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Abstract

Climate change is defined often as the long-term fluctuations in climate patterns
affecting the planet globally. Its main observed consequences are a rise in average
temperatures in many parts of the globe, and an increase in the frequency and
severity of extreme weather events, such as floods, droughts, or wind storms. Climate
change is also associated with a rise in sea levels, more frequent and more severe
wildfires, a loss of biodiversity, as well as other disrupting events that can have a
serious economic impact.

These new climate risks are increasingly affecting the frequency and the severity
of claims in different insurance branches. In order to help insurance companies pre-
dict and manage climate risks, North-American actuaries have defined the Actuaries
Climate Index™ (ACI), that combines information from several important weather
variables in the historical records of United States and Canada. The ACI shows a
significantly increasing trend over recent years.

Now that the ACI provides a factual and objective climate risk measure for
North-America, the need arises to test if a similar tool can measure the impact of
climate change in other parts of the planet, and if the change is similar or not.
Despite the observed global nature of climate change, different regions and countries
can be affected in different ways. As a first step it is important to check if the
ACI methodology is useful to assess climate risk even outside the United States and
Canada.

This paper proposes the use of the same ACI methodology to calculate an actuar-
ial climate index with the climate data of France, which we call the French Actuarial
Climate Index (FACI). The paper reviews the methodology and the data used to
obtain the FACI, and with it studies the impact of climate change in France, in-
cluding high-resolution analyses, per component, season and region. Together with
the recent indices calculated for Spain and Portugal, this FACI represents one more
step towards the definition of a European index.
Keywords— Climate change, France, Actuaries Climate Index™, French Actuarial
Climate Index, Physical climate risk, Geographical grid, European Actuarial Climate
Indices.
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1 Introduction

Climate change refers to long-term variations in temperature and in precipitation
patterns, sea levels, and other aspects of Earth’s system. Measuring and mitigating
the effects of climate change are some of the most pressing and difficult challenges
that society faces. It has heavy implications in the insurance sector, that is affected
by increased frequency and severity in different lines of business.

According to the Intergovernmental Panel on Climate Change (IPCC), observed
global surface temperatures from 2011 to 2020 were 1.1 ℃ higher than the average
in the last half of the 19th century, with land surface temperature increasing by 1.59
℃; see (IPCC, 2023).

Climate change poses a range of enhanced hazards and dangers, including more
frequent and intense extreme weather events, rising sea levels that threaten coastal
areas, water scarcity and droughts, the disruption of ecosystems and the loss of
biodiversity, adverse impact on agriculture and food security, public health risks,
significant economic consequences, and displacement and migration of populations.

For insurance companies, any increase in extreme weather events, such as heat
waves, wind storms, floods, wild-fires, and droughts, that can cause deaths and
significant damages, would result in higher insurance claims, or added limitations in
coverage. Moreover, if historical data are no longer representative due to changes
in weather patterns, insurers need to reassess their risk models and to incorporate
climate change projections and long-term climate risk assessments into their pricing,
to accurately determine premiums.

1.1 Review of the literature

At the turn of this century the World Climate Research Program proposed several
indices to help summarise useful information on climate change (see Peterson et al.,
2001). In 2012, the Climate Index Working Group (CIWG) of the CAS Climate
Change Committee summarised the scientific knowledge on climate change at the
time, and proposed to develop a composite index, termed the Actuaries Climate
Change Index (ACCI), to include information from several climate variables; see
their report (Solterra Solutions, 2012). The development of the Actuaries Climate
Index™ (ACI), that studies climate change in the United States and Canada, was
then proposed by this same working group, in 2014. The ACI project was launched
in November 2016.

The Actuaries Climate Index™, jointly developed by the Canadian Institute of
Actuaries (CIA), the Society of Actuaries (SOA), the Casualty Actuarial Society
(CAS), and the American Academy of Actuaries (AAA), uses climate data from
North America (see ACI, 2018). It is intended to provide actuaries, public policy-
makers, and the general public with a neutral, factual and helpful climate change
index. A monitoring tool that could help us learn about climate change and to link
it to its associated risks; see Figure 1.1.

Just as the Consumer Price Index (CPI) that tracks changes in the cost of a
standard basket of goods and services over time, the ACI measures climate risks
through a basket of extreme climate events and changes in sea level.

The focus is on extreme weather events, rather than averages; extremes have a
larger impact on policyholders and their insured goods, as well as on society and
the economy. The index is composed of six variables, each representing a monthly
time series starting in 1961, and that is based on measurements from the National
Oceanic and Atmospheric Administration (NOAA, Menne et al. (2012)), GHCN-
DEX1 (CLIMDEX, Donat et al. (2013)), and the Permanent Service for Mean Sea
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Figure 1.1. ACI values; 1961–1990 reference period to 2021

Source: https://actuariesclimateindex.org/explore/

Level (Permanent Service for Mean Sea Level (PSMSL), 2023). More precisely

ACI =
1

6
· (T90std − T10std + Pstd +Dstd +Wstd + Sstd), (1.1)

where T90std and T10std are standardised variables that measure the frequency
of extreme high and low temperatures, respectively, Pstd measures the severity of
extreme rainfall precipitations, Dstd stands for extreme frequencies of consecutive
dry days, Wstd measures the frequency of days with extreme wind power and Sstd

tracks the anomalies in monthly seal level averages. See Appendix A for details.
Curry (2015) considers extending the application of the ACI formula to the UK,

and more generally to Europe. He reviews the definition and underlying methodology
of the ACI to find that it could be applied in these regions without change, although
appropriate data for the region would be needed to do so.

In 2018 the Institute of Actuaries of Australia developed its own Australian
Actuaries Climate Index (AACI), based on the same methodology as the North
American ACI, to measure climate change in Australia; see AACI (2018). The
AACI is calibrated also to a 0-average, but over a different reference period, 1981-
2010. From Figure 1.2 we see that, like for the ACI, the seasonal values of the AACI
are almost exclusively above average and that the index 5-year moving average has
systematically increased since about 2001.

In addition, Nevruz et al. (2022) propose the application of the ACI in Turkey,
adapting it to the local situation in Ankara, as to develop an index suitable for this
region. They suggested that choosing the best grid data for their ACI was more
important than changing how the index is calculated.

Bridging the gap between the physical risk and insurance, Pan et al. (2022)
investigate the effectiveness of the ACI in predicting crop yields for (re)insurance rate
making. They find that the ACI has significant predictive power for crop yields and
yield losses, and they argue that a high-resolution index could benefit the insurance
industry.
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Figure 1.2. AACI values; 1981-2010 reference period to 2023

Source:

https://actuaries.asn.au/microsites/climate-index/explore/component-graphs

More recently, in an oral presentation at an event of the Spanish Institute of
Actuaries (IAE), a first draft of a Spanish version of the ACI was defined, over a
shorter and more recent reference period than for the ACI (1975-1995 in general
and 1993-2000 for sea levels). Their temperature variables differ, using the average
highs and average lows, as well as the composite index formula. Some details on this
index are given in the presentation slides published online, see IAE (2023).

Finally, Zhou et al. (2023) use also the North American ACI methodology to
build an actuarial climate index for the Iberian Peninsula, that they call the Iberian
Actuarial Climate Index (IACI); see Figure 1.3 for its seasonal values and the 5-year
moving averages. Their paper reviews in detail the methodology and the data used
to obtain the IACI, and with it, they try to measure climate change in the Iberian
Peninsula.

1.2 Extension to French climate data

Here metropolitan France is defined as the land area ranging from 41◦ to 51◦ north
latitude and 6◦ east to 10◦ west longitude, excluding Belgium as well as Luxembourg
to the north, Germany to the north east, Switzerland to the east, Italy and Monaco
to the south east and Andorra and Spain to the south. Its largest island, Corsica,
is included also in the data set, but not the French overseas territories.

We calculate the French Actuarial Climate Index (FACI) with data extracted
from the ERA5-Land reanalysis database (see Copernicus Climate Change Service
(C3S) Climate Data Store (CDS), 2022). Unlike the ACI for the United States and
Canada which is calculated for 12 sub-regions, here the FACI is computed for over
10,000 cells forming the French grid of 0.1◦ of latitude × 0.1◦ of longitude (about
123.2 km2 ). We compare the French, Australian, Iberian and North American cases
and show how the FACI tracks well the climate change of France through the years;
see Figure 1.4. Then some high-resolution FACI analyses, show the evolution of each
grid by index component, season, or region, through the years.

The rest of the paper is organised as follows; the extension of the North Amer-
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Figure 1.3. Seasonal IACI values; 1961-1990 reference period to 2022

Source: Zhou, Vilar Zanón, Garrido, Heras Mart́ınez (2023, AIAE)

Figure 1.4. Seasonal FACI values; 1961-1990 reference period to 2022

ican ACI methodology to French data is presented in Section 2. Then a compari-
son of the FACI with the North American ACI, the indices for Australia and the
Iberian Peninsula is given in Section 3. Section 4 gives several high-resolution FACI
analyses. Finally, Section 5 proposes a possible application of FACI to parametric
insurance. Some conclusive remarks and future developments wrap-up the paper,
while additional technical details appear in the Appendices, for interested readers.
In particular, Appendix A reviews in detail the methodology of the North American
Actuaries Climate Index™ (ACI) and its components.

2 The French Actuarial Climate Index

Now consider extending the North American ACI methodology to the climate data
from France and Corsica.

To calculate the warm and cool temperature components of each grid cell in
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France and Corsica, defined in Appendix A in Equations (A.1) and (A.2), respec-
tively, set daytime as being 6h-22h and night-time as 22h-6h. The standardised
anomalies of the temperature components, T90std and T10std, are from Equations
(A.3) and (A.4) and their seasonal values plotted in Figure 2.1.

Seasonal T90std component Seasonal T10std component

Figure 2.1. High and low temperature components of seasonal FACI

The 5-year moving averages of the standardised anomalies calculated for the two
temperature components, T90std and T10std, are plotted in Figure 2.2, depicting the
changes in the frequency of extreme high and low temperature events.

Figure 2.2. France: seasonal & 5-year moving average, temperature
standardised anomalies

As for the North American ACI, note here the increase in the frequency of ex-
treme warm temperature events (increase in T90std) and the decrease in frequency
of extreme cold temperature events (decrease in T10std), starting just before the
reference period end in 1990, causing the difference T90std - T90std to grow. The
black line represents the 5-year moving average of this difference, which helps better
visualise the main trend.

The change in the frequency of extreme warm temperatures is opposite to that
of extreme cold temperature events. It indicates that air temperatures are changing
towards more extremes in highs and fewer in lows, that is, more warm days overall.

Next, consider Figure 2.3 that illustrates the standardised anomalies calculated
for the precipitation component, Pstd; see (A.5) for the calculation formula.

Observe how the 5-year moving average has taken mainly only positive values
since even before the reference period. Positive values of the standardised anomalies
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indicate an increase in heavy precipitation events. Recent seasonal averages often go
over 0.3, a value that can be interpreted to mean that the maximum 5-day rainfall
has increased by 0.3 standard deviations, relative to the mean of the 1961-1990
reference period.

Figure 2.3. France: seasonal and 5-year moving average, maximum 5-
day rainfall standardised anomalies

Then Figure 2.4 plots the Dstd time series of the maximum consecutive dry days
in France and Corsica; see the definition in (A.7). Their 5-year moving averages
experienced a peak right around the end of the reference period, but since then their
behaviour is almost comparable to what it was before 1990. Hence, no significant
change in the length of periods without rainfall. Coupled to the increase in heavy
precipitations observed in Figure 2.3, these 2 FACI components suggests a shift
towards an overall increase in humidity in France and Corsica.

Figure 2.4. France: seasonal & 5-year moving average, consecutive dry
days standardised anomalies

Figure 2.5 shows there has not been a significant change in the frequency of
extremely windy days in France, after or during the reference period.
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Figure 2.5. France: seasonal and 5-year moving average, wind power
standardised anomalies

Finally, Figure 2.6 shows the seasonal standardised anomalies of the ocean and
sea levels in France and Corsica. The values △S = S(j, k)−µref (j) have experienced
a sharp increase after year 2000, and continues to increase progressively over time,
although at a lower rate. The warming of earth’s climate has melted ice sheets
and glaciers, and the thermal expansion caused by warmer seawater has further
exacerbated the rise of ocean and sea levels. These rising sea levels imply a series of
risks for the coastal areas of France and Corsica, such as coastal erosion, flooding,
and salinisation of freshwater resources.

Figure 2.6. France: seasonal and 5-year moving average, sea level stan-
dardised anomalies

We observe seasonal volatility for some variables, such as wind, drought and
precipitation, versus a certain continuity and an accumulation effect over time for
other variables, such as temperature and sea level, passed 1990.

Curry (2015) uses a factor fS as the fraction of the number of coastal to total
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grid points, 0 < fS ≤ 1, to adjust the ACI as follows:

ACIf−adj =
1

6
· (T90std − T10std + Pstd +Dstd +Wstd + fSSstd). (2.1)

Considering the particular geography of France and Corsica, we argue that the ocean
and sea level variable Sstd is important for the entire region. Hence we set fS = 1,
as in the ACI, and defer to future work the study of estimating fS as in Curry’s
extension of the ACI to the UK.

Figure 2.7 exhibits the 5-year moving seasonal averages of FACI together with
its 6 components. Clearly the changes in sea level and temperatures dominate and
are driving the increasing trend in FACI, while the other variables, precipitation,
drought and wind power, have experienced little change over the study period.

Figure 2.7. 5-year moving averages, FACI, and its 6 components

It is clear also from Figure 2.7 that some components are correlated. For instance,
consider the 2 temperature variables, the highs (T90std) curve and the lows (T10std)
curve form a mirror image one of another around 0; when T90std increases T10std
decreases by a similar amount.

Figure 2.8 reports the correlation coefficients between the six FACI components.
These are generally weak, except those of the frequency of extreme high and low
temperatures, as seen above. Also, there is a significant negative correlation between
the precipitation and drought variables, and a lesser positive correlation between
precipitation and wind power, as well as an even more moderate correlation between
sea level and the frequency of extreme temperatures; positive for high temperatures,
and similar, but negative for low temperatures.

At this stage it is natural to question the validity of the methodology used to
measure the change in these 6 climate variables. Not only with relation to the
multicollinearity observed above, but even the use of standardised anomalies for
variables that might not be symmetrically distributed around their mean. These
issues are discussed in Appendix B, where the distributions of these 6 standardised
anomalies are studied in detail.

Apart from the issue of the possible exclusion of some of the 6 components
included in this first version of the FACI, it is also normal to consider the possible
inclusion of additional important variables. For example, the North American ACI
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Figure 2.8. Correlation coefficients, 6 monthly FACI 6 components

does not include the ocean and sea temperatures, which could be a driver of change
in France and Corsica.

Before revisiting the methodology, the next section considers the comparison of
the French actuarial climate index to the other indices currently available that all
use the methodology of the North American ACI; the indices defined for the US,
Canada, Australia, Spain and Portugal.

3 Index comparisons

The index defined for the Iberian Peninsula (the IACI, for Spain and Portugal) is
based on exactly on the same methodology of the North American ACI (for the US
and Canada). So they can be compared directly with the FACI defined here. We
do not include the index for Australia in this comparison. Although it was initially
based also on the North American ACI methodology, it was revised keeping only 3
out the 6 climate variables, making it less comparable to the other indices.

Figure 3.1 combines the graph of the 5-year moving averages of the seasonal
ACI and its 6 components, for the US and Canada (denoted USC in the graph
captions), that appears in Figure A.1, to the graph of the 5-year moving averages of
the seasonal IACI and its 6 components, for the Iberian Peninsula (denoted IP, see
Zhou et al. (2023)). It also shows the same graph for France (denoted F), already
shown in Figure 2.7.

The first observation is that the change in sea level is dominant in all 3 graphs
(red curve), with very similar increasing trends and a similar onset, at around the
mid-90’s. The Iberian Peninsula experienced the highest increase, with Sstd currently
at more than 4.5 standard deviations over its 0-mean. The US-Canada and France
are currently at similar levels of 2.5, although US-Canada experienced one last large
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USC: ACI and its 6 components IP: IACI and its 6 components

F: FACI and its 6 components

Figure 3.1. Comparison of the indices for North America (USC), the
Iberian Peninsula (IP) and France (F)

cyclical decrease before the early 2000’s. Note also that ocean and sea level changes
do depend on the region, within these countries. For instance, in Alaska the sea level
5-year moving averages have been constantly decreasing since 1961; see https://

actuariesclimateindex.org/maps/. In addition, it is not clear how inland regions
are affected by changes in ocean and sea level.

The next most dominant change, for all 3 graphs, is for the high temperature
component (green curve). The T90std values are currently very similar in the US-
Canada, the Iberian Peninsula and France, at 1.5, and exhibit similar trends, again
with more oscillations in the US-Canada than in the other 2 graphs. Also, as already
noted above, the low temperature component T10std exhibits a mirror image trend
to that of T90std, but over negative values. That is, both contribute significantly to
the increasing trend in their respective composite indices.

The findings are quite different for the remaining 3 components; i.e. the maximum
5-day precipitation (Pstd), the drought (Dstd) and wind power (Wstd). In the Iberian
Peninsula and in France the 5-year seasonal averages of these 3 variables exhibit a
stationary behaviour, with small oscillations around the 0-mean. In other words,
they do not contribute as significantly to the increase in the IACI or in the FACI.
Hence these indices increases are essentially due to the sea level, plus the high and
low temperature components.

By contrast, North America experienced a significant increase in the maximum
five-day precipitations (Pstd) after the reference period. Its increasing trend shows
some periodicity. With regards to droughts, the land areas of the US and Canada are
very large, each region having different dry periods. Overall, the drought component
(Dstd) does not show a clear trend, but is slightly smaller since the reference period.
Thus the trends in the precipitation (Pstd) and drought (Dstd) components indicate
that the US and Canada have become wetter, compared to France and to the Iberian
Peninsula.
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Even if the contribution of each component of the Actuaries Climate Index™
the Iberian Actuarial Climate Index and the French Actuarial Climate Index is not
equal, due to the differences in geography, their composite indices show a similar
increasing trend. Moreover, the index values are themselves similar, ranging from
-0.5 to 1.5. Particularly in recent years, all 3 composite indices have reached the
value of 1. This indicates that climate change has led to a similar multiple of the
standard deviation increase in the frequency and severity of extreme weather events,
in comparison to the 1961-1990 reference period, that it be in France, the Iberian
Peninsula or the US and Canada. In summary, the occurrence of extreme climate
events is becoming increasingly common, overall, in all these three regions.

The above analysis compares the results obtained for France to those in two
regions, North America and the Iberian Peninsula. Appendix C provides a finer
analysis, by country, where the results for Canada are presented separately from
those of the US and those of Portugal also are separate from those of Spain. Also
the comparison is extended to include Australia, grouping all the actuarial climate
indexes published so far.

4 High-resolution analyses; per region/season

Figures 4.1 to 4.4 show the evolution of the seasonal FACI over the last 12 years at
a high resolution (cell–level, with cells at 0.1◦ of latitude × 0.1◦ of longitude).

First consider the evolution of winter FACI seasonal values over the years 2011-
2022.

Figure 4.1. Winter FACI, 2011-2022

Given that at the time of publication the sealevel variable values were not avail-
able at most French tidal stations, passed the winter of 2022, we graph the spring,
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summer and fall FACI values only for the 11 years 2011-2021.

Figure 4.2. Spring FACI, 2012-2021
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Figure 4.3. Summer FACI, 2012-2021

Figure 4.4. Autumn FACI, 2012-2021

First note how extreme climate events seem to occur more frequently during the
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spring, across most of France (Figure 4.3). In some locations, the index reaches
values of approximately 2. At a single component level, this would mean that the
index has increased by an average of 2 standard deviations over the reference period
average. For the composite FACI, that combines all 6 components, the interpretation
is not as straightforward; here the standard deviation of the average of 6 possibly
correlated components is not 1. It would be closer to 1/

√
6 if they were independent.

Hence, a seasonal index value of 2 is significantly high, as it is a possibly large
multiple of 1/

√
6.

However, note how the evolution of FACI varies across different cells within a
region. Each individual grid cell is affected by climate change in a unique manner.
This means that the impact of climate change in each specific area may differ. This
heterogeneity also implies that the frequency of extreme climate events varies per
region. This could indicate also that the level of vulnerability and/or adaptability
to extreme weather conditions can differ from one cell to another.

To better separate the contribution of each component to FACI, Figures 4.5 to
4.4 plot the progress of the temperature, precipitation, drought and wind variables
over the years 2011-2022.

4.1 Seasonal temperatures per region

First consider the high temperature T90std variable.

Figure 4.5. Winter seasonal T90std values, 2011-2022
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Figure 4.6. Spring seasonal T90std values, 2011-2022

Figure 4.7. Summer seasonal T90std values, 2011-2022
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Figure 4.8. Fall seasonal T90std values, 2011-2022

Now consider the low temperatures T10std. We plot −T10std instead, so that
high values (in red) mean less frequent extreme lows, that is warmer days.

Figure 4.10. Spring seasonal −T10std values, 2011-2022
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Figure 4.9. Winter seasonal −T10std values, 2011-2022

Figure 4.11. Summer seasonal −T10std values, 2011-2022
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Figure 4.12. Fall seasonal −T10std values, 2011-2022

Note how summers are producing less frequent extreme low temperatures, at the
same time as more frequent high temperatures (see Figure 4.7). To a certain extent,
the same can be said about winters. The case of springs and falls is not as clear–cut.

4.2 Seasonal precipitations per region

The following plots are for the precipitations Pstd variable.
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Figure 4.13. Winter seasonal Pstd values, 2011-2022

Figure 4.14. Spring seasonal Pstd values, 2011-2022
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Figure 4.15. Summer seasonal Pstd values, 2011-2022

Figure 4.16. Fall seasonal Pstd values, 2011-2022
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4.3 Seasonal droughts per region

Now, this section gives the drought variable Dstd plots.

Figure 4.17. Winter seasonal Dstd values, 2011-2022
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Figure 4.18. Spring seasonal Dstd values, 2011-2022

Figure 4.19. Summer seasonal Dstd values, 2011-2022
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Figure 4.20. Fall seasonal Dstd values, 2011-2022

5 Insurance application

Two main product types are available currently to transfer climate risks: climate
derivatives and parametric insurance products. This section focuses on the latter
type of cover. The main advantage of parametric insurance over climate derivatives
is the product flexibility, while the main disadvantage is its price; climate derivatives
being cheaper often, as they are traded on a stock market.

By contrast with a classical insurance product, parametric insurance contracts
benefit payoffs are triggered by the value of a predetermined index, when it reaches
a fixed threshold.

The application illustrated here uses the index defined above, the FACI, based
on historical climate data for France and Corsica. With it we calculate premiums of
parametric insurance covers of losses generated by climate events.

5.1 Definition of parametric insurance

Parametric insurance, also known as index insurance, defining characteristic is that
its benefit payoff is triggered by a predetermined parameter or index value, while for
a classical insurance, it is the occurrence of a loss that triggers the benefit payment.

Current parametric insurances are based mostly on climate indexes (sunshine
hours, hurricane wind power, rainfall) whose values are easily obtained, as the infor-
mation is available from meteorological reports. This type of insurance is popular
with farmers seeking a harvest income guarantee. However, the idea can be extended
to any risk for which the benefit can be based on an existing objective index.

The benefit payment process of a parametric insurance is the simplest. Any time
that the index reaches the predetermined threshold in the contract, the benefit is
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due and the insurer pays a lump sum that depends on by how much the index has
exceeded the threshold. As such, the indemnity payment can be made very quickly,
without the need for expert appraisal to evaluate the losses, or to force on the insured
the burden of the proof of the damage incurred. In fact, the indemnity here does
not depend on the loss incurred by the insured but rather by how much the index
value overshoots the predetermined threshold. The idea being that, at least partly,
the two concepts be linked.

5.2 Literature review

Several actuarial works consider the use of parametric insurance products and/or of
climate derivatives. Vendé (2003) looks at the correlation between different climate
indices in the rate making of a parametric cover for Cat. reinsurance. Denizot
and Plouhinec (2008) evaluate the use of different temperature models in pricing
climate derivatives. By contrast, Gilles and Finas (2011) consider the management
of wind risk for the production of eolic electricity. They propose a solution based on
mathematical finance to build appropriate climate derivatives. Nguyen and Ritleng
(2014) study a parametric insurance product for the risk of heavy rainfall in Jamaica.

The Master’s theses cited above base their analyses on purely meteorological
indices, for non agricultural applications. Koch (2011) considers the creation of a
crop yield parametric insurance product based on a climate index. Leprince (2001)
describes two US crop insurance products, for yield and income, and their risk
management use. Batisse and Mercuzot (2009) as well as Fosso and Seretti (2010)
discuss the rate making process for agricultural crop insurance.

The underlying principle of parametric insurance is the construction of an index
correlated with the variable of interest (e.g. sales, crop yields, crop quality, etc.).
However, such an index must respect certain properties:

1. observable and easily measurable,

2. objective,

3. independently verifiable,

4. regularly communicated within a convenient delay,

5. coherent over time.

Such an index is not necessarily meteorological. For instance a region’s crop yield
published by an independent authority, and its structure, which can be complex
(multi–index insurance, spatial and temporal flexibility, etc.), is created after an
analysis of meteorological sensitivity of the variable of interest.

What emerges from the literature is that parametric insurance appears to be an
adapted solution to manage non–catastrophic climate risk.

5.3 Parametric insurance market

Since November 2022, a highly specialised insurtech called Descartes Insurance, has
received the certification awarded sparsely by the regulator, the Autorité de contrôle
prudentiel et de résolution (ACPR), on the French market of parametric or index
insurance. This player specialises in the design of insurance products that automat-
ically pays indemnities to large enterprises or countries when a climatic event or a
natural catastrophe occurs, simply because a predetermined index reaches a certain
threshold. A niche market that is quickly forming in the last few years around start-
ups, like Descartes, but also traditional insurers, like AXA through its subsidiary
AXA Climate, reinsurers, like Swiss Re or Munich Re, and some large brokers.
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In October 2022, Eunice Jesang, a Kenyan farmer from Makueni county, sub-
scribed a crop insurance policy for her corn harvest. Her quotation allowed her to
take part in the “Lemonade Crypto Climate Coalition”, a parametric crop insur-
ance pilot program on blockchain, an initiative of the Lemonade Foundation. Their
objective is to support millions of small farming producers, in world regions where
traditional insurance against storms is not accessible, or not offered.

The specialised brokers Atekka have developed index insurance solutions also.
Launched in Cognac in 2021, with the farming cooperative Océalia and the data
provider Understory, their parametric insurance program against frost and hail that
affect vineyards has already sold a dozen contracts. The frost cover for vines in
Cognac worked well since its inception. Clients know from the contract signature
that an indemnity will be paid, for example 30% of the insured capital, in case
of a trigger if a temperature of -2 °C or less is recorded in their vineyards. The
parametric solutions from Atekka complete traditional insurance. For larger cultures
or winegrowers, classical multirisk climate insurance contracts are sold with a high
deductible of 20 to 25%. Parametric insurance can be used to cover this deductible,
that would otherwise be charged to the farmer.

Club Med also has used parametric insurance for its villages in the Caribbeans,
threaten by hurricanes and earthquakes.

After creating, in February 2021, its practice in parametric insurance, the broker
from Nantes, Bessé, joined AXA Climate in 2022 to develop parametric insurance
solutions for agricultural subsidiaries.

5.4 Rate making process

The parametric insurance rate making process is similar to that of classical insurance.
The usual desirable properties on premiums apply:

1. The charged premium should be larger than the net premium,

2. Premiums must be an increasing function of potential losses,

3. Premiums should be sub–additive in general, and additive for independent
risks.

As for classical insurance, net premiums are adjusted by a risk loading, following
some premium principle, to produce a loaded premium π. For example:

1. The net premium principle sets a loading θ that does not account for the risk
of adverse loss (L) fluctuations around their expectation, E(L):

∀L ∈ L, π(L) = (1 + θ)E(L), θ > 0, (5.1)

2. The variance principle adds a term to account for fluctuations, but is not sub–
additive:

∀L ∈ L, π(L) = E(L) + θV(L), θ > 0,

3. The standard deviation principle replaces the variance, above, by the standard
deviation. It is sub–additive:

∀L ∈ L, π(L) = E(L) + θ
√
V(L), θ > 0, (5.2)

The general rating formula for a basic parametric insurance product uses three
variables: the entry point E, the exit point X and the marginal value of one index
unit, say IV . The insurance benefit payoffs are determined by the following formula:

B = IV × II>E ×min{I − E,X − E},
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where B is the benefit value, I is an indicator function and I is the index value.
This linear benefit formula is the most common on the market, where the index

is correlated positively with the benefit payments. Here the entry and exit points
help determine the part of the risk that is transferred to the insurance company, in
a way reminiscent of an excess–of–loss reinsurance contract; see Figure 5.1 for an
illustration using FACI as the index.

E = median, X = 75%–percentile E = mean, X = 90%–percentile

Figure 5.1. Parametric insurance benefit examples

The first contract parameters to fix are the entry and exit points, that trigger
the benefit payments. The higher the exit point, the larger the premium charged for
the cover. The more probable that the index value be between E and X, the higher
the frequency and the size of the benefit payoffs.

A third parameter is the benefit calculation method. For example, the entry
point E could be the first quartile, the median or any other a critical threshold, that
if passed, it triggers a loss of x% of the expected yield (from a public institution,
like the department of agriculture for crop insurance).

The exit point X could be, for example, a multiple of E, the third or a higher
quartile. For crop insurance products commonly sold in the US, the expected yield
is set as the last 5 years average crop, to which the maximum and minimum are
subtracted (Olympic average).

Lastly, the current production value has to be evaluated. It can correspond to
future prices on financial markets of insured crops or the farmer’s fixed production
costs. In the US all the surface yield insurance products are based on the future
prices of the Chicago Board of Trade (CBOT).

There are different methods for the calculation of the premium itself. The first
one is based on historical payoffs data. The objective here is not to model the index
but use the historical empirical distribution of the payoffs it generated. For each
year of historical data, the benefit is calculated as if the cover were in place. Then
these are averaged over the past years. Here detrending is very important, so that
the past losses distribution reflects that of future losses. Particular attention must
be given to the quality, as well as the depth of the historical data available, to avoid
overfitting. This method is commonly used to obtain a pure premium.

Another approach to calculate the pure premium is to fit a known parametric
distribution to the empirical index distribution. In practice, the calculation is often
performed via Monte Carlo simulations. This is the method illustrated here. Another
possible estimation is through extreme value theory.

To control the profitability of the parametric insurance product, the insurer often
uses economical and performance indicators, such as the loss ratio (observed losses
over adjusted premiums charged). Depending on the specific risk, the loss ratio
study can go back anywhere from 3 to 10 years. The lower the ratio, below 100%,
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Figure 5.2. Fitted beta(α = 8.43 β = 64.49, loc = −0.74, scale =
12.91) density vs histogram on monthly FACI

the more profitable the product. Different learning and testing historical data sets
are used for the premium calculation and loss ratio analysis, through backtesting.

5.5 Numerical illustration

FACI measures extreme weather events, in comparison to the 1961–1990 reference
period. For the purposes of this numerical illustration we use a 2000–2014 learning
period and a lower–resolution FACI, based on 0.25◦ of latitude × 0.25◦ of longitude,
keeping the high–resolution data for visualisations; see Figure D.1. Assume that a
parametric insurance product is then defined and priced on January 1, 2015, based
on this learning period data, providing a one-year coverage. The case of a seasonal
or monthly coverage are also illustrated in Appendix D.

First, a parametric distribution is fitted to the monthly FACI values observed
over the 2000–2014 learning period. Out of 17 fitted continuous distributions, the
beta(α = 8.43β = 64.49, loc = −0.74, scale = 12.91) yielded the highest p-value in
Kolmogorov–Smirnov’s test. Figure 5.2 shows the fit, compared to the histogram of
FACI values.

The fitted beta distribution is then used to price a one–year insurance coverage.
Tables 5.1 and 5.2 give the empirical summary statistics and compare them to the
theoretical beta values. Appendix D lists similar fits, but for monthly FACI indices
to define a one–season or a one–month insurance coverage.

Minimum 25%-percentile Median 75%-percentile Maximum
-0.28 0.42 0.69 1.08 2.4

Table 5.1. Empirical summary statistics

Two parametric insurance coverages are illustrated, for benefits based on, 1. the
entry point being the median E = 0.959 and the exit point being the 75%-percentile
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Summary statistic Theoretical Empirical
Mean 3/4 3/4

Standard Deviation 0.4814 0.4805

Table 5.2. Summary statistics beta(α = 8.43, β = 64.49, loc =
−0.74, scale = 12.91) vs empirical

X = 1.274, and 2. an entry point being the mean E = 0.963 and the exit point being
the 90%-percentile X = 1.601, as in Figure 5.1.

First, 5,000 monthly FACI values are simulated, without a trend, from the beta
density estimated over the 2000–2014 learning period, and tested for 2015; see Figure
D.4. Two premium principles are illustrated; Formula 1 is the loaded pure premium
in (5.1) and Formula 3 for the standard deviation principle in (5.2). Table D.1 reports
the estimated parametric insurance benefit payoffs for these 2 premium formulas
(denoted P.F.), comparing them to the simulated payoffs of an annual coverage in
2015, with a premium loading θ = 3%. In Appendix D.1 a more extensive comparison
is given in Table D.1 for 3 different premium loadings, θ = 3%, 5% and 10%.

Parameters Estimated benefit payoff
E X Actual Pure

E value X(%) value P.F. Mean Std median 75% min-max payoff prem.
med. -0.062 75 0.331 1 170.18 57.86 168.76 208.67 0- 370.46 279.36 175.28
med. -0.062 75 0.331 3 170.18 57.86 168.76 208.67 0- 370.46 279.36 171.92
med. -0.062 90 0.626 1 227.17 85.23 222.53 283.53 0- 526.62 406.55 233.99
med. -0.062 90 0.626 3 227.17 85.23 222.53 283.53 0- 526.62 406.55 229.73
med. -0.062 99.5 1.481 1 262.87 111.45 253.87 333.42 0- 808.52 507.83 270.76
med. -0.062 99.5 1.481 3 262.87 111.45 253.87 333.42 0- 808.52 507.83 266.22
mean 0 75 0.331 1 133.82 48.77 132.26 165.47 0- 308.22 229.57 137.84
mean 0 75 0.331 3 133.82 48.77 132.26 165.47 0- 308.22 229.57 135.28
mean 0 90 0.626 1 190.82 77.05 186.8 241.47 0- 462.64 356.76 196.54
mean 0 90 0.626 3 190.82 77.05 186.8 241.47 0- 462.64 356.76 193.13
mean 0 99.5 1.481 1 226.52 104.17 215.53 291.6 0- 746.79 458.04 233.31
mean 0 99.5 1.481 3 226.52 104.17 215.53 291.6 0- 746.79 458.04 229.64

Table 5.3. Parametric insurance – annual coverage premiums (X(%)
in percent, θ = 3%, P.F. = Premium Formula, Std = standard
deviation, prem. = premium)

Note how the actual payoffs exceed not only the mean or median estimated
payoffs, but are generally close to the maximum of their range of simulated values.
In addition, with small loadings, such as 3% to 10%, both the loaded pure premiums
(Formula 1) and those based on a loading using the standard deviation (Formula 3),
would have been insufficient to cover payoffs. Hence, the first conclusion is that to
be solvent, an annual parametric insurance coverage with benefit payoffs based on
FACI, requires risk loadings larger than 10%.

In many cases it makes more practical sense to design and sell parametric insur-
ance based on a climate index only for a seasonal coverage, rather than on an annual
basis. Table 5.4 reports the simulations results, obtained from the parametric dis-
tributions in Figure D.2 for a summer seasonal coverage only. All other parameters
are as above, including a loading of θ = 3%. Illustrations for other loading values
are reported in Table D.2 of the appendix, while Table D.3 gives the results for a
fall seasonal coverage, Table D.4 for a winter coverage and Table D.5 for a spring
coverage.
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Parameters Estimated benefit payoff
E X Actual Pure

E value X(%) value P.F. Mean Std median 75% min-max payoff prem.
med. 0.138 75 0.445 1 136.97 47.41 134.78 168.3 0- 304.89 92.25 141.08
med. 0.138 75 0.445 3 136.97 47.41 134.78 168.3 0- 304.89 92.25 138.39
med. 0.138 90 0.687 1 194.16 74.13 190.93 241.5 0- 473.21 136.56 199.99
med. 0.138 90 0.687 3 194.16 74.13 190.93 241.5 0- 473.21 136.56 196.39
med. 0.138 99.5 1.622 1 249.81 112.54 240.44 319.5 0- 826.78 190.55 257.31
med. 0.138 99.5 1.622 3 249.81 112.54 240.44 319.5 0- 826.78 190.55 253.19
mean 0.209 75 0.445 1 97.2 36.82 94.66 120.8 0- 233.93 70.96 100.12
mean 0.209 75 0.445 3 97.2 36.82 94.66 120.8 0- 233.93 70.96 98.31
mean 0.209 90 0.687 1 154.39 64.51 150.98 195.19 0- 409.35 115.28 159.03
mean 0.209 90 0.687 3 154.39 64.51 150.98 195.19 0- 409.35 115.28 156.33
mean 0.209 99.5 1.622 1 210.04 104.38 199.94 274.08 0- 770.01 169.27 216.35
mean 0.209 99.5 1.622 3 210.04 104.38 199.94 274.08 0- 770.01 169.27 213.18

Table 5.4. Parametric insurance – seasonal summer coverage premi-
ums (X(%) in percent, θ = 3%, P.F. = Premium Formula, Std
= standard deviation, prem. = premium)

Note how the actual payoffs are now much more in line with their estimated mean
or median values. Furthermore, loaded premiums are now adequate for all loadings,
even the smaller ones, and all premium loading formulas. The other conclusion
emerging from this simulation study is hence that, for parametric insurance coverages
defined on a climate index with seasonal variations, like FACI, it is more adequate
to sell a seasonal coverage, here for the summer only, rather than an annual one, to
reduce the high payoff variations due to seasonal fluctuations of the index.

A similar simulation analysis for a parametric insurance coverage sold on a
monthly basis is possible using the parametric distributions fitted to each month
in Figure D.3, but is not included here.

Conclusions

This paper applies the same methodology of the North American Actuaries Climate
Index™ (ACI) to climate data from France and Corsica, in order to calculate the
French Actuarial Climate Index (FACI). After reviewing the methodology and the
data used to obtain the FACI, with it we study climate change in France since the
1961–1990 reference period, including high–resolution analyses, per component, per
season and per region. Together with the recent indices calculated for Spain and
Portugal, this FACI represents one more step towards the definition of a European
index.

As an illustrative application of FACI, the paper concludes with the definition
and pricing of a parametric insurance product that could be based on FACI. Two
different benefit payoff formulas are illustrated, as well as different premium loadings.
Annual and seasonal coverages are defined; the simulation study illustrating the
better adequacy of premiums for seasonal coverages when the parametric insurance
is based on an index, like FACI, that is subject to seasonal variations.
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Météorologie Dynamique de Jussieu, 2011.

F. Leprince. Yield and revenue crop insurances in the united states. Master’s thesis,
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Appendix A The North American Actuaries

Climate Index (ACI)

Since we extend here the methodology of the Actuaries Climate Index™ (ACI) to
French climate data, for completeness this section reviews the ACI methodology and
its main results; see ACI (2018) for further details.

Originally defined for the United States and Canada, the ACI was produced
jointly by several actuarial societies in North America. It combines six climate
variables, see Table A.1, each being a monthly time series beginning in 1961.

Components Notation Definition

Warm temp. T90 Frequency of temp. > 90th percentile
Cool temp. T10 Frequency of temp. < 10th percentile
Precipitation P Max. rainfall/month in 5 consecutive days
Drought D Annual max. consecutive dry days
Wind speed W Frequency of wind speed > 90th percentile
Sea level S Change in sea level

Table A.1. Definition of the ACI components

The ACI uses a reference period from 1961 to 1990, as the basis to measure
climate change. The data from this period produces the means and standard devi-
ations used to standardise anomalies for each component, relative to 1961-1990. A
monthly standardised anomaly is given by the difference between the given month’s
value and the corresponding month’s average over the reference period, then divid-
ing by its standard deviation over the reference period, like a Z-score. Figure 1.1
plots the seasonal ACI values plus their 5-year moving averages, from 1961 to 2016.

The ACI is calculated monthly, as well as on a seasonal basis. The latter is deter-
mined by taking meteorological seasonal averages, for example, the winter average
is based on the calendar months of December, January, and February. Then the
seasonal standardisation is just as for the monthly index.

A.1 Temperature components, T90 and T10

The two temperature components are defined as the frequency of temperatures above
the 90th percentile and below the 10th percentile, relative to the data from the
reference period of 1961 to 1990; see details in Table A.2.

Because warmer days and warmer nights tend to occur together, the ACI mea-
sures the average percentage of days when daytime high temperatures and night-time
high temperatures are greater than the corresponding 90th percentile, centred on a
5-day window, for the base period 1961-1990:

T90(j, k) =
1

2
[TX90(j, k) + TN90(j, k)], (A.1)

where j = Jan, Feb, . . . , Dec and k = 1961, 1962, . . . , 2022.
The low temperature measure is calculated using a process similar to that used

to calculate the frequency below the 10th percentile:

T10(j, k) =
1

2
[TX10(j, k) + TN10(j, k)], (A.2)

where j = Jan, Feb, . . . , Dec and k = 1961, 1962, . . . , 2022.
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Notation Explanation

TX90 Percentage of days when daytime max. temperature >
90th percentile of the reference period distribution for
the relevant days

TX10 Percentage of days when daytime max. temperature <
10th percentile of the reference period distribution for
the relevant days

TN90 Percentage of days when night-time min. temperature
> 90th percentile of the reference period distribution for
the relevant days

TN10 Percentage of days when night-time min. temperature
< 10th percentile of the reference period distribution for
the relevant days

Table A.2. Explanation of temperature indices

The standardised anomalies for high temperatures are calculated as the difference
between the monthly frequency of warm temperatures > 90-percentile and the average
monthly frequency of warm temperature during the reference period, divided by the
standard deviation over the reference period. The warm temperature T90 and the
cool temperature T10 use the same algorithm:

T90std (j, k) =
T90(j, k)− µrefT90(j)

σrefT90(j)
, (A.3)

where j = Jan, Feb, . . . , Dec and k = 1961, 1962, . . . , 2022, and µrefT90(j) is the
average monthly frequencies of warm temperature for all months during the reference
period, while σrefT90(j) is the standard deviation of the warm temperatures during
the reference period.

The standardised anomalies calculation method for the cold temperatures is con-
sistent with that for warm temperatures

T10std (j, k) =
T10(j, k)− µrefT10(j)

σrefT10(j)
, (A.4)

where j = Jan, Feb, . . . , Dec, and k = 1961, 1962, . . . , 2022.
As the climate warms up, the occurrence of extreme cool temperatures decreases,

and the temperature distribution shifts to the right. Hence, the sign of T10std is
reversed in the calculation of the ACI to correctly reflect the risk (increasing the
ACI when T10std decreases to further negative values).

Fewer extreme cold events indicate that the climate is changing, affecting plant
and animal ecology and weather patterns. Increased melting of permafrost, increased
infectious diseases transmission, and populations of pests and insects that were pre-
viously less likely to survive cooler temperatures are all thought to be associated
with a reduction in the frequency of extreme cold events.

A.2 Precipitation component, P

The precipitation component focuses on extreme rainfall rather than average pre-
cipitation, using the maximum rainfall in any 5 consecutive days within a month,
notated as Rx5day(j, k). The percentage anomaly of maximum 5-day rainfall in a
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month, relative to the reference period value for a given month, is given by:

Pstd (j, k) =
Rx5day(j, k)− µrefRx5day(j)

σrefRx5day(j)
, (A.5)

where, j = Jan, Feb, . . . , Dec and k = 1961, 1962, . . . , 2022, while µrefRx5day(j)
is the average of all months during the reference period, and σrefRx5day(j) is the
standard deviation during the reference period.

A.3 Drought component, D

Droughts are measured by the maximum number of consecutive dry days in each
year, when the precipitation is less than 1 millimetre (denoted CDD(k)). Monthly
values are obtained by linear interpolation of annual values:

CDD(j, k) =


12− j

12
CDD(k − 1) +

j

12
CDD(k) j = 1, 2, . . . , 11,

CDD(k) j = 12.
(A.6)

The standardised anomaly calculations of CDD are similar to those for Rx5day:

Dstd (j, k) =
CDD(j, k)− µrefCDD(j)

σrefCDD(j)
. (A.7)

A.4 Wind Speed component, W

Daily wind speed measurements are converted to wind power, WP , using the rela-
tionship WP (i, j) = 1/2ρw3, where w is the daily mean wind speed and ρ is the
air density (taken to be constant at 1.23kg/m3). Wind power is used because the
destructive potential of wind is better explained by wind power than wind speed.
The wind component measures the monthly frequency of daily mean wind power
above the 90th percentile, denoted as WP90.

The wind power threshold WPu(i, j) is determined, for each day i and month j in
the reference period at each grid point separately. The thresholds value is determined
as the mean plus 1.28 standard deviations of WP (i, j, k), for all 30 values of the same
day and month in the 30-year reference period:

WPu(i, j) = µrefWP (i, j) + 1.28 · σrefWP (i, j). (A.8)

The day counts when the mean wind exceeds the threshold are then expressed as
a percentage of the number of days in the month, providing an exceedance frequency
measure, for every month of every year, throughout the entire period:

I(i, j, k) =

{
1 WP (i, j, k) > WPu(i, j),

0 otherwise,
(A.9)

WP90(i, j, k) =

n(j)∑
i=1

I(i, j, k)

n(j)
, (A.10)

where i represents the day, j the month, k the year, and n(j) the number of days in
the month j.

Then the standardisation is as usual:

Wstd (j, k) =
WP90(j, k)− µrefWP90(j)

σrefWP (j)
. (A.11)
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A.5 Sea level, S

Monthly mean ocean and sea level measurements are obtained from tide gauges,
which record changes in sea level relative to the sea floor (vertical measure). To
avoid negative values, a revised local reference is defined, approximately 7 metres
below mean sea level, (see Permanent Service for Mean Sea Level (PSMSL), 2023).
It is important to note that the height of the land relative to sea level is subject to
change due to crustal movements, and these measurements encompass the combined
effects of land and ocean positional changes. The standardised anomalies in sea level
are calculated using the following equation:

Sstd (j, k) =
S(j, k)− µrefS(j)

σrefS(j)
. (A.12)

A.6 The composite ACI index

The standardised anomalies of the six components above are then combined and
averaged to produce the Actuaries Climate Index™; note that the minimum temper-
ature anomaly T10std is subtracted, because the temperature probability distribution
curve shifts to the right, as explained earlier:

ACI =
1

6
(T90std − T10std + Pstd +Dstd +Wstd + Sstd). (A.13)

Figure A.1 plots the 5-year moving averages of this composite ACI, as well as those
of its 6 components.

Note the significant increasing trends in the ocean and sea level Sstd and high
temperature T90std moving averages, as well as in the ACI. Similarly, the low tem-
perature T10std averages decrease significantly, given their negative signs they make
an important positive contribution to the ACI.

Figure A.1. 5-year moving averages, ACI, and its 6 components

Source: Zhou, Vilar Zanón, Garrido, Heras Mart́ınez (2023, AIAE)
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Appendix B The distribution of standardised

anomalies

The methodology developed to define the North American ACI is based on the
comparison of the standardised anomalies in 6 variables, during and after the 1961-
1990 reference period. One might question if centring and standardising variables,
by removing the mean and dividing by the standard deviation, is appropriate for
variables that might not be symmetrically distributed around their mean. Especially
when these variables measure extremes in the distribution rather than their average.

Figure B.1 plots the histograms of the standardised anomalies for each of the 6
FACI components, in blue for their value during reference period, and in red for the
anomalies values after 1990.

T90std histograms T10std histograms

Pstd histograms Dstd histograms

Wstd histograms Sstd histograms

Figure B.1. Histograms of standardised anomalies, before and after
1990

These histograms vary substantially from one component to another, and be-
tween months. In general they are not symmetric about 0, neither before 1990 when
that is their mean value, nor after 1990. It is better to proceed with the analysis
one component at the time.
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None of the histograms of the frequency of extreme warm temperature events
(T90std) are symmetric, and their right skewness is stronger before 1990 than after.
What is clear is that the anomalies reach much larger positive values since 1990.
The conclusions are similar for the frequency of extreme cold temperature events
(T10std), except that the skewness here is to the left and so is the range extension,
reaching more negative values since 1990.

With regards to the the maximum 5-day precipitation (Pstd) histograms, they
vary less than those for temperature, perhaps with the exception of the end-of-the-
year months, October, November and December. Here the left skewness gets stronger
after 1990, that means that the Falls are either getting wetter, or the heavy rains
come in later than during the reference period. Couple this to what is observed from
the histograms for the the maximum number of consecutive days with a precipitation
less than 1 millimetre (Dstd). A drastic change in distribution, before and after 1998,
occurs in the months of April, showing that it is mainly in the Spring that droughts
are worse now in France and Corsica than during the reference period.

The mean daily wind power (Wstd) histograms show a much longer right tail for
most months, after 1990, in France and Corsica.

Finally, the ocean and sea level variable (Sstd) exhibits the most significant
change, before and after 1990. The distribution shifts to the right, uniformly, which
produces a strong left tail in most months.

In summary, most components of the FACI are not symmetrically distributed,
especially after 1990. Hence, the standardisation used for the North American ACI,
subtracting the reference period mean and diving it by the standard deviation, is
not the most appropriate for skewed observations. This aspect of the methodology
will have to be revisited in future versions of the index for France.
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Appendix C Country comparisons: Canada,

the USA, Portugal, Spain and France

C.1 Indices and their 6 components

C: ACI and its 6 components US: ACI and its 6 components

P: IACI and its 6 components S: IACI and its 6 components

F: FACI and its 6 components

Figure C.1. 5–year averages: seasonal indices and 6 components, for
Canada (C), USA (US), Portugal (P), Spain (S) and France (F)
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C.2 Sea level comparisons, Sstd

Canada: Sea level component US: Sea level component

Portugal: Sea level component Spain: Sea level component

France: Sea level component

Figure C.2. 5–year averages: seasonal sea level component, for
Canada, USA, Portugal, Spain and France
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C.3 Temperatures T90std, T10std and T90std − T10std

Canada: Temperature components US: Temperature components

Portugal: Temperature components Spain: Temperature components

France: Temperature components

Figure C.3. 5–year averages: seasonal temperature components, for
Canada, USA, Portugal, Spain and France
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C.4 Precipitation component, Pstd

Canada: Precipitation component US: Precipitation component

Portugal: Precipitation component Spain: Precipitation component

France: Precipitation component

Figure C.4. 5–year averages: seasonal precipitation component, for
Canada, USA, Portugal, Spain and France
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C.5 Drought component, Dstd

Canada: Drought component US: Drought component

Portugal: Drought component Spain: Drought component

France: Drought component

Figure C.5. 5–year averages: seasonal drought component, for
Canada, USA, Portugal, Spain and France
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C.6 Wind component, Wstd

Canada: Wind component US: Wind component

Portugal: Wind component Spain: Wind component

France: Wind component

Figure C.6. 5–year averages: seasonal wind component, for Canada,
USA, Portugal, Spain and France
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Appendix D Parametric insurance: fit of con-

tinuous distributions to monthly FACI values

Figure D.1. Training period, monthly FACI values

Figure D.2. Fitted parametric distributions, per season, to monthly
FACI values over the 2000–2014 training period
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Figure D.3. Fitted parametric distributions, per month, to monthly
FACI values over the 2000–2014 training period

Figure D.4. Simulated monthly FACI values
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Parameters Estimated benefit payoff
E X Actual Pure

E value X(%) value P.F. θ(%) Mean Std median 75% min-max payoff prem.
med. -0.062 75 0.331 1 3 170.18 57.86 168.76 208.67 0- 370.46 279.36 175.28
med. -0.062 75 0.331 1 5 170.18 57.86 168.76 208.67 0- 370.46 279.36 178.69
med. -0.062 75 0.331 1 10 170.18 57.86 168.76 208.67 0- 370.46 279.36 187.20
med. -0.062 75 0.331 3 3 170.18 57.86 168.76 208.67 0- 370.46 279.36 171.92
med. -0.062 75 0.331 3 5 170.18 57.86 168.76 208.67 0- 370.46 279.36 173.07
med. -0.062 75 0.331 3 10 170.18 57.86 168.76 208.67 0- 370.46 279.36 175.97
med. -0.062 90 0.626 1 3 227.17 85.23 222.53 283.53 0- 526.62 406.55 233.99
med. -0.062 90 0.626 1 5 227.17 85.23 222.53 283.53 0- 526.62 406.55 238.53
med. -0.062 90 0.626 1 10 227.17 85.23 222.53 283.53 0- 526.62 406.55 249.89
med. -0.062 90 0.626 3 3 227.17 85.23 222.53 283.53 0- 526.62 406.55 229.73
med. -0.062 90 0.626 3 5 227.17 85.23 222.53 283.53 0- 526.62 406.55 231.44
med. -0.062 90 0.626 3 10 227.17 85.23 222.53 283.53 0- 526.62 406.55 235.70
med. -0.062 99.5 1.481 1 3 262.87 111.45 253.87 333.42 0- 808.52 507.83 270.76
med. -0.062 99.5 1.481 1 5 262.87 111.45 253.87 333.42 0-808.52 507.83 276.02
med. -0.062 99.5 1.481 1 10 262.87 111.45 253.87 333.42 0- 808.52 507.83 289.16
med. -0.062 99.5 1.481 3 3 262.87 111.45 253.87 333.42 0- 808.52 507.83 266.22
med. -0.062 99.5 1.481 3 5 262.87 111.45 253.87 333.42 0- 808.52 507.83 268.45
med. -0.062 99.5 1.481 3 10 262.87 111.45 253.87 333.42 0- 808.52 507.83 274.02
mean 0 75 0.331 1 3 133.82 48.77 132.26 165.47 0- 308.22 229.57 137.84
mean 0 75 0.331 1 5 133.82 48.77 132.26 165.47 0- 308.22 229.57 140.51
mean 0 75 0.331 1 10 133.82 48.77 132.26 165.47 0- 308.22 229.57 147.20
mean 0 75 0.331 3 3 133.82 48.77 132.26 165.47 0- 308.22 229.57 135.28
mean 0 75 0.331 3 5 133.82 48.77 132.26 165.47 0-308.22 229.57 136.26
mean 0 75 0.331 3 10 133.82 48.77 132.26 165.47 0-308.22 229.57 138.70
mean 0 90 0.626 1 3 190.82 77.05 186.8 241.47 0- 462.64 356.76 196.54
mean 0 90 0.626 1 5 190.82 77.05 186.8 241.47 0- 462.64 356.76 200.36
mean 0 90 0.626 1 10 190.82 77.05 186.8 241.47 0- 462.64 356.76 209.90
mean 0 90 0.626 3 3 190.82 77.05 186.8 241.47 0- 462.64 356.76 193.13
mean 0 90 0.626 3 5 190.82 77.05 186.8 241.47 0- 462.64 356.76 194.67
mean 0 90 0.626 3 10 190.82 77.05 186.8 241.47 0- 462.64 356.76 198.52
mean 0 99.5 1.481 1 3 226.52 104.17 215.53 291.6 0- 746.79 458.04 233.31
mean 0 99.5 1.481 1 5 226.52 104.17 215.53 291.6 0- 746.79 458.04 237.84
mean 0 99.5 1.481 1 10 226.52 104.17 215.53 291.6 0- 746.79 458.04 249.17
mean 0 99.5 1.481 3 3 226.52 104.17 215.53 291.6 0- 746.79 458.04 229.64
mean 0 99.5 1.481 3 5 226.52 104.17 215.53 291.6 0- 746.79 458.04 231.72
mean 0 99.5 1.481 3 10 226.52 104.17 215.53 291.6 0- 746.79 458.04 236.93

Table D.1. Parametric insurance – annual coverage premiums (X(%)
and θ(%) in percent, P.F. = Premium Formula, Std = standard
deviation, prem. = premium)
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Parameters Estimated benefit payoff
E X Actual Pure

E value X(%) value P.F. θ(%) Mean Std median 75% min-max payoff prem.
med. 0.138 75 0.445 1 3 136.97 47.41 134.78 168.3 0- 304.89 92.25 141.08
med. 0.138 75 0.445 1 5 136.97 47.41 134.78 168.3 0- 304.89 92.25 143.82
med. 0.138 75 0.445 1 10 136.97 47.41 134.78 168.3 0- 304.89 92.25 150.67
med. 0.138 75 0.445 3 3 136.97 47.41 134.78 168.3 0- 304.89 92.25 138.39
med. 0.138 75 0.445 3 5 136.97 47.41 134.78 168.3 0- 304.89 92.25 139.34
med. 0.138 75 0.445 3 10 136.97 47.41 134.78 168.3 0- 304.89 92.25 141.71
med. 0.138 90 0.687 1 3 194.16 74.13 190.93 241.5 0- 473.21 136.56 199.99
med. 0.138 90 0.687 1 5 194.16 74.13 190.93 241.5 0- 473.21 136.56 203.87
med. 0.138 90 0.687 1 10 194.16 74.13 190.93 241.5 0- 473.21 136.56 213.58
med. 0.138 90 0.687 3 3 194.16 74.13 190.93 241.5 0- 473.21 136.56 196.39
med. 0.138 90 0.687 3 5 194.16 74.13 190.93 241.5 0- 473.21 136.56 197.87
med. 0.138 90 0.687 3 10 194.16 74.13 190.93 241.5 0- 473.21 136.56 201.58
med. 0.138 99.5 1.622 1 3 249.81 112.54 240.44 319.5 0- 826.78 190.55 257.31
med. 0.138 99.5 1.622 1 5 249.81 112.54 240.44 319.5 0- 826.78 190.55 262.3
med. 0.138 99.5 1.622 1 10 249.81 112.54 240.44 319.5 0- 826.78 190.55 274.79
med. 0.138 99.5 1.622 3 3 249.81 112.54 240.44 319.5 0- 826.78 190.55 253.19
med. 0.138 99.5 1.622 3 5 249.81 112.54 240.44 319.5 0- 826.78 190.55 255.44
med. 0.138 99.5 1.622 3 10 249.81 112.54 240.44 319.5 0- 826.78 190.55 261.06
mean 0.209 75 0.445 1 3 97.2 36.82 94.66 120.8 0- 233.93 70.96 100.12
mean 0.209 75 0.445 1 5 97.2 36.82 94.66 120.8 0- 233.93 70.96 102.06
mean 0.209 75 0.445 1 10 97.2 36.82 94.66 120.8 0- 233.93 70.96 106.92
mean 0.209 75 0.445 3 3 97.2 36.82 94.66 120.8 0- 233.93 70.96 98.31
mean 0.209 75 0.445 3 5 97.2 36.82 94.66 120.8 0- 233.93 70.96 99.05
mean 0.209 75 0.445 3 10 97.2 36.82 94.66 120.8 0- 233.93 70.96 100.89
mean 0.209 90 0.687 1 3 154.39 64.51 150.98 195.19 0- 409.35 115.28 159.03
mean 0.209 90 0.687 1 5 154.39 64.51 150.98 195.19 0- 409.35 115.28 162.11
mean 0.209 90 0.687 1 10 154.39 64.51 150.98 195.19 0- 409.35 115.28 169.83
mean 0.209 90 0.687 3 3 154.39 64.51 150.98 195.19 0- 409.35 115.28 156.33
mean 0.209 90 0.687 3 5 154.39 64.51 150.98 195.19 0- 409.35 115.28 157.62
mean 0.209 90 0.687 3 10 154.39 64.51 150.98 195.19 0- 409.35 115.28 160.85
mean 0.209 99.5 1.622 1 3 210.04 104.38 199.94 274.08 0- 770.01 169.27 216.35
mean 0.209 99.5 1.622 1 5 210.04 104.38 199.94 274.08 0- 770.01 169.27 220.55
mean 0.209 99.5 1.622 1 10 210.04 104.38 199.94 274.08 0- 770.01 169.27 231.05
mean 0.209 99.5 1.622 3 3 210.04 104.38 199.94 274.08 0- 770.01 169.27 213.18
mean 0.209 99.5 1.622 3 5 210.04 104.38 199.94 274.08 0- 770.01 169.27 215.26
mean 0.209 99.5 1.622 3 10 210.04 104.38 199.94 274.08 0- 770.01 169.27 220.48

Table D.2. Parametric insurance – seasonal summer coverage premi-
ums (X(%) and θ(%) in percent, P.F. = Premium Formula, Std
= standard deviation, prem. = premium)

48



Parameters Estimated benefit payoff
E X Actual Pure

E value X(%) value P.F. θ(%) Mean Std median 75% min-max payoff prem.
med. -0.158 75 0.166 1 3 139.59 48.73 137.32 171.09 0- 337.38 32.37 143.78
med. -0.158 75 0.166 1 5 139.59 48.73 137.32 171.09 0- 337.38 32.37 146.57
med. -0.158 75 0.166 1 10 139.59 48.73 137.32 171.09 0- 337.38 32.37 153.55
med. -0.158 75 0.166 3 3 139.59 48.73 137.32 171.09 0- 337.38 32.37 141.05
med. -0.158 75 0.166 3 5 139.59 48.73 137.32 171.09 0- 337.38 32.37 142.03
med. -0.158 75 0.166 3 10 139.59 48.73 137.32 171.09 0- 337.38 32.37 144.46
med. -0.158 90 0.649 1 3 236.53 95.63 230.06 298.66 0- 614.23 80.69 243.63
med. -0.158 90 0.649 1 5 236.53 95.63 230.06 298.66 0- 614.23 80.69 248.36
med. -0.158 90 0.649 1 10 236.53 95.63 230.06 298.66 0- 614.23 80.69 260.18
med. -0.158 90 0.649 3 3 236.53 95.63 230.06 298.66 0- 614.23 80.69 239.4
med. -0.158 90 0.649 3 5 236.53 95.63 230.06 298.66 0- 614.23 80.69 241.31
med. -0.158 90 0.649 3 10 236.53 95.63 230.06 298.66 0- 614.23 80.69 246.09
med. -0.158 99.5 0.959 1 3 262.81 113.32 252.98 334.17 0- 753.11 111.71 270.69
med. -0.158 99.5 0.959 1 5 262.81 113.32 252.98 334.17 0- 753.11 111.71 275.95
med. -0.158 99.5 0.959 1 10 262.81 113.32 252.98 334.17 0- 753.11 111.71 289.09
med. -0.158 99.5 0.959 3 3 262.81 113.32 252.98 334.17 0- 753.11 111.71 266.21
med. -0.158 99.5 0.959 3 5 262.81 113.32 252.98 334.17 0- 753.11 111.71 268.47
med. -0.158 99.5 0.959 3 10 262.81 113.32 252.98 334.17 0- 753.11 111.71 274.14
mean -0.079 75 0.166 1 3 97.69 36.93 97.74 122.21 0- 250.2 24.44 100.62
mean -0.079 75 0.166 1 5 97.69 36.93 97.74 122.21 0- 250.2 24.44 102.57
mean -0.079 75 0.166 1 10 97.69 36.93 97.74 122.21 0- 250.2 24.44 107.46
mean 0.079 75 0.166 3 3 97.69 36.93 97.74 122.21 0- 250.2 24.44 98.8
mean -0.079 75 0.166 3 5 97.69 36.93 97.74 122.21 0- 250.2 24.44 99.53
mean -0.079 75 0.166 3 10 97.69 36.93 97.74 122.21 0- 250.2 24.44 101.38
mean -0.079 90 0.649 1 3 194.63 85.62 187.81 250.13 0- 534.97 72.77 200.47
mean -0.079 90 0.649 1 5 194.63 85.62 187.81 250.13 0- 534.97 72.77 204.36
mean -0.079 90 0.649 1 10 194.63 85.62 187.81 250.13 0- 534.97 72.77 214.09
mean -0.079 90 0.649 3 3 194.63 85.62 187.81 250.13 0- 534.97 72.77 197.2
mean -0.079 90 0.649 3 5 194.63 85.62 187.81 250.13 0- 534.97 72.77 198.91
mean -0.079 90 0.649 3 10 194.63 85.62 187.81 250.13 0- 534.97 72.77 203.19
mean -0.079 99.5 0.959 1 3 220.9 104 212.68 287.36 0- 673.85 103.78 227.53
mean -0.079 99.5 0.959 1 5 220.9 104 212.68 287.36 0- 673.85 103.78 231.95
mean -0.079 99.5 0.959 1 10 220.9 104 212.68 287.36 0- 673.85 103.78 242.99
mean -0.079 99.5 0.959 3 3 220.9 104 212.68 287.36 0- 673.85 103.78 224.02
mean -0.079 99.5 0.959 3 5 220.9 104 212.68 287.36 0- 673.85 103.78 226.1
mean -0.079 99.5 0.959 3 10 220.9 104 212.68 287.36 0- 673.85 103.78 231.3

Table D.3. Parametric insurance – seasonal fall coverage premiums
(X(%) and θ(%) in percent, P.F. = Premium Formula, Std =
standard deviation, prem. = premium)
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Parameters Estimated benefit payoff
E X Actual Pure

E value X(%) value P.F. θ(%) Mean Std median 75% min-max payoff prem.
med. -0.303 75 -0.049 1 3 119.49 39.32 118.86 146.13 0- 266.05 50.7 123.08
med. -0.303 75 -0.049 1 5 119.49 39.32 118.86 146.13 0- 266.05 50.7 125.47
med. -0.303 75 -0.049 1 10 119.49 39.32 118.86 146.13 0- 266.05 50.7 131.44
med. -0.303 75 -0.049 3 3 119.49 39.32 118.86 146.13 0- 266.05 50.7 120.67
med. -0.303 75 -0.049 3 5 119.49 39.32 118.86 146.13 0- 266.05 50.7 121.46
med. -0.303 75 -0.049 3 10 119.49 39.32 118.86 146.13 0- 266.05 50.7 123.42
med. -0.303 90 0.348 1 3 199.78 78.25 195.69 250.4 0- 519.36 100.73 205.78
med. -0.303 90 0.348 1 5 199.78 78.25 195.69 250.4 0- 519.36 100.73 209.77
med. -0.303 90 0.348 1 10 199.78 78.25 195.69 250.4 0- 519.36 100.73 219.76
med. -0.303 90 0.348 3 3 199.78 78.25 195.69 250.4 0- 519.36 100.73 202.13
med. -0.303 90 0.348 3 5 199.78 78.25 195.69 250.4 0- 519.36 100.73 203.7
med. -0.303 90 0.348 3 10 199.78 78.25 195.69 250.4 0- 519.36 100.73 207.61
med. -0.303 99.5 0.746 1 3 219.18 92.95 213.4 276.48 0- 645.83 110.69 225.75
med. -0.303 99.5 0.746 1 5 219.18 92.95 213.4 276.48 0- 645.83 110.69 230.13
med. -0.303 99.5 0.746 1 10 219.18 92.95 213.4 276.48 0- 645.83 110.69 241.09
med. -0.303 99.5 0.746 3 3 219.18 92.95 213.4 276.48 0- 645.83 110.69 221.96
med. -0.303 99.5 0.746 3 5 219.18 92.95 213.4 276.48 0- 645.83 110.69 223.82
med. -0.303 99.5 0.746 3 10 219.18 92.95 213.4 276.48 0- 645.83 110.69 228.47
mean -0.258 75 -0.049 1 3 93.27 32.53 92.61 114.96 0- 216.81 41.75 96.07
mean -0.258 75 -0.049 1 5 93.27 32.53 92.61 114.96 0- 216.81 41.75 97.94
mean -0.258 75 -0.049 1 10 93.27 32.53 92.61 114.96 0- 216.81 41.75 102.6
mean -0.258 75 -0.049 3 3 93.27 32.53 92.61 114.96 0- 216.81 41.75 94.25
mean -0.258 75 -0.049 3 5 93.27 32.53 92.61 114.96 0- 216.81 41.75 94.9
mean -0.258 75 -0.049 3 10 93.27 32.53 92.61 114.96 0- 216.81 41.75 96.53
mean -0.258 90 0.348 1 3 173.56 72.52 168.98 220.31 0- 478.59 91.78 178.77
mean -0.258 90 0.348 1 5 173.56 72.52 168.98 220.31 0- 478.59 91.78 182.24
mean -0.258 90 0.348 1 10 173.56 72.52 168.98 220.31 0- 478.59 91.78 190.92
mean -0.258 90 0.348 3 3 173.56 72.52 168.98 220.31 0- 478.59 91.78 175.74
mean -0.258 90 0.348 3 5 173.56 72.52 168.98 220.31 0- 478.59 91.78 177.19
mean -0.258 90 0.348 3 10 173.56 72.52 168.98 220.31 0- 478.59 91.78 180.82
mean -0.258 99.5 0.746 1 3 192.96 87.63 186.95 246.63 0- 605.06 101.74 198.75
mean -0.258 99.5 0.746 1 5 192.96 87.63 186.95 246.63 0- 605.06 101.74 202.61
mean -0.258 99.5 0.746 1 10 192.96 87.63 186.95 246.63 0- 605.06 101.74 212.25
mean -0.258 99.5 0.746 3 3 192.96 87.63 186.95 246.63 0- 605.06 101.74 195.59
mean -0.258 99.5 0.746 3 5 192.96 87.63 186.95 246.63 0- 605.06 101.74 197.34
mean -0.258 99.5 0.746 3 10 192.96 87.63 186.95 246.63 0- 605.06 101.74 201.72

Table D.4. Parametric insurance – seasonal winter coverage premiums
(X(%) and θ(%) in percent, P.F. = Premium Formula, Std =
standard deviation, prem. = premium)
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Parameters Estimated benefit payoff
E X Actual Pure

E value X(%) value P.F. θ(%) Mean Std median 75% min-max payoff prem.
med. 0.044 75 0.35 1 3 143.08 47.39 142.44 174.63 1.3- 313.37 52.05 147.38
med. 0.044 75 0.35 1 5 143.08 47.39 142.44 174.63 1.3- 313.37 52.05 150.24
med. 0.044 75 0.35 1 10 143.08 47.39 142.44 174.63 1.3- 313.37 52.05 157.39
med. 0.044 75 0.35 3 3 143.08 47.39 142.44 174.63 1.3- 313.37 52.05 144.51
med. 0.044 75 0.35 3 5 143.08 47.39 142.44 174.63 1.3- 313.37 52.05 145.45
med. 0.044 75 0.35 3 10 143.08 47.39 142.44 174.63 1.3- 313.37 52.05 147.82
med. 0.044 90 0.671 1 3 213.29 80.79 208.85 267.11 1.3- 527.47 63.48 219.68
med. 0.044 90 0.671 1 5 213.29 80.79 208.85 267.11 1.3- 527.47 63.48 223.95
med. 0.044 90 0.671 1 10 213.29 80.79 208.85 267.11 1.3- 527.47 63.48 234.61
med. 0.044 90 0.671 3 3 213.29 80.79 208.85 267.11 1.3- 527.47 63.48 215.71
med. 0.044 90 0.671 3 5 213.29 80.79 208.85 267.11 1.3- 527.47 63.48 217.33
med. 0.044 90 0.671 3 10 213.29 80.79 208.85 267.11 1.3- 527.47 63.48 221.37
med. 0.044 99.5 1.164 1 3 243.46 101.73 234.29 309.96 1.3- 654.26 63.48 250.77
med. 0.044 99.5 1.164 1 5 243.46 101.73 234.29 309.96 1.3- 654.26 63.48 255.63
med. 0.044 99.5 1.164 1 10 243.46 101.73 234.29 309.96 1.3- 654.26 63.48 267.81
med. 0.044 99.5 1.164 3 3 243.46 101.73 234.29 309.96 1.3- 654.26 63.48 246.51
med. 0.044 99.5 1.164 3 5 243.46 101.73 234.29 309.96 1.3- 654.26 63.48 248.55
med. 0.044 99.5 1.164 3 10 243.46 101.73 234.29 309.96 1.3- 654.26 63.48 253.63
mean 0.129 75 0.35 1 3 94.27 34.77 92.42 117.09 0- 221.78 35.17 97.1
mean 0.129 75 0.35 1 5 94.27 34.77 92.42 117.09 0- 221.78 35.17 98.98
mean 0.129 75 0.35 1 10 94.27 34.77 92.42 117.09 0- 221.78 35.17 103.7
mean 0.129 75 0.35 3 3 94.27 34.77 92.42 117.09 0- 221.78 35.17 95.31
mean 0.129 75 0.35 3 5 94.27 34.77 92.42 117.09 0- 221.78 35.17 96.01
mean 0.129 75 0.35 3 10 94.27 34.77 92.42 117.09 0- 221.78 35.17 97.75
mean 0.129 90 0.671 1 3 164.47 69.6 160.11 209.97 0- 434.64 46.61 169.41
mean 0.129 90 0.671 1 5 164.47 69.6 160.11 209.97 0- 434.64 46.61 172.7
mean 0.129 90 0.671 1 10 164.47 69.6 160.11 209.97 0- 434.64 46.61 180.92
mean 0.129 90 0.671 3 3 164.47 69.6 160.11 209.97 0- 434.64 46.61 166.56
mean 0.129 90 0.671 3 5 164.47 69.6 160.11 209.97 0- 434.64 46.61 167.95
mean 0.129 90 0.671 3 10 164.47 69.6 160.11 209.97 0- 434.64 46.61 171.43
mean 0.129 99.5 1.164 1 3 194.65 91.52 186.34 253.44 0- 561.43 46.61 200.49
mean 0.129 99.5 1.164 1 5 194.65 91.52 186.34 253.44 0- 561.43 46.61 204.38
mean 0.129 99.5 1.164 1 10 194.65 91.52 186.34 253.44 0- 561.43 46.61 214.11
mean 0.129 99.5 1.164 3 3 194.65 91.52 186.34 253.44 0- 561.43 46.61 197.39
mean 0.129 99.5 1.164 3 5 194.65 91.52 186.34 253.44 0- 561.43 46.61 199.22
mean 0.129 99.5 1.164 3 10 194.65 91.52 186.34 253.44 0- 561.43 46.61 203.8

Table D.5. Parametric insurance – seasonal spring coverage premiums
(X(%) and θ(%) in percent, P.F. = Premium Formula, Std =
standard deviation, prem. = premium)
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