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Abstract: The two ellipsometric parameters of an isotropic sample can be measured with 
simplified polarimetry setups that acquire a minimum number of four intensity measurements. 
However, these measurements are perturbed by noise, and the measurement strategy has to be 
optimized in order to limit noise propagation. We determine two different measurement 
strategies that are optimal in the presence of both white Gaussian additive noise and Poisson 
shot noise. The first one involves a polarization state generator (PSG) with a single state of 
polarization and a polarization state analyzer (PSA) with four states, and in the second one, 
both PSG and PSA have two states. The total estimation variances obtained with both 
strategies are demonstrated to be minimal, of equal values and independent of the 
ellipsometric parameters to be measured. They are based on simple optical elements and have 
the potential to simplify and accelerate ellipsometric measurements. 
© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement 

1. Introduction 
Ellipsometry/polarimetry is a powerful tool for accurately determining the optical properties 
and geometric characteristics of materials in bulk or thin film form [1-3]. When observing 
smooth and isotropic samples, the ellipsometry consists of measuring two ellipsometric 
parameters [4-7]. Ellipsometric techniques can be broadly divided into two categories [5]. 
The first one consists in periodically varying the azimuth angle of a component of the 
polarimeter with time. The detected signal is then Fourier-analyzed in order to determine the 
ellipsometric parameters. Most commercial ellipsometers fall into this category [6,7]. The 
second consists of measuring the light intensity at predetermined azimuthal positions. This 
type of methods is called static ellipsometry [1,2,5]. 

In both categories of instruments, intensity measurements are performed, and then 
inverted by linear algorithms (Fourier transform or pseudo-inverse matrix) to yield the 
ellipsometric parameters [5-7]. However, the measurements are perturbed by noise, and this 
noise propagates to the estimates of ellipsometric parameters through the inversion process. It 
is of prime importance to limit this noise propagation, that is, to minimize the variance of the 
parameter estimates. The purpose of the present paper is to determine the static ellipsometer 
architectures that optimize estimation precision in the presence of the two main sources of 
noise corrupting the measurements: white Gaussian additive noise and Poisson shot noise. 
Since these noise sources are inevitable, the obtained results will constitute the fundamental 
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limits of measurement precision of ellipsometric parameters with any measurement strategy 
having the same integration time. 

We will use the Stokes-Mueller formalism, which has proven its efficiency for finding 
optimal polarimeter configurations [2,8-11]. The Mueller matrix of isotropic materials is 
block-diagonal and only contains eight non-zero elements related to the ellipsometric 
parameters [5,6]. Moreover, these eight elements present some symmetry, so that they finally 
involve only four different unknown parameters. It should thus be possible to reduce the 
number of intensity measurements to four. We will describe two different ellipsometric 
measurement strategies that involve four measurements and that are optimal in the presence 
of both white Gaussian additive noise and Poisson shot noise. Both strategies minimize the 
total estimation variance while making it independent of the Mueller matrix elements, and 
thus of the ellipsometric parameters to be measured. 

The paper is organized as follows. We define the model of the estimation problem we 
address in Section 2. In Section 3, we consider a first type of measurement strategy where the 
polarization state generator (PSG) has a single state of polarization and the polarization state 
analyzer (PSA) with four states. The PSG and PSA are optimized to yield minimal estimation 
error in the presence of additive Gaussian and Poisson shot noise. In Section 4, another type 
of setup where both the PSG and the PSA have two states is optimized in the same way. The 
obtained results are summarized in Section 5, and we draw conclusions and perspectives of 
this work in Section 6. 

2. Polarimetry for measuring ellipsometric parameters 

The ellipsometric parameters ( ),ψ ∆  are defined from the ratio of the amplitude reflection 
coefficients for p- and s-polarizations [5,6]: 

 ( )tan exp .p

s

r
i

r
ρ ψ≡ ∆ ≡   (1) 

where tan p s
r rψ =  refers to the amplitude ratio, and p sδ δ∆ = −  refers to the difference in 

phase shift [5]. The two ellipsometric parameters are also related to the Mueller matrix of the 
sample. In particular, in the case of isotropic samples, only the upper left and lower right 
2 2×  sub-matrices do not vanish, and the Mueller matrix of the sample can thus be written in 
terms of the ellipsometric parameters ( ),ψ ∆ [5,6] as follows: 
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where cos 2 ,  sin 2 cos ,  sin 2 sina b cψ ψ ψ= − = ∆ = ∆ , and r is the surface power reflectance. 

One can thus obtain the ellipsometric parameters ( ),ψ ∆  by measuring the Mueller matrix. 
The typical system configuration of complete Mueller matrix polarimetry consists of a 

light source, a polarization state generator (PSG), a polarization state analyzer (PSA), and an 
intensity detector. In practice, there are various types of configurations for PSG and PSA [10-
16], and the common system configuration is composed of a linear polarizer and a retarder in 
both the PSG and the PSA [1-5,10], as shown in Fig. 1. Complete Mueller matrix polarimetry 
requires 16 intensity measurements to estimate all the 16 elements of the Mueller matrix M , 
and thus both the PSG and PSA must be able to generate four different polarization states [1, 
2]. 



 
Fig. 1. Typical system configuration for complete Mueller matrix polarimetry. 

However, it can be seen from Eq. (2) that the measurement of ellipsometric parameters 
depend on only four different parameters (r, a, b, c). Therefore, theoretically speaking, four 
intensity measurements should be sufficient to measure these four parameters. It is thus 
interesting to develop simplified strategies to measure these four parameters by taking only 
four intensity measurements. We will determine in the following two strategies based on four 
measurements that minimize the total estimation variance of Mueller parameters. They will 
differ by the number of polarization states generated by the PSG and the PSA. 

3. Optimal strategy with one state of PSG and four states of PSA 
In this section, we propose our first measurement strategy in which the PSG generates a 
single, fixed input polarization state, while the PSA analyzes with four different polarization 
states. We determine the optimal polarization states of the PSG and the PSA such that the 
total estimation variance of the Mueller matrix elements is minimal in the presence of white 
Gaussian additive noise and Poisson shot noise. 

3.1 Modeling of the measurement strategy 

In order to achieve four intensity measurements, a feasible strategy is that the PSG contains 
one polarization state characterized by eigenstate vector S, while the PSA contains four 
different polarization states characterized by eigenstate vectors ,  {1, 2,3, 4}i i∈T . We will call 
this strategy “1×4 type” in the following. 

The eigenstate vectors S and iT  depend on the azimuths and the ellipticities ( ),S Sα ε  and 

( ),T T
i iα ε  of the polarization states used in PSG and PSA, respectively [2]: 
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with [ ] [ ]2, 2 , 4, 4 ,  {1,2,3,4}iα π π ε π π∈ − ∈ − ∈ . 
According to Eq. (3), the four intensities measured by the detector are thus equal to: 

 { }1 ,   1, 2,3, 4 ,
2

T
i iI M i= =T S   (4) 



where T denotes matrix transpose and M  the product of the sample Mueller matrix by the 
source intensity. In order to facilitate the discussion, these four measured intensities are 
rewritten as a vector-matrix product: 

 { }1 1 ,   1, 2,3, 4 ,
2 2

T
i i M MI A Q i= ⇔ = ∀ ∈V I V   (5) 

where I is the intensity vector of the four measured intensities iI , MV  is the 16-dimensional 
vector obtained by reading the measured Mueller matrix M  of the sample in the 
lexicographic order, and i iA = ⊗T S  is the 16-dimensional vector computed from the 
Kronecker product ⊗  between the eigenstate vector of the PSG and the ith eigenstate vector 
of the PSA. Therefore, Q is the 4 16×  matrix obtained by stacking the vectors T

iA row by row. 
Taking into account the fact that only eight non-zero elements in Mueller matrix (vector) 

MV are to be measured, we pick out these eight elements in MV , and obtain an eight-

dimensional vector M
ΩV  containing all the non-zero elements of the Mueller matrix as: 

 [ ], , , , , , , .T
M r ra ra r rb rc rc rdΩ = −V   (6) 

Then, Eq. (5) can be rewritten as: 

 1 ,
2 MQΩ Ω=I V   (7) 

where QΩ  is a 4 8×  matrix whose rows are the vectors iA  from which only the eight 

coefficients indexed by M
ΩV  are kept. The intensity measured by the detector in Eq. (7) is thus 

given by: 

 

2 12 2 13 3 12 3 1311 1 1 11

2 22 2 23 3 22 3 2321 1 1 21

2 32 2 33 3 32 3 3331 1 1 31

2 42 2 43 3 42 3 4341 1 1 41

1
11 ,
12
1

r
ra

s t s t s t s tt s s t ra
s t s t s t s tt s s t r
s t s t s t s tt s s t rb
s t s t s t s tt s s t rc

rc
rb

 
 
 
  
  
  =   
  
−  
 
 
  

I   (8) 

and by merging the terms that involve the same Mueller matrix parameters, Eq. (8) can be 
rewritten as: 
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Let [ ]4 ,  ,  ,  T
M r ra rb rc=V denote the four-dimensional vector of the Mueller matrix to be 

measured, which is called “Mueller vector” in the following, and let us define the matrix: 
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This matrix, which involves the polarization states of PSG and PSA, will be referred to as the 
“instrument matrix” in the following. Therefore, the vector of measured intensities 

[ ]1 2 3 4,  ,  ,  TI I I I=I  in Eq. (9) can be written as: 

 4 .MW=I V   (11) 

It has to be noted that 2 2 2 1a b c+ + =  [see in Eq. (2)], hence the Mueller vector 4
MV  to be 

measured is structurally similar to a Stokes vector. Moreover, according to Eq. (10), the four 
elements of each row in W satisfy [the detailed demonstration is shown in Appendix I]: 

 { }2 2 2 2
1 2 3 4 ,   1, 2,3, 4 .i i i iW W W W i= + + ∀ ∈   (12) 

It is thus noticed that the form in Eq. (11) is similar to that of Stokes vector polarimetry 
[16,17]. The only difference is that the elements 1iW  of the first column of the instrument 
matrix W are not necessarily identical, while for Stokes vector polarimetry, they are all equal 
to one. 

In practice, Eq. (11) does not hold strictly since the intensity measurements are disturbed 
by noise, and thus I is a random vector such that each of its element iI  is a random variable 

[16,17]. In order to estimate the Mueller vector 4
MV  from the noisy intensity measurements 

vector I, one just has to invert the instrument matrix W in Eq. (11): 

    4 1ˆ .M W −=V I  (13) 

Once we get the value of 4ˆ
MV , we can calculate the two ellipsometric parameters ( ),ψ ∆  

by [11,18]: 
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where 4ˆ
M i

  V  refers to the ith element of 4ˆ
MV . Therefore, optimizing the estimation of 

Mueller vector is beneficial for achieving higher measurement precision of the ellipsometric 
parameters. It is clear that 4ˆ

MV  is an unbiased estimator, because 4 1 4ˆ
M MW −= =V I V , 

where ⋅  denotes ensemble averaging. For an unbiased estimator, the measurement precision 

is determined by its variance [19]. The variance of 4ˆ
MV  can be characterized by its covariance 

matrix 4ˆ
M

Γ
V

, which is given by: 

 ( )4
1 1

ˆ ,
M

T
W W− −ΓΓ = IV

  (15) 

where ΓI  denotes the covariance matrix of the intensity vector I. The variances iγ  of each 

element of 4ˆ
MV  equal the diagonal element 4ˆ

M ii
 Γ V

of the covariance matrix, and thus the 



total estimation variance of all the four elements in Mueller vector equals the trace of 4ˆ
M

Γ
V

, 

which is expressed as 4

4
ˆ1

 trace .
M

ii
γ

=
 = Γ ∑ V

 Our goal will be to find the best association of 

polarization states of PSG and PSA yielding an instrument matrix optW  with a minimal total 
estimation variance: 
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arg  min .opt iW i

W γ
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3.2 Optimization in the presence of white Gaussian additive noise 

In the presence of white Gaussian additive noise, I is a random vector such that each of its 
elements iI , { }1,2,3,4i∈  is a Gaussian random variable with mean value iI  and variance 

2σ [19]. Since the noise is white, each intensity measurement is statistically independent from 
the other [20-22]. Therefore, the covariance matrix ΓI  is diagonal, and all the four diagonal 

elements are equal to 2σ . By substituting ΓI  into Eq. (15), one can get the covariance matrix 
4ˆ
M

Γ
V

 as follows: 

 ( )4
1 1 2

ˆ ,
M

T
W W σ− − Γ =   V

  (17) 

and the variances iγ  of each element of 4ˆ
MV  are thus given by: 

 ( )4
1 1 2

ˆ .
M

T

i
ii ii

W Wγ σ− −  = Γ =     V   (18) 

It is seen that these variances depend only on the instrument matrix W, and not on the 
Mueller vector 4

MV  to be measured. The total estimation variance is thus given by: 

 ( )
4

2 1 1

1
trace ,

T

i
i

W Wγ σ − −

=

 =   ∑   (19) 

which is also independent of 4
MV . According to Eqs. (16) and (19), the optimal instrument 

matrix Gau
optW  in the presence of white Gaussian additive noise should satisfy: 

 ( ){ }1 1arg  min trace .
TGau

opt W
W W W− − =   

  (20) 

It is possible to obtain a closed-form solution for the optimization problem in Eq. (20), 
and the detailed demonstration is given in Appendix II. It is shown that the optimal 
association of polarization states of PSG and PSA has the following properties: 

1. For the eigenstate vector of PSG given by Eq. (3), the second parameter 1 0s ≡ ; 
2. The four eigenstate vectors of PSA have a regular tetrahedron structure [17,20]. 

These two properties induce that the instrument matrix Gau
optW  corresponding to the optimal 

polarization states of PSG and PSA also has a regular tetrahedron structure. The variances iγ  
of each element of the Mueller vector are: 

 2 2 2 2
1 2 3 4,  3 ,  3 ,  3 ,γ σ γ σ γ σ γ σ= = = =   (21) 



and the total variance is thus equal to 210σ . It is interesting to notice that the optimal 
measurement matrix found in our case is the same as that which is optimal for Stokes vector 
estimation [17,20]. The reason for that is the structural similarity of our ellipsometric 
estimation problem with the Stokes vector estimation problem, which we have pointed out in 
Eqs (11) and (12). 

The simplest eigenstate vector with 1 0s =  is [ ]1,0,1,0 T=S , which corresponds to a linear 
polarizer at 45  for PSG [2]. Therefore, the optimal system configuration for polarimetry of 
“1×4 type” is shown in Fig. 2. Obviously, different from the typical system configuration 
shown in Fig. 1, the PSG of the proposed optimal strategy does not involve a retarder but only 
a linear polarizer at 45  angle. 

 
Fig. 2. Optimal system configuration for polarimetry of “1×4 type”. 

In addition, for any given eigenstate vector S and optimal instrument matrix Gau
optW  with 

regular tetrahedron structure, the four eigenstate vectors of PSA can be calculated by Eq. (10). 

3.3 Optimization in the presence of Poisson shot noise 

Let us now consider that the measurements are perturbed by Poisson shot noise. In this case, 
each element iI  of the intensity vector I is a Poisson random variable with mean and variance 

both equal to iI  [19]. Because of the statistical independence of Poisson shot noise, the 

covariance matrix ΓI  is also diagonal with elements: 

 [ ] { }
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1
,   1, 2,3, 4 ,i ik Mii k

k
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=

 Γ = = ∈ ∑I V   (22) 

and thus, according to Eq. (15), one can get the variances iγ  of each element 4
M i

  V as: 
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It is noticed that contrary to the case of white Gaussian additive noise, the criterion 
4

1 ii
γ

=∑  does depend on the true value of the Mueller vector 4
MV to be measured. In this case, 

a proper strategy is to consider a minmax optimization [17], that is, minimize the following 
function: 
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where
4 4 21

1 1
.j ik kj

i k
u W W−

= =

 =  ∑∑  To facilitate the discussion, let us define the vectors 

1,
TT =  U u and 4 1,

TT
M r  =  V v , where [ ]2 3 4, , Tu u u=u  and [ ], , Ta b c=v is the normalized 

Mueller vector. Therefore, the function in Eq. (24) can be rewritten as: 

 ( ) ( ){ }1max ,F W r u= + ⋅
u

u v   (25) 

where “ ⋅ ” denotes the scalar product. Considering the two terms of ( )F W  in Eq. (25), it can 

be seen that the first term 1ru  is independent of the normalized Mueller vector v to be 
measured, while the second term r ⋅u v  depends on v. For a given r, this second term is 
obviously maximized by =v u u , and thus the function to be minimized with respect to W 
is: 

 ( ) ( )1 ,F W r u= + u   (26) 

where ( )1 24 2
2 ii
u

=
= ∑u . Thus, the instrument matrix Poi

optW  in the presence of Poisson shot 

noise should minimize ( )F W  as: 

 ( )arg  min .Poi
opt W

W F W=   (27) 

It is difficult to obtain a closed-form solution of this optimization problem. However, one 
can apply a numerical optimization algorithm to find the solution. Indeed, according to Eq. 
(3), each eigenstate vector of PSG and PSA is defined by two parameters (azimuth α  and 
ellipticity ε ), and thus the numerical optimization consists in optimizing 10 parameters of the 
PSG (two parameters: ,α εS S ) and the PSA (eight parameters: , ,i iα εT T { }1, 2,3, 4i∈ ). We 
apply the shuffled complex evolution (SCE) method [23], which is robust to the presence of 
local maxima when there are multiple parameters to be optimized. For the optimization 
problem in Eq. (27), we have verified that this algorithm can converge rapidly to the global 
minimum. 

In addition, we repeat SCE method numerous times with different starting points, and all 
the numerical results show that: 

1. The minimal total estimation variance is equal to 5r; 
2. The second parameter of the optimal eigenstate vector S of PSG 1 0s ≡ , and thus, 

from Eq. (10), { }1,2,3,4k∀ ∈ 1 1 2kW = . 

Indeed, considering 1 1 2kW = , one has: 

 ( ) ( )
4 4 21 1 1

1
1 1

1 1 1trace = ,
2 2 2

T

ik Gau
i k

u W W W F W− − −

= =

  = =    ∑∑   (28) 

where ( )GauF W  denotes the total estimation variance in the presence of white Gaussian 

additive noise, and therefore, ( )F W  in Eq. (26) can be rewritten as: 

 ( ) ( )1 ,
2 GauF W r F W = + 

 
u   (29) 



According to the optimization in the presence of white Gaussian additive noise in section 
3.2, ( )GauF W  is minimal only when the instrument matrix has a regular tetrahedron structure. 

Moreover, all the regular tetrahedra lead to a second term 0=u [17,21], and thus to the 
minimal total estimation variance of 5r. According to the analysis above, it is reasonable to 
consider a solution as optimal if it has the following properties: 

1. For the eigenstate vector of PSG, the second parameter 1 0s ≡ ; 
2. The instrument matrix W and thus the four eigenstate vectors of PSA have a 

regular tetrahedron structure. 

It should be noted that all the instrument matrices with regular tetrahedron structure lead 
to minimization of total estimation variance of 5r, and this total estimation variance does not 
depend on 4

MV . In the general case, however, the variances iγ of each element of 4
MV  may 

vary with the true value of 4
MV to be measured. An attractive property for instrument matrix 

would be that the variances iγ do not depend on 4
MV . The only two “standard” regular 

tetrahedron matrices that have this property are [17]: 

 

1 1 3 1 3 1 3

1 1 3 1 3 1 31 ,
2 1 1 3 1 3 1 3

1 1 3 1 3 1 3

Poi
optW

 
 

− − 
=  

− − 
 − − 

  (30) 

and the matrix 1
Poi

optW − obtained from Poi
optW  by reversing the signs of all the elements of the last 

three columns. By substituting this optimal matrix into Eq. (23), it is seen that the variances 
iγ  of each element of 4

MV  have the following expressions: 

 { }1
1 3,        2,3, 4 ,
2 2ir r iγ γ= = ∀ ∈   (31) 

and thus the total estimation variance is equal to 5r. It is verified that they are all independent 
of 4

MV . Besides, the variances of the last three elements of 4
MV  are “equalized” and equal to 

three times the variance of the first element. However, it should be noted that, in the presence 
of Poisson shot noise, the “equalization” property is not valid for all instrument matrices with 
regular tetrahedron structure, but only for the “standard” regular tetrahedron instrument 
matrix Poi

optW  and 1
Poi

optW −  given by Eq. (30). 

Table 1. Optimal parameters and eigenstate vectors of PSG/PSA for “1×4 type”. 

Parameters/ 
Eigenstate vectors PSG PSA 

Parameters 
( ),α ε  

( ) ( ), 45 ,0α ε =S S    ( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

1 1 2 2

3 3 4 4

, 22.50 ,17.63 ; , 67.50 ,17.63 ;

, 67.50 , 17.63 ; , 22.50 , 17.63

α ε α ε

α ε α ε

= = −

= − = − −

T T T T

T T T T

   

   
 

Eigenstate vectors 
( S  / iT ) ( )1,0,1,0=S  

1 2

3 4

1,1 3 ,1 3 ,1 3 ; 1, 1 3 , 1 3 ,1 3 ;

1, 1 3 ,1 3 , 1 3 ; 1,1 3 , 1 3 , 1 3

   = = − −   
   = − − = − −   

T T

T T
 



In addition, since the second parameter of the optimal eigenstate vector S of PSG 1 =0s , 
the simplest PSG setting is one linear polarizer at 45 . Therefore, the optimal system 
configuration for the case of Poisson shot noise is the same as that for white Gaussian 
additive noise shown in Fig. 2. The corresponding parameters (azimuth and ellipticity) of the 
PSA can be calculated according to Eqs. (3), (10) and (30), and are shown in Table 1. In 
addition, the eigenstate vectors corresponding to PSG and PSA are also presented in Table 1. 

It has to be noted that since the optimal instrument matrix for Poisson shot noise also 
minimizes the total estimation variance for white Gaussian additive noise, the optimal 
parameters and eigenstate vectors of the PSG and the PSA in Table 1 are also optimal in the 
presence of white Gaussian additive noise. Therefore, by performing four intensity 
measurements with the simplified system configuration shown in Fig. 2 and the optimal 
parameters shown in Table 1, we can estimate the Mueller vector 4

MV  with minimal total 
estimation variance in the presence of both white Gaussian additive noise and Poisson shot 
noise. 

4. Optimal strategy with two states of both PSG and PSA 
In this section, we will consider another type of strategy to achieve four intensity 
measurements, where both PSG and PSA implement two polarization states characterized by 
the eigenstate vectors iS , iT , { }1,2i∈ , respectively. This strategy will be called “2×2 type” 
in the following. 

Applying the same reasoning that led to Eq. (10) in the case of the “1×4 type” strategy, it 
is easily shown that the instrument matrix for the “2×2 type” strategy is: 

 

11 11 11 11 12 12 13 13 13 12 12 13

11 21 21 11 12 22 13 23 13 22 12 23
2 2

21 11 11 21 22 12 23 13 23 12 22 13

21 21 21 21 22 22 23 23 23 22 22 23

1  
1  1 ,
1  2
1  

s t t s s t s t s t s t
s t t s s t s t s t s t

W
s t t s s t s t s t s t
s t t s s t s t s t s t

×

+ + + − 
 + + + − =
 + + + −
 
+ + + − 

  (32) 

where [ ]1 2 31, , ,i i i is s s=S , [ ]1 2 31, , ,i i i it t t=T , { }1,2i∈  refer to the two eigenstate vectors of the 

polarization states of PSG and PSA, respectively. Then the four elements in 4
MV  can be 

extracted by inverting the instrument matrix 2 2W ×  as 4 1
2 2

ˆ
M W −

×=V I . 

4.1 Optimization in the presence of white Gaussian additive noise 

In the case of “2×2 type”, the optimal association of the polarization states of PSG and PSA 
that yields the optimal instrument matrix 2 2

Gau
optW × −  in the presence of white Gaussian additive 

noise should minimize the total estimation variance of the four elements in 4
MV : 

 ( ){ }
2 2

1 1
2 2 2 2 2 2arg  min trace .

TGau
opt W

W W W
×

− −
× − × ×

 =   
  (33) 

It is difficult to find a closed-form solution of this optimization problem. One can get the 
optimal solution numerically by applying an optimization algorithm with SCE method [23], 
which involves optimizing the eight parameters of PSG and PSA. The numerical optimization 
result shows that, the minimal total estimation variance is 10 2σ , and the second parameter of 
the optimal eigenstate vectors of PSG fulfils { }1 0  1, 2is i= ∈， . In this case, 1 1 2iW =

{ }1,2,3,4i∀ ∈ in Eq. (32), and thus the matrices W with regular tetrahedron structure lead to 



the minimal total estimation variance of 10 2σ . It is thus reasonable to consider a solution as 
optimal if it has the following properties: 

1. For the two eigenstate vectors iS of PSG, the second parameter { }1 0,  1, 2is i= ∈ ; 
2. The instrument matrix W has the regular tetrahedron structure. 

With the optimal instrument matrix 2 2
Gau

optW × − , the variances iγ of each element of 4ˆ
MV  and 

the total estimation variance are also calculated by 
1 1 2

2 2 2 2

T
Gau Gau

i opt opt
ii

W Wγ σ
− −

× − × −
     =        

 and 

4

1 ii
γ

=∑ , respectively. One obtains the same values as for the “1×4 type” strategy: 

 
4

2
1 2 3 4

1

2 2,  3 ,  10 ,i
i

σ σγ γ γ γ γ σ
=

= = = = =∑   (34) 

The simplest couple of eigenstate vectors of PSG with { }1 0,  1, 2is i= ∈  is [ ]1 1,0,1,0 T=S  

and [ ]2 1,0, 1,0 T= −S , which corresponds to linear 45±  polarized light. Therefore, different 

from the “1×4 type” strategy, the linear polarizer in PSG is not just fixed at 45  but must be 
able to implement two different angles ( 45 and 45−  ). The system configuration of “2×2 
type” is shown in Fig. 3. Comparing with the configuration shown in Fig. 1, the PSG in Fig. 3 
does not involve a retarder but only a linear polarizer, which is same to the one in Fig. 2. In 
addition, in Fig. 2, the polarizer of the PSA is set to a single fixed angle of 45 , while that in 
Fig. 3 has to be set to two different angles of 45±  . 

 
Fig. 3. Optimal system configuration for polarimetry of “2×2 type”. 

In addition, as soon as the two eigenstate vectors iS  and the optimal instrument matrix 

2 2
Gau

optW × −  with regular tetrahedron structure are decided, the two eigenstate vectors of PSA can 
be calculated by Eq. (32). 

4.2 Optimization in the presence of Poisson shot noise 

For the case of “2×2 type” strategy in the presence of Poisson shot noise, the optimal 
instrument matrix 2 2

Poi
optW × −  is such that: 

 ( ){ }
2 2

2 2 1arg  min .Poi
opt W

W r u
×

× − = + u   (35) 



where [ ] [ ]
4 4 21

2 2 2 2
1 1

j ik kj
i k

u W W−
× ×

= =

 =  ∑∑ . We obtain the optimal solution of the optimization 

problem in Eq. (35) numerically by using SCE method. The numerical optimization results 
show that the second parameter of the eigenstate vectors of PSG fulfills { }1 0,  1, 2is i= ∈ , 
and the minimal total variance equals 5r. Similar to the case of “1×4 type” strategy, the 
instrument matrix with regular tetrahedron structure is also optimal for “2×2 type” strategy. It 
indicates that the optimal instrument matrix for Poisson shot noise also minimizes the total 
variance for white Gaussian additive noise. However, only the “standard” matrix given by Eq. 
(30) minimizes and equalizes the variances of each Mueller parameters to be measured, and 
makes all these variances independent of the value of this Mueller vector. 

Table 2. Optimal parameters and eigenstate vectors of PSG/PSA for “2×2 type”. 

Parameters/ 
Eigenstate vectors PSG PSA 

Parameters 
( ),α ε  

( ) ( )
( ) ( )

1 1

2 2

, 45 ,0 ;

, 45 ,0

α ε

α ε

=

= −

S S

S S

 

 
 

( ) ( )
( ) ( )

1 1

2 2

, 22.50 ,17.63 ;

, 67.50 , 17.63

α ε

α ε

=

= −

T T

T T

 

 
 

Eigenstate vectors 
( iS  / iT ) 

[ ]
[ ]

1

2

1,0,1,0 ;

1,0, 1,0

=

= −

S

S
 

1

2

1,1 3 ,1 3 ,1 3 ;

1, 1 3 ,1 3 , 1 3

 =  
 = − − 

T

T
 

Therefore, in this case again, the system configuration optimal for Poisson shot noise is 
identical to the configuration optimal for white Gaussian noise shown in Fig. 3, in which only 
one linear polarizer is required for the PSG. The four intensity measurements can be achieved 
with this polarizer at two angles ( 45+  and 45−  ). The corresponding optimal parameters 
(azimuth α and ellipticity ε ) and the eigenstate vectors of PSG and PSA can be calculated 
according to Eqs. (3), (30) and (32), and are shown in Table 2. 

By comparing this table with Table 1, it is clearly seen that the “2×2 type” strategy has the 
same optimal performance as “1×4 type” strategy: 

1. The variances of each element of the Mueller vector 4ˆ
MV  are 1 1 2 rγ = , 

3 2i rγ = , { }  2,3, 4i∀ ∈  and the total estimation variance is equal to 5r; 
2. The noise variances are equalized and independent of the Mueller vector, and 

thus of the ellipsometric parameters to be measured. 

Therefore, by performing four intensity measurements with the optimal configuration 
shown in Fig. 3 and the optimal parameters shown in Table 2, one can estimate the Mueller 
vector 4

MV  with minimal total estimation variance for both white Gaussian additive noise and 
Poisson shot noise. In addition, the total estimation variances obtained with the “2×2 type” 
and “1×4 type” strategies are identical. 

5. Summary 
In the sections above, based on the Stokes-Mueller formalism, we have proposed two types of 
ellipsometric parameters measurement strategies that are optimal in the presence of both 
white Gaussian additive noise and Poisson shot noise. In order to present the results clearly, 
we summarize them in Table 3.  

It should be noted that in the case of white Gaussian additive noise, all the instrument 
matrices W with regular tetrahedron structure are optimal. Therefore, the optimal set of 
eigenstate vectors of PSA is not unique: any set of four measurement vectors obtained by 3D 
rotation of the standard regular tetrahedron matrix given by Eq. (30) is optimal [21]. For the 
purpose of illustration, we presented in Table 3 the optimal eigenstate vectors of PSA 



corresponding to the standard regular tetrahedron instrument matrix given by Eq. (30) in the 
presence of white Gaussian additive noise. 

In practice, the intensity detection is disturbed by both additive Gaussian noise and 
Poisson shot noise. The quantum efficiency (QE) η  influences the relative weights of the 
Gaussian and Poisson noise components, since it has a quadratic influence on the variance of 
Gaussian noise 2

Gauσ ,  but a linear influence on the variance of Poisson noise 2
Poiσ . Therefore, 

the variance of the detected intensity I is [9,15,17]: 

 [ ] 2 2 2VAR ,Poi GauI ησ η σ= +   (36) 

However, as shown in Table 3, the regular tetrahedron matrix given by Eq. (30) is optimal for 
both Gaussian and Poisson noise. Therefore, this regular tetrahedron matrix is also optimal 
when Gaussian and Poisson noise are simultaneously present. 

Table 3. The performance for the two types of optimal strategies in the presence of white Gaussian additive 
noise and Poisson shot noise. 

Type Noise 
Optimal  

instrument matrix (W) 
Optimal eigenstate vectors Total 

variance PSG (S) PSA (T) 

1×4 
type 

Gaussian 
All the matrices with 
regular tetrahedron 

structure. 

( )1,0,1,0  

1

2

3

4

1,1 3 ,1 3 ,1 3 ;

1, 1 3 , 1 3 ,1 3 ;

1, 1 3 ,1 3 , 1 3 ;

1,1 3 , 1 3 , 1 3

 =  
 = − − 
 = − − 
 = − − 

T

T

T

T   
Not unique, and can be obtained 

by 3D rotation. 

210σ   

Poisson 

1 1 3 1 3 1 3

1 1 3 1 3 1 31
2 1 1 3 1 3 1 3

1 1 3 1 3 1 3

 
 
 − −
 

− − 
 

− −  

 

1

2

3

4

1,1 3 ,1 3 ,1 3 ;

1, 1 3 , 1 3 ,1 3 ;

1, 1 3 ,1 3 , 1 3 ;

1,1 3 , 1 3 , 1 3

 =  
 = − − 
 = − − 
 = − − 

T

T

T

T

 5r 

2×2 
type 

Gaussian 
All the matrices with 
regular tetrahedron 

structure. 
( )
( )

1,0,1,0

1,0, 1,0−
 

1

2

1,1 3 ,1 3 ,1 3 ;

1, 1 3 ,1 3 , 1 3

 =  
 = − − 

T

T
 

Not unique, and can be obtained 
by 3D rotation. 

210σ   

Poisson 

1 1 3 1 3 1 3

1 1 3 1 3 1 31
2 1 1 3 1 3 1 3

1 1 3 1 3 1 3

 
 
 − −
 

− − 
 

− −  

 1

2

1,1 3 ,1 3 ,1 3 ;

1, 1 3 ,1 3 , 1 3

 =  
 = − − 

T

T
 5r  

 

6. Conclusion 
In this paper, we have described two types of optimal strategies for estimating the 
ellipsometric parameters of isotropic samples with only four intensity measurements. These 
two strategies minimize the total estimation variance of the Mueller parameters in the 
presence of both white Gaussian additive noise and Poisson shot noise. They yield the same 
value of the total estimation variance, and this value is independent of the ellipsometric 
parameters to be measured. Interestingly, in both strategies, the optimal instrument matrix is 
found to have a regular tetrahedron structure, which is well known to also minimize noise 
propagation in Stokes vector estimation problems [17,20]. This is because we have been able 
to express the problem of ellipsometric parameters estimation in a mathematical form that is 
similar – albeit not identical – to Stokes vector estimation. In addition, these optimal 
strategies only require a polarizer in the PSG, which simplifies the system and reduces its cost. 



In short, we have proven, for the first time to our knowledge, that ellipsometric parameters 
estimation with minimal error propagation can be performed using very simple optical setups.  

Besides, our proposed method can also be implemented on spectroscopic ellipsometers. In 
this case, a key issue is taking into account that the phase retardance of the compensator 
(retarder) depends on the wavelength [26]. Therefore, the optical implementation of the 
optimal measurement matrix should be adapted to the wavelength. On the other hand, we can 
also use achromatic compensators, which can provide almost the same phase retardance over 
a wide spectral range [26], to implement our method for spectroscopic ellipsometers. 

Compared to the existing common commercial ellipsometers, which use continuously 
rotating motors and spread the total integration time to a large number of data points (for 
example, ~40 points [24,25] or ~80 points [26] per one optical cycle), the outstanding 
advantage of our method is that it only requires four optimal intensity measurements, and the 
whole available integration time can be devoted to four points, which further reduces the 
impact of noise. However, a key issue for our method is the “dead time” between each 
measurement, since the system must wait for the motor to move to the next location. During 
this time, intensity is not collected, contrary to what happens in ellipsometers with continuous 
data collection. A step-and-stare system might thus not be efficient from the standpoint of 
intensity collection. In order to reduce the “dead time” to the order of microseconds, rotating 
optical elements could for example be replaced by electro-optical or photoelastic modulation 
devices with no moving parts (such as photoelastic modulator (PEM) [27]). More globally 
speaking, comparison between step-and-stare and continuous ellipsometers amounts to a 
tradeoff between using only optimal measurement points with dead time in between, or 
having no dead time but a large set of measurement points. Optimization of this tradeoff in 
terms of estimation accuracy will depend on the optical precision and noise parameters of the 
two compared systems. Studying this tradeoff in concrete cases is a very interesting 
perspective, for which our present work on performance optimization of step-and-stare 
systems will constitute an important element. 

Finally, we have considered in this paper only the simplest and most fundamental noise 
sources. Our results thus represent the fundamental upper limit on the performance that can 
be reached with a static ellipsometer. Of course, in practice, other sources of perturbations 
such as instrumental errors may be present or even dominant [28]. Implementation of the 
optimization approach described in this paper on more precise measurement models is indeed 
an interesting perspective to the present work. Nonetheless, we think that the results obtained 
in this paper provide a solid basis for performing these future works and interpreting their 
results. 

Appendix I: Demonstration of { }2 2 2 2
1 2 3 4 ,  1, 2,3, 4i i i iW W W W i= + + ∀ ∈  in Eq. (12). 

According to Eq. (10), one has: 

 

( ) ( ) ( )

( )( )

2 2 22 2 2
2 3 4 1 1 2 2 3 3 3 2 2 3

2 2 2 2 2 2 2 2 2 2
1 1 1 1 2 2 3 3 3 2 2 3

2 2 2 2 2 2
1 1 1 1 2 3 2 3

1  
4
1 2
4
1 2 .
4

i i i i i i i i

i i i i i i

i i i i

W W W t s s t s t s t s t

t s t s s t s t s t s t

t s t s s s t t

 + + = + + + + − 

 = + + + + + + 

 = + + + + + 

 (37) 

Since 2 2 2
1 2 3 1s s s+ + =  and { }2 2 2

1 2 3 1,  1, 2,3, 4i i it t t i+ + = ∀ ∈  , thus 



 

( )( )

( )

2 2 2 2 2 2 2
2 3 4 1 1 1 1 1 1

2 2
1 1 1 1

2
1 1

2
1

1 2 1 1
4
1 1 2
4
1
4

.

i i i i i i

i i

i

i

W W W t s t s s t

t s s t

t s

W

 + + = + + + − − 

 = + + 

= +

=

  (38) 

 Therefore, we have { }2 2 2 2
1 2 3 4 ,  1, 2,3, 4 .i i i iW W W W i= + + ∀ ∈  

Appendix II: Demonstration of the optimal solution in case of “1×4 Type”. 

According to Eqs. (7), (10) and (11), the instrument matrix W can be rewritten as the product 
of two matrices T and Q: 

 

11 12 13 1

21 22 23 1

31 32 33 2 3

41 42 43 3 2

1 1
1 11 .
12
1

t t t s
t t t s

W TQ
t t t s s
t t t s s

   
   
   = =
   
   

−   

 (39) 

Therefore, the total estimation variance in Eq. (19) is given by [29]: 

 ( ) ( ) ( ) ( )
1 1 1

trace trace .T T TTQ TQ T T Q Q
− − −   =     

 (40) 

Since Q and T are invertible, this criterion can be written as: 

 ( ) ( )1 1, trace ,F A B A B− −=  (41) 

with TA T T=  and TB Q Q=  which are symmetric, positive definite matrices. Our goal will 
be to find the best association of A and B that minimizes the total estimation variance: 

 ( ) ( ){ }
,

,  min , ,
A B

A B arg F A B=  (42) 

with the following constraints: 

 ( )trace 2  and  1,A = =s  (43) 

where ( )1 2 2, ,s s s=s  is the reduced eigenstate vector of the PSG. Since A and B are both 
positive definite, it can be shown that [29]: 

 1 1 1 1trace( ) trace( )trace( ).A B A B− − − −≤   (44) 

Let us denote ( ) 1 1trac, e( )trace( )AG A B B− −= . Since the function ( )trace ⋅  is decreasing 

and convex, and the constraints in Eq. (43) define convex sets, the functions ( )  ,F A B  and 

( ),G A B  thus have a single extremum in the domain defined by the constraints, and this is 
thus a minimum [30]. 

It is clear that, 

 
( ) ( ){ }

( ){ } ( ){ }
,

1 1trace t

,  min ,

 min  min .race
A B

A B

A B arg G A B

arg A arg B− −

=

= ⋅
 (45) 



According to previous works [17,20], it is known that under the constraint ( )trace 2A = , 

the matrix A that minimizes the value of ( )1trace A− is: 

 ( ){ }1 1
0

1
3

 min e ,
3

3

trac
A

A arg A− −

 
 
 = =
 
 
 

  (46) 

and it corresponds to the matrix T in Eq. (39) having a regular tetrahedron structure on the 
Poincaré sphere [20]. 

Besides, with the constraint 1=s , it is easy to find that: 

 ( )
( )

1
22

1

4trace ,
1

B
s

− =
−

 (47) 

which has a minimal value whenever 1 0.s =  Therefore, the optimal matrix B that minimizes 

the value of ( )1trace B−  is: 

 ( ){ }1 1
0

1
1

 min trace .
1

1

B
B arg B− −

 
 
 = =
 
 
 

  (48) 

According to Eqs. (46) and (48), it can be noticed that: 

 ( ) ( ) ( )1 1 1 1
0 0 0 0trace trace trace .A B A B− − − −=   (49) 

Therefore, ( ) ( )0 0 0 0, ,F A B G A B= .  
According to the above, we thus have: 

      1. ( ) ( ){ }0 0 ,
,  min ,

A B
A B arg G A B=  ; 

     2. ( ) ( )0 0 0 0, ,F A B G A B= ; 

      3. ( ) ( ), ,    ,F A B G A B A B≤ ∀ ; 

      4.  Since ( ),F A B  and ( ),G A B  are convex, they have a single minimum [30]. 

Let us denote ( ),X A B=  the set of variables, and ( )0 0 0,X A B=  a minimum of ( ),G A B . 

The constraints in Eq. (43) are rewritten as ( ), 0g A B = . Thus, by using the Lagrange 
multiplier method [31], one gets: 

 ( ) ( ) ( )0 0 0 0,
G X g X g X

X A B
λ µ

∂ ∂ ∂
− − =

∂ ∂ ∂
  (50) 

where λ , µ  refer to the Lagrange parameters. For any prescribed small interval around the 

minimum ( )0X Xδ+ , one has: 



 
( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

0 0 0 1

0 0 0 2

,

,

T

T

FF X X F X X X o X
X

GG X X G X X X o X
X

δ δ δ

δ δ δ

∂ + = + + ∂ 

∂ + = + + ∂ 

 (51) 

where ( )io Xδ , { }1,2i∈ refers to the higher order terms of Taylor series of ( ),F A B and

( ),G A B , respectively. Since ( ) ( )0 0F X G X= , and let us denote: 

 ( ) ( ) ( ) ,X G X X F X Xδ δ δ∆ = + − +  (52) 

One can get, by substituting Eq. (51) into Eq. (52), and then using Eq. (50), that: 

 
( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

0 0

0 0
0 ,

T T

T

G FX X X X X o X
X X

g X g X F X X o X
A B X

δ δ δ δ

λ µ δ δ

∂ ∂   ∆ = − +   ∂ ∂   

∂ ∂ ∂
= + − + ∂ ∂ ∂ 

 (53) 

where ( ) ( ) ( )2 1o X o X o Xδ δ δ= −  is also a higher order term, which can be neglected and 

considered as zero. Since ,A B∀ ( ) ( ), ,F A B G A B≤ , one must have ,Xδ∀ ( ) 0Xδ∆ ≥ . 
Therefore, the following equality must be satisfied: 

 ( ) ( ) ( )0 0
0 0.

g X g XF X
X A B

λ µ
∂ ∂∂

− − =
∂ ∂ ∂

 (54) 

According to Eq. (54), it is seen that 0X  is also an extremum of ( ),F A B  under the 

constraint ( ), 0g A B =  [30]. Since ( ),F A B  is a convex function, and the constraint ( ),g A B  
also defines a convex set, this extremum is unique. It means that 0X  is the single minimum of 

( ),F A B  [31]. Therefore, the only minimum of ( ),F A B must also be ( )0 0,A B . 
According to the analyses above, the optimal closed-form solution of the optimization 

problem in Eq. (42) and thus that in Eq. (20) should satisfy: 

1. For the eigenstate vector of PSG given by Eq. (3), the second parameter 1 0s ≡ ; 
2. The four eigenstate vectors of PSA and thus the matrix T in Eq. (39) has the 

regular tetrahedron structure [17,20]. 
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