the center region (class 1) of
the micro (with good radio conditions), λM,2 = 47%×λ
of the clients are at the edge region (class 2) of the macro
(with bad radio conditions).
We limit the search space of the optimal number of
servers by limiting the number of possible ABS to 5
(half of the available ABS in a frame). We assume that
i = 1%, step = 1% and ε = 0.02 the purpose of this
condition is to ensure that micro UEs are served at 98%.
Note that realistic values of user’s MCS efficiency
per class (extracted from Matlab simulations) are used
where: RABM (1) = 3.7746, RABM (2) = 0.86 and
RABm(1) = 3.334.

Clients arrival
rate (λ)

Arrival rate
[kbits/frame]

Optimal
nABS

Optimal
λm

Optimal
X

50 46 1 3% ×λ 46
100 92 1 3% ×λ 92
200 183 1 3% ×λ 183
300 275 1 3% ×λ 270
400 361 0 0% ×λ 305
500 451 0 0% ×λ 315
600 541 0 0% ×λ 322
700 631 0 0% ×λ 327
800 734 1 3% ×λ 333
900 826 1 3% ×λ 340
1000 917 1 3% ×λ 346
1200 1101 1 3% ×λ 357

TABLE IV: Optimal nABS , optimal λm and optimal
overall throughput in kbits/frame according to the clients
arrival rates obtained by Global Search algorithm and
algorithm 2

The same optimal values are obtained by the Global
Search algorithm and algorithm 2, therefore, the results
are only shown once in TABLE IV. Note that algorithm
2 offers the results more quickly. For each arrival rate (or
user density in kbits/frame), an optimal number of nABS
and an optimal number of micro UEs can be selected in
order to maximize the overall throughput in terms of
kbits/frame (as explained in the objective optimization
problem). When the client arrival rate varies between
46 and 275 kbits/frame, the macro and the micro are
lightly loaded. The algorithms propose to activate the
micro cell and to serve all the micro UEs. Hence, the



macro allocates the necessary number of ABS to the
micro since there are enough resources in the macro to
serve their own UEs. Note that 1 ABS for the micro is
enough to serve their clients and pbm ≤ 0.02, due to the
small percentage of clients in the micro (3%).
When the client arrival rate is greater than 361 and less
than 631 kbits/frame, the optimization models propose
to not deploy the micro. In fact, for these clients arrival
rates the macro cell is loaded but the micro is not. The
allocation of 1 ABS to the micro will penalize the macro
UEs which decrease the overall throughput.
When the client arrival rate is greater than 734
kbits/frame, the macro is very loaded and the micro is
moderately loaded. The deployment of the micro cell
will allow to enhance the overall throughput however
the optimization algorithms propose to delegate to the
micro the minimum of ABS that it needs to reach
the optimal overall throughput and by assigning the
maximum number of clients such that pbm ≤ 0.02.

VI. CONCLUSION

In this paper, we propose a queue-based model ap-
proximation with service differentiation for cell coordi-
nation. The accuracy of the proposed model is validated
and compared to system level simulations. The relevance
of the model is that the input parameters are based on
real user distributions and radio conditions (measured
from real systems or extracted from simulations). The
model is applied to the eICIC/ABS mechanism and
numerical results are presented. The proposed queuing
model is then used to develop an optimization frame-
work able to adapt the eICIC/ABS parameters according
to user load and radio conditions. As a future works,
we plan to compare our results with NS3 simulations
using general arrival distributions. Furthermore, we plan
to study the distribution of resources over coordinated
cells within a cluster with multiple tiers. Such a study
will allow as to define the traffic load in order to
dimension the front-haul links and the BBU pool in
H-CRAN. In addition, when considering latency and
jitter requirements for various traffic flows, front-haul
links need to be tuned leveraging statistical multiplexing
gains, infrastructure reuse, and ultimately, cost reduction.
To this end, wen plan to combine our model with the
one proposed in [17], where authors proposed a queue
based model for the front-haul links.
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