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We present a speckle order estimation method invari-
ant to mean intensity variations inside the sample. It
is based on the acquisition of two statistically inde-
pendent speckle images. Cramer Rao Lower bound
(CRLB) and maximum likelihood (ML) estimator in the
presence of pure speckle noise are derived, and shown
to have performance very close to classical estimation
methods that are not invariant to mean intensity fluctu-
ations. This method is also shown to be robust to Pois-
son shot noise and additive noise, and is validated on
an optical experiment with a standard camera. It is thus
useful for estimating speckle order in real-world coher-
ent images. © 2018 Optical Society of America

OCIS codes: (110.5405) Polarimetric Imaging,(100.0100) Image
processing.
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Coherent imaging systems produce speckle [1]. This phe-
nomenon can be considered useful in some applications, since it
conveys information about the observed scene [2–4], or consid-
ered as noise hiding the useful information [5–8]. In all cases, its
properties have to be carefully estimated. The statistical distribu-
tion of speckle is accurately represented as a Gamma law, which
is defined by two parameters: mean and order [1]. We focus
in this paper on the estimation of the order. This subject has
already been investigated in the case of samples with uniform
mean, and the maximum likelihood (ML) estimator has been
studied [9]. However, in optical images, samples are seldom
spatially uniform, and the fluctuation of the mean within the
sample from one element to the other induces a noise to which
the standard ML estimator is very sensitive. We present in this
Letter a speckle order estimation method that is invariant to
mean fluctuations within the sample. It is based on the acquisi-
tion of two statistically independent speckle images. They can
be obtained for example by acquiring partially polarized speck-
les through two orthogonally oriented polarizers. We determine
the Cramer Rao Lower Bound (CRLB) of this method, which
is surprisingly very close to the CRLB for classical estimation
assuming uniform mean within the sample. The robustness of
this method to photon shot noise and additive noise is also in-
vestigated. The validity and advantages of this approach are

finally demonstrated through optical experiment.
Let us consider a sample X = {xi, i ∈ [1, N]} of N realizations

of a Gamma random variable whose probability density function
(pdf) is defined as follows:

PX(x) =
LLxL−1

Γ(L)mL exp
(
− Lx

m

)
(1)

where m is the mean (expectation) and L the order. The variance
of a Gamma random variable is equal to m2/L. Thus as L in-
creases, its variance decreases, and it can also be shown that its
pdf tends to a Gaussian [1].

The objective is to estimate m and L in the maximum likeli-
hood (ML) sense. The expression of the loglikelihood is:

`(X) =
N

∑
i=1

log PX(xi) = NL log
(

L
m

)
+ (L− 1)

N

∑
i=1

log xi

−N log Γ(L)− L
m

N

∑
i=1

xi (2)

Annulling its gradient with respect to m and L yields that the
ML estimate of the mean is m̂ = ∑i=1 xi/N and that the ML
estimate of the order is the solution of the following equation:

log(L)− ψ(L) = log(m̂)− 1
N

N

∑
i=1

log xi (3)

where ψ(z) = d log Γ(z)/d z is the first derivative of the log-
arithm of the Gamma function (also called digamma func-
tion [10]). The solution of Eq. (3) will be denoted L̂int, where
the subscript "int" stands for "intensity image", since in optics,
Gamma distributed measurements are often obtained from in-
tensity speckle.This equation has to be solved numerically by
using a root-finding function. In this Letter, we have used the
fzero function of Matlab, that uses a combination of bisection,
secant, and inverse quadratic interpolation methods, to solve for
all the considered non closed-form estimators, that is, Eqs. 3, 10
and 11.

The Cramer-Rao Lower Bound (CRLB) is a lower bound on
the estimation variance reached by any unbiased estimator, and
also represents the asymptotic variance of the ML estimator as N
increases [11]. The CRLB for estimation of m and L are obtained
by computing the Fisher matrix, that is the expectation of the
matrix of second derivatives of the loglikelihood [11]. In our
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Fig. 1. Plot of
√

CRLBint,
√

CRLBosc, standard deviations of
L̂mom, L̂int, and L̂osc, divided by L and as a function of speckle
order L.

case, it is easily shown from Eq. (2) that this matrix is diagonal.
Taking the negative inverse of this matrix yields the following
value of the CRLB for estimation of L:

CRLBint =
1

N
[
ψ′(L)− 1

L

] (4)

where ψ′(z) is the derivative of ψ(z) (also called trigamma func-
tion [10]). The Taylor expansion of the trigamma function is [10]:

ψ′(z) =
1
z
+

1
2z2 +

1
6z3 + o(1/z3) (5)

Using this expression, it is easily shown that the square root of
the CRLB, which corresponds to a bound on standard deviation,
is approximately an affine function of L:√

CRLBint '
1√
N

(√
2L− 1

3
√

2

)
(6)

This approximation is all the more valid as L is large.
We have represented in Fig. 1 the variation of

√
CRLBint/L as

a function of L, for a sample size N = 1000 (blue solid curve). It
is verified that it tends to a constant equal to

√
2/N = 0.047 as L

increases. We have also represented an estimate of the standard
deviation of the ML estimator L̂int divided by L (blue dotted
curve). This estimate has been obtained by Monte Carlo simula-
tions with 105 realizations of a Gamma-distributed sample. It
is verified that for this value of N, the ML estimator variance is
very close to the CRLB for any value of L.

For comparison purpose, we have also plotted an estimate of
the standard deviation of the moment estimator of L, divided by
L, using the same type of Monte Carlo simulation. The moment
estimator is defined as L̂mom = MEAN(X)2/VAR(X), where
MEAN(X) is the empirical mean and VAR(X) the empirical
variance of the sample. It is verified in Fig. 1 (green dotted
curve) that this estimator has a larger standard deviation than
the ML estimator, and reaches a larger asymptotic value as L
increases.

The problem with the ML and moment estimators is that if the
value of m fluctuates within the sample from one element to the
other, so that mi depends on the sample index i, this induces a
noise source to which these estimators is very sensitive. We have

Fig. 2. Plot of
√

CRLBint,
√

CRLBosc, RMSE of L̂mom, L̂int, and
L̂osc, divided by L and as a function of speckle order L, in the
presence of mean fluctuations within the sample, with σm =
0.1.

performed a Monte Carlo simulation assuming that the mean of
the ith element of the sample is mi = m0(1 + ni), where ni is a
Gaussian random variable of zero mean and standard deviation
σm = 0.1. We have represented in Fig. 2 the estimated root
mean square error (RMSE) of L̂mom (green dotted curve) and L̂int
(blue dotted curve). Mean value fluctuations mainly introduce a
bias in the estimation. The bias of an estimator L̂ is defined as
BIAS = | < L̂ > −L|, where < . > denotes ensemble averaging,
and the RMSE= (BIAS2+STD2)1/2 takes into account both the
bias and the standard deviation (STD). It is seen in Fig. 2 that the
RMSE of both estimators dramatically increase as L increases,
which is normal since speckle variance is inversely proportional
to L: as L increases, the relative importance of mean variations
over speckle fluctuations increases.

In order to solve this problem, one needs an estimator that
is independent of the mean mi. One solution is to use two
independent speckle realizations. In practice, this can be ob-
tained by moving a diffuser in front of the scene, or, if the
speckle is partially polarized, by analyzing it with two orthog-
onal polarizers [1]. In this case, we have two samples: X, of
fluctuating mean parametrized as mX

i = Fi(1 + u)/2, and Y, of
mean mY

i = Fi(1− u)/2, where Fi = mX
i + mY

i . The parameter
u = (mX

i − mY
i )/(m

X
i + mY

i ) represents the relative difference
of mean intensities between the two channels (it is independent
of the Fi). In a polarimetric configuration, it would represent
the Orthogonal State Contrast (OSC) of the speckle. The OSC is
equal to the degree of polarization when pure depolarizers are
considered, which is a reasonable hypothesis in the presence of
natural textures [12].

In order to construct a sample statistics that is independent
of Fi, we will consider the empirical OSC defined as

R = {ρi, i ∈ [1, N]} with ρi =
xi − yi
xi + yi

(7)

The pdf of this sample has been shown to be equal to [5]:

PR(ρ) =
Γ(2L)

22L−1[Γ(L)]2
(1− u2)L (1− ρ2)L−1

(1− uρ)2L (8)

It is verified that this pdf only depends on u and L, and not on the
values Fi: it is thus independent of the fluctuations of the mean.
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Of course, we will assume that u does not change within the
sample. For example, in the polarimetric measurement scheme
mentioned above, it would mean that the polarization properties
are uniform within the sample.

The goal is now to determine estimates of u and L. The
loglikelihood of sample R has the following expression:

`(R) = N[log Γ(2L)− 2 log Γ(L)]− (2L− 1)N log 2

+(L− 1)∑
i

log(1− ρ2
i )− L ∑

i
log
[
(1− uρi)

2

1− u2

]
(9)

Annulling the partial derivative of `(R) with respect to u yields
that the ML estimate of u, denoted û, is solution of the equation

1
N

N

∑
i=1

ρi
1− uρi

=
u

1− u2 (10)

Annulling the partial derivative of `(R) with respect to L, and
replacing u with its ML estimate û, yields the ML estimate of L,
denoted L̂osc, as the solution of the following equation in L:

2 [ψ(2L)− ψ(L)] =
1
N

N

∑
i=1

log

[
(1− ûρi)

2

1− ρ2
i

]
− log

(
1− û2

4

)
(11)

To determine the CRLB, one has to compute the Fisher ma-
trix. Using the expression of the loglikelihood in Eq. (9), it can
be shown after cumbersome but elementary calculations that〈

∂2`/∂u∂L
〉
= 0. The Fisher matrix is thus diagonal. Using the

expression of the loglikelihood in Eq. (9), it is easily shown that
the CRLB on L is equal to:

CRLBosc = −
1〈

∂2`
∂L2

〉 =
1

2N [ψ′(L)− 2ψ′(2L)]
(12)

Using the Taylor series of ψ′(z) in Eq. (5), one obtains:√
CRLBosc '

1√
N

(√
2L− 1

2
√

2

)
(13)

By comparing with Eq. (6), it is seen that the CRLB of L estimated
from OSC is very close to the CRLB of L estimated from intensity
measurement. It is even slightly lower for all values of L, but
tends to be equal as L increases.

It is also interesting to notice that CRLBosc does not depend
on the value of u. This may seem surprising, since for example,
if u is close to 1, the means mY

i are very low, thus less accurately
estimated and it would be expected that the CRLB is higher. This
is due to the fact that only speckle noise is taken into account
in our model. However, in practical measurements, other types
of noise sources are present, such as Poisson shot noise and
additive noise. Immunity to these noise sources will be better
if u is close to zero, that is, if the means in channels X and Y
are well balanced. We will study the robustness of the method
to extraneous sources of noise at the end of this Letter. For
the moment, we can say that the CRLB in Eq. (12) represents
a fundamental limit on the estimation variance, since it only
depends on speckle’s intrinsic variability, that cannot be avoided
contrary to the other, extraneous sources of noise.

We have represented in Fig. 1 the variation of
√

CRLBosc/L
as a function of L, for a sample size N = 1000 (red solid curve). It
is indeed very close, and even a little smaller, than

√
CRLBint/L.

We have also represented the standard deviation of L̂osc divided
by L (red dotted curve). It has been estimated by Monte Carlo

simulations with 105 realizations. It is seen that for this value
of N, it reaches the CRLB for any value of L. It performs as
well as L̂int, and even a little better for small values of L. We
have also plotted in Fig. 2 the standard deviation of L̂osc in the
presence of fluctuations of the mean, estimated by Monte Carlo
simulation (red dotted curve). It is verified that its performance
remains the same as in the presence of uniform mean, and it
thus performs much better than L̂int and L̂mom. This method is
thus very interesting to estimate speckle order in the presence
fluctuations.

However, in practical imaging situations, there are other
sources of noise. First, the photo-detection process generates
Poisson shot noise. Moreover, dark current fluctuations, readout
noise, and fluctuations of background illumination from ambi-
ent sources give rise to fluctuations which level is independent
of coherent illumination. They can thus be said "additive" and
we will assume them Gaussian with total variance σ2. Deriving
the CRLB in the presence of Poisson and additive noise is com-
plex and beyond the scope of this Letter. We will only illustrate
here the influence of these noise sources on a specific example
with realistic noise levels that can be encountered when imaging
with standard digital cameras.

Let us consider a camera with maximal number of photoelec-
trons in one pixel (full well capacity) equal to 20,000 and and
perturbed by additive Gaussian noise of standard deviation 20
photoelectrons. The parameter u is set to 0, and the channel
means are supposed constant within the sample. They are as-
sumed to be equal to mX = mY = 4000 photoelectrons in order
not to saturate the full well capacity for low values of L (i.e.,
when speckle variance is largest). In the presence of Poisson or
additive noise, the ML estimator L̂osc defined in Eq. (11) can-
not be used as is, since the measured values equal or less than
zero would cause numerical errors. Thus all the sample values
less than zero are set to one, which causes a bias in the estima-
tion. This bias is larger for small values of L, where speckle
realizations close to zero are more probable. Moreover, when
L is large, the ratio of the variance of speckle (which is m2/L)
to that of photon noise (which is m) decreases, increasing the
relative weight of Poisson noise and thus the inadequacy of the
ML estimator. This introduces a bias for large values of L. We
have represented in Fig. 3.a the bias of the ML estimator L̂osc
divided by its standard deviation. It is verified that it is larger
for small and large values of L, and that for these values, it
becomes non-negligible with respect to the standard deviation.
We have represented in Fig. 3.b the RMSE of the estimators L̂int,
L̂mom, and L̂osc divided by L. It is observed that the RMSE of all
estimators are larger than when only speckle noise is present,
but the difference is slight. It is also noticed that intensity-based
estimators are more impacted by detection noise than L̂osc.

We can conclude from these simulations that the proposed
method should be sufficiently robust to Poisson and additive
noise to be used efficiently in practice. In order to verify it, we
have performed an optical imaging experiment where noise
levels are comparable to those considered in the simulations.
The coherent light source is a HeNe laser (λ = 633 nm) and the
illumination beam is collimated and fully polarized along the
vertical direction. The illuminated sample is a white paper sheet,
and the scattered field is projected with a rotating polarizer
along the parallel (orthogonal) polarization directions to obtain
images X (Y). The OSC parameter u of the scattered field is quite
low (around 0.13), thus the mean intensities are well balanced
between the two polarimetric channels. The projected field is
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(a)

(b)

Fig. 3. Bias divided by STD (a) and RMSE divided by L (b)
of L̂mom, L̂int, and L̂osc, as a function of speckle order L, in
the presence of Poisson noise (u = 0, mX = mY = 4000,
maxi(Xi) = 20, 000) and additive Gaussian noise with stan-
dard deviation equal to 20.

imaged with a lens which f-number F# can vary between 3.9 and
32 thanks to an adjustable pupil diaphragm. The used camera
is a CCD matrix with a 9.9 µm square pitch and detection noise
level of 20 photoelectrons. As F# increases, the correlation area of
the speckle field increases and the order of the speckle integrated
on each pixel decreases [1].

We have considered two areas in the image: a 51 × 51 pixel
region A where illumination intensity is uniform, and a 5 ×
520 pixel region B where the intensity varies along a Gaussian
profile due to the illumination beam, with a lowest value equal
to 30% of its maximum value. In Fig. 4, we have represented the
estimation results of L̂int and L̂osc on uniform region A (dotted
curves) and on non-uniform region B (solid curves). The error
bars plotted on the uniform illumination curves correspond to
±3 standard deviations, computed with Eq. (6) and Eq. (13).
As predicted, the two estimators L̂int and L̂osc give equivalent
results when illumination is uniform, since the corresponding
curves fit with each other within the estimation precision given
by error bars. When illumination is non-uniform, it is seen that
only L̂osc is accurate, since its curve is exactly superposed with
that obtained in the case of continuous illumination. On the

contrary, L̂int (blue solid curve) yields estimations that depart
largely form the continuous illumination case, especially for
larger values of L (smaller values of F#).

Fig. 4. Experimental estimation of L̂int, and L̂osc, for a uniform
(dashed line) and non-uniform (continuous line) illumination,
plotted as a function of the focal number F#.

We have studied and validated a speckle order estimation
method that is applicable on samples with non uniform mean.
It is based on the acquisition of two statistically independent
speckle images. This method performs as well as the classical
methods when sample mean is uniform, and much better when
it is non uniform. The CRLB of this method thus constitutes a
closed-form expression of the fundamental limit of estimation
variance of speckle order, since it only depends on speckle in-
trinsic variability. Moreover, this method has been shown robust
to Poisson shot noise and additive noise, and validated on an
optical experiment with a standard camera. It is thus useful
for estimating speckle order in real-world coherent images. A
particularly interesting perspective to this work is derive CLRB
and ML estimators in the presence of Poisson and additive noise
in order to more precisely assess the domain of validity and the
limits of this method.
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