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Abstract 17 

1. Coastal ecosystems of the Mediterranean Sea are among the richest in non-indigenous 18 

species, mostly due to the establishment of species coming from the Red Sea through the 19 

Suez Canal. Two herbivorous rabbitfishes, Siganus rivulatus and Siganus luridus, are 20 

already invasive in the South-Eastern part of the Mediterranean Sea where they cause 21 

ecological damage by overgrazing algae. 22 

2. The early detection and the counting of these non-indigenous species in the rest of the 23 

Mediterranean Sea is thus a major challenge for scientists and ecosystem managers. 24 

However, analyzing images from divers or remote cameras is a demanding task. 25 

3. Here, a dataset of 31,285 images of Siganus spp and of six common native fishes to the 26 

Mediterranean Sea was built from 40 underwater videos recorded in three reef habitats. A 27 

deep learning algorithm was then trained to identify Siganus spp on images mixing the eight 28 

Mediterranean species. Finally, the algorithm and a post-processing filtering were tested with 29 

an independent dataset of 2,024 images. 30 

4. The model had a recall of 0.92 for the Siganus genus (i.e. two Siganus species combined). 31 

After a confidence-based post-processing the recall increased to 0.98 with only 4 out of 272 32 

images of Siganus spp being misclassified. Accuracy reached a score of 0.61 meaning that 33 

experts would have to discard false positives. Images of five native species not present in the 34 

training dataset yielded similar false positive rates than species present in the training dataset. 35 

Overall, the automatic processing of images by our model then the checking of putative 36 

Siganus images by experts require up to five times lower effort than a full processing by 37 

experts. 38 

5. Our algorithm can efficiently help to detect these two invasive fishes in underwater images 39 

to evaluate progress towards conservation objectives and accelerate citizen-based monitoring 40 

of coastal ecosystems. 41 

Keywords : coastal ecosystems,deep learning, image analysis, Mediterranean sea, non-42 

indigenous species, Siganus spp  43 
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Introduction 44 

Biodiversity has been increasingly impacted by global change in all ecosystems 45 

(Jaureguiberry et al., 2022). Among those impacts, climate warming and introduction of non-46 

indigenous species are acting synergistically in many regions (La Sorte & Jetz, 2010; Bennett 47 

et al., 2021). Mediterranean coastal ecosystems are an emblematic case of such marked 48 

changes in biodiversity (Albano et al., 2021). Indeed, the opening of the Suez Canal in 1869 49 

and its recent expansion have permitted the entry of many fish species from the Red Sea into 50 

the Mediterranean Sea. To date, the total number of these non-indigenous species (NIS 51 

hereafter) is above 150 (Azzurro, Smeraldo & D’Amen, 2022). The northward and westward 52 

geographic range expansion and the increase in abundance of those tropical NIS has been 53 

favored by the rapid warming of Mediterranean Sea surface waters (>1°C since 1980) 54 

(Shaltout & Omstedt, 2014). 55 

Rabbitfishes Siganus rivulatus and Siganus luridus have become the most abundant 56 

herbivorous fishes along the South-Eastern coast of the Mediterranean Sea since their 57 

establishment in 1927 and 1956, respectively (Ben-Tuvia, 1964; Bariche, Letourneur & 58 

Harmelin-Vivien, 2004; Sala et al., 2011). They now contribute to more than 50% of the 59 

herbivory activity (Magneville et al., 2023). Importantly, in many of these coastal habitats, 60 

Siganus spp have overgrazed macroalgae to the point that the diversity of other organisms 61 

has decreased and ecosystem functioning has been disrupted (Vergés et al., 2014; Peleg et 62 

al., 2019). Siganus spp have been colonizing northward up to the Aegean Sea and westward 63 

up to Sicily for the last two decades (Azzurro & Andaloro, 2005). Some individuals were even 64 

observed along the coast of France (Daniel, Piro & FranCour, 2009) and Croatia (Dulčić et al., 65 

2011). Yet, their long-term establishment and new colonization pathways are still under 66 

scrutiny.   67 

In this context of accelerating NIS expansion, it is thus of utmost importance for scientists and 68 

ecosystem managers to early detect the arrival of such potentially invasive species and then 69 

to monitor their settlement and abundance dynamics. Monitoring non-indigenous marine 70 

fishes has been mostly carried out using standardized surveys by scuba divers (Brock, 1954; 71 
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Thresher & Gunn, 1986; Holland et al., 2020) and opportunistic records from fisheries landings 72 

(e.g. Kleitou et al., 2022). Yet, underwater visual census of fish requires trained divers who 73 

may still miss elusive species, such as Siganus, especially when they are rare. As an 74 

alternative, monitoring NIS based on underwater remote cameras and underwater pictures 75 

from divers have been increasingly applied (Peters, Sink & Robinson, 2019). However, the 76 

identification of target NIS on such images is a demanding task in terms of time and expertise 77 

in fish taxonomy. 78 

Owing to the recent development of artificial intelligence and especially Deep Learning 79 

algorithms (DLa) there is a growing effort to automate the identification of fish species in 80 

underwater images (Ditria, Jinks & Connolly, 2021). DLa have been demonstrated to efficiently 81 

identify indigenous reef fishes in several coastal ecosystems (Villon et al., 2018; Lopez-82 

Marcano et al., 2021) but none addressed the key issue of detecting NIS in the Mediterranean 83 

Sea. As Siganus spp can change color rapidly from olive green to dark brown with a mottled 84 

pattern, training an algorithm able to identify them remains challenging. In this study, images 85 

of the two Siganus spp and six common native fish species were collected across the 86 

Mediterranean Sea. Then, a DLa was trained to identify polymorphic Siganus spp in 87 

underwater images, and its performance was tested in various conditions. 88 

 89 

Material and Methods 90 

Image datasets 91 

DLa require two independent image datasets: the first one used to train the model, i.e. to find 92 

the optimal parameters discriminating the species of interest, and the second one used to test 93 

the trained model reliability in the various conditions of application. To build those datasets, 94 

underwater remote videos were recorded during three field campaigns in Northern Crete 95 

Island (Greece) and the Gulf of Lion (France) in 2017, 2019, and 2020 (Table 1). 96 

 97 
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Table 1. Summary of underwater videos and fish images used to train and test the deep 98 

learning classifier. 99 

Use Territory Site Date (year-
month) 

Habitat Number 
of videos 

Number of 
annotated 
images of 

fishes 

Presence 
of 

Siganus 
spp 

Train France Frontignan 2019-09 macro-algae 
/ bare rocks 

/ turf 

1 134  

Train Crete Hersonissos 2019-10 macro-algae 
/ bare rocks 

/ sand 

26 5247 X 

Train Crete Kokkini Hani 2019-10 macro-algae 
/ turf / 

seagrass 

13 4636 X 

Test France Banyuls 2017-07 macro-algae 
/ bare rocks 

/ turf / 
seagrass 

2 114  

Test Crete Hersonissos 2019-06 macro-algae 
/ bare rocks 

/ sand 

3 292 X 

Test Crete Kokkini Hani 2019-06 macro-algae 
/ turf / 

seagrass 

1 831 X 

Test Crete Bali 2019-06 macro-algae 
/ turf / 

seagrass 

1 139 X 

Test France Carry le Rouet 2020-05 macro-algae 
/ bare rocks 

/ turf / 
seagrass 

2 783  

 100 

All videos were recorded with GoPro HERO5 Black (GoPro Inc., USA) set with “linear” angle-101 

of-view, full HD resolution (1920*1080 pixels) and 25 frames per second. The cameras were 102 

set up on the seafloor in shallow (1-5m deep) coastal habitats dominated by seagrass, 103 

macroalgae, bare rocks, or sand (Table 1). 104 

To ensure that the test of the algorithm was performed independently from the training, the 105 

two datasets were built using videos recorded in different locations or seasons (Table 1). The 106 

training dataset was built with images from 40 videos for a total of 140h recorded between the 107 
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2nd and the 10th of October 2019 in Crete (Greece). For the testing dataset, nine videos 108 

recorded in France (July 2017 and May 2020) and in Crete (June 2019) were used. 109 

Videos of different lengths were extracted from the raw recordings based on the presence of 110 

fish and images were extracted at the rate of one or three images per second yielding 11 to 111 

1,064 frames from a video. On each of these frames, fish individuals which body was entirely 112 

visible (i.e. not hidden by another fish, rocks or algae and not facing camera and not recorded 113 

from the face or behind), and which could be identified to the species level were annotated 114 

using a bounding box encompassing the body and labeled with species name. Because of 115 

these rules, most of the annotated fish individuals were not present on temporally successive 116 

frames. Furthermore, as fish individuals were of various sizes and were at various distances 117 

from the camera, the annotated images had variable sizes and length/depth ratios. Given the 118 

diversity of seafloors among videos (rocks, algae, seagrass), varying hydrological conditions 119 

(turbidity, light), as well as the movement of filmed components (algae, other fishes), the 120 

images displayed different backgrounds even within a single video (Figure S1). Additionally, 121 

considering the mobility of the target fish species, the images exhibited a range of fish body 122 

orientations. Special attention was given to ensuring that images of Siganus spp represented 123 

the diversity of colorations encountered in the wild (Figure 1). 124 
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 125 

Figure 1. Examples of the different body shapes and colors of Siganus luridus (a, b, c) and Siganus rivulatus (d, 126 
e, f, g) in the test dataset 127 

For this study, images of the two non-indigenous Siganus luridus and Siganus rivulatus, were 128 

used along with images of the six most common fish species in our videos (Chromis chromis, 129 

Diplodus sargus, Diplodus vulgaris, Sarpa salpa, Sparisoma cretense, and Thalassoma pavo), 130 

which are also prevalent in the Mediterranean Sea. Each species represents a class learned 131 

by the deep learning classifier. 132 

A total of 31,285 images were annotated from videos of the training dataset. For each class, 133 

1,250 to 1,256 unique images were randomly selected among those available and horizontally 134 

flipped to augment the representativity of the dataset (Villon et al., 2018). For the test, 2,159 135 

images (Table S1) of the eight species common with the training dataset (two Siganus spp. 136 

and six common fishes) were used, along with 100 images of five species not present in the 137 
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training dataset (Diplodus puntazzo, Oblada melanura, Mullus surmuletus, Lithognathus 138 

mormyrus, Trachurus mediterraneus, N = 20 individuals for each species). 139 

Training of the classifier 140 

The classifier involved fine-tuning a ResNet50 model that had been previously trained on the 141 

ImageNet dataset using PyTorch (torch 1.8.1). At the beginning of the training, all images were 142 

resized to 224x224 pixels. The batch size was set at 16. The Adam algorithm was employed 143 

as the optimizer, and the negative log-likelihood loss function was used. To prevent overfitting, 144 

it was ensured that the loss was decreasing after each epoch. If this was not the case for 20 145 

consecutive epochs, the training was stopped. The algorithm was trained using an Nvidia 146 

Quadro RTX 3000 GPU card on a Dell Precision 7550 laptop with an Intel® Core™ i7 147 

processor and 62GiB RAM. 148 

Testing the classifier 149 

For each class, the number of true positive (TP) images, representing correctly identified 150 

images, was computed. Additionally, the number of false negative (FN) images, indicating 151 

images belonging to a given class but missed by the classifier, and the number of false positive 152 

(FP) images, representing misidentified images in a given class, were also calculated. 153 

The model efficiency was assessed using the recall and precision metrics for each class. The 154 

recall is the proportion of correctly labeled individuals among all individuals of this class and 155 

is computed as: !"
!"#$%

. It is maximal (and equals 1) when all individuals of the class are 156 

correctly identified, and it decreases when some individuals of the analyzed class are 157 

misidentified as fish species from other classes. 158 

The precision is the proportion of correctly labeled individuals among the items identified as 159 

this class and is computed as: !"
!"#$"

. It is maximal (and equals 1) when there are no individuals 160 

belonging to another class, and decreases when some individuals of other classes are 161 

misidentified as the analyzed class. 162 
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Metrics were also computed for the two Siganus spp combined, considering that in most 163 

applications, the goal is to detect the presence of this non-indigenous genus. For this purpose, 164 

a new class “siganus” was created, that bundles the classes “siganus_luridus” and 165 

“siganus_rivulatus”. 166 

In the context of automated identification of NIS, the priority is to ensure that NIS individuals 167 

are not missed, hence to maximize recall (i.e. few FN). However, the time of experts required 168 

for checking the images classified as NIS has also to be as low as possible, hence precision 169 

should remain as high as possible (i.e. few FP). 170 

For each image processed by the Dla, the most likely class returned has an associated 171 

confidence score ranging from 0 to 1, with values close to 1 indicating the most reliable 172 

classes. Thus, images with a confidence score lower than 0.8 were transferred to an "unsure" 173 

class. The recall was computed after removing these "unsure" images.  174 

Image size may play an important role in fish identification. Indeed, a smaller image can be 175 

indicative of an individual which is far away from the camera and difficult to identify. Thus, the 176 

influence of image area (height x width in pixels) on TP and FP rates was analyzed. 177 

 178 

Results 179 

The training lasted 31 minutes and ran 36 epochs when the early stopping procedure ceased 180 

the training as the loss did not decrease for the last 20 epochs. 181 

The average recall was 0.62 among the eight classes, the confusion matrix being shown in 182 

Figure 2. The recall for the classes S. luridus and S. rivulatus were 0.74 and 0.47, respectively. 183 

When merging the two Siganus species in a single class, the recall reached 0.92. The 184 

precision was 0.42 for the class siganus_luridus, 0.18 for the class siganus_rivulatus, and 0.44 185 

when considering the merged class “siganus”. 186 
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 187 
Figure 2. Performance of the Deep-Learning algorithm in identifying fish species in underwater images using a 188 

confusion matrix where correct classifications are on the diagonal. Largest numbers of individuals are highlighted. 189 
Comparison between the initial confusion matrix (a) and the confusion matrix after merging the two Siganus 190 

classes and removing the images for which the confidence score was lower than 0.8 (b). Each row of the matrix 191 
represents an actual class while each column represents a predicted class. 192 

After the post-processing removal of unsure predictions, the recall for the class Siganus 193 

increased to 0.99 and the precision increased to 0.61. On the four videos with at least one 194 

Siganus individual, the Siganus genus was detected in at least one frame (84% up to 100% 195 

of Siganus spp were detected per video). 196 

Among the 100 images of species not present in the training database, only 17 (5 Diplodus 197 

puntazzo, 5 Lithognathus mormyrus, 3 Mullus surmuletus, 3 Oblada melanura, 1 Trachurus 198 

mediterraneus) were misidentified as Siganus spp among which seven remained misidentified 199 

as Siganus spp after the post processing removing unsure predictions. 200 

 201 



11 

202 
Figure 3. Effect of image area on algorithm output. Cumulative frequency distribution of Siganus images correctly 203 

identified by the algorithm as Siganus (i.e. True Positive in blue) and of native species images misidentified as 204 
Siganus (i.e. False Positive in red) along the gradient of image area (log10 scale). The vertical black line 205 

illustrates the cutoff at 10,000 pixels. 206 

 207 

None of the correctly identified Siganus images had an area < 4,900 pixels while all the 13 208 

images with area <4,900 pixels, which were labeled as Siganus, were in fact of one of the six 209 

native species (Figure 3).  Choosing a cut-off at 10,000 pixels removes 62 FP (36%) and 9 TP 210 

(3%) increasing the precision to 0.71 while marginally decreasing the recall for the class 211 

Siganus to 0.98. 212 

 213 

Discussion 214 
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The recall of 0.92 for the class “siganus” demonstrates the reliability of the trained DLa since 215 

only 32 out of 402 images of Siganus spp were misclassified as images of indigenous fish 216 

species (Figure 2a). Among those 32 incorrectly labeled images (FN), 28 had a confidence 217 

score lower than 0.8 and only 4 (Figure 2b) had a confidence score greater than 0.8 so were 218 

retained in the final model outputs after post-processing. Those 4 false negatives were images 219 

of Siganus individuals shot in turbid water, exposed to direct sunlight, and of an individual 220 

masked by a Sarpa salpa (Figure 4). If an expert checks the 28 unsure images (7% of the 221 

images analyzed) and identifies Siganus on all of them, only 1% (4 out of 272) of Siganus spp 222 

images would be missed (false negatives). Besides, ignoring the 28 unsure images had no 223 

impact on the detection of Siganus at the scale of the video sequence as each of our videos 224 

contains at least 10 images of Siganus spp. So, our classifier coupled to long running videos 225 

would most likely detect rabbitfish presence even when elusive or rare. 226 

The precision of 0.44 for the class "siganus" means that 56% of images labeled as "siganus" 227 

were actually indigenous species. The confidence-based post-processing removal of unsure 228 

predictions increased the precision for the “siganus” class to 0.61, meaning that among the 229 

437 images labeled as Siganus 169 were actually images of native species. This model's 230 

performance level is within the average performance level of existing models. The recall for 231 

Siganus obtained by this model is lower to other studies on a single fish species (Ditria et al., 232 

2020; Lopez-Marcano et al., 2021). The overall performance on the 8 species is higher to the 233 

classification algorithm by Catalán et al., (2023)  for 9 Mediterranean indigenous fishes (recall: 234 

0.76, precision: 0.37) and to the one by Jenrette et al., (2022) on 47 species of tropical sharks 235 

and rays, which proposes a combination of three models (a detection model, a binary sorting 236 

model and a classification model), achieving an overall accuracy of 70%. The two species 237 

most commonly misidentified as Siganus spp were the two seabream Diplodus vulgaris 238 

(194FP) and Diplodus sargus (99FP) (Figure 2a). Yet, these two species have a shape and 239 

color pattern different from Siganus spp. Visual inspection of these confidently misclassified 240 

images revealed they mostly depict individuals in the background or with their body partially 241 

hidden (because of their orientation relative to the camera, or movement of the tail) making 242 

them more difficult to identify even by humans (Figure 4). Meanwhile, the Diplodus individuals 243 
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close to the camera and not masked were correctly classified (i.e. among the 921 Diplodus 244 

vulgaris and D. sargus, 44% were classified as a Diplodus). Hence, the confusion between 245 

Diplodus and Siganus is context dependent.  246 

 247 

 248 

Figure 4. Illustration of automated identification of fishes by the Deep Learning algorithm. 249 

Siganus luridus (a) and Siganus rivulatus (b), partially masked by the head of a Sarpa Salpa, misidentified as 250 
Sarpa salpa. Siganus rivulatus (c, d) misidentified as Diplodus vulgaris. 251 

Individuals of Siganus luridus (e), and Siganus rivulatus (f) correctly identified by the model despite their partially 252 
masked bodies. Individuals of Diplodus vulgaris (g), Thalassoma pavo (h), Chromis chromis (i), and Diplodus 253 

sargus (j) misidentified as Siganus spp. 254 

The number in the top right corner of each image is the image area in pixels. 255 
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 256 

As a consequence, not accounting for Siganus identified in images of less than 10,000 pixels 257 

discarded more than one third of false positive Siganus identifications while keeping recall 258 

above 98% (i.e. only 9 images of Siganus would be misidentified as a native fish species). 259 

Such small images correspond to individuals filling less than 1/20th of a FullHD video frame 260 

(1920×1080, > 2 millions pixels). Hence, as in all our remote underwater videos, it is likely that 261 

when present Siganus individuals will be recorded with an apparent size > 10,000 pixels. 262 

The processing of the 2,024 images belonging to the test dataset took 10s on a laptop 263 

computer and the optional checking of the 28 predictions of Siganus with low confidence 264 

threshold would take less than 3 minutes for an expert (assuming 5s per image). Checking 265 

only the 437 images identified as Siganus would take 36 minutes and would allow discarding 266 

false positives. Hence, as the analysis of the 2,024 images by an expert would take 168 267 

minutes (assuming 5s per image with no break), the DLa thus provides at least a 5-fold gain 268 

of time. 269 

One limitation of our DLa classifier is the identification of Siganus only in images containing a 270 

single individual at its center. Thus, in practice, raw videos or pictures from underwater 271 

cameras must be cropped to focus only on fish individuals, which requires no expertise in 272 

taxonomy and is fast using any software able to save a screenshot (e.g. VLC). A future priority 273 

will be to couple this identification model with a general fish detection model able to segment 274 

all fish individuals from a video frame or a picture (e.g. Knausgård et al., 2022). Then our 275 

model will process those extracted images. Even if current detection models are only able to 276 

identify a single species (Lopez-Marcano et al., 2021), recent advances in other taxa show 277 

encouraging results such as DeepFaune (Rigoudy et al., 2023) for French terrestrial fauna, or 278 

for insects (Teixeira et al., 2023). However, these detection models require images with all 279 

individuals annotated, which is time-consuming as underwater images could contain >100 fish 280 

individuals. Another limitation is that classifiers are only able to identify species in the training 281 

dataset, which requires collecting more than 1,200 images per species or applying few-shot 282 

learning techniques that usually decrease recall and precision (e.g. Villon et al., 2021). In our 283 
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case, among images from the five indigenous species not present in the learned classes, only 284 

7% were confidently classified as Siganus spp, which was lower than the false positive rate 285 

for the six indigenous species present in the training dataset. Hence, our model would likely 286 

not misidentify as Siganus species that are not present in the training dataset. 287 

 288 

Conservation perspectives 289 

Developing rapid and robust knowledge on the distribution and density of NIS is crucial to 290 

evaluate progress against international agreements, including the UN Sustainable 291 

Development Goals, Convention on Biological Diversity Targets, EU Biodiversity Strategy, and 292 

the Green Deal. Towards this goal, improving our capacity to automate data collection and 293 

processing is needed to dramatically increase the amount and quality of information and 294 

knowledge available to scientists and decision-makers. 295 

Remote or diver-operated underwater videos have been increasingly used by scientists and 296 

ecosystem managers to monitor fishes for the last decade across the Mediterranean Sea 297 

(Nalmpanti et al., 2023). We believe that our DLAs will be useful for ecosystem managers to 298 

accelerate the analysis of videos collected during those monitoring programs of NIS, ensuring 299 

detection of Siganus spp. Towards this aim we release it in a public repository 300 

(https://github.com/valentine-fleure/Siganus_identifier). Our classifier applied to long 301 

underwater videos will pave the way to high-frequency monitoring of rabbitfishes throughout 302 

the Mediterranean basin. Such massive data are needed to describe the geographic 303 

expansion of rabbitfishes through time to ultimately unravel its driver (climate, connectivity), 304 

and test the potential benefit of MPAs on lowering their abundance through increased level of 305 

predation by large fishes. 306 

In addition, as the Mediterranean coastal ecosystems are a popular place for underwater 307 

activities (snorkeling, freediving, SCUBA diving) and as many of these recreational users own 308 

underwater cameras, there is a high potential to collect a large number of images in many 309 

places. As most recreational users have no to little ability to identify all fish species, our publicly 310 

available algorithm will favor current citizen science monitoring of NIS. Indeed, our algorithm 311 
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will favor the participation of new users to those programs as well as help them improving their 312 

identification skills so that less individuals of rabbitfish will be missed. Ultimately, these 313 

recorded and validated new occurrences would be integrated in the Global Biodiversity 314 

Information Facility (GBIF) and the Ocean Biodiversity Information System (OBIS) to actualize 315 

rabbitfish geographic range size and estimate of invasion rate. 316 

Given the increasing number of NIS entering the Mediterranean Sea as well as the expansion 317 

of those already present in the South-Eastern part (Azzurro & Andaloro, 2005; Azzurro, 318 

Smeraldo & D’Amen, 2022), video-algorithm based monitoring programs should be able to 319 

monitor more species. Toward this aim, it would be relevant to upgrade the model by 320 

identifying more indigenous species as well as more NIS. Among the NIS that should be 321 

prioritized to be added to the training database, lionfish (Pterois miles), silver-cheeked toadfish 322 

(Lagocephalus sceleratus), yellowspotted puffer (Torquigener flavimaculosus), and sweepers 323 

(Pempheris spp) are of the highest priority given their abundance in the Eastern Mediterranean 324 

and their rapid northward and westward expansion (Zenetos et al., 2022). These Lessepsian 325 

species are morphologically distinct from one another and from indigenous species and should 326 

thus be easily identified by algorithms. 327 

One step further, AI algorithms may unlock the potential of video-based monitoring beyond 328 

the case of non-indigenous species detection through automated identification of all fish 329 

species, including endangered one, as well as estimating their size and behaviors (Ditria, Jinks 330 

& Connolly, 2021) to assess a large set of indicators as envisioned by the Essential 331 

Biodiversity Variable framework (Kissling et al., 2018). These variables would deliver multiple 332 

indicators of coastal ecosystem status, climate change effects, and spatio-temporal trends in 333 

fish biodiversity, as required to meet the monitoring requirements of the EU Water Framework 334 

Directive (WFD) and the Marine Strategy Framework Directive (MSFD).  335 

 336 

 337 

 338 
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