
HAL Id: hal-04492144
https://hal.science/hal-04492144v9

Preprint submitted on 7 Nov 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Net Magnetic Force Generation in Discontinuous
Circuits: A Force Symmetry-Breaking Phenomenon

A Mohammadpour

To cite this version:
A Mohammadpour. Net Magnetic Force Generation in Discontinuous Circuits: A Force Symmetry-
Breaking Phenomenon. 2024. �hal-04492144v9�

https://hal.science/hal-04492144v9
https://hal.archives-ouvertes.fr


Net Magnetic Force Generation in Discontinuous

Circuits: A Force Symmetry-Breaking

Phenomenon

A.Mohammadpour∗

Imperial College of London, London, SW7 2AZ, United Kingdom

February-March 2024

Abstract

This paper explores the potential for generating a net magnetic force in
circuits with open sections, where the asymmetry of interacting forces can
produce a resultant force. A general proof is given, and it is shown that
the Lorentz magnetic force between two wires can be decomposed into
reciprocal and directional components. Reciprocal components generally
produce no net force, while directional forces vanish in closed circuits but
may remain nonzero in discontinuous circuits. Additionally, it is demon-
strated that asymmetries in the field and self-induced stress tensors can
behave similarly to external forces, causing a change in total momentum.
Both radiative and non-radiative forces are obtained, and it is shown that
when radiation is negligible, non-radiative force prevails. The central con-
cept behind this work stems from a nuanced idea that may have been over-
looked or remained unnoticed. The proposed idea’s simplicity could lead
to the development of affordable propellant-less(non-chemical)1 propul-
sion systems for space applications, such as the repositioning of satellites.

1 Introduction

This paper explores an intriguing thought experiment. Before delving into the
specifics, let’s consider the famous example of two point charges moving perpen-
dicular to each other, both approaching a common origin at a distance far from
it [1, 2]. Due to the Lorentz force and Biot-Savart law, these point charges will
experience equal magnetic forces perpendicular to their moving path in distinct
directions, seemingly violating Newton’s third law. Regarding this violation,
Feynman, in his lecture notes, volume II, chapter 27 [2], states that the field

∗Corresponding author. Email: A.mohammadpourshoorbakhlou@imperial.ac.uk
1No mass is expelled thus propellantless in the traditional sense.
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momentum balances the change of the particle momenta. He has suggested
that as long as the overall balance of momentum is maintained, the violation of
the third law should be less concerning, and he leaves the reader to decide the
generality of Newton’s third law.

Now, imagine two wire loops carrying currents. If we neglect the retardation
effect[3], Newton’s third law mandates that they must exert equal and opposite
forces on each other. Can we design the loops’ geometry and orientation to
create a scenario similar to the point charge experiment, where interaction forces
act in different directions without canceling each other?

A strict physicist might immediately assert that this is impossible. Indeed,
the mathematics presented in the Methods section proves that any two closed
loops exert equal and opposite forces, resulting in overall cancellation. However,
a question immediately arises: if two closed loops must produce equal and
opposite forces, does removing part of a loop break this symmetry? As we will
subsequently see, discontinuous circuits2 can indeed exhibit this force symmetry
breaking.

In the study by Mohammadpour [3], it is argued that Newton’s Third Law
is only locally applicable at the point of interaction between fields and charges,
where an instantaneous exchange of momentum occurs. It is deemed inap-
propriate to extend Newton’s Third Law to interactions at a distance where
retardation effects may occur and the state of the charges may change. Sebens
[5] discusses since fields exert forces on charges and, conversely, charges exert
forces on fields, Newton’s Third Law is preserved. Considering the locality of
Newton’s Third Law and using the Lorentz force as defined in equations (6) and
(7), we can demonstrate that forces acting on two open wires might not always
exhibit symmetry(Please refer to section Methods).

The accuracy of calculated forces using the Lorentz force is difficult to dis-
pute. This is because the Lorentz force is deducible from Faraday’s law of
induction and Maxwell’s equations using the Leibniz integral rule (A detailed
proof is in [6, 7, 8]). Since Maxwell’s equations offer an accurate description
of fields for most classical electromagnetic applications, it’s reasonable to con-
sider the Lorentz force equally accurate when representing forces within the
mentioned domain of application.

Numerous concepts have been proposed that utilize electromagnetic princi-
ples for space travel. However, few of them have solid experimental or theo-
retical evidence. One of these exciting proposals exploit retardation and phase
difference concepts for net force generation [9, 10]. The feasibility and criticisms
of such propulsion systems are discussed in [11, 12]3. Despite their potential,

2The circuit is called discontinuous in the sense that conductors are omitted, but the
electromagnetic fields are continuous. The displacement current ensures the continuity of the
current and fields as the first time suggested by J.C. Maxwell [4].

3These critiques are not themselves devoid of criticism. For instance, [11] assumes that
the force calculated on the wires is similar to that on “point” dipoles and that the produced
force results from the radiation momentum. Consequently, it is concluded that the energy
expenditure to momentum gain ratio is light speed C. This assumption is only valid if we
disregard the non-radiative part of the fields and exclude the non-zero effect of Maxwell’s
stress tensors in the momentum equation.
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thrust generation through retardation typically demands high frequencies or
rapid current/charge changes. This often results in substantial inductive re-
actance in the circuits, posing a significant engineering challenge due to the
necessity of high voltages4. Furthermore, radiative power losses increase no-
tably with frequency, negatively impacting the thrust-to-power ratio. Despite
these challenges, retardation-based force generation has been suggested to be
used for testing the anisotropy of the one-way speed of light [3]5.

The EM drive has also undergone various experiments [13, 14]. However,
regardless of the feasibility of such a thruster, the theoretical background has
not yet been established to aid in accurate design.

Other types of electromagnetic engines like Plasma and Hall thrusters utilize
ionized gas propellant [15, 16, 17, 18]. These are gaining traction for deep space
missions due to their efficiency in comparison to chemical rocket engines [19].
However, their propellant requirement limits their range for extended journeys.
Additionally, at the current stage of development, the forces produced are tiny,
which limits their broader application.

Recently, a propellant-less propulsion concept based on asymmetrical elec-
trostatic pressure has been introduced [20]6. It is claimed that the magnitude
of thrust is geometry-dependent in the proposed propulsion system, potentially
limiting its design and flexibility.

The concepts presented in this paper rely on symmetry breaking. Unlike
[20], symmetry breaking of magnetic forces is utilized here. Magnetic fields can
store more energy per unit volume than electric fields, making them attractive
for converting electrical energy to mechanical energy, as seen in electric mo-
tors. Unlike electric fields prone to material breakdown, magnetic fields can
be intensified without similar risks, especially within solid materials like metal
cores. Furthermore, the force generated in this work can be enhanced through
both geometric optimization and current increase, achievable via techniques like
winding wires, increasing open sections, and utilizing superconductors.

In this paper, in Section 2, the theoretical aspects are discussed, illustrat-
ing the non-reciprocity of forces in discontinuous circuits. It is also shown that
asymmetries in stress tensors can lead to changes in total linear momentum.
In Section 3, a simple circuit setup is exemplified, demonstrating that signifi-
cant forces can be generated, highlighting the potential for practical aerospace
applications.

4Although we can reduce inductive reactance using an LC setup, technically, it remains
challenging to maintain high current and high frequency.

5Note that the constancy and isotropy of the two-way speed of light may not inherently
imply the same for the one-way speed of light.

6The theoretical aspects of this proposal are not explained fully; however, the patent
report experimental observations claiming net force generation.
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2 Methods

2.1 General proof of non-reciprocal forces in discontinu-
ous circuits

In the electrodynamic causality context, the magnetic field’s exact solution
around the wire from the Maxwell equation is presented in [21]. However, when
neglecting the retardation effect and radiation terms by assuming a low rate of
change in current, this description simplifies to the more familiar Biot-Savart
law 7 [1]

B =
µ0I

4π

∮ (
dls × r

r3

)
(1)

where µ0 represents the permeability of vacuum and I denotes the current.
Furthermore, dls represents an infinitesimal length element of the source, r
is the distance from that source element, and r is the distance vector. The
current I can be direct or alternating. However, the validity of the magnetic
field presented in Equation (1) is limited to low frequencies and currents with
sufficiently small changes(error analysis regarding the neglect of retardation and
the assumption of the Biot-Savart law is provided in the Appendix A.). The
force exerted by wire A on wire B can be determined using the Lorentz force
law

FB
A = IB

∮
B

dlB ×BA (2)

The convention used here, FB
A , represents the force exerted by object A on

object B. By converting the triple cross products to dot products, it follows

FB
A =

µ0IAIB
4π

[∮ ∮
dlA

(
dlB · r̂BA

)
r2

−
∮ ∮

r̂BA

(
dlB · dlA

)
r2

]
(3)

where r̂BA = (rB − rA) /r represents the unit vector pointing from the infinites-
imal element dlA toward dlB , and r = |rB − rA| is the distance between these
elements. The second term on the right-hand side of Equation (3) shows sym-
metry, and its contribution implies equal and opposite interaction on wires A
and B.

We can write dr = drB −drA. If we integrate first over B and then A, in the
inner integral, we only move along wire B while the point on A is fixed. Hence
we can write dlB = dr. In the inner integral, by expanding the differentials in
spherical coordinates it follows

dlB · r̂ = dr · r̂ = dr (4)

Using the identity (4), the force term (3) can be written as

FB
A =

µ0IAIB
4π

[∮
A

dlA
∮
B

dr

r2
−
∮ ∮

r̂BA

(
dlB · dlA

)
r2

]
(5)

7The Biot-Savart law is a good approximation of the magnetic field if 1
r2c

∂I
∂t

≪ I/r3.
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The closed integral
∮

dr
r2 equals zero for a closed wire. This is because the

integration is performed over a closed loop on a differential. Conclusively, two
closed loops exert equal and opposite forces on each other. The second integral
in Equation (5) can be named the ”reciprocal force,” possessing symmetry and
is directionally dependent on both wires interacting points. In contrast, the
first term in Equation (5) can be termed the ”directional force,” as its direction
depends only on one of the wires and exhibits asymmetry. As previously stated,
the directional force vanishes for a closed loop.

(a) (b)

Figure 1: (a) Diagram depicting two open-circuit wires, A and B, each with a
disconnection point forming capacitive gaps (labeled as OA and O′

A for wire A
and OB and O′

Bfor wire B). The rO′
B
and rOB

are the distance of any point on

wire A from the open section on wire B. The interaction forces FB
A and FA

B

may not be equal and opposite(reciprocal). (b) The capacitor formation by a
distance gap of d in a segmented wire, with charge accumulating on both sides
of the wire.

Now, consider two open-circuit wires (see Figure 1). Each wire has a specific
disconnection point, with a sufficiently small gap that acts as a capacitor. This
configuration allows current to flow based on the applied voltage and the charge
accumulated at these disconnection points. Importantly, no discharge occurs
between these disconnected points. The length of the zone where charges ac-
cumulate is close to the outer surface at disconnection points and is negligible
compared to the gap length. Let’s denote the disconnection points for wire A
as OA and O′

A, and for wire B as OB and O′
B (moving in the direction of the

current). The magnetic interaction forces on wires A and B by neglecting the
capacitor zone(where charges accumulate) can be expressed as follows:

MFB
A =

µ0IAIB
4π

[∫
A

(
1

rO′
B

− 1

rOB

)
dlA −

∫ ∫
r̂BA

(
dlB · dlA

)
r2

]
(6)

and

MFA
B =

µ0IAIB
4π

[∫
B

(
1

rO′
A

− 1

rOA

)
dlB −

∫ ∫
r̂AB

(
dlB · dlA

)
r2

]
(7)
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The superscript M shows the magnetic contribution of forces. Here, rO denotes
the distance between point O and the infinitesimal element on the other wire(see
Figure 1). The reciprocal forces cancel each other. By neglecting the force on
the capacitor zone, the magnetic net force between the two wires resulting from
directional forces is then expressed as

MFB
A + MFA

B =
µ0IAIB

4π

[∫
A

(
1

rO′
B

− 1

rOB

)
dlA +

∫
B

(
1

rO′
A

− 1

rOA

)
dlB

]
(8)

It can be demonstrated that in many configurations, the net magnetic force
between the open wires is nonzero. A clear illustration of this occurs when wire
A and wire B lie in perpendicular planes, and the differential elements dlA and
dlB are independent of each other.

Another aspect to consider is the magnetic field interactions resulting from
the rearrangement and movement of charges in capacitors. This movement
generates a magnetic field, and the magnetic field of other wires exerts force on
the capacitors. Equation (8) does not account for this effect. If the capacitance is
due to a small gap between two wires with strong dielectric material in between,
the electric charge predominantly accumulates close to the outer surface, as
shown in Figure 1(b). In such cases, the length of the capacitor zone, denoted
as lc, can be very small. During the charging or discharging processes, the
charges rearrange both radially and along the axis of lc. For thin wires and a
small lc relative to the gap distance d, the contribution of the magnetic force due
to this rearrangement might be negligible, and Equation (8) can be applicable.
However, in general, the magnetic force resulting from charge rearrangement in
a capacitor should not be overlooked.

We will now provide general proof that the resultant magnetic force between
a closed thin wire and a thin wire connected to an arbitrarily shaped capacitor
is non-zero. Let’s call the circuit with a closed wire ”Circuit A” and the circuit
with an open wire plus a capacitor ”Circuit B.” The domain of Circuit B can be
decomposed into the wire section, denoted as BWr, and the capacitor section,
denoted as BCp (please see Figure 2). As proven earlier, the directional force
on the closed wire can be shown to be zero. It is sufficient to show that the
directional force on the open wire and capacitor, regardless of the capacitor’s
shape, can be non-zero. Using the expression obtained for wires in Equation (8),
considering that the reciprocal parts cancel each other out, and applying the
Lorentz force to calculate the effect of Circuit A’s magnetic field on the current
density J in the capacitor’s electrodes, we can write

MFB
A + MFA

B =
µ0IAIB

4π

∮
A

(
1

rO′
B

− 1

rOB

)
dlA

+
µ0IA
4π

∮
A

∫
BCp

dlA
(
JB · r̂BA

)
r2

dv

(9)

By writing r̂BA

r2 = −∇ 1
r and using the identity for the divergence of a scalar-
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vector product, we obtain(
JB · r̂BA

)
r2

= −JB · ∇1

r
= −div

(
JB

r

)
+

div
(
JB
)

r
(10)

By applying the divergence theorem, we have∫
BCp

div

(
JB

r

)
dv =

∮
BCp

JB · n
r

ds (11)

where n is the normal to the surface of the domain containing the capacitor. If
we assume the current density entering the capacitor through a very thin wire at
point OB can be expressed as JB = −IBδ(r − rOB

)n and the outward current
density at point O′

B is JB = IBδ(r − rO′
B
)n, where δ is the Kronecker delta

function, for thin wires, we can write∮
BCp

JB · n
r

ds = IB

(
1

rOB

− 1

rO′
B

)
(12)

Using (9), (10), (11), and (12), we have

MFB
A + MFA

B =
µ0IA
4π

∮
A

∫
BCp

div
(
JB
)

r
dv dlA (13)

The continuity equation gives the identity div
(
JB
)
= −∂ρ

∂t . Hence, the net force
is a function of the rate of charge accumulation in the capacitor, and we finally
obtain

MFB
A + MFA

B = −µ0IA
4π

∮
A

∫
BCp

1

r

∂ρ

∂t
dv dlA (14)

For thin capacitors with similar electrodes and when charges are uniformly
distributed on both sides of the electrodes, the following relation can be given

MFB
A + MFA

B = −µ0IAIB
4πS

∮
A

∫
BCp

s

(
1

r+
− 1

r−

)
ds dlA (15)

Where S is the area of the surface of the capacitor’s electrode and r+ and r−

is the distance of wire A from positive and negative charges respectively. When
we have a closed wire and an open wire with a small gap, Equation (8) can be
recovered from Equation (15) by assuming charge accumulation is close to the
surface of discontinuity.

A valid question to consider is: if we treat the open sections as a capacitor,
what effect does the electric field have on the net force? It is trivial to assume
that the force on the accumulated charge at both ends of the open sections
cancels out 8. There is a corresponding charge at the other end for every charge
on one side of the capacitor.

8There is a possible asymmetrical interaction due to electrostatic pressure (Biefeld-Brown
Effect), as widely discussed in [22, 23]. However, this effect is extremely small and can be
neglected if symmetrical capacitors are selected. Secondly, as will be further discussed, the
magnetic forces generated can be in a different direction than the induced electric pressure
forces and are independent.
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Aside from electric fields resulting from charges, changes in current can also
cause electric fields. The induced electric field resulting from circuit A using
Jefimenko’s equations and neglecting retardation can be described by the equa-
tion

Eind = −µ0

4π

∫
1

r

[
∂I

∂t

]
dls. (16)

While induced electric field resulted from circuit A exert force on charges, the
charges on capacitors does not produce any force on the wire. Hence, for the
electric fields, it can be written

EFB
A + EFA

B = −µ0

4π

∮
A

∫
BCp

ρ

r

∂IA
∂t

dv dlA (17)

We can neglect the induced electric field when the rate of current IA is small.

(a)

Figure 2: Schematics of Circuit A, a closed-loop wire carrying current IA, and
Circuit B, an open-loop wire defined by BWr and carrying current IB , along
with a capacitor of arbitrary shape in region BCp.

Earlier, we used Biot-Savart law to describe magnetic fields of wires, which
neglects the radiative terms. Without introducing complexity to our equation,
we can now write the general form of the magnetic field around the wire by
including radiation terms (still retardation is neglected)

B =
µ0

4π

∮ (
[I]

r3
+

1

r2c

[
∂I

∂t

])
dls × r (18)

The magnetic force resulting from the magnetic radiation field (second term on
right-hand side of Equation (18)) can be shown to be

M
radF

B
A + M

radF
A
B =

µ0

4πc

∮
A

∫
BCp

ln (r)
∂IA
∂t

∂ρ

∂t
dv dlA (19)
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Where c is the speed of light, the radiative(far field) magnetic force usually
decays much slower because of the term ln(r). This shows that a closed wire with
an alternating current can have a far-field effect on the antenna’s transmitter or
circuits with capacitors. However, this effect is extremely small because of the
term c in the dominator.

Combining all magnetic fields forces (19) and (14) and electric forces (17)
results in this expression

FB
A + FA

B = −µ0

4π

∮
A

∫
BCp

1

r

∂ (ρIA)

∂t
dv dlA +

µ0

4πc

∮
A

∫
BCp

ln (r)
∂IA
∂t

∂ρ

∂t
dv dlA

(20)
An unjust and inaccurate statement about these types of electromagnetic

setups is that the force only can result from an asymmetric radiation pattern
and that radiative momentum causes the induced force, similar to what occurs
in antennas. When momentum gain relies solely on radiation(in far distances),
the momentum P to energy E expenditure in such cases is extremely small
or |P |/E = 1/c. However, we observe that when ∂IA

∂t is zero or very small and
radiative terms vanish or are small, a net force can still result from non-radiative
(near field) terms, which can contribute to momentum gain more efficiently. In
this case, the energy loss is mainly due to loss to the resistance of the conductor
than field radiation. Non-radiative fields do not propagate energy from their
source, and the energy spent on producing fields is recoverable.

2.2 Non-zero Effects of Self-induced Stress Tensors and
Linear Momentum Change

Previously, it was shown that the forces between two open wires with capacitors
are non-reciprocal and may not cancel each other out. Now, let’s examine this
phenomenon from another perspective.

There is a common idea in physics that, in the absence of external forces,
the total linear momentum of any isolated system remains constant. As stated
in [24], ”A closed system is one that can be enclosed in a surface upon which all
components of the stress-energy tensor can be neglected.” In simpler terms, for
a closed system, there should be no effective momentum flux density (stresses)
and energy flux from the boundaries into the system. The stress tensor can be
any type of external stress, including mechanical stresses, which are essentially
electromagnetic stresses at the atomic level.

This definition of a closed system leads to a general principle in special
relativity known as the center of energy theorem. This theorem states that if
the center of energy of a closed system is at rest, then its total momentum is
zero [24, 25, 26]. When there is no external contribution of stress from external
masses and bodies, we expect the stress contributions to be zero on the surface
of the closed system.

However, what is often overlooked in the derivation of these principles is the
possibility of asymmetries arising from the self-induced stresses of the system,
which can act on the boundaries. Commonly, it is expected that the sum of self-
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induced stresses on the surface of an enclosed system is zero. A typical example
is a charged sphere with a uniform charge distribution and uniform electrostatic
pressure. Despite the existence of electrostatic pressure, the symmetrical self-
induced stresses lead to no net-induced force.

For an arbitrary closed surface containing two stationary point charges, the
stress tensors (in this case, electrostatic pressure) may not be distributed ho-
mogeneously on the surface. Nevertheless, it can be shown that the sum of all
stresses on an arbitrary enclosed surface is zero, and we can expect the center
of mass of these charges not to move. However, can there be a scenario where
the sum of self-induced stress tensors on its surface is non-zero?

Examining Maxwell stress tensors to assess the momentum equilibrium state
of electromagnetic systems is a fundamental approach and is a common practice
in engineering applications [27, 28]. We aim to demonstrate that the sum of self-
induced stress tensors for any closed surface enclosing discontinuous wires with
current is non-zero, and consequently, the total linear momentum can change
(for a full description of the wires set-up, see Figure 2).

The Maxwell magnetic stress tensor can be defined through

σB =
1

µ
B⊗B− 1

2µ
B2I (21)

Where I is the second-order identity tensor. Similarly, we can define the electric
stress tensor as

σE = ϵ0E⊗E− ϵ0
2
E2I (22)

Where ϵ0 is the vacuum permittivity. The equation for the conservation of
momentum in the Eulerian perspective, including both electromagnetic and
mechanical momentum, according to [1]9, can be written as∮

S

σ.da =
d (Pm +Pem)

dt
=

dPtot

dt
(23)

where Pm is mechanical and Pem is electromagnetic momentum defined through

Pem =
1

µ0c2

∫
v

E×B (24)

Here, c is the speed of light in a vacuum. Assume the integral is done over any
arbitrary surface S enclosing the two circuits A (closed) and B with capacitor
(see Figure 2). It is assumed the fringing effect of electric fields at the discon-
tinuity is negligible, and the electric field from charge accumulations is only
present between the gaps and is zero on the surface S. It is also assumed the
stress tensors resulting from induced electric fields are negligible since the rate of
current change in a closed loop is small. Thus, it is assumed that magnetostatic
stresses predominantly influence the surface S10. The low rate of current change

9See 8.28 and 8.30 in [1].
10This assumption is invalid if we move far from the wires where the magnetostatic terms

decay faster than radiative terms. At far distances, stresses approach zero, and the surface
area approaches infinity, resulting in an indeterminate form. We cannot simply assume, at
infinity, stress tensors vanish.
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also allows us to neglect the radiative terms of magnetic field in stress tensor.
We will further observe, by neglecting radiative terms, the effect of self-induced
stress tensor is not dependent on the chosen surfce S.
Using the divergence theorem for second-order tensors, we have∮

S

σ.da =

∫
v

∇.σdv (25)

where the magnetic field resulted from two wires on any point with position r
using superposition can be written as

B =
µ0

4π

∫
v

[
Js ×

(
r− rAs

)
|r− rAs |3

+
Js ×

(
r− rBs

)
|r− rBs |3

]
dv (26)

By neglecting the retardation effects, Equation (26) can be rewritten in the form

B =
µ0

4π
∇×

∫
v

[
Js

|r− rAs |
+

Js

|r− rBs |
dv

]
(27)

and from Equations (25) and (26) and using the gradient of dot product identity,
it can be written

∇.σB =
1

µ0

[
(B.∇)B− 1

2
∇B2

]
= − 1

µ0
[B× (∇×B)] (28)

using curl of curl identity which is ∇× (∇×A) = ∇ (∇ ·A) −∇2A and con-
sidering that we have ∇21/|r− rs| = −4πδ(r− rs), we can write

∇×B = µ0

∫
v

[
δ(r− rBs )J

s + δ(r− rBs )J
s
]
dv

− µ0

4π

∫
v

[
Js · ∇

(
r− rAs

)
|r− rAs |3

+ Js · ∇
(
r− rBs

)
|r− rBs |3

]
dv

(29)

The second term in the bracket in the integral (29) vanishes. For each com-
ponent of the term in the bracket 11, it can be written (for instance, in the x
direction)∫

Js ·∇ (x− xs)

|r− rs|3
dv =

∫
∇·
(
(x− xs)

|r− rs|3
Js

)
dv = −

∫
∇s ·

(
(x− xs)

|r− rs|3
Js

)
dv = 0

(30)
By using the divergent theorem and considering that no current is entering the
boundary of the integral domain, the last term in Equation (30) equates to zero.

By using the divergence theorem and considering that no current is entering
the boundary of the integral domain, the last term in Equation (30) equates to
zero. Using Equations (28), (29) and (30) we an write:∫

∇.σdv = − 1

µ0

∫
B× (∇×B) dv =

∫ (
Js
(
rAs
)
+ Js

(
rBs
))

×B dv (31)

11Js is function of the position of source rs and the derivatives of Js vanishes with respect
to ∇ which is independent of coordinates of the source(xs, ys, zs) and consequently here we
can write Js · ∇ψ = ∇ · (ψJs) if ψ is a scalar.
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Where Js (rs) indicates that the charge density is only nonzero at its source.
Here, we can assume Jsdv = Idls for wires and the same magnetic field cannot
interact with its own source(cause) 12, The right-hand side of Equation (31)
basically give the Lorentz magnetic interaction force which earlier we proved
that is non-zero, and finally we have∮

S

σ.da =

∫
∇.σdv = MFB

A + MFA
B (32)

Finally from Equations (23) and (32) we can write:

MFB
A + MFA

B =
dPtot

dt
(33)

Equation (32) clearly illustrates that the effect of self-induced stress tensors
may not generally be zero on an arbitrary surface around an electrical object
and can lead to a change in total momentum. On the contrary, when there is no
discontinuity, we expect no change in total momentum, and we may expect the
center of mass/energy to exhibit steady motion. In [29], it is suggested that in
order to justify the ”missing symmetry” in Newton’s third law, a force from the
vacuum should be considered. Here, we observe that this force is not from the
vacuum but from the interaction and asymmetries of the fields themselves on
the boundaries. Given that the resultant stress tensors of a system on its own
boundary are not always zero, we may need to assume that matter and fields
do not form a closed system in our case and many other possible scenarios.

In our application, Pem has a very subtle contribution to a change of mo-
mentum, and its effect is in order of ∼ 1/c2 as Equation (24) suggests. Hence,
it can be written

FB
A + FA

B ≈ dPm

dt
(34)

2.3 Example of circular capacitor and non-reciprocal mag-
netic force interaction

For simplicity, in the case of large capacitors, this work examines the force
exerted by a closed wire on a circular capacitor and vice versa. We will demon-
strate the breaking of the reciprocity of forces, which can lead to a resultant
force. This force can be derived from the distribution of input and output cur-
rent densities on the capacitor’s boundary and the charge density distribution
within the capacitor, as outlined in Section 2.1, or directly from the current
density distribution within the capacitor. Both approaches are equivalent. We
assume that the charge is symmetrically distributed on the circular plate. The
capacitor is sufficiently charged such that the electrostatic forces predominantly
determine the charge distribution, while the influence of nearby current-carrying
wires on this distribution is considered negligible. Consider that the outer ra-
dius of the capacitor is R, and the inner radius a is equal to that of the thin

12Fields propagate from its cause and displace, making it impossible to interact with its
own cause at the same time
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wire(a can approach zero for an ideal thin wire). By neglecting fringing effects,
the density of the charge per unit thickness of the capacitor can be described
as follows

ρ = Q(t)/(π(R2 − a2)) (35)

The Q is the charge on the plate, and the rate of change of charge on the plate
is equal to the current entering the capacitor. The balance of charge in the
circular plate necessitates

∂ρ

∂t
+∇ · J = 0 and J(R) = 0 (36)

Due to radial symmetry, the divergence operator ∇ · J simplifies in polar

coordinates to 1
r′

∂ (r′Jr′ )
∂r′ . Where r′ is the distance from the center of the ca-

pacitor’s electrode. With reference to the charge density equation (Equation
(35)) and the continuity equation (Equation (36)), we can derive the following
relationship 13:

Jr′ =
1

2

IB
π(R2 − a2)

(
R2

r′
− r′

)
(37)

Where IB is the current entering and exiting the capacitor, as shown in Figure
3, the current density distribution allows us to define the magnetic field around
the capacitor. There is a misconception that displacement current is primarily
responsible for the magnetic field around a capacitor. However, as correctly
mentioned in [30], the conduction current is the primary source of the magnetic
field within a capacitor. Maxwell’s displacement current does not cause the
magnetic field but complements the relationship between current and magnetic
field in Ampère’s Law. In other words, Maxwell’s displacement current is essen-
tial for the propagation of electromagnetic waves and the continuity of the fields,
but it is not the causal factor. Consequently, the magnetic field of the capacitor
electrode is obtained from its distributed current density. The proof that the
magnetic field, derived from the charge and current density equations using the
Biot-Savart law, satisfies the Ampère-Maxwell law is provided in Appendix B.

In our application, the capacitor has two key roles. First, it ensures the
continuity of the electric field throughout the entire circuit. Second, it breaks
the symmetry of the force interaction.

To calculate the magnetic field caused by the current density inside the
circular capacitor, we can employ the Biot-Savart Law as follows 14

BC =
µ0

4π

∫ 2π

0

∫ R

a

(r̂′ × r̂)

r3
r′Jr′dr

′dθ (38)

Here, r = rMA + r′ and rMA represents the distance from the center of the
capacitor to wire A, and the hat symbol denotes the unit vector. The vector r′

13The fact that the current density in equation (37) is approximated here does not invalidate
the forthcoming general proof demonstrating the non-reciprocal interaction between the wire
and the capacitor.

14In case we do not have symmetry, we can add the current density Jθ′ in angular direction
θ̂′.
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indicates the distance from the center of the capacitor to a corresponding point
on the capacitor (as shown in Figure 3). The force exerted by closed wire A (as
shown in Figure 3) on one side of capacitor C can be derived from the Lorentz
force equation as follows

MFC
A =

µ0IA
4π

∮
A

dlA
∫ 2π

0

∫ R

a

(
r̂′ · r̂

)
r2

r′Jr′dr
′dθ

− µ0IA
4π

∮
A

∫ 2π

0

∫ R

a

r̂
(
r̂′ · dlA

)
r2

r′Jr′dr
′dθ

(39)

The first integral in Equation (39) depends on the direction of the current
in wire A. Meanwhile, the second term demonstrates reciprocity; its direction
is independent of the currents’ direction and aligns with the line connecting
interaction points.

It can easily be shown that the directional force of the capacitor on a closed
wire A is zero. Then, the sum of the force of wire A on the capacitor electrode
and the capacitor electrode on wire A is nonzero (reciprocity breaks) and is
given by 15

MFC
A + MFA

C =
µ0IA
4π

∮
A

dlA
∫ 2π

0

∫ R

a

(r̂′ · r̂)
r2

r′Jr′dr
′dθ (40)

The capacitor can be considered analogous to open wires, where charge flows
radially from the center to the edges. Consequently, we can expect that the sum
of the forces will not be reciprocal, as is the case with open wires.

When symmetries are considered, a wire with its own capacitor may not
produce force on itself. For instance, the net force resulting from the interactions
between wire B and its attached capacitor can be demonstrated to be zero when
the capacitors at both ends of the disconnection point are identical and the wire
setup is symmetrical concerning the capacitor’s mid-plane.

In summary, we have shown that the force between an open and a closed
wire and between a capacitor and a closed wire is non-reciprocal. The electric
field interactions resulting from charge accumulations are assumed to be recip-
rocal, and the magnetic self-force is assumed to be zero when symmetries are
considered.

15If the conducted current in the capacitor lacks symmetry, an angular direction term can
be added to the inner integral for generality.
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(a)

Figure 3: Depiction of the electric field between two plates of the capacitor and
the radial current density distribution in a circular capacitor. The interaction
between a differential element dlA and a point on the capacitor is depicted
through the magnetic field BA and the current density Jr′ .

3 Examples and Discussions

Consider a scenario where alternating current (AC) passes through a primary
circuit with two open sections. A circular capacitor with a dielectric material is
placed within these openings with no electrical discharge. The circuit voltage is
sufficient to maintain the current flow in the primary circuit. Secondary circuits
are positioned near the main circuit’s open segments to produce a net force in
the desired direction. These secondary circuits can operate in-phase or out-
of-phase with the primary circuit depending on the intended force direction.
System symmetries are designed to eliminate any potential net moment. Figure
4 provides a circuit schematic. O and O′ denote the open section. Secondary
circuits are placed near the open sections to the right and left of the primary
circuit.

15



Figure 4: A simplified diagram of a novel AC-powered propulsion system. Ca-
pacitors are placed at open sections between points O and O’ while secondary
circuits are positioned for upward directional force generation. Secondary cir-
cuits are identical and symmetrical with respect to the main circuit plane (i.e.,
GL = LK).

The circuit design presented in Figure 4 aims to produce a net upward force.
Segments GH and IK, as well as G′H ′ and I ′K ′, negate each other’s effects.
KG and K ′G′ contribute the most to the upward force, while HI and H ′I ′ have
lesser contributions due to their distances, as outlined in equations (7) or (6).
The alternative current in circuit GHIK is out-of-phase with that of G′H ′I ′K ′

to prevent force cancellation. A sinusoidal AC profile has been selected for this
purpose. There are no limitations on the number of open sections or turns in
either the primary or secondary circuits, allowing for scalable force generation.
However, we’ll consider a simple application here. An alternating current of
|IA| = |IB | = 1000 amps is used for both the primary and secondary circuits.
The distance between O and O′ varies, and GL and LK lengths are chosen
15cm each. To minimize counteracting forces from opposing current, the wire
HI is positioned further away, at a distance of 25 cm. The secondary circuits are
positioned opposite on each side to cancel out the moment produced in the main
circuit and maintain symmetry. The capacitor radius has been set at 0.8 cm.
This small size was chosen primarily to focus on the forces exerted by the wires
on each other. However, there is no limitation on the size of the capacitor. The
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net force is computed numerically from the Equations (8) and (40) 16. Figure
5(a) illustrates the average net force for varying distances between point L (in
the secondary circuits) and the main circuit. Figure 5(b) illustrates the effect
of distance between the gap OO′ on produced average net force. Increasing
the gap distance introduces more asymmetries, thereby increasing the resultant
force. However, there are inherent limitations to increasing this distance due to
specific system characteristics, such as the required voltage and the capacitance
of the capacitors.

The alternating current in the circuit with the capacitor is assumed to have
a sinusoidal profile, while a square-wave profile is used for the closed wire,
alternating its sign at half the period of the sinusoidal wave. Consequently, the
force generated in the system is proportional to | sin(ωt)|, where ω denotes the
frequency of the alternating current. The average force for the sinusoidal profile
is frequency-independent and reaches 2

π of the maximum force.

(a) (b)

Figure 5: The average net force produced in the setup depicted in Figure 4, as
a function of (a) the distance between secondary and main circuits (with a fixed
OO′ = 1cm) (b) the OO′ distance (with a fixed initial distance of 1 cm between
the main and secondary circuits). Larger distances induce more asymmetries,
leading to larger forces. However, there is always a limit to increasing the
distance between the electrodes of capacitors due to the need for high voltages.

To understand how open sections can break force symmetry, consider the
contribution of directional force (described by the first integral in Equation (3))
exerted by a unit length at the midpoint of line KG on a unit length along

16In practice, mutual coupling inherently exists between wire systems, potentially affecting
the uniformity of current distribution. However, our calculation assumes weak coupling due to
specific factors: secondary wire currents are perpendicular to the primary current, minimizing
their impact on the produced electromotive force (EMF). Additionally, the two secondary
wires are out of phase, canceling each other’s influence. Based on these assumptions, the
current distribution is imposed uniformly within the circuit rather than derived from solving
a coupled system. While this simplifies the model, it does not undermine the fact that net
force generation is possible, as outlined in the previous section.
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line NN ′. This force is plotted for continuous and discontinuous (with open
sections) cases. Figure 6(a) illustrates the symmetry of directional forces in a
continuous wire, leading to overall cancellation and no net force production.
In contrast, Figure 6(b) demonstrates how open sections break this symmetry,
resulting in a nonzero net force. In practice, when there are no open sections,
fixing secondary circuits and allowing the primary circuit to rotate creates an
electric motor that produces net torque on the primary circuit. This force is
produced by coupled forces that cancel each other out. By omitting the part
of the wire that carries force and by introducing a gap, the force symmetries
break, consequently resulting in a non-zero directional force (small thrust) and
rotation. The induced moments on the primary circuit can be canceled by
introducing appropriate symmetries in the circuit setup, ultimately yielding a
net thrust.

To effectively mitigate the capacitive reactance in the circuit, it is possible to
use a two-element LC circuit by adding an appropriate inductor and setting the
main circuit’s operating frequency to match its natural resonant frequency. The
design of the secondary circuit can also be modified to match this frequency.
The power of proposed propulsion systems can be significantly enhanced by
incorporating multiple turns and open sections. For example, using 20 turns and
20 sets of open sections instead of one can increase the forces depicted in Figure
5 by a factor of 400. For instance, by selecting a distance of 1 cm for the open
section gap and the distance between the secondary and the primary circuits,
we could potentially generate a force of approximately 80 Newtons. This force
is sufficient to accelerate a probe with the mass of Voyager 1 (approximately
722 Kg) [31] such that it reaches the same distance traveled by Voyager 1 (up to
January 2024) in less than a year 17. This cannot be achieved with traditional
propellant-based propulsion systems, as they require a vast amount of mass for
constant acceleration.

Incorporating superconductors into this propulsion system could provide sig-
nificant advantages and expand its potential applications to include terrestrial
and aviation transportation. Unlike traditional electric motors, which lose en-
ergy through friction within their mechanical parts, this proposal eliminates
such losses due to its lack of moving components. This characteristic paves the
way for a highly efficient propulsion systems.

17This hypothetical example assumes that the equipment providing energy is not attached
to the probe. The emphasis is on demonstrating how a small but constant force, over time,
can generate sufficient velocity to traverse vast distances. However, the primary challenge
isn’t the amount of thrust but the energy required to achieve very high kinetic energy. A
probe can have thousands of open sections and wire turns instead of the twenties mentioned
in the example. The force is scalable, but ultimately, the needed energy is the limiting factor.
Another proposal involves allowing the probe to orbit the sun, converting solar energy into
kinetic energy by accelerating and increasing speed as it moves to orbits with higher escape
velocities.
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(a) (b)

Figure 6: Directional force exerted by a unit length at the midpoint of line
KG on a unit length along line NN ′ for two cases: (a) no open sections, and
(b) a 2cm gap for the open section. The gap causes symmetry breaking. The
maximum current in both main and secondary circuits is 1000 amps.

4 Conclusions

This research explored the breaking of symmetry in interaction forces of dis-
continuous circuits. It is demonstrated that in closed circuits, force interactions
adhere to classical physics’ expectations of reciprocity. Contrarily, this symme-
try breaks in discontinuous circuits and can lead to a resultant magnetic force.
Additionally, asymmetries in self-induced stress tensors are shown to change
the total linear momentum. These asymmetries in self-induced stress tensors
can generate a non-zero effect on the boundary of the surface enclosing wires,
akin to external stresses produced by external fields. This phenomenon is often
overlooked in the momentum equations of isolated bodies. A numerical example
is provided, demonstrating that the resultant force can reach significant levels,
making such systems suitable for aerospace applications.

MATLAB Code Availability

The MATLAB code used for plotting Figure 5(a) can be accessed and down-
loaded from the following GitHub repository:

Magnetic Force Generation MATLAB Code
This repository contains the full implementation of the numerical procedures
described in this paper. Other plots can be generated with a slight modification
of this code.
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Appendix A.

The Biot-Savart law, as presented in Methods section 2, provides an approxi-
mation of the actual magnetic fields. This appendix aims to analyze the error
introduced by this approximation. The exact solution of the magnetic field
around an infinitesimal wire is given by [21]:

dB =
µ0

4π

(
[I]ret

r3
+

1

r2c

[
∂I

∂ts

]ret)
dls × r (A.1)

The retardation symbol, []ret, indicates the state of the source element lo-
cated at coordinates (xs, ys, zs) at the retarded time, as observed from the point
(x, y, z). For instance, the current at coordinate-time (x, y, z, t) refers to the
state of the source at coordinate-time (xs, ys, zs, t− r/c):

[I(x, y, z, t)]ret = I(xs, ys, zs, t− r/c) (A.2)

Fortunately, the time-dependent terms affect only the magnitude of the mea-
sured magnetic field and not its direction. To investigate the error introduced
by neglecting these terms, it is sufficient to measure the error in the magnitude
of the magnetic field. In this analysis, the error is examined for alternating
current with a frequency of ω. At time t0, the terms [I]ret can be approximated
by:

[I]ret = I(t0)−
∂I

∂t

∣∣∣∣
t0

(r/c) +
∂2I

∂t2

∣∣∣∣
t0

(r/c)
2
+ · · · (A.3)

and [
∂I

∂t

]ret
=

∂I

∂t

∣∣∣∣
t0

− ∂2I

∂t2

∣∣∣∣
t0

(r/c) +
∂3I

∂t3

∣∣∣∣
t0

(r/c)
2
+ · · · (A.4)

For an alternating current, the current can be expressed as I = I0 sin(ωt).
The magnetic field, according to the Biot-Savart law, is denoted by BBiot. The
relative error introduced by assuming the Biot-Savart law over t ∈ [0, T ], where
T = 2π

ω , for different angular frequencies and distances, can be measured as:

Error =

∫ T

0

∥∥dB− dBBiot
∥∥ dt∫ T

0
∥dB∥ dt

(A.5)
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where the differential dls in nominator and denominator cancels out. The
fact that the approximation only affects the magnitude of the magnetic field led
us to derive the approximation formula given in Equation (A.5). The relative
error introduced as a function of frequency is plotted in Figure A1 for different
distances from the source. The plot indicates that for distances less than 1 meter
and frequencies below 1 MHz, the error remains approximately less than 1 ×
10−4. This implies that for calculations made under these conditions, the error
will be negligible and should not significantly influence the overall conclusions
drawn in this work.

Figure A1: Relative error in magnetic field estimation due to the Biot-Savart
law assumption for different frequencies and distances.

Appendix B.

This appendix presents the proof that the magnetic field derived from the charge
and current density equation in the capacitor, along with the Biot-Savart law,
satisfies the Ampère-Maxwell law. The electric field around the capacitor C at
any point with position r, neglecting negligible radiative terms and retardation
effects, can be described by

E = − 1

4πϵ0
∇
∫
V

ρs
|r− rCs |

dvs (B.1)

Here, rCs is the position vector corresponding to a point on capacitor C and ρs
is the source charge density. Similarly, the magnetic field, neglecting radiative
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terms and retardation effects, is given by

B =
µ0

4π
∇×

∫
V

Js

|r− rCs |
dvs (B.2)

Now, considering the charge continuity equation

∇ · Js = −∂ρs
∂t

(B.3)

The displacement field D can be written as

∂D

∂t
= ϵ0

∂E

∂t
=

1

4π
∇
∫
V

∇s · Js

|r− rCs |
dvs (B.4)

By applying the divergence theorem and noting that no current enters the
boundary of the integral domain, we obtain∫

V

∇s ·
(

Js

|r− rCs |

)
dvs = 0 ⇒∫

V

∇s · Js

|r− rCs |
dvs = −

∫
V

Js · ∇s

(
1

|r− rCs |

)
dvs

(B.5)

Given that:

∇s

(
1

|r− rCs |

)
= −∇

(
1

|r− rCs |

)
(B.6)

Equation (B.4) becomes

∂D

∂t
= ϵ0

∂E

∂t
=

1

4π
∇
∫
V

∇ · Js

|r− rCs |
dvs (B.7)

Using the curl of curl identity

∇× (∇×A) = ∇(∇ ·A)−∇2A (B.8)

and the fact that

∇2

(
1

|r− rs|

)
= −4πδ(r− rs) (B.9)

we conclude, from Equations (B.2) and (B.7), that the magnetic field described
in Equation (38) for the capacitor’s electrodes satisfies the time-dependent
Ampère-Maxwell law

∇×B = µ0

(
Js +

∂D

∂t

)
= µ0

(
Js + JD

)
(B.10)

This completes the proof that the magnetic field derived satisfies the Ampère-
Maxwell law.
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