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PERSPECTIVE

Telomere length is an epigenetic trait – Implications for the use of
telomerase-deficient organisms to model human disease
Catarina M. Henriques1 and Miguel Godinho Ferreira2,*

ABSTRACT
Telomere length, unlike most genetic traits, is epigenetic, in the sense
that it is not fully coded by the genome. Telomeres vary in length and
randomly assort to the progeny leaving some individuals with longer
and others with shorter telomeres. Telomerase activity counteracts this
by extending telomeres in the germline and during embryogenesis
but sizeable variances remain in telomere length. This effect is
exacerbated by the absence of fully active telomerase. Telomerase
heterozygous animals (tert+/−) have reduced telomerase activity and
their telomeres fail to be elongated to wild-type average length,
meaning that – with every generation – they decrease. After a given
number of successive generations of telomerase-insufficient crosses,
telomeres become critically short and cause organismal defects that, in
humans, are known as telomere biology disorders. Importantly, these
defects also occur inwild-type (tert+/+) animals derived fromsuch tert+/−

incrosses. Despite these tert+/+ animals being proficient for telomerase,
they have shorter than average telomere length and, although milder,
develop phenotypes that are similar to those of telomerase mutants.
Here, we discuss the impact of this phenomenon on human
pathologies associated with telomere length, provide a brief overview
of telomere biology across species and propose specific measures for
working with telomerase-deficient zebrafish.

KEY WORDS: Telomere length, Telomerase, Epigenetic inheritance,
Ageing, Zebrafish

Inheritance of telomere length and associated diseases
Telomeres, i.e. the ends of eukaryotic chromosomes, are replicated
differently compared with the rest of the genome. Chromosome
ends pose a special challenge to conventional DNA polymerases.
Given the requirement of a template sequence to synthesise a new
strand, the very end of the chromosome is incompletely duplicated
and shortens with every round of cell division – known as the ‘end
replication problem’. Pioneering work by Elizabeth Blackburn,
Carol Greider and Jack Szostak, who were later awarded the Nobel
prize, identified a specialised DNA polymerase, telomerase (tert),
dedicated to elongating chromosome ends (Greider and Blackburn,
1985). Telomerase is a ribonucleoprotein polymerase complex that
employs the RNA of one of its subunits, i.e. of telomerase RNA
component (terc), as a template, adding repeated copies to the ends

of chromosomes, thereby preventing replicative shortening (de
Lange, 2006).

Telomere length is maintained from generation to generation by
the action of telomerase, which elongates telomeres in the germline
and during embryogenesis. However, in humans, telomerase
expression is repressed in most somatic cells after birth, so
telomeres shorten throughout our lives. This may have evolved as
a tumour suppressor mechanism to limit harmful cell proliferation
(Forsyth et al., 2002; Cong et al., 2002). As a trade-off, continuous
telomere erosion eventually results in replicative senescence and
contributes to ageing pathologies (Henriques and Ferreira, 2012;
Pereira and Ferreira, 2013).

Even though telomerase expression during embryonic development
maintains telomere length for generations (Zheng et al., 2014),
telomeres do not have precise lengths. They vary between different
chromosomes, and also between cells and tissues of the same
organism. The primary cause is that telomerase does not elongate
telomeres to an exact length (Shore and Bianchi, 2009). Telomerase
acts primarily on short telomeres, going through cycles of synthesis
until it disengages (Zheng et al., 2014; Zhao et al., 2011). Telomere
elongations depend on telomerase activity and the regulatory role of
the telomere-binding complex, known as shelterin. A second reason
for telomere length variation across different tissues is the rate of cell
division. Themore frequently somatic cells divide, the faster telomeres
shorten. As we age, this is observed in the gastrointestinal and
hematopoietic systems (Lansdorp, 1995; Aubert et al., 2012;
Demanelis et al., 2019), due to their high rates of turnover. A third
reason for telomere variation is damage in response to environmental
and cellular stress. Telomeres are G-rich sequences, i.e. they comprise
a stretch of three or more continuous guanine residues, and thus are
especially prone to oxidative damage (Hewitt et al., 2012; Fumagalli
et al., 2012). This is particularly important in highly metabolic organs,
such as the brain and heart, as they have increased levels of
mitochondrial reactive oxygen species. In these cases, the protective
nature of telomeric DNA leads to poor repair of the DNA lesion 8-
oxoguanine. This is particularly pertinent in post-mitotic cells, such as
neurons and muscle. Accumulation of damaged DNA at telomeres
leads to rapid telomere attrition, beyond the expected gradual loss with
cell division.

Given its diversity among individuals, average
telomere length does not constitute a strong
predictor of biological age. Telomere length is,
however, associated with several pathologies,
including COVID-19, lung, liver, hematologic and
cardiovascular diseases, as well as multiple
forms of cancer

Telomere length in the zygote is fixed by the gametes (Chiang et al.,
2010). However, as in other cells, telomere length in gametes varies,
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despite the constitutive expression of telomerase in germ cells
(Zvereva et al., 2010). Furthermore, the gradual reduction of
telomerase activity and the many rounds of cell divisions involved
in the zygote-to-embryo development all the way to adulthood, give
rise to the diversity of telomere length present in our bodies.
Telomere decline is fastest in our first years of age; this decline is
still very rapid until our late teens, slowing down as we reach
adulthood to a steady state turn over (Sidorov et al., 2004).
Surprisingly, even though telomeres shorten regularly as we age, the
diversity of telomere length among individuals is considerable,
meaning that some young individuals have telomeres of the average
length of those of old people and vice versa. This was observed in
leukocytes harvested from hundreds of people across different ages
(Aubert et al., 2012; Hou et al., 2015; Werner et al., 2015). Given its
diversity among individuals, average telomere length does not
constitute a strong predictor of biological age (Der et al., 2012).
Telomere length is, however, associated with several pathologies,
including COVID-19 (Mahmoodpoor et al., 2023), lung (Amsellem
et al., 2011), liver (Wiemann et al., 2005), hematologic and
cardiovascular diseases (Minamino and Komuro, 2007), as well as
multiple forms of cancer (Campisi, 2013). Most studies found that
these human diseases correlate with reduced leukocyte telomere
length (LTL) (Byrjalsen et al., 2023; Raj et al., 2023). However,
long telomeres can also be associated with cancer (Chen et al.,
2023), most likely enabling escape from the replicative senescence
barrier (Low and Tergaonkar, 2013). In addition to natural variation
of telomere length and disease, mutations in the genes encoding
telomerase subunits and its associated proteins, lead to syndromes
called telomere biology disorders (TBDs) (Raj et al., 2023; Revy
et al., 2023; Carvalho et al., 2022). These include rare diseases
(Alter et al., 2012; Garofola et al., 2023), such as dyskeratosis
congenita and Hoyeraal–Hreidarsson syndrome, but also chronic
diseases, such as idiopathic pulmonary fibrosis (IPF) (Spagnolo and
Lee, 2023). IPF affects ∼5 million people worldwide and half of
them have telomeres with lengths in the lower 1% of the average
distribution for their age group.

Telomere length is, therefore, an epigenetic trait
that depends not only on the genetic status of
telomerase but also on the telomere length that
we inherit from our parents

Telomerase is dosage-sensitive and most TBDs result from
heterozygosity of telomerase-associated proteins. Homozygous and
compound heterozygous deficiencies are extremely rare and give rise
to even shorter telomeres with severe phenotypes (Mason and Bessler,
2011). The fact that telomere length cannot be maintained by a single
functional copy of telomerase is highlighted by the phenomenon
known as genetic anticipation (Vulliamy et al., 2004; Armanios et al.,
2005). Grandparents carrying a telomerase mutation in one allele –
equivalent to generation 0 (G0) –might not have severe symptoms but
the chances of phenotypes presenting does increase substantially in the
subsequent generations of carriers. This happens for twomain reasons.
First, a heterozygous individual (G0) produces shorter telomere
gametes and, second, the newly formed heterozygous zygote (G1) is
unable to maintain the parental telomere length when undergoing the
multiple cell divisions into adulthood. This telomere shortening is,
thus, exacerbated in subsequent generations (G2 onwards). Progressive
telomere shortening from generation to generation in heterozygosity
was also shown in model systems, such as CAST/Ei mice (a strain
derived from thewildMusmusculus castaneus) (Hathcock et al., 2002;

Hao et al., 2005) and zebrafish (Scahill et al., 2017). The most striking
result of this generational decline is that, upon successive heterozygous
incrosses, genetically wild-type telomerase descendants with fully
functional telomerase activity, also exhibit very short telomeres and
phenotypes associated with the telomerase mutation (Hao et al., 2005).
Telomere length is, therefore, an epigenetic trait that depends not only
on the genetic status of telomerase but also on the telomere length that
we inherit from our parents (Zheng et al., 2014; Njajou et al., 2007).

Laboratory models to investigate the consequences of
telomere shortening
Reduced telomere length and restriction of telomerase expression
appear to have evolved in response to different life strategies across
species. For example, lifespan and telomere length of killifish are
inversely correlated in the wild (Reichard et al., 2022), as short-lived
killifish strains from drier climates possess longer telomeres than
longer living strains. Telomere length also inversely correlates with
lifespan in mammals (Gomes et al., 2010, 2011). Large mammals,
which undergo more cell divisions and live longer, have evolved
tumour suppressor mechanisms that rely on cell division clocks, such

BOX 1: Recommendations to avoid unintended
haploinsufficiency effects in zebrafish
1 - To reduce the effects of variability in telomere length and
haploinsufficiency, compare telomerase-deficient animals with WT
siblings derived from a G1 heterozygous cross. In addition, use
animals of identical age and keep the same couples to generate
siblings (e.g. three different couples to create the progeny). In zebrafish,
tert−/− (allele hu3430) animals are infertile when aged 6 months or older
(Henriques et al., 2013; Anchelin et al., 2013). It is crucial for breeding
stocks of this allele to be maintained in heterozygosity (tert+/−) generated
by outcrosses to WT, i.e. tert+/−× tert+/+ (see Fig. 1).
2 - Telomere length of WT stocks also matters. As an example, given the
outbred nature of zebrafish, telomere length varies (∼2-fold) across
strains and should be verified before choosing the tert+/+ stock line.
Introgressing the telomerase mutation into a different genetic
background can modify ‘baseline’ telomere length and, therefore,
timing of critical decline in telomere length.
3 - In telomerase mutant animals generated by chemical mutagenesis,
such as in the well-described zebrafish (terthu3430), the original line was
outcrossed to AB WT animals at least five times to minimise the
possibility of other non-related mutations. This is particularly important
for zebrafish lines available at the Zebrafish International Resource
Center, generated by ENU mutagenesis and which have not yet been
outcrossed. Of note, with the exception of the hu3430 strain, other
zebrafish telomerase mutants (tert sa6541 and tert sa25076) (Scahill et al.,
2017) have not yet been assessed for telomerase activity and, thus, not
yet shown to be complete telomerase-deficient animals.
4 - Although effort has been made to harmonise the feeding protocols
across zebrafish facilities, it is still the case that most have different
regimens with varying nutritional values. Caloric restriction and/or high-
fat diets, known to alter lifespan in many models, are likely to interfere
with results obtained in different labs. Information regarding consistency
concerning the number of feeds per day, feeding on weekends and
usage of live prey (e.g. artemia and rotifers) is widely variable. This is
particularly important when performing long-term experiments aiming to
investigate longevity, neurodegeneration and tumour incidence. Thus,
declaring the feeding regimen and harmonising with other animal
facilities is of utmost importance.
5 - Telomere shortening rates differ across tissues. Importantly, in
zebrafish, gut-specific rescue of the telomerase mutant results in a time-
dependent improvement of the whole organism, including fertility and
longevity (El Mai et al., 2023). Therefore, effects of telomerase mutants
can be non-autonomous and should be considered when performing
phenotypic analysis in particular tissues.
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as telomere shortening. Also, male killifish, which are overall larger
than females, have shorter telomeres (Reichard et al., 2022).
Interestingly, the naked mole rat, which – despite its small size –
lives for up to 30 years, has shorter telomeres than most of its closely
related rodents that have shorter lifespans (Gorbunova and Seluanov,
2009). Laboratorymouse strains (e.g. C57BL/6, BALB/c, etc.) mostly
derived from Mus musculus domesticus have 5 to 10 times longer
telomeres than humans and have largely telomerase-independent cell
division counting mechanisms (Forsyth et al., 2002;Wright and Shay,
2000; Itahana et al., 2004). G1 telomerase-deficient (Tert−/−) lab mice
retain very long telomeres and do not display decreased fertility,
survival or increased disease associated with decreased telomere
length. Nevertheless, telomere dysfunction does, eventually, impact
mouse health because Tert−/− mice obtained through several
generations of incrossing (G4–G6) develop age-related pathologies
(Blasco et al., 1997; Lee et al., 1998; Rudolph et al., 1999).

Zebrafish age-dependent tissue degeneration
occurs in a time- and tissue-dependent manner
[…] this is reminiscent of the human scenario,
where telomerase loss-of-function mutations or
mutations affecting telomere stability lead to
premature ageing syndromes […] with particular
impact on highly proliferative tissues

Zebrafish (Danio rerio) recently emerged as a powerful
complementary model to investigate the fundamental mechanisms
of ageing that underlie disease (Carneiro et al., 2016a). Zebrafish
display various age-associated phenotypes that mimic those of
human ageing, including spine curvature (Henriques et al., 2013;
Anchelin et al., 2013; Gerhard et al., 2002), retinal atrophy and
cataracts (Carneiro et al., 2016b; Anchelin et al., 2013; El Mai et al.,
2023), infections (Carneiro et al., 2016b), loss of body mass
(wasting) (Carneiro et al., 2016b; Trueland, 2013; Takahashi et al.,
2017; Gerhard et al., 2002), cancer (Carneiro et al., 2016b),
neurodegeneration (Kishi et al., 2008) and altered behaviour
(Espigares et al., 2021). Importantly, critically short telomeres in
zebrafish are associated with increased DNA damage response
(DDR) markers, and the accumulation of DDRs predicts increased
cellular senescence and age-associated pathology (Carneiro et al.,
2016b). Many of these age-associated changes are accelerated in the
absence of telomerase, allowing the distinction between telomerase-
dependent and -independent phenotypes (Carneiro et al., 2016b;
Henriques et al., 2013). In G1 adult tert−/− zebrafish, progressive
shortening of telomeres, accumulation of senescence and
inflammation occurs over a relatively short period of time, i.e.
between 6 and 12 months as compared to between 24 and
36 months in wild type, allowing an exceptional temporal
analysis from young to old tert−/− animals (Carneiro et al.,
2016b). Zebrafish age-dependent tissue degeneration occurs in a
time- and tissue-dependent manner, with highly proliferative
tissues, such as the intestine and blood, amongst the first to be

A   Stock maintenance B   Experimental lines

×

WT tert+/−

×

tert+/−tert+/−

×

WT tert+/−

tert+/+ tert+/− tert−/−

×

WT tert+/−

Minimised telomere
shortening

Verified telomere
length

G0

Shorter telomeres

G1

Telomere

Chromosome

Disease Models & Mechanisms

Fig. 1. Maintaining stocks and experimental lines of telomerase mutants. (A) Breeding stocks of tert+/− zebrafish must be generated by outcrosses to
wild-type (WT; tert+/+) fish. WT zebrafish used for this should be from a stock with verified telomere length. The tert+/− progeny can be used in consecutive
crosses for stock maintenance, as outbreeding with the WT stocks introduces new ‘pools’ of telomeres with diverse length. This minimises (but does not
completely eliminate) telomere shortening across generations. All generations of tert+/− zebrafish from stock maintenance can be used to produce
experimental lines, but the age of the parents used must be consistent. (B) Crossing tert+/− zebrafish generated from stock maintenance (G0) will produce
tert+/+, tert+/− and tert−/− progeny (G1). Owing to haploinsufficiency, G0 tert+/− zebrafish will have reduced capacity to extend telomeres, so G1 tert+/− as well
as tert+/+ zebrafish will inherit shorter telomeres (indicated by dotted lines), with G1 tert+/− zygotes having reduced capacity to extend their telomeres.
Therefore, tert+/− zebrafish incrosses must not be used for stock maintenance. As tert−/− zebrafish completely lack telomerase, they will have even shorter
telomeres and associated phenotypes will be apparent in the first generation. G0, generation 0; G1, generation 1; tert, telomerase reverse transcriptase; WT,
wild type.

3

PERSPECTIVE Disease Models & Mechanisms (2024) 17, dmm050581. doi:10.1242/dmm.050581

D
is
ea

se
M
o
d
el
s
&
M
ec
h
an

is
m
s



affected. Importantly, this is reminiscent of the human scenario,
where telomerase loss-of-function mutations or mutations affecting
telomere stability lead to premature ageing syndromes – such as
TBDs or, in extreme cases, progerias – with particular impact on
highly proliferative tissues, like the gut (Alter et al., 2012; Hofer
et al., 2005).
Like in mice and humans, telomerase expression is

haploinsufficient in zebrafish. Similar to tert−/− mutants,
descendants of older (16-month-old) heterozygous (tert+/−) fish
have shorter telomeres and show more prominent signs of cachexia
and fertility problems compared to descendants of younger
(4-month-old) tert+/− parents (Scahill et al., 2017). This suggests
that tert haploinsufficiency manifests in gametogenesis and
progressively worsens as parents age, due to further telomere
shortening throughout life. It is worth remembering that in humans,
oogenesis only occurs during embryonic development but
spermatogenesis continues until much later in life, which impacts
how these findings are translated from zebrafish. Furthermore, with
every generation of successive tert+/− incrossing, the phenotypes
become progressively more severe. For instance, body wasting
and early infertility are apparent in early generations of tert−/−

progeny (G1), but this is anticipated in tert+/− and tert+/+ zebrafish
after multiple incrosses of tert+/− zebrafish, rendering the line
non-reproductive. We, therefore, have recommendations to avoid
unintended haploinsufficiency when using zebrafish (Box 1 and
Fig. 1).

Thus, not all organisms rely on telomere
shortening during their lifetime as a mechanism
to prevent disease and decline of fitness. For this
reason, it is vital to seek out the appropriate
model system to answer the questions at hand.
Sometimes, the closest evolutionary model is not
the most relevant.

There are other model systems in which telomere shortening also
causes organismal functional decline across multiple generations.
Examples include ciliates and yeast (de Lange, 2006), plants (Riha
et al., 2001), Caenorhabditis elegans (Meier et al., 2006) and the
aforementioned killifish (Harel et al., 2015). In these examples, apart
from killifish, complete absence of telomerase does not result in
telomere-associated phenotypes in G1. Similar to Tert−/− laboratory
mice, G1 homozygous telomerase knockouts of C. elegans (Meier
et al., 2006) and Arabidopsis thaliana (Riha et al., 2001), do not

exhibit an observable impact on survival and reproduction.
However, defects do occur when homozygous telomerase
knockouts are incrossed for several generations, forcing telomere
decline and genetic anticipation, as described for heterozygous
deficiencies in humans and zebrafish. This contrasts with humans,
zebrafish and killifish, in which telomerase deficiency results in
severe phenotypes in the first mutant generation. Thus, not all
organisms rely on telomere shortening during their lifetime as a
mechanism to prevent disease and decline of fitness. For this reason,
it is vital to seek out the appropriate model system to answer the
questions at hand. Sometimes, the closest evolutionary model is not
the most relevant.

Conclusions
Different organisms display varying responses to telomere shortening,
with some showing delayed effects over several generations.
Understanding the diversity of telomere length and its evolutionary
adaptive role in nature remains largely undetermined given the focus
on human telomere biology. Exploring the diverse outcomes of
telomere dysfunction in organisms as varied as zebrafish, wild mice
and humans, will enhance our understanding of the role telomere
shortening has in aging and disease. Telomere length, as an epigenetic
trait, is dictated not only by expression of telomerase but also depends
on the tissue context (e.g. replicative potential, oxidative stress,
metabolism, etc.) and the surrounding environment. Exposure to stress
from early development will condition adult telomere length and
translate to increased susceptibility to disease and premature aging. A
more thorough understanding of these processes across species will
provide new avenues for telomere elongation strategies in TBDs and,
potentially, other pathologies associated with shortened telomeres,
thus, helping to establish a clear period of intervention while avoiding
the ever-present risk of cancer.
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