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Abstract—We consider in this paper multiple 5G base stations
(BSs) implementing Advanced Sleep Modes (ASM) wherein each
base station is able to deactivate some of its components when it
does not transport any traffic and save thus energy. Thanks to
so-called lean carrier, ASM define four levels of sleep, the deeper
the level the larger the energy gain but the more delay to wake-
up and serve the incoming user. We specifically study this energy
saving versus delay performance trade-off taking into account the
effect of inter-cell interference and its impact on whether to wake-
up and serve the transmission request immediately upon arrival
or to continue to sleep; this latter decision is a main novelty of
our work. We treat the case where arrivals of those requests are
unknown and a reinforcement learning agent is implemented in
each BS in order to (selfishly) derive the optimal sleep policy that
achieves a target energy saving versus delay performance trade-
off. Our results show the optimal policies in terms of the value
of the timer after which the BS goes into sleep, the time spent in
each sleep level, and whether the BS should continue to sleep or
wake up immediately upon request arrival. We eventually show
the corresponding achieved power saving and delay performance.

Index Terms—5G, multiple base stations, Advanced Sleep
Modes, Multi-Agent Reinforcement Learning, energy saving ver-
sus delay performance trade-off.

I. INTRODUCTION

The fifth generation (5G) and beyond mobile systems
promise the delivery of a wide range of revolutionary services.
Yet, the predicted increase in traffic volume and the diversity of
connected devices point to worrying levels of power consump-
tion [1]. Finding techniques to alleviate the tendency of energy
increase has become a major objective for both information
and communications technology standardization sectors and
network operators. Thereupon, energy efficiency is included as
a key performance indicator: 3GPP’s 5G specification calls for
a 90% reduction in energy consumption as compared to 2010
[2]. Accordingly, various energy-related solutions targeting the
reduction of power consumption in the wireless networks are
under study, ranging from the deployment of small cells, the
use of Multiple Input Multiple Output antennas, to Cloud
Radio Access Network (Cloud-RAN) and Edge Computing.

We focus in this work on another such effort, namely
the use of Advanced Sleep Mode (ASM) strategy [3] at the
base station (BS). Our motivation is based on the fact that
the RAN has the lion’s share in the predicted global energy
consumption, on the order of 50.6% by 2025 [1], with the

highest energy consumption experienced at its end, namely at
the power amplifier and antenna interface [2]. Hence, turning-
off the BS, or at least its radio frequency component, in periods
of inactivity, would enable to reduce power consumption
of wireless sites. The conventional single-level sleep mode,
namely the ON/OFF switching technique, completely turns
off under-utilized BS at the expense of long delay needed
to reactivate them which results in a negative impact on the
users quality of service in terms of delay performance. ASM,
on the contrary, correspond to a progressive deactivation of the
components of the BS among four sleep levels, ranging from
deep to light, allowing thus the implementation of flexible
sleep policies that enable targeting fine trade-off between
energy saving versus delay performance [4]. ASM have been
made possible in the context of 5G thanks to the so-called
lean carrier [5].

The challenge in finding the optimal sleep policy for a
targeted energy saving versus delay performance is exacer-
bated by two uncertainties: the arriving time of the requests
as well as the randomness in the channel quality and hence
the service rate. Indeed, an increased waiting delay due to a
sleep policy may be bearable by the arriving packet if it is
counter-balanced by a short service time, while no waiting
delays can be tolerated if they are to be added to an already
long service duration. This channel quality and hence service
capacity is also subject to interference from neighboring
cells, which results from their state, i.e., if they are active,
idle or even in sleep. We hence propose the use of Multi-
Agent Reinforcement Learning (MARL), and in particular the
non cooperative approach [6] as the BSs are most probably
unaware of each other’s state, in order to learn these unknowns
and derive the optimal sleep policy in the context of multiple
BSs, each equipped with ASM capability and RL agent.

There has been several works addressing ASM following
the work in [4] which introduced ASM, with four sleep levels,
and indicated their durations as well as power consumption for
the case of a 2020 technology. In [7], the authors consider a
single BS and study the power saving versus delay constraints
for several, a priori known, traffic scenarios and loads. In
[8] the authors consider a single BS as well and model its
power consumption as a function of the sleep depth using
a queuing model with vacations. Here too, traffic and sleep



profiles are supposed to be known in advance. The authors
in [9] revisit the ASM model proposed in [4] with a more
conservative approach for the power model emphasizing that
some deactivated components will need longer times than
assumed in the latter in order to wake-up and serve users.
They conduct their simulations considering one macro BS and
several micro BSs setting. In [10], multiple BSs are considered
and the sleep policy is investigated via simulations for different
network loads. An analytical model is developed to quantify
the system level energy saving gains of a BS assuming low
load, single transmission at a time with high probability and
fixed time between data arrivals. In [11], the authors consider
multiple small BSs and make use of prediction for the vacancy
versus operational periods of the system. In [12], the authors
propose a scalable, Markov Decision Process (MDP)-based
model, to derive the optimal sleep policy targeting a given
energy saving versus delay performance trade-off for a single
BS. In case the next user arrival is unknown, this approach
is extended to a Reinforcement Learning (Q-learning) one
in [3] in order to pursue the same objective. The authors
in [13] consider a single BS and derive the optimal power
saving versus delay, via Reinforcement Learning (SARSA),
depending on traffic load, in an online fashion. The work
in [14] considers multiple BSs and studies the power saving
versus delay trade-off using a distributed Q-learning approach,
in an online, uncoordinated fashion.

All these works assume that when the network is in sleep,
and a new request arrives, the BS wakes up immediately in or-
der to serve it. To the best of our knowledge, none of the works
tackling ASM in the literature have considered the possibility
that the base station, if in sleep, does not systematically wake-
up immediately upon the arrival of a new request but may
continue to sleep depending on the targeted trade-off between
energy saving versus delay performance which depends on the
effect of channel quality as represented by the channel quality
indicator (CQI) of this arriving request. We believe that this
newly introduced decision point is important, especially in a
multi-cell scenario with inter-cell interference that can dictate
the deferral of the activation of the BS so as not to sacrifice
the gain in power consumption, achieved when remaining in
sleep, for an otherwise long service time due to interference
and hence delay. This new decision point for the BS is a new
feature that we implement in our present work in addition to
the original decision point ruling its ASM profile.

The rest of the paper is organized as follows. In section II,
we provide an overview of the ASM feature and our proposed
sleep and wake-up strategy including the two coupled deci-
sions to be taken by the BS. In section III we describe our
multi-agent Q-learning algorithm used to derive the optimal
sleep and wake-up policy. Our numerical results are presented
and discussed in section IV. We conclude our work in section
V and give some hints on future works in this context.

II. SYSTEM AND ASM MODEL AND STRATEGY

We consider a network composed of multiple adjacent BSs,
each equipped with ASM feature. When a BS finds itself idle,

i.e., no user traffic, it starts a timer. If a transmission request
arrives before the expiration of this timer duration, the BS
serves the arriving packets and restarts the idle mode timer
upon the end of transmission of the last one. Otherwise, it
moves to a chosen sleep state.

ASM defines four levels of sleep [4] ranging from the
lighter one, SM1, to the deepest, SM4. They differ in terms
of the components that are deactivated and activated, which
necessitate different durations and imply different depths of
sleep and hence different savings in power consumption. Table
I shows the durations for deactivation at each sleep level
(which we assume to be equal to the activation time).

TABLE I: Advanced Sleep Modes

SM1 SM2 SM3 SM4

35,7 µs 0,5ms 5ms 0,5s

These ASM features are made possible within so-called lean
carrier [5] in 5G networks which enables grouping and spacing
of signaling which makes it possible to have sleep periods
beyond the very short SM1 which is the only one supported
in 4G, due to frequent signaling, on the order of 1ms. In 5G
however, signaling can be made as spaced out as 160 ms which
enables the use of SM 1 through 3.

We implement the ASM strategy proposed in [3] according
to which the sleep period starts with the deepest sleep level
SM3 and the BS wakes up gradually to lighter sleep levels
until being fully activated. This process repeats upon idle
timer expiration. The sleep profile is defined as the idle timer
duration, denoted by TI, and the duration during which the BS
remains in each sleep mode SMi, denoted by TSMi .

We denote by ∆Di→j
and ∆Ai→j

, respectively, the ac-
tivation and deactivation duration to switch from opera-
tional state i to state j where i and j take values in
{Idle,SM1,SM2,SM3}. They are given by:

∆Di→j
= ∆Ai→j

= ∆DI→j
−∆DI→j

(1)

where ∆DI→i
is the duration needed to deactivate the compo-

nents associated with SMi indicated in Table I.
The delay experienced by each served packet in this model

is actually composed of two parts: i. the waiting delay, which
we denote by Dw, and which represents the time an arriving
packet has to wait before the BS starts to serve it, it may
in turn incorporate two components: the waiting delay until
the activation of the BS, if the packet arrival happens during
the sleep period, and the waiting delay until the service of
all the packets that are served ahead of the tracked one, and
ii. the service delay, denoted by Ds, is the time needed to
serve the considered packet. The latter delay component is
equal to the packet length divided by the bitrate offered to the
user, which we denote by Ru: Ru = W × SE(SINRu) where
W is the bandwidth measured in hertz and SE(SINRu) is an
increasing function that maps the achieved spectral efficiency,
evaluated in bits per second per hertz, to the received signal to
interference and noise ratio. Indeed, this latter parameter which
we denote by SINRu, is known at the BS via the Channel



Quality Indicator (CQI) sent by the user to the BS, and
according to which this latter chooses the optimal modulation
and coding scheme for this connection [16], which corresponds
to an achieved spectral efficiency [17]. SINRu depends on the
states of the BSs:

SINRu(t) =
PBSxGBSx

u

σn +
∑

y ̸=x P
BSyG

BSy
u

(2)

with PBSx and PBSy respectively the transmission power of
BSs x and y, GBSx

u and G
BSy
u respectively the channel gains

between the user and BSs x and y and σn the Gaussian
additive white noise.

Furthermore, and as stated above, we implement an addi-
tional decision point upon the detection of the first arrival
during the sleep period wherein the BS, which is aware of the
quality of the channel of the requesting connection via its CQI
(as explained above), can choose to wake-up immediately or
to wait till the end of the initially chosen sleep profile.

Note that all packets arriving during the activation period
or during the sleep one if the BS chooses to continue to sleep,
are buffered and served once the BS is fully activated again.

In summary, each BS has two decisions to take: i. at
the beginning of its idle period, it decides the sleep profile
composed of (TI, TSM3

, TSM2
, TSM1

) and ii. upon the arrival
of transmission request during the considered sleep period, it
decides to immediately activate or continue to sleep until the
end of the sleep profile. These decisions depend on the pursued
objective in terms of power saving versus delay performance.
The difficulty in deriving the optimal policy comes, as pre-
viously argued, from the randomness and unpredictability of
traffic arrivals and inter-cell interference levels. To this end,
we propose to tackle the problem using MARL approach, as
will be detailed in the next section.

III. MARL FORMULATION

We develop a model-free MARL framework based on the
off-policy algorithm Q-learning [15] according to which the
agent/learner observes its environment, chooses an action from
the available action set and observes a numerical feedback
that describes how good or bad the decision of taking the
chosen action was, given the environment state. We refer to
this numerical function as the cost function, denoted by c(s, a),
resulting from taking action a when the learner is at state
s. Based on this feedback, the learning agent will improve
its decisions regarding the choice of the actions in the future
states. This mechanism is repeated until convergence providing
the optimal action for each state and hence the optimal policy.

The parameters for this framework are defined next.

A. Agents and states set

We have multiple independent learners, which are the BSs.
Each BS seeks the detection of the two following cell states:
the beginning of the idle period and the CQI of the first
arriving transmission request during the sleep period. We refer
to these states by:

• state Start-Idle

• states (n,CQIk) detected upon the first request arrival
during sleep profile n when the CQI of this latter is CQIk
with index k taking values out of the 16 possible CQI
indices defined for 5G1. Hence, for each sleep profile n
out of the NSP potential sleep profiles defined in the next
subsection we can have 16 possible (n,CQIk) states.

Overall, we have 1 + 16×NSP states.

B. Decision instants and actions set
The instants at which the BS detects each of the previously

introduced states defines the decision instants. The action
space refers to the set of possible operation measures the BS
can take at each of these time instants.

When the state Start-Idle is detected by the BS, this
latter has to choose the optimal sleep profile n ≡
(TI, TSM3

, TSM2
, TSM1

) introduced in section II. In the nu-
merical applications, we shall discretize and limit the set of
values which these continuous time variables can take so
as to have a manageable action set, denoted by AStart-Idle.
The size of this action set is NSP = ΠiNi sleep profiles
where Ni is the number of possible values that Ti can take,
∀i ∈ {I,SM1,SM2,SM3}.

On the other side, the set of possible actions the BS can
follow when it is in state (n,CQIk) are:

A(n, CQIk) ≡ {immediate wake-up, stick to sleep profile} (3)

C. State-transitions and cost function
The action a BS chooses at a given state dictates both

immediate cost that arises from taking this action at the given
state as well as the next state it transitions to, and hence the
long-run accumulated costs.

A BS in the idle state and adhering to a sleep profile
n ≡ (TI, TSM3

, TSM2
, TSM1

) returns to this idle state if a
transmission request is detected before the expiration of the
idle timer TI; the transmission requests are served first and the
BS goes back to the state Start-Idle. The transition from Start-
Idle to Start-Idle is also possible if no transmission requests
arrive before the end of the total sleep duration. Otherwise, the
learning agent moves to the state (n,CQIk) upon the arrival
of a packet transmission request with channel indicator CQIk
during sleep. Likewise, a transition from state (n,CQIk) to
the state Start-Idle occurs upon the wake-up of the BS either
due to an immediate wake-up decision or due to the end of
the sleep duration. Again, the buffered transmission requests,
if any, are served upon these triggering events.

The cost function c(s, a) should assess the power con-
sumption at the BS versus the experienced delay for pos-
sible actions a ∈ {AStart-Idle,A(n, CQIk)} for each state s ∈
{Start-Idle, (n,CQIk)}:

c(s, a) =(1− β)

(∑
i∈{I,SM1,SM2,SM3} Pi ×Di∑

i∈{I,SM1,SM2,SM3} Di

)
+ βmax

∀pkt

[
Dw(a, pkt) +Ds(pkt)

] (4)

1The CQI index in 5G has 16 possible values which range from 0 to 15
[17]. 0 indicates the worst channel quality and 15 indicates the best one.



where
• β is a priority factor given to delay over power.
• Pi is the power in Watts consumed by the BS when it is

in the operational mode i ∈ {I, SM1,SM2,SM3}.
• Di is the duration in seconds during which the BS con-

sumes power Pi. Assuming that the power consumption
during the transition from an operational mode i to the
directly less consuming mode and vice versa, is equal
to the power consumed at state i. Hence, Di is equal
to the summation of Ti and 2 × ∆Di→j

, which are
respectively the duration during which the BS remains
in level i ∈ {I, SM1,SM2,SM3} and the time needed
to perform the transition from this level to the directly
lower level j ∈ {I, SM1,SM2,SM3} and then return to
state i when this transition is possible according to the
sleep profile (i.e., Tj ̸= 0). ∆Di→j

are given by eqn. (1).

• max∀pkt

[
Dw(s, a, pkt)+Ds(pkt)

]
is the maximum expe-

rienced delay among the perceived delays by the served
packets. For each of these packets (with index pkt),
the experienced delay incorporates the two components
previously detailed in section II: Dw(s, a, pkt) is the
waiting delay in the buffer before service given the BS
state s and the adopted action a and Ds(pkt) is the service
delay. It is worth noting that we are implementing a
1-step Q-learning strategy and hence we are interested
in computing the 1-step immediate cost function [15].
Hence, the considered delay component is calculated for
packets arriving in the interval between two consecutive
decision instants (defined in sec. (III-B)).

D. The Multi-Agent Q-learning Algorithm

Q-learning algorithm is based on the estimation of a tabular
action value function that ranks actions according to their
merit for each learning state. More precisely, the Q-value
which is denoted by Q(s, a) for each possible state s and
action a pair evaluates the expected cumulative merit function
resulting from adopting action a given the learner state s and
consequently the optimal action to be taken at the network
state s is the one that gives the best merit value.

The merit function in our network is the expected cu-
mulative power consumption and delay costs resulting from
adopting action a given the BS state s, and hence the optimal
action is the one that has the minimum merit function.

The Q(s, a) values for each learner l are obtained during
the training phase by refining them at each decision instant
according to the newly learned costs over a given number of
iterations until convergence. Q-values are updated according
to the following rule:

Ql(s, a)← Ql(s, a)+α · [cl(s, a)+ γ · (min
a′

Ql(s′, a′))−Ql(s, a)]

(5)
where s denotes the current state of BS l, s′ the next state
after taking action a, cl(s, a) is the cost observed by agent l
after performing action a given that it was in state s (Eqn.
(4)), α is the learning rate, also called step size, it controls

the rate at which new learned costs are accumulated, and γ is
the discount factor, it takes values in [0, 1] and describes the
weight given to future Q values.

In order to accelerate convergence [15], we adopt in this
work the decaying learning rate model considered in [18] and
according to which the learning rate is updated as follows:

αl(tlu)← αl(tlu − 1)

(
1− 1

1 +M + tlu

) 1
2+ξ

(6)

with tlu the number of update steps (i.e. at step tu, agent l is
updating its Q-value for the tu times), and M and ξ constants
that control the decrease rate of the function.

Likewise, we consider a decaying epsilon-greedy strategy
to control the choice of action a at each Q-value update
step. Indeed, Q-learning algorithm is based on an iterative
update for each of the Ql(s, a) values. A compromise is
needed between exploiting the knowledge accumulated so far
and refining further the Q-value of the action with the best
estimated merit value or exploring new policies hoping to
reach better merit values for these policies in the future. In
this context, the epsilon-greedy strategy allows, at each Q-
value update step tu, the selection of the best learned policy
so far with probability 1 − ϵ and the exploration of a new
policy with probability ϵ. By decaying the parameter ϵ with
the update step tu we allow the learning process to explore
more at the beginning of the learning phase and we boost
the rate of this process towards convergence by exploiting
the learned merits when sufficient experience is accumulated.
We specifically implement the stretched exponential decaying
epsilon-greedy strategy defined for each BS l as follows [18]:

ϵl(tlu) =


max

(
ϵmin, ϵ0−

[
0.9·ϵ0

cosh

e
−

tlu−A·Z
B·Z

 +
tlu·C
Z

])
if tlu ≤ Z

max

(
ϵmin,

ϵ∗l(tlu=Z)

tlu−Z

)
otherwise

(7)
with tlu, again, the number of update steps, ϵmin the targeted
minimum exploration probability, ϵ0 the initial exploration
probability, Z a time horizon and A, B and C are parameters
to control the shape/rate of decaying of the function.

IV. NUMERICAL APPLICATIONS

We consider, without loss of generality, two learning BSs.
Users are uniformly distributed in the cell area of each BS.
Table II summarizes the main parameters considered in our
simulations. As previously indicated, each sleep profile n
in the action set AStart−Idle is defined by the quadruple
(TI, TSM3 , TSM2 , TSM1). To limit this set, we let Ti for all
i ∈ {I,SM3,SM2,SM1} take limited number of values de-
pending on the request arrival rate. These values, as well as
those related to the learning process, were tuned empirically
through extensive simulations we run beforehand.

We present in Table III our results for the optimal actions
to take at each of the previously introduced BS states, both
optimal sleep profile n∗ and the action upon the arrival of the
first request during the sleep period: wake-up immediately or



continue sleeping. Results are derived for different values of
packet arrival rate λ and delay priority parameter β which
indicates how much priority we give to delay over power
saving. Results hold for the two considered BSs.

TABLE II: Simulation Inputs

Cell radius 500 [m]
Carrier frequency [GHz]
(fc) 3.5 [GHz]

Bandwidth [MHz] (W) 20 [MHz]
Transmitters Power [dBm] 46 [dBm]
Transmitters and Mobile
receiver heights [m] (hBS
and hMS)

hBS = 35 [m] hMS = 1.5 [m]

Pathloss [dB]
3GPP model for the Urban Macro scenario
with No Line of Sight [19] depending on fc
and the user distance from the BS

Power consumption at each
operational mode [W] [14]

Pactive = 250, PI = 109, PSM1 = 52.3,
PSM2 = 14.3 and PSM1 = 9.51

Shadowing distribution Log-normal with standard deviation 8 [dB]
Fading Rayleigh Model
Thermal noise -174 [dBm/Hz]
Service type Best Effort
Packet size 1500 bytes

Packet arrivals
Log-normal inter-arrival time with mean
τ = 1

λ
(λ [packet/s] is the mean arrival rate)

and a variance ν = τ
10

Scheduling scheme First In First Out
CQI/spectral-efficiency
mapping Table 5.2.2.1-2 in [17]

Epsilon-greedy params. ϵ0 = 1, ϵmin = 0.1, A = 0.6, B = 0.1,
C = 0.05, Z = 6× 106

Learning rate α params. α0 = 0.9, M = 3× 107, ξ = 10.5
Discount factor γ 0.9

TABLE III: Optimal policies for different arrival rates and
power saving versus delay trade-off strategies

β

λ = 700 [pack-
ets/s]
(Traffic load ρ =
0.051)

λ = 1500 [pack-
ets/s]
(Traffic load ρ =
0.11)

λ = 3000 [packets/s]
(Traffic load ρ =
0.21)

0.3

n∗ ≡
(0.5, 10, 0, 0) [ms]

Decision upon
arrival:
stick to sleep profile
for all CQIk

n∗ ≡
(0.2, 0, 3, 0) [ms]

Decision upon
arrival:
stick to sleep profile
for all CQIk

n∗ ≡
(0.1, 0, 0, 49.7) [ms]

Decision upon arrival:
stick to sleep profile
for CQI0 to CQI5
immediate wake-up
for CQI6 to CQI15

0.6

n∗ ≡
(0.5, 0, 5, 0) [ms]

Decision upon
arrival:
stick to sleep profile
for all CQIk

n∗ ≡
(0.2, 0, 2, 0) [ms]

Decision upon
arrival:
stick to sleep profile
for all CQIk

n∗ ≡
(0.1, 0, 0, 7.1) [ms]

Decision upon arrival
stick to sleep profile
for CQI0 to CQI3
immediate wake-up
for CQI4 to CQI15

0.9

n∗ ≡
(0.5, 0, 2, 0) [ms]

Decision upon
arrival:
stick to sleep profile
for all CQIk

n∗ ≡
(0.2, 0, 1, 0) [ms]

Decision upon
arrival:
stick to sleep profile
for all CQIk

n∗ ≡
(0.1, 0, 0, 5) [ms]

Decision upon arrival:
immediate wake-up
for all CQIk

1
n∗ ≡
(0.5, 0, 0, 0) [ms]
≡ No sleep

(0.2, 0, 0, 0) [ms]
≡ No sleep

(0.1, 0, 0, 0) [ms] ≡
No sleep

The results show that lighter and shorter sleep periods
are allowed when the experienced delay cost component is
prioritized over the energy saving at the BS (i.e. increasing
β). And this outcome holds for all levels of arrival rates. For
instance, for λ = 700 [packets/s] (i.e traffic load ρ = 0.051),
a sleep profile of 10 [ms] in the deepest sleep mode SM3 can
be achieved for β = 0.3 [packets/s], while a sleep duration of
2 [ms] in the medium sleep mode SM2 is the best possible
action a BS can take for β = 0.9. And as expected, no sleep is
the ideal action a BS can take when delay is totally prioritized
(i.e. for β = 1)).

On the other hand, for the same delay priority factor β, the
sleep depth becomes lighter with increasing arriving rates. For
instance, for β = 0.3, a sleep profile of 10 [ms] in the deepest
sleep mode SM3 can be achieved for λ = 700 [packets/s],
while the optimal sleep profile for λ = 1500 [packets/s] is
achieved for a sleep duration of 3 [ms] in sleep mode SM2

and it is a sleep period of 49.7 [ms] in the lightest sleep mode
SM1 for λ = 3000 [packets/s]. These results are due to the
fact that the larger the arrival rate the larger the accumulated
delay cost. Hence, the BS will seek to minimize the activation
waiting delays to counter-balance the previously mentioned
delay costs.

We notice furthermore that the BS chooses to defer the
service of demands arriving during the sleep mode as long
as the energy saving gained from this deferment period can
compensate the cost induced by the overall experienced de-
lays. Hence, for low and medium levels of traffic loads (i.e.
ρ = 0.051 and ρ = 0.11), the best action the sleeping BS
would take upon the first request arrival is to stick to the
sleep profile whatever the channel quality (i.e. the CQI) of
this latter. And this outcome stems from the fact that the
transmission delays in such network states are small and
hence longer waiting delay can be acceptable for the service
and consequently longer sleep duration and increased energy
saving levels can be achieved.

While for higher traffic loads (i.e. ρ = 0.21), the BS extends
its sleep up to a certain duration, when the CQI order of the
first arriving request is less than a certain limit, and it wakes-up
immediately otherwise. The limit CQI order up to which the
BS can defer its service decreases with the increasing delay
priority factor β. Namely, the BS defers its activation when
the first arriving request has a CQI order less than or equal to
CQI5 when β = 0.3 and it is immediately activated whatever
the CQI order for β = 0.9. This is due to the fact that, for
the considered network loads, the BS adheres to the lightest
sleep mode and hence the energy saving gained is marginal
when compared to the active state and thus it is better to
serve immediately the requests unless their channel quality
is relatively bad.

We explore in the following the achieved energy gains
versus delays. Specifically, we inject the obtained deterministic
optimal policy into a Monte-Carlo, event-based simulator and
obtain the energy saving versus delay performance, shown in
Figures 1 and 2, respectively, as a function of different values
of β and traffic loads.
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Fig. 1: Energy saving function of trade-off parameter

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

5

10

15

A
v
e
ra

g
e
 e

x
p

e
ri

e
n

c
e
d

 d
e
la

y
 [

m
s
] =700 [packets/s] (Load =0.051)

=1500 [packets/s] (Load =0.11)

=3000 [packets/s] (Load =0.21)

Fig. 2: Average delay function of trade-off parameter

We observe that with the implemented sleep strategy, energy
saving up to 60% can be achieved in under-loaded networks
(i.e. λ = 700 [packets/s]) at the expense of longer delay values.
But even when the delay performance is prioritized over the
energy saving with values of β approaching to 1, energy saving
is relatively high with 40% for β = 0.9 for example. In
relatively more loaded network, with λ = 1500 [packets/s],
energy saving is still significant, with a maximum of 36%. For
smaller β, the average delay is larger for smaller λ because in
this case the system enters deeper sleep and takes more time
to wake up and serve new arrivals. As β becomes larger, both
delays become smaller. This difference in delay performance
across different values of λ does not always follow this trend:
for λ = 3000 for instance, even though the system does not
have the opportunity to go deep into sleep, the queuing delay
in the buffer becomes more significant and results in a larger
delay performance for larger λ.

V. CONCLUSION AND FUTURE WORK

We focused in this paper on the issue of putting BSs into
sleep when they have no traffic to serve so as to save on
the fixed component of the energy consumption, using 5G
ASM feature. We considered the realistic case of several BSs
which interfere with each other and proposed a multi-agent re-
inforcement learning approach, with a non-cooperative flavor,
wherein each BS derives its own optimal sleep policy in order
to achieve a target energy saving versus delay performance.

The novelty of our work is that upon the detection of a user
activity (i.e. arrival of the first transmission request) while the
BS is in sleep, it can choose between waking up immediately
and serving the user or to continue to sleep, depending on
the desired energy saving versus delay performance trade-off,
which includes the impact of the radio conditions of the user
which may be poor and would result in this case in a long
service duration; we would hence save more energy and also
delay by serving it later. Our results show that the optimal
sleep policy depends on the traffic arrival intensity, the timer
index which decides when to put the BS into sleep in an off
period, and the importance given to the power saving versus
delay performance. Our next work is on the cooperative case
wherein BSs can exchange information and target an overall
objective of power saving versus delay performance to be
obtained at the global, as opposed to individual, level.
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