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Mueller polarimeters (MPs) based on division of focal
plane (DoFP) polarization imagers can achieve fast mea-
surements and significantly improve the effectiveness
of Mueller polarimetry. In this Letter, we demonstrate a
unique property of the DoFP sensor-based MPs: They
can be calibrated without any extra polarizing reference
element. We describe a self-calibration method that only
requires six image acquisitions; based on our analysis,
the calibration accuracy is only limited by the noise. ©

2022 Optical Society of America

http://dx.doi.org/10.1364/ao.XX.XXXXXX

Mueller matrix (MM) provides important information about
the interaction of materials with polarized light and physical
properties, including smoothness, microstructure, texture, etc.
[1–3]. The measurement and analysis of MM have a wide variety
of applications, ranging from morphology detection to clinico-
pathologic analysis [4–6]. A typical Mueller polarimeter (MP)
configuration, as shown in Fig. 1(a), is based on a CCD or CMOS
camera and dual-rotating retarders [7, 8]. A new type of MP
has been proposed by replacing the standard camera with a
division of focal plane (DoFP) polarization image sensor, whose
configuration is shown in Fig. 1 (b). This design can achieve
fast imaging/measurement and significantly improve the effec-
tiveness of MM measurements [9, 10]. Recently, Huang et al.
reported a complete MM microscope based on dual DoFP im-
agers, which has the capability of imaging the MM of samples
in real-time [9]. In this Letter, we aim to demonstrate another
unique function of DoFP-based MPs: They can be self-calibrated
without any extra polarizing reference element.

The fundamental model of MPs is:

I = A (α2, δ2, θ2) ·M ·G (α1, δ1, θ1) , (1)

where I denotes the matrix of the captured intensity measure-
ments; M is the MM to be measured; and G and A are the
measurement matrices of the polarization state generator (PSG)
and the polarization state analyzer (PSA), respectively, which
are functions of angles of the polarizers (α1, α2), angles of the
retarders (θ1, θ2), and their retardances (δ1, δ2). The accuracy
of MM measurement requires exact values of these parameters.

Fig. 1. MP configurations based on (a) a traditional CCD; and
(b) a commercial DoFP polarization camera. P: polarizer, R:
retarder. (c) Enlarged view of the micro-polarizer array.

In general, the polarizer angles are stable, but the parameters
related to retarders may vary due to environmental disturbances,
e.g., temperature fluctuations. Accordingly, in DoFP-based MPs,
(θ1, θ2) and (δ1, δ2) often treated as unknowns, which require
experimental calibration. All existing methods to calibrate MPs
require an extra calibration step with standard reference compo-
nents or samples, e.g., calibrated polarizers or retarders [11–14].
An effective self-calibration method without additional polariz-
ing elements is highly desirable. Recently, we have developed
a few methods for self-calibrating the retardance or axis orien-
tation of the retarder in Stokes polarimeters [15, 16]. Although
these methods can handle a single parameter, MPs depend on
more than four parameters that need to be calibrated simultane-
ously. Besides, the Stokes vector has only four elements whereas
the MM has 16, which makes the calibration process complex
and challenging. In this Letter, we present a new self-calibration
method for DoFP-based MPs, which can estimate all unknown
parameters of the retarders without introducing any additional
polarizing elements.

In our method, the first step is to calibrate the PSA parameters
(δ2, θ2) using the redundancy of intensity measurements in a
DoFP camera [17]. As such, we set the direction of the PSG
retarder (R-1) to ϑ = θ1 + γ0, where θ1 refers to the true retarder
direction with a nominal value of 0◦ (Note that the value of θ1 is
unknown here.), and γ0 is the known angular increment of R-1.
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The generated Stokes vector can be expressed in Eq. (2).

Sin =
qI0
2


1

cos2 2ϑ + cos δ1 sin2 2ϑ

(1− cos δ1) sin 2ϑ cos 2ϑ

sin δ1 sin 2ϑ

 (2)

where q denotes the quantum efficiency of the camera, which
is typically set to one for simplicity, and I0 is the intensity level
of the light source. In the absence of samples, the PSA directly
observes Sin. To measure Sin, the direction θ2 of the PSA retarder
(R-2) needs to changeN2 times, where N2 ≥ 2. Since the DoFP
imager has four different polarizer orientations, the measured
intensity vector I in Eq. (3) has 4N2 × 1 elements.

I = A (δ2, θ2) Sin + n, (3)

where n denotes the additive white Gaussian noise with a
variance of σ2. In order to simultaneously estimate Sin and
η = (δ2, θ2) without any additional polarizing elements, we first
express the log-likelihood function of this problem as:

`(Sin, η) = − 1
2σ2 ‖I−A(η)Sin‖2. (4)

Next, we denote the parameters to be estimated as a vector
p = (Sin, η). We first investigate the feasibility of estimating
p by analyzing the Fisher information matrix, whose elements
have the following expression:

Fij = −
〈

∂2`

∂pi∂pj

〉
=

1
σ2

(
ST

in
∂AT

∂pi

∂A

∂pj
Sin

)
, (5)

where 〈·〉 denotes ensemble averaging over the noise realiza-
tions. The Cramer-Rao lower bound (CRLB) for estimation of
pi, i ∈ {1, 6} is the diagonal elements

[
F−1]

ii, which repre-
sents the lower bound of the estimation variance of pi with
an unbiased estimator [15]. Similar to the derivation steps in
Ref. [18], the inverse of the Fisher matrix can be derived as
F−1 =

[
B C; CT D

]
, where D is the covariance matrix of

the estimation of Sin; C is the cross-covariance matrix of Sin and
η; and B is presented in Eq. (6), where the CRLB of ηi is the ith

diagonal element of B. To realize self-calibration, i.e., estimation
of η, B has to be invertible.

Bij =

[(
P⊥A

∂A

∂ηi
Sin

)T
(

P⊥A
∂A

∂ηj
Sin

)]−1

σ2, (6)

In Eq. (6), P⊥A = E−A
(
ATA

)−1
AT (E is the identity matrix)

is the projection matrix orthogonal to the space spanned by the
columns of A.

To assess the validity of the self-calibration property for a
given experimental configuration, we define the "condition ma-
trices" as Qi = P⊥A

∂A
∂ηi

. It has been shown in Ref. [18] that to
enable self-calibration, the input polarization states should de-
pend on the rank of Qi. Moreover, after derivation, we find
that rank

(
Qθ2

)
= 3 and rank

(
Qδ2

)
= 2 when the number of

different PSA states satisfies N2 ≥ 3. This means that the null
space for Qθ2 is empty and that the null space of Qδ2 is one di-
mensional. It can be shown that the null space of Qδ2 is spanned
by the Stokes vectors with degree of linear polarization (DoLP)
= 0, i.e., S1 = S2 = 0. In other words, the self-calibration of

retarder orientation is always feasible, but the self-calibration
of retardance cannot be achieved if Sin is purely circularly po-
larized. Hence, to accurately estimate the θ2, the value of γ0
should be chosen to such that the generated Sin is not circularly
polarized.

Interestingly, this self-calibration method does not work for
the MP based on traditional cameras as shown in Fig. 1 (a).
This is because in this case, rank

(
Qδ2

)
= 0 and rank

(
Qθ2

)
= 1,

which means that self-calibration of δ2 is impossible for any
input Stokes vector [18]. Besides, since only the fourth column
of the condition matrix Qδ2 is nonzero, self-calibration of θ2 is
impossible for any purely linear input Stokes vector [16].

Next, we investigate the precision of η and Sin when self-
calibration is feasible. We assume that the acquisition of N2 is
performed by setting the directions of R-2 to θ2 + (i− 1) · π/N2
(i ∈ [1, N2]), where the true value of R-2’s initial direction θ2 is
unknown. This is the optimal combination for estimating Sin
because it can minimize the equally weighted variance (EWV)
metric, which is defined as the trace of matrix V = (ATA)−1

[3]. Based on this setting, the closed-form CRLB expressions of
δ2 and θ2 can be obtained as:

CRLB[δ2] =
4 (1 + c)
N (1− c)L2 ,

CRLB [θ2] =
1 + c

N
[
(1− c)2 L2 + 2 (1− c2) C2

] (7)

where c = cos2 δ2; N = N2 · SNR2; SNR = I0/σ; C =
[Sin]3/[Sin]0 and L = ([Sin]

2
1 + [Sin]

2
1)

1/2/[Sin]0 respectively de-
note the degree of circular polarization (DoCP) and DoLP of Sin.
Under these definitions, [S]i denotes the i + 1th element of S.
Notably, Eq. (7) is consistent with our previous analysis, i.e., the
calibration of δ2 does not work when L = 0; and the calibration
of θ2 does not work only when the degree of polarization (DoP)
is equal to zero.

With the assumptions of N2 = 3 and SNR = 10
√

2, Fig. 2 (a)
presents the calculated values of CRLB1/2[δ2] and CRLB1/2[θ2]
in Eq. (7) as a function of L. It is observed that as L increases,
the estimation precision of δ2 and θ2 improves and degrades
respectively. This means that it is necessary to optimize the
input (by tuning the parameter γ0) to balance the estimation
precisions of δ2 and θ2. Figure. 2 (b) presents the estimation
performance of both parameters as a function of the true value
of δ2, ranging from 60◦ to 120◦, where one may find that the
proposed calibration method has good stability and is robust
around δ2 = 90◦. Moreover, when δ2 ∈ [80◦, 100◦], i.e., a suit-
able dynamic range of a common quarter-wave plate (QWP),
the CRLB1/2 values of θ2 and δ2 do not exceed 2.5◦ and 4.9◦,
respectively. In particular, for a purely linear Sin with L = 1,
one has CRLB1/2 [δ2] = 2 CRLB1/2 [θ2], which is also consistent
with the analysis in Eq. (7).

Equation (8) presents the CRLB values for each Stokes ele-
ment, which are obtained from the diagonal elements of D.

CRLB [Sin]i−1 = σ2

Vii +

[
∑n A+ ∂A

∂ηn
Sin

]2

i

∑m,n

(
P⊥A

∂A
∂ηm

Sin

)T (
P⊥A

∂A
∂ηn

Sin

)
 (8)

After simplifying, one obtains:

CRLB [Sin]i−1 = σ2
{

Vii +
[xi + yi]

2

CRLB[δ2] + CRLB [θ2]

}
(9)
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Fig. 2. CRLB1/2 as a function of (a) the DoLP when δ2 = 88◦;
and (b) the retardance, range from 60◦ to 120◦. Here, N2 = 3;
and SNR = 10

√
2.

Fig. 3. CRLB value as a function of the azimuth and ellipticity
of the input Stokes vector for the estimation of (a) S1, (b) S2, (c)
S3, and (d) CRLBS . Here, we set δ2 = 120◦ and N2 = 3 for the
ease of comparison.

where
x = a [0, [Sin]2 ,− [Sin]1 , 0]T ,

y = [0,−b [Sin]1 ,−b [Sin]2 , d [Sin]3]
T .

(10)

In Eq. (10), a = 2(1−
√

c)2

1+c , b =
√

c−c2

1+c , and d =
√

c
1−c . The total

value is calculated and expressed in Eq. (11).

CRLBS = σ2

{
11− 6c− c2

1− c2 +

(
a2 + b2)L2 + d2C2

CRLB[δ2] + CRLB [θ2]

}
, (11)

To clearly show how the input Stokes vector affects the estima-
tion precision, we calculate the CRLB values for CRLB[Sin]i(i ∈
[1, 3]), and the sum CRLBS in Fig. 3 (a) - 3 (d) respectively,
where CRBL is a function of the azimuth and ellipticity of Sin. In
particular, we see that CRLBS shown in Fig. 3 (d) only depends
on the ellipticity of Sin.

As the discussion of CRLBs only represent the lower bounds
on the estimation variance, we will next develop a algorithm to
estimate η = (θ2, δ2). Based on Ref. [15], it can be shown that the
maximum-likelihood estimation of η can be achieved by solving
Eq. (12):

η̂ = arg min
η
F (η), with F (η) =

∥∥(E4N2 −A (η)A+ (η)
)

I
∥∥2 . (12)

Based on the solution, we can estimate the input Stokes vector
by Eq. (13).

Ŝin = [A(η̂)]+I, (13)

Fig. 4. CRLB1/2 and STD as a function of SNR for the esti-
mations of (a) δ2 and θ2, (b) Si, i ∈ [1, 3], and (c) θ1. (d) STD,
mean, and RMSE values as a function of SNR for the estima-
tion of δ1. Here, δ1 = 93◦, δ2 = 88◦, s0 = 1, θ1 = 2.6◦, θ2 = 2◦,
and γ0 = 22.5◦.

where the superscript + denotes the Moore–Penrose pseudo-
inverse matrix [15, 19].

It is important to check whether this algorithm can reach the
estimation variance predicted by the CRLB. For this purpose,
we compute the estimation standard deviation (STD) of δ2 and
θ2 via Monte Carlo (MC) simulations on 103 noise realizations;
the results are plotted with CRLB1/2 as a function of SNR in Fig.
4 (a). Here, we set γ0 = 22.5◦to generate an input Stokes vector
with balanced DoLP and DoCP values. From Fig. 4, we find
that the estimated STD fits CRLB1/2 well in high SNR regions,
and the divergence occurs at SNR ≈ 30. Besides, we find that
the estimation of θ2 is easier than δ2 due to its lower STD. This
result is consistent with previous studies in Ref. [15, 16]. Figure
4 (b) presents the MC results for the estimation of Sin (with
parameters δ1 = 93◦, θ1 = 2.6◦, and γ0 = 22.5◦), where one may
observe that the STD is also equal to CRLB1/2 when SNR larger
than 30.

In this section, we present how the PSG parameters (δ1, θ1)
can be estimated. We first consider the estimation of R-1’s ori-
entation θ1. To achieve this, two different input Stokes vectors (
Sin,1 and Sin,2 as expressed in Eq. (2)) are generated by setting
the direction of R-1 to ϑ1 = θ1 + γ0 and ϑ2 = θ1 + γ0 + 45◦,
where θ1 is unknown. From Eq. (12) and Eq. (13), we know that
when the estimation of PSA parameters is completed, the input
Stokes vectors are simultaneously estimated. As such, θ1 can be
calculated by:

θ̂1 =
1
2

tan−1 ([Ŝin,1
]

3 /
[
Ŝin,2

]
3

)
− γ0, (14)

Since the estimator θ̂1 in Eq. (14) is a function of two different
estimated Stokes parameters, its CRLB has no closed-form ex-
pression. Therefore, we approximate the CRLB by the “Delta
method” [20], which is expressed in Eq. (15).

CRLB [θ1] = ∑
k=1,2


(

∂θ̂1

∂
[
Ŝin,k

]
3

)2

CRLB
[
Ŝin,k

]
3

, (15)
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Fig. 5. (a) RMSE values of MM elements as a function of SNR.
(b) Estimated values of each MM element as a function of the
rotation angle. Dashed line: simulation results; Solid line: theo-
retical values.

Figure 4 (c) presents the calculated CRLB (from Eq. (15)) and
the simulated STD (obtained from MC simulations) as a function
of the SNR. It can be seen that the CRLB fits the STD well in
high SNR regions, and the divergence occurs at SNR ≈ 30; this
is consistent with the results in Fig. 4 (a) and 4 (b).

We next estimate the retardance δ1 of R-1. From Eq. (13), we
have obtained the two input Stokes vectors, which are related
to the directions ϑk and the retardance δ1 by Eq. (2). As θ1 has
been estimated by Eq. (14), ϑk is known; and we can estimate δ1
by solving Eq. (16).

Ik = A · Sin,k (δ1) , k ∈ {1, 2} (16)

As it is difficult to obtain a closed-form expression of δ1 and
the related CRLB in Eq. (16), we approach this problem by calcu-
lating the STD via MC simulations. The results are presented in
Fig. 4 (d) as a function of the SNR. Figure 4 (d) also presents the
root-mean-square error (RMSE) to account for the deviation of
the estimator’s mean value with respect to the true value. From
Fig. 4 (d), we observe that the estimation is highly consistent
with the true value when the SNR value is higher than 30. No-
tably, the “divergence point” is the same as other parameters in
Fig. 4(a) – 4(c).

In this section, we evaluate the influence of the noise-induced
calibration errors on the accuracy of MM measurements. To this
aim, we simulate the MM measurement of a QWP oriented at
an angle β:

M(β) =
1
2


2 0 0 0

0 1 + cos 4β sin 4β −2 sin 2β

0 sin 4β 1− cos 4β 2 cos 2β

0 2 sin 2β −2 cos 2β 0

 (17)

Assuming that β = 40◦, we perform MC simulations on 103

noise realizations, where at each realization, both the calibration
and the MM estimation have been performed. Using the selected
parameters in Fig. 4, we plot the estimate RMSE (blue dashed) of
each MM element as a function of SNR in Fig. 5 (a). For an ideal
MP with perfect calibration, the estimation would be unbiased
and the RMSE values of each element Mij would only depend
on the noise STD σ and the PSA and PSG matrices (A, G), as
expressed in Eq. (18).

Rth
Mij

= σ

{[
(A⊗G)T (A⊗G)

]−1
}

k,k
. (18)

where ⊗ is the Kronecker product, and k = i + 4(j− 1). For the
ease of comparison, we also plot theoretical values (red solid
lines) in Fig. 5 (a), where one may observe that the RMSE fits
the theoretical value well when the SNR is larger than 30, i.e.,
when the self-calibration fits its CRLB. Figure 5 (b) presents the
estimations of each MM element as a function of the rotation
angle β when the SNR is set to 30. From the results, it is observed
that the simulations (blue dashed) are in good agreement with
the theoretical values (red solid lines) computed from Eq. (18).
The results in Fig. 5 suggest that the target MM can be accurately
measured via our self-calibration algorithm without any prior
knowledge about the retarders in both PSG and PSA.

In conclusion, we have presented a self-calibration method
for MPs based on a DoFP camera and two rotating retarders.
The method does not require any reference components and
is accurate and efficient when the SNR value is above 30. The
self-calibration method only requires six acquisitions with
different retarder angles; a larger number of acquisitions may
be adopted if higher accuracy is needed. The self-calibration
method may be applied in MPs with the photon shot noise,
which is often the dominant noise source in polarimetry
experiments.

Funding. Centre for Perceptual and Interactive Intelligence
(CPII) Ltd under the Innovation and Technology Fund (A-
CUHK-16-5-14); Innovation Technology Commission (ITC)
(ITS/178/20FP).

Disclosures. The authors declare no conflicts of interest.

REFERENCES

1. S. R. Cloude, R. Ossikovski, and E. Garcia-Caurel, IEEE Geosci.
Remote. Sens. Lett. 18, 476 (2020).

2. R. Ossikovski, B. Al Bugami, E. Garcia-Caurel, and S. R. Cloude, Appl.
Opt. 59, 10389 (2020).

3. X. Li, H. Hu, L. Wu, and T. Liu, Opt. Express 25, 18872 (2017).
4. T. Novikova, A. Pierangelo, S. Manhas, A. Benali, P. Validire, B. Gayet,

and A. De Martino, Appl. Phys. Lett. 102, 241103 (2013).
5. A. Pierangelo, A. Benali, M.-R. Antonelli, T. Novikova, P. Validire,

B. Gayet, and A. De Martino, Opt. Express 19, 1582 (2011).
6. R. Ossikovski and O. Arteaga, JOSA A 36, 403 (2019).
7. S. Liu, X. Chen, and C. Zhang, Thin Solid Films 584, 176 (2015).
8. X. Li, F. Goudail, H. Hu, Q. Han, Z. Cheng, and T. Liu, Opt. Express 26,

34529 (2018).
9. T. Huang, R. Meng, J. Qi, Y. Liu, X. Wang, Y. Chen, R. Liao, and H. Ma,

Opt. Lett. 46, 1676 (2021).
10. J. Qi, C. He, and D. S. Elson, Biomed. Opt. Express 8, 4933 (2017).
11. E. Compain, S. Poirier, and B. Drevillon, Appl. Opt. 38, 3490 (1999).
12. S. Bian, C. Cui, and O. Arteaga, Appl. Opt. 60, 4964 (2021).
13. R. Meng, Z. Chen, X. Wang, Y. Liu, H. He, and H. Ma, Appl. Opt. 60,

1380 (2021).
14. H. Hu, E. Garcia-Caurel, G. Anna, and F. Goudail, Opt. Lett. 39, 418

(2014).
15. F. Goudail, X. Li, M. Boffety, S. Roussel, T. Liu, and H. Hu, Opt. Lett.

44, 5410 (2019).
16. X. Li, F. Goudail, P. Qi, T. Liu, and H. Hu, Opt. Express 29, 9494 (2021).
17. S. Roussel, M. Boffety, and F. Goudail, Opt. Lett. 44, 2927 (2019).
18. X. Li, B. Le Teurnier, M. Boffety, T. Liu, H. Hu, and F. Goudail, Opt.

Express 28, 15268 (2020).
19. J. S. Tyo, Appl. Opt. 41, 619 (2002).
20. J. Benichou and M. H. Gail, The Am. Stat. 43, 41 (1989).


