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Abstract. Optimization of polarimeters has historically been achieved using an assortment of performance metrics.7

Selection of an optimization parameter is frequently made, however, on an ad hoc basis. In this article we rigorously8

demonstrate that optimization strategies in Stokes polarimetry based on three common metrics; namely the condition9

number of the instrument matrix, the determinant of the associated Gram matrix, or the equally weighted variance, are10

formally equivalent. In particular, using each metric we derive the same set of constraints on the measurement states,11

and show that these can be satisfied using spherical 2 designs. Our conclusions are equally applicable to optimization12

of the illumination states in Mueller matrix polarimetry.13
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1 Introduction16

Quantitative analysis of the state of polarization of light provides a powerful tool in modern sci-17

ence. Applications vary from microscopy, biomedical diagnosis and astrophysics1–3 to crystallo-18

graphic, material and single molecule studies.4, 5 Whilst the polarization state of light itself, can be19

used to transmit information, hence presenting new opportunities in optical data storage and com-20

munications,6–9 changes in polarization induced by a material can alternatively be used for object21

detection10 or to characterize sample properties, such as chirality or molecular orientation.11–13
22

Stokes polarimeters, which allow a complete characterization of the polarization state of input23

light as described by the associated 4 × 1 Stokes vector S, comprise of N (≥ 4) distinct mea-24

surements that can be multiplexed in, for example, time,14 frequency15 or space.16 Fundamentally,25

each constituent measurement outputs an intensity Ij (j ∈ [1, N ]) which is proportional to the26

projection of the incident Stokes vector onto an analysis state Wj , i.e., Ij = WT
j S. Central to27
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the description and design of Stokes polarimeters is hence the so-called instrument or measure-28

ment matrix W = [W1,W2, . . .]
T formed from stacking the set of analysis vectors. In order to29

obtain an estimate of the Stokes vector from the set of projections Ij , the measurement matrix must30

be inverted. So as to limit noise propagation through this inversion process, optimization of the31

measurement matrix is hence frequently performed. Optimization in this vein has been performed32

using different metrics including the associated information content,17–19 matrix determinant,20–22
33

signal to noise ratio,23 equally weighted variance24, 25 and condition number.21–23, 25–29
34

Mueller matrix polarimeters, on the other hand, combine a Stokes polarimeter with use of35

multiple incident polarized states so as to measure the full Mueller matrix of an object. Variation36

of the probing polarization states (as can be described using an analogous illumination matrix)37

therefore introduces additional degrees of freedom, hence admitting further optimization.17, 28–32
38

Application specific optimization of polarimeters has also been reported, for example, in detection39

and imaging problems the polarization contrast is a more suitable metric.33, 34
40

Recently, the equivalence of a number of optimization metrics, namely the equally weighted41

variance, the condition number of W and the determinant of the associated Gram matrix, was42

discussed by Foreman et al.35 Additionally, Foreman et al. proved that a Stokes polarimeter is43

optimal (as characterized by these metrics) when the set of analysis states defines a spherical 244

design36 on the unit Poincaré sphere. A re-examination of the equivalence between these metrics45

is, however, necessary due to an error in the proof presented in Ref. 35. The goal of this article is46

therefore to provide a rigorous proof that the conclusions of Ref. 35 hold. Our derivations also elicit47

greater insight into the optimization of Stokes polarimeters. We additionally note that our results48

are equally applicable to optimization of the probing states used in Mueller matrix polarimetry due49

to the similar matrix structure of the problem.31, 37
50
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2 Optimal polarimetry with spherical 2-designs51

The instrument matrix, W, of a polarimeter is an N × 4 matrix, the rows of which are the Stokes

vectors of theN polarization states being analyzed, normalized such that the polarimeter is passive.

Accordingly the instrument matrix has the parametric form

W =
1

2



1 wT
1

1 wT
2

...
...

1 wT
N


,

1

2

[
r Q

]
, (1)

where r is anN×1 vector of ones and Q is the matrix formed from the 3×1 vectors wj (j ∈ [1, N ])52

of unit norm. Note that throughout this work bold notation is used to signify column vectors whilst53

blackboard font denotes matrices. Please also note that we have assumed an ”ideal” instrument54

matrix, in the sense that the transmittance and degree of polarization of all the rows are equal55

to one. The generalization of the obtained results to arbitrary instrumentation matrices will be56

discussed in Section 4.57

In Stokes polarimetry, one performs N intensity measurements Ij, j ∈ [1, N ] by projecting the

input Stokes vector S onto each of the N analyzers described by the N rows of the matrix W.

If these measurements are stacked in an N -dimensional vector I = [I1, I2, . . . , IN ]T , and if we

assume that the measurements are perturbed by white additive noise, we obtain

I = WS + B, (2)

where B is an N × 1 random vector with covariance matrix σ2IN and In denotes the n×n identity
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matrix. The maximum-likelihood estimate of S is obtained by

Ŝ = W+I (3)

where

W+ = (WTW)−1WT (4)

denotes the pseudo-inverse matrix. The estimate Ŝ is a random vector of mean S (i.e., the estimator

is unbiased), and of covariance matrix17, 23, 24

KS = σ2(WTW)−1. (5)

The estimation variances of each element of the Stokes vector estimate are the diagonal elements

of this matrix. A natural goal of polarimeter optimization is to find the measurement matrix W

that minimizes the sum of these variances, that is, the trace of KS. The corresponding performance

metric is called the equally weighted variance (EWV), i.e.,

EWV = σ2tr[G−1] (6)

where

G = WTW (7)
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denotes the Gram matrix associated with W.58

To optimize the EWV, we first express the Gram matrix G in block format, viz.

G =
1

4

 N rTQ

QT r QTQ

 ,

 A BT

C D

 . (8)

The inverse of the Gram matrix can then be expressed in the form38

G−1 =

 A−1 + A−1BTM−1CA−1 −A−1BTM−1

−M−1CA−1 M−1

 , (9)

where the matrix

M = (D−CA−1BT ) (10)

is the Schur complement of the upper left block of G. This implies that the trace we seek can be

written as

tr[G−1] = A−1 + A−1BTM−1CA−1 + tr[M−1]. (11)

Substituting Eq. (8) into Eq. (10), the Schur complement takes the form:

M =
1

4

(
QTQ− qqT

N

)
(12)
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where q = QT r is an N -dimensional vector. Upon using the identity38

(Z + xyT )−1 = Z−1 − Z−1xyTZ−1

1 + yTZ−1x
(13)

with x = −y = q/
√
N and Z = QTQ, we find

M−1 = 4 (QTQ)−1 + 4
(QTQ)−1qqT (QTQ)−1

N − qT (QTQ)−1q
. (14)

Direct substitution from Eqs. (8) and (14) into Eq. (11) yields

tr[G−1] = 4

{
1

N
+ tr

[
(QTQ)−1

]
+
qT [N(QTQ)−2 + (QTQ)−1]q

N [N − qT (QTQ)−1q]

}
, (15)

where we have also used the cyclic property of the trace operation and the identity tr[XqTq] =59

qTXq for arbitrary X.38
60

Noting that N > 0 and that QTQ is positive definite, it follows immediately that the first

two terms in Eq. (15) are positive. We show in Appendix A that the third term is also positive.

Consequently, the trace in Eq. (15) is minimal when its three terms are minimal. The first term is

constant, and the third is minimal when it is null, that is, when q = QT r = 0 or equivalently

N∑
n=1

wn = 0. (16)

Importantly, Eq. (16) expresses a polynomial constraint that must be satisfied by an optimal mea-61

surement matrix, and is equivalent to that given in Eq. (4) of Ref. 35.62

6



When Eq. (16) holds, minimizing tr[G−1] is equivalent to minimizing tr
[
(QTQ)−1

]
. This

optimization has to be done under the constraint that the trace of the matrix QTQ is constant as

follows from the normalization of wj . Indeed, since each row of the matrix Q is a unit-norm vector,

we have

tr[QTQ] = tr[QQT ] = N. (17)

We thus have to solve the following constrained optimization problem, set in Lagrange form

Ψ(Q) = tr[(QTQ)−1]− µ (tr[QTQ]−N) (18)

where µ is a Lagrange multiplier. The Lagrange function can also be expressed as

Ψ(β) =
3∑

j=1

1

βj
+ µ

(
3∑

j=1

βj −N

)
(19)

where βj , j ∈ [1, 3], are the positive eigenvalues of the matrix QTQ. Equating the gradient of

Eq. (19) with respect to β to zero and enforcing the constraint (∂Ψ/∂µ = 0) yields βj = 1/
√
µ =

N/3 for all j ∈ [1, 3], such that

QTQ =
m∑
j=1

wjw
T
j =

N

3
I3. (20)

Eq. (20) is the second set of polynomial constraints derived in Ref. 35. The form of the Gram
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matrix G which hence minimizes the EWV of the instrument matrix is thus

G = WTW =
N

12



3 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1


. (21)

According to Eq. (5), the corresponding covariance of the Stokes vector estimate is hence:

KS =
4

N
σ2



1 0 0 0

0 3 0 0

0 0 3 0

0 0 0 3


. (22)

This result is important since it specifies, in a very simple closed-from, the fundamental limit63

of the estimation variance that can be reached by a Stokes polarimeter with a given number of64

measurement vectors in the presence of additive noise. For example, we note that the minimum65

achievable variance on an estimate of the intensity (i.e. the first element of the Stokes vector) is66

three times better than that on the other Stokes parameters. Moreover, the covariance matrix is67

diagonal, which means that the fluctuations of each element of the Stokes vector estimator are68

statistically independent. This property is important when performing theoretical computations69

involving Stokes vector estimators. Incidently, we note that the minimum value of the equally70

weighted variance is EWV = 40σ2/N .71

Finally, we can show that the conditions expressed by Eqs. (16) and (20) are satisfied when72
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the set of measurement states on the Poincaré sphere, defined by {wj}, j ∈ [1, N ], constitute a73

spherical 2 design (see Appendix B) as reported in Ref. 35. A spherical t-design is defined as a74

collection of N points {wj} on the surface of the unit sphere (in our case in R3) for which the75

normalized integral of any polynomial function, f(w), of degree t or less is equal to the average76

taken over the N points. The Platonic solids, i.e., the regular tetrahedron (N = 4), the octahedron77

(N = 6), the cube (N = 8), the icosahedron (N = 12), and the dodecahedron (N = 20), are78

spherical 2 designs, as well as many other measurement frames illustrated in.35
79

3 Equivalence of optimization metrics80

We will now demonstrate that the optimization of two other popular metrics, namely the condition81

number and the determinant of the Gram matrix, lead to exactly the same measurement frames as82

the EWV, so that these three criteria are strictly equivalent.83

3.1 Condition number84

The condition number κ of the instrument matrix is defined by κ = ‖W‖‖W+‖ where W+ is the

pseudo-inverse matrix and the Hilbert-Schmidt matrix norm38 of any matrix P is defined as:

‖P‖ = (tr[PTP])1/2 = (tr[PPT ])1/2 (23)

Our choice of normalization of the measurement states Wj = [1,wj]
T/2 implies that

‖W‖2 = tr[WTW] =
N

2
. (24)
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Moreover, using the expression of the pseudo-inverse in Eq. (4), it is easily shown that

‖W+‖2 = tr[(W+)TW+] = tr[(WTW)−1] =
EWV
σ2

. (25)

Consequently, one can write

κ =

√
N√
2σ

√
EWV. (26)

For any measurement matrix verifying Eq. (1), the condition number is thus simply proportional to85

the square root of the EWV. It is thus obvious that minimizing the condition number is equivalent86

to minimizing the EWV.87

3.2 Determinant of the Gram matrix88

The first works on Stokes polarimeter optimization considered devices with a minimal number89

(N = 4) of measurement vectors.26 Optimization of such systems used the determinant of the90

matrix W (which for this value of N is square and non singular) as a performance metric. In this91

case the optimal structure found dictated that the measurement vectors defined a regular tetrahe-92

dron on the Poincaré sphere, a result that we also found above by optimizing the EWV. We show93

in this section that this result comes from the strict equivalence of these two optimization metrics.94

This equivalence can be generalized to any value of N if one considers the optimization of the95

determinant of the Gram matrix G, since for N > 4 the matrix W itself is rectangular and its96

determinant is thus not defined. Notice that this equivalence was mentioned in Ref. 35, but there97

was an erroneous step in the logic presented in that work (see appendix C for more detail).98

We intend here to show that maximization of the determinant |G| yields the same polynomial99
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constraints embodied in Eqs. (16) and (20). Considering the block form of the Gram matrix in100

Eq. (8), its determinant can be written as38
101

|G| = |A−BTD−1C||D|

=
1

256

[
N − rTQ(QTQ)−1QT r

]
|QTQ|. (27)

Maximizing this expression means maximizing the two factors appearing in the product. The first102

factor is maximized if the positive subtractive term is zero, that is to say when the vector QT r = 0,103

corresponding to the first polynomial constraint expressed in Eq. (16).104

For the second factor, we note that |QTQ| =
∏3

j=1 βj where βj , j ∈ [1, 3], are the eigenval-

ues of the matrix QTQ which are positive since QTQ is positive definite. Moreover, according to

Eq. (17), the matrix QTQ has constant trace. Maximization of |QTQ| is thus once again a con-

strained optimization problem which can be solved using the method of Lagrange multipliers. We

will consider maximization of ln |QTQ| since the logarithmic function is monotonically increasing.

The Lagrange function then becomes

Ψ(β) =
3∑

j=1

ln βj − µ

(
3∑

j=1

βj −N

)
. (28)

Following the standard optimization procedure we find, similarly to Section 2, that βj = 1/µ =105

N/3 for all j ∈ [1, 2, 3]. As shown in Section 2, the second polynomial constraint expressed in106

Eq. (20) then follows. Therefore, we have ultimately shown that minimization of the EWV (and107

thus also of the condition number of the instrument matrix) of a polarimeter yields the same set of108

optimality constraints as maximizing the determinant of the associated Gram matrix.109

11



4 Discussion110

The main conclusion of the previous sections is the following: among all the measurement matri-111

ces verifying Eq. (1), the ones that maximize the condition number, the EWV and the determinant112

are exactly the same. It can be said that this results unifies many previous works on polarimeter op-113

timization: for example, the early work of Azzam26 (based on determinant), Ambirajan and Look22
114

(based on condition number and determinant), Sabatke et al.24 (based on EWV and determinant),115

and Tyo43 (based on condition number), among many others.116

Modeling of W with Eq. (1) implies that the transmittance and the degree of polarization of all

rows of W are equal to one. This hypothesis is frequently done in polarimetry, but it is interesting

to consider the case where it is not fulfilled. In the general case, each row of the measurement

matrix may have a different transmission ti, i ∈ [1, N ], and a different degree of polarization

Pi, i ∈ [1, N ]. In this case, the measurement matrix can be expressed in the following form:

W =
1

2



t1 t1P1w
T
1

t2 t2P2w
T
2

...
...

tN tNPNw
T
N


,

1

2

[
Tr TPQ

]
, (29)

where T = diag(t1, . . . , tN) and P = diag(P1, . . . , Pn). In this general form, it is easy to demon-117

strate that118

‖W‖2 =
1

4

N∑
i=1

(1 + P 2
i )t2i (30)
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Consequently, one can generalize Eq. (26) to:119

κ =

√∑N
i=1(1 + P 2

i )t2i

2σ

√
EWV (31)

This entails a generalization of the result obtained in Section 3: for arbitrary, but fixed values120

of transmissions and degree of polarization of the analysis vectors, optimization of the vectors’121

positions on the normalized Poincaré sphere (i.e., of the vectors wn) yields the same result if the122

condition number or the EWV are used as criteria. If, in addition, the transmissions and degree of123

polarizations are identical for all the N measurements, it is easy to show that the resulting optimal124

structures are spherical 2 designs. If they are not identical, the optimal structures are no longer the125

spherical designs. Determining the optimal structures in this case is an interesting perspective to126

the present work.127

Another important practical question is which one of the three considered metrics is the most

appropriate for evaluating the performance of any polarimeter, be it optimal or not. Indeed, on this

point of view, the metrics are not equivalent. This is most easily seen by noticing that the three

metrics only depend on the measurement matrix through the eigenvalues of G, denoted µi, i ∈

[1, 4], and have the following form:

|G| =
4∏

i=1

µi (32)

κ =

(
4∑

i=1

µi

)1/2( 4∑
i=1

1

µi

)1/2

(33)

EWV =
4∑

i=1

1

µi

(34)
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It is seen that although they look similar, they are different. In particular, two different sets of128

eigenvalues may lead to the same value of κ, but different values of |G| and EWV, and vice versa.129

The question of how to choose the best metric could seem arbitrary, but we think there is a strong130

objective argument in favor of EWV. Indeed, the EWV corresponds to an estimation variance,131

which has a clear and useful statistical meaning. For example, it makes it handier to compare132

two different polarimeter structures: saying that polarimeter A has a EWV twice than polarimeter133

B just means that the variance of the estimated Stokes vector is twice. In sharp contrast, a ratio134

between two determinants or two condition numbers is much less easy to interpret in terms of135

estimation error.136

Another strong advantage of the EWV is that it can be used for polarimeter optimization in the137

presence of non-additive noises sources. The EWV has for example been used to derive the optimal138

measurement frames in the presence of Poisson shot noise.39, 40 In this case, the expression of the139

covariance matrix of the Stokes estimate was different from Eq.(5). Consequently, the EWV was140

different from Eq. (6), and was thus no longer proportional of the square of the condition number,141

which had no statistical meaning. Furthermore, when measurements are simultaneously affected142

by several types of statistically independent noise sources, the value of the EWV is simply the sum143

of the EWVs corresponding to each noise source. This property has for example been recently144

employed to characterize the actual performance of micro-grid based polarimetric cameras in the145

presence of both additive detection noise and Poisson shot noise.41
146

In conclusion, the message of the present work could be summarized as follows. When op-147

timizing the estimation performance of a polarimeter in the presence of additive Gaussian noise,148

condition number, determinant, and EWV are three strictly equivalent metrics. When evaluating149

and comparing the performance of different polarimeters, or when optimizing polarimeters in the150
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presence of non-additive, non-Gaussian noise sources, the EWV has strong advantages compared151

with the two other metrics.152

5 Conclusions153

We have shown that optimization of the EWV, of the condition number, or of the determinant154

of the Gram matrix of a Stokes polarimeter leads to the same optimal measurement structures,155

namely, spherical 2 designs. These structures yield a very simple closed-form expression for the156

covariance matrix of the Stokes vector estimator, and thus of the variances of each element of the157

Stokes vector. These expressions constitute the fundamental limit of the estimation variance that158

can be reached by a Stokes polarimeter in the presence of additive noise.159

As a conclusion, we would like to stress that although the three considered metrics are equiv-160

alent for polarimeter optimization in the presence of additive noise, the EWV has the simplest161

physical interpretation since it corresponds to an estimation variance, which has a clear and useful162

statistical meaning. As a consquence, in contrast to the two other metrics, the EWV can be used163

for polarimeter optimization in the presence of noise sources with non-additive, non-Gaussian, or164

mixed statistics.165

A very interesting perspective is the determination of the optimal measurement matrices in the166

presence of non-additive noise sources. As said above, this problem has already been addressed167

by optimizing the EWV obtained after application of the pseudo-inverse estimator.39, 40 Although168

this procedure give satisfying results in practice,42 it is not strictly optimal. Indeed, in the presence169

of non additive and non Gaussian noise, by virtue of the Cramér-Rao lower bound, the appropriate170

criterion is the trace of the inverse Fisher information matrix.17, 18 The value of this criterion171

corresponds to the EWV of an efficient estimator, which the pseudo-inverse estimator is not in172
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general. An exciting perspective is to work at determining the measurement matrices optimizing173

this Fisher criterion, and at analyzing the differences between the obtained optimal structures and174

the spherical 2 designs.175

Appendix A: Positivity of the third term of Eq. (15)176

We demonstrate in this appendix that the third term of the expression of tr[G−1] in Eq. (15) is

positive definite. Since the matrix QTQ is by definition a positive matrix, the numerator of this

term is also positive. We therefore need only analyse the denominator. Considering then the

singular value decomposition Q = UFVT , where U and V are unitary matrices and F is diagonal,

it is easily seen that

Q(QTQ)−1QT = UFUT (35)

where F = D(DTD)−1DT is a diagonal N ×N matrix. The first three diagonal elements of F are

unity, whereas the other elements are zero. We thus have

qT (QTQ)−1q = vTFv =
3∑

i=1

v2i (36)

where v = UT r is an N -dimensional vector. Moreover

3∑
i=1

v2i ≤
N∑
i=1

v2i = ‖v‖2 = ‖r‖2 = N (37)
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since U is a unitary matrix. Hence

qT (QTQ)−1q ≤ N, (38)

which means that the third term of Eq. (15) is positive.177

Appendix B: Satisfying Eqs. (16) and (20) with spherical t designs178

Consider a finite set of points {wj} (j ∈ [1, N ]), which lie on the surface of the three dimensional

unit sphere. The set of points {wj} are said to constitute a spherical t design if for any polynomial

function f(w) of order t or lower

N∑
j=1

f(wj) = N

∫
f(w)dσw, (39)

where dσw is the normalized surface area element of the unit sphere.179

Proof that Eqs. (16) and (20) can be satisfied using spherical 2 designs follows by showing

that we can generate the constraints through appropriate choice of polynomial functions f(w)

of second order degree or less in Eq. (39). Considering first the case f(w) = ws (s ∈ [1, 3]),

substitution into Eq. (39) yields

N∑
j=1

wsj = N

∫
wsdσw (40)

where wsj is the value of the sth element of wj . We can express w in terms of the usual spherical

polar coordinates, i.e., w = [sin θ cosφ, sin θ sinφ, cos θ]T such that 4πdσw = sin θdθdφ. It is then

simple to show that
∫
wsdσw = 0 for s ∈ [1, 3] such that Eq. (40) reduces to Eq. (16). Similarly,
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using the polynomial function f(w) = wswt for {s, t} = {1, 2, 3} Eq. (39) becomes

m∑
j=1

wsjwtj = N

∫
wswtdσw. (41)

Evaluating the integral on the right hand side yields δst/3, such that Eq. (41) reduces to Eq. (20),180

therefore completing our proof. Although we have proven that Eqs. (16) and (20) can be satisfied181

by a spherical 2 design, it is worthwhile to note that it automatically follows that they can also be182

satisfied by a spherical design of higher order, t ≥ 2, because a spherical t design is also a t − 1183

design.184

Appendix C: Previous derivation185

The constraints derived in Section 2 through direct minimization of the EWV were first derived

by Foreman et. al exploiting a claimed equivalence between minimizing the trace of G−1 and

maximizing the determinant of G. Specifically, using the definition of the matrix inverse and

Jacobi’s formula it was first shown that the condition number can be expressed in the form35

κ2 =
N

2
tr[(WTW)−1] =

N

2

4∑
i=1

∂ ln |G|
∂Gii

(42)

where Gii are the diagonal elements of G. Based on Eq. (42) Foreman et al. claim that the186

equivalence of optimization metrics follows from the differential relation 2d lnκ = −d ln |G|.187

Regrettably this relation does not follow from Eq. (42), nor in fact does it hold in general, as can188

be seen by expressing both ln[tr[G−1]] = 2 lnκ + const. and ln |G| in terms of the eigenvalues of189

G.190
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