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Abstract

This paper explores the potential for generating a net magnetic force in
circuits with open sections, where the asymmetry of interacting forces can
produce a resultant force. It is shown that the forces between two wires
can be decomposed into reciprocal and directional components. Recipro-
cal forces generally produce no net force, and directional forces vanish in
closed circuits, while they may not vanish in discontinuous circuits. It is
also shown that if the open sections are replaced with capacitors, there is a
possible non-reciprocal interaction between the capacitors and the wires.
The central concept behind this work stems from a nuanced idea that may
have been overlooked or remained unnoticed. The proposed idea’s sim-
plicity could lead to the development of propellantless propulsion systems
for space applications, such as the repositioning of satellites.

This work originates from a thought experiment. Before diving into it, let’s
consider the famous example of two point charges moving perpendicular to each
other, both approaching a common origin with a distance from it [1, 2]. Due
to the Lorentz force and Biot-Savart law, these point charges will experience
equal forces perpendicular to their moving path in distinct directions, seemingly
violating Newton’s third law.

Now, imagine two wire loops carrying currents. If we neglect the retardation
effect[3], Newton’s third law mandates that they must exert equal and opposite
forces on each other. Can we design the loops’ geometry and orientation to
create a scenario similar to the point charge experiment, where interaction forces
act in different directions without canceling each other?

A strict physicist might immediately assert that this is impossible. Indeed,
the mathematics presented in the Methods section proves that any two closed
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loops exert equal and opposite forces, resulting in overall cancellation. However,
a question immediately arises: if two closed loops must produce equal and
opposite forces, does removing part of a loop break this symmetry? As we will
subsequently see, discontinuous circuits can indeed exhibit this force symmetry
breaking.

In the study by Mohammadpour [3], it is argued that Newton’s Third Law
is only locally applicable at the point of interaction between fields and charges,
where an instantaneous exchange of momentum occurs. It is deemed inap-
propriate to extend Newton’s Third Law to interactions at a distance where
retardation effects may occur and the state of the charges may change. Sebens
[4] discusses since fields exert forces on charges and, conversely, charges exert
forces on fields, Newton’s Third Law is preserved. Without contradicting New-
ton’s Third Law and using the Lorentz force as defined in equations (6) and
(7), we can demonstrate that forces acting on two open wires might not always
exhibit symmetry(Please refer to section Methods).

The accuracy of calculated forces using the Lorentz force is difficult to dis-
pute. This is because the Lorentz force is deducible from Faraday’s law of induc-
tion and Maxwell’s equations using the Leibniz integral rule. Since Maxwell’s
equations offer an accurate description of fields for most classical electromag-
netic applications, it’s reasonable to consider the Lorentz force equally accurate
when representing forces within the mentioned domain of application.

Methods

In the electrodynamic causality context, the magnetic field’s exact solution
around the wire from the Maxwell equation is presented in [5]. However, when
neglecting the retardation effect and assuming a low rate of change in current,
this description simplifies to the more familiar Biot-Savart law [1]

B =
µ0I

4π

∮ (
dls × r

r3

)
(1)

where µ0 represents the permeability of vacuum and I denotes the current.
Furthermore, dls represents an infinitesimal length element of the source, r is
the distance from that source element, and r is the displacement vector. The
force exerted by wire A on wire B can be determined using the Lorentz force
law

FB
A = IB

∮
B

dlB ×BA (2)

by converting the triple cross products to dot products, it follows

FB
A =

µ0IAIB
4π

[∮ ∮
dlA

(
dlB · r̂BA

)
r2

−
∮ ∮

r̂BA

(
dlB · dlA

)
r2

]
(3)

where r̂BA = rBA/r represents the unit vector pointing from the infinitesimal
element dlA toward dlB , and r is the distance between these elements. The
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second term on the right-hand side of Equation (3) implies equal and opposite
forces on wires A and B. By expanding the differentials in spherical coordinates,
it follows

dlB · r̂ = dr · r̂ = dr (4)

Using the identity (4), the force term (3) can be written as

FB
A =

µ0IAIB
4π

[∮
A

dlA
∮
B

dr

r2
−
∮ ∮

r̂BA

(
dlB · dlA

)
r2

]
(5)

The closed integral
∮

dr
r2 equals zero for a closed wire. This is because the

integration is performed over a closed loop on a differential. Conclusively, two
closed loops exert equal and opposite forces on each other. The second integral
in Equation (5) can be named the ”reciprocal force,” possessing symmetry and
is directionally dependent on both wires. In contrast, the first term in Equation
(5) can be termed the ”directional force,” as its direction depends only on one
of the wires and exhibits asymmetry. As previously stated, the directional force
vanishes for a closed loop.

Now, consider two open-circuit wires. Each wire has a specific disconnection
point, with a sufficiently small gap to act as a capacitor. Therefore, this config-
uration allows current to flow, dependent on the applied voltage and the charge
accumulated at the disconnection points. Importantly, no discharge occurs be-
tween these disconnected points. Let’s denote the disconnection points for wire
A as OA and O′

A and for wire B as OB and O′
B (moving in the direction of the

current). The interaction forces on wires A and B can be expressed as follows

FB
A =

µ0IAIB
4π

[∫
A

(
1

rO′
B

− 1

rOB

)
dlA −

∫ ∫
r̂BA

(
dlB · dlA

)
r2

]
(6)

and

FA
B =

µ0IAIB
4π

[∫
B

(
1

rO′
A

− 1

rOA

)
dlB −

∫ ∫
r̂AB

(
dlB · dlA

)
r2

]
(7)

Here, rO denotes the distance between point O and the infinitesimal element on
the other wire. The reciprocal forces cancel each other. The net force between
the two wires resulting from directional forces is then expressed as

FB
A + FA

B =
µ0IAIB

4π

[∫
A

(
1

rO′
B

− 1

rOB

)
dlA +

∫
B

(
1

rO′
A

− 1

rOA

)
dlB

]
(8)

It can be demonstrated that in many configurations, the net magnetic force
between the open wires is nonzero. A clear illustration of this occurs when wire
A and wire B lie in perpendicular planes, and the differential elements dlA and
dlB are independent of each other.
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A valid question to consider is: if we treat the open sections as a capacitor,
what effect does the electric field have on the net force? It is trivial to assume
that the force on the accumulated charge at both ends of the open sections
cancels out. There is a corresponding charge at the other end for every charge
on one side of the capacitor. Another aspect to consider is the capacitor’s re-
arrangement and movement of charges. This movement generates a magnetic
field, and the magnetic field of other wires exerts force on the capacitor. Equa-
tion (8) does not account for this effect. If the capacitance is due to a small
gap between two wires with a strong dielectric material in between, the electric
charge predominantly accumulates close to the outer surface, as shown in Figure
1(a). In such cases, the length of the capacitor zone, denoted as lc, can be very
small. During the charging or discharging processes, the charges rearrange both
radially and along the axis of lc. For thin wires and a small lc relative to the
gap distance d, the contribution of the magnetic force due to this rearrangement
might be negligible, and Equation (8) can be applicable. However, in general,
the magnetic force resulting from charge rearrangement in a capacitor should
not be overlooked.

(a) (b)

Figure 1: (a) The capacitor formation by a distance gap of d in a segmented
wire, with charge accumulating on both sides of the wire. (b) Depiction of the
electric field between two plates of the capacitor and the radial current density
distribution in a circular capacitor. The interaction between a differential ele-
ment dlA and a point on the capacitor is depicted through the magnetic field
BA and the current density Jr.

For simplicity, this work examines the force exerted by a closed wire on a
circular capacitor and vice versa. We will demonstrate the breaking of the reci-
procity of forces, which can lead to a resultant force. We assume that the charge
is symmetrically distributed on the circular plate. The capacitor is sufficiently
charged such that the electrostatic forces predominantly determine the charge
distribution, while the influence of nearby current-carrying wires on this distri-
bution is considered negligible. Consider that the outer radius of the capacitor
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is R, and the inner radius a is equal to that of the thin wire. The density of
the charge per unit thickness of the capacitor, neglecting fringing effects, can
be described as follows:

ρ = Q(t)/(π(R2 − a2)) (9)

The Q is the charge on the plate, and the rate of change of charge on the plate
is equal to the current entering the capacitor. The balance of charge in the
circular plate necessitates:

∂ρ

∂t
+∇ · J = 0 and J(R) = 0 (10)

Due to radial symmetry, the divergence operator ∇ · J simplifies in polar coor-

dinates to 1
r′

∂ (r′Jr′ )
∂r′ . With reference to the charge density equation (Equation

(9)) and the continuity equation (Equation (10)), we can derive the following
relationship:

Jr′ =
1

2

IB
π(R2 − a2)

(
r′ − R2

r′

)
(11)

The force exerted by closed wire A (as shown in Figure 1(b)) on one side of
capacitor C can be derived from the Lorentz force equation as follows:

FC
A =

µ0IA
4π

∮
A

dlA
∫ 2π

0

∫ R

a

(
r̂′ · r̂

)
r2

r′Jr′dr
′dθ

− µ0IA
4π

∮
A

∫ 2π

0

∫ R

a

r̂
(
r̂′ · dlA

)
r2

r′Jr′dr
′dθ

(12)

where r = rMA + r′ and rMA represents the distance from the center of the
capacitor to wire A, and the hat symbol denotes the unit vector. The vector r′

indicates the distance from the center of the capacitor to a corresponding point
on the capacitor (as shown in Figure 1(b)). The first integral in Equation (12)
depends on the direction of the current in wire A. Meanwhile, the second term
demonstrates reciprocity, exerting opposing forces that act in the same direction
on both the capacitor and wire A.

It can easily be shown that the directional force of the capacitor on a closed
wire A is zero. Then, the sum of the force of wire A on the capacitor and the
capacitor on wire A is nonzero (reciprocity breaks) and is given by

FC
A + FA

C =
µ0IA
4π

∮
A

dlA
∫ 2π

0

∫ R

a

(
r̂′ · r̂

)
r2

r′Jr′dr
′dθ (13)

The capacitor can be considered analogous to open wires, where charge flows
radially from the center to the edges. Consequently, we can expect that the
sum of the forces will not be reciprocal, as is the case with open wires. The
net force resulting from the interactions between wire B and its positioned
capacitor can be demonstrated to be zero when the capacitors at both ends of
the disconnection point are identical and the wire set-up are symmetrical with
respect to the capacitor’s mid-plane.
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Examples and discussions

Consider a scenario where alternating current (AC) passes through a primary
circuit with two open sections. A circular capacitor with a dielectric material is
placed within these openings with no electrical discharge. The circuit voltage is
sufficient to maintain the current flow in the primary circuit. Secondary circuits
are positioned near the main circuit’s open segments to produce a net force in
the desired direction. These secondary circuits can operate in-phase or out-
of-phase with the primary circuit depending on the intended force direction.
System symmetries are designed to eliminate any potential net moment. Figure
2 provides a circuit schematic. O and O′ denote the open section. Secondary
circuits are placed near the open sections to the right and left of the primary
circuit.

Figure 2: A simplified diagram of a novel AC-powered propulsion system. Ca-
pacitors are placed at open sections between points O and O’ while secondary
circuits are positioned for upward directional force generation. Secondary cir-
cuits are identical and symmetrical with respect to the main circuit plane (i.e.,
GL = LK).

The circuit design presented in Figure 2 aims to produce a net upward force.
Segments GH and IK, as well as G′H ′ and I ′K ′, negate each other’s effects.
KG and K ′G′ contribute the most to the upward force, while HI and H ′I ′

have lesser contributions due to their distances, as outlined in equations (7)
or (6). The Alternative current in circuit GHIK is out-of-phase with that
of G′H ′I ′K ′ to prevent force cancellation. The selection of AC is sinusoidal
here. Therefore, the average force is half of the maximum force. There are
no limitations on the number of open sections or turns in either the primary
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or secondary circuits, allowing for scalable force generation. However, we’ll
consider a simple application here. A current of 1000 amps is used for both the
primary and secondary circuits. The distance between O and O′ varies, and
GL and LK lengths are chosen 15cm each. To minimize counteracting forces,
the wire HI is positioned further away, at a distance of 25 cm. The secondary
circuits are positioned opposite on each side to cancel out the moment produced
in the main circuit and maintain symmetry. The capacitor radius has been set
at 0.8 cm. This small size was chosen primarily to focus on the forces exerted
by the wires on each other. However, there is no limitation on the size of the
capacitor. Figure 3(a) illustrates the average net force for varying distances
between point L (in the secondary circuits) and the main circuit, ranging from
1cm to 20cm. Figure 3(b) illustrates the effect of distance between the gap OO′

on produced average net force.

(a) (b)

Figure 3: The average net force produced in the setup depicted in Figure 2, as
a function of (a) the distance between secondary and main circuits (with a fixed
OO′ = 1cm) (b) the OO′ distance (with a fixed initial distance of 1 cm between
the main and secondary circuits).

To understand how discontinuous circuit sections can break force symmetry,
consider the contribution of directional force (described by the first integral in
Equation (3)) exerted by a unit length at the midpoint of line KG on a unit
length along line NN ′. This force is plotted for continuous and discontinuous
(with open sections) cases. Figure 4(a) illustrates the symmetry of directional
forces in a continuous wire, leading to overall cancellation and no net force
production. In contrast, Figure 4(b) demonstrates how open sections break this
symmetry, resulting in a nonzero net force.

To effectively mitigate the capacitive reactance in the circuit, it is possible to
use a two-element LC circuit by adding an appropriate inductor and setting the
main circuit’s operating frequency to match its natural resonant frequency. The
design of the secondary circuit can also be modified to match this frequency.
The power of proposed propulsion systems can be significantly enhanced by
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incorporating multiple turns and open sections. For example, using 20 turns and
20 sets of open sections instead of one can increase the forces depicted in Figure
3 by a factor of 400. For instance, by selecting a distance of 1 cm for the open
section gap and the distance between the secondary and the primary circuits,
we could potentially generate a force of approximately five kilograms. This force
is sufficient to accelerate a probe with the mass of Voyager 1 (approximately
722 Kg) [6] such that it reaches the same distance travelled by Voyager 1 (up
to January 2024) in less than a year. This cannot be achieved with traditional
propellant-based propulsion systems, as they require a vast amount of mass for
constant acceleration.

Incorporating superconductors into this propulsion system could provide sig-
nificant advantages and expand its potential applications to include terrestrial
and aviation transportation. Unlike traditional electric motors, which lose en-
ergy through friction within their mechanical parts, this proposal eliminates
such losses due to its lack of moving components. This characteristic paves the
way for a highly efficient propulsion system.

(a) (b)

Figure 4: Directional force exerted by a unit length at the midpoint of line KG
on a unit length along line NN ′ for two cases: (a) no open sections, and (b) a
2cm gap for the open section. The current in both main and secondary circuits
is 1000 amps.

Conclusions

This research explored the breaking of symmetry in interaction forces of dis-
continuous circuits. It is demonstrated that in closed circuits, force interactions
adhere to classical physics’ expectations of reciprocity. Contrarily, this symme-
try breaks in discontinuous circuits and can lead to a net resultant magnetic
force. This claim aligns fully with the Lorentz force and interacting fields.
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