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Abstract: Currently, road surface conditions ahead of autonomous vehicles are not well detected
by the existing sensors on those autonomous vehicles. However, driving safety should be ensured
for the weather-induced road conditions for day and night. An investigation into deep learning
to recognize the road surface conditions in the day is conducted using the collected data from an
embedded camera on the front of the vehicles. Deep learning models have only been proven to be
successful in the day, but they have not been assessed for night conditions to date. The objective of
this work is to propose deep learning models to detect on-line road surface conditions caused by
weather ahead of the autonomous vehicles at night with a high accuracy. For this study, different
deep learning models, namely traditional CNN, SqueezeNet, VGG, ResNet, and DenseNet models,
are applied with performance comparison. Considering the current limitation of existing night-time
detection, reflection features of different road surfaces are investigated in this paper. According to the
features, night-time databases are collected with and without ambient illumination. These databases
are collected from several public videos in order to make the selected models more applicable to
more scenes. In addition, selected models are trained based on a collected database. Finally, in the
validation, the accuracy of these models to classify dry, wet, and snowy road surface conditions at
night can be up to 94%.

Keywords: autonomous vehicles; driving safety; night-time detection; road surface conditions;
features; deep learning; accuracy; performance

1. Introduction

In recent years, autonomous driving technology has been developed rapidly. In order
to ensure the passenger has a safe and comfortable experience with autonomous vehicles,
advanced obstacle detection systems have to be implemented. One of the important issues
of obstacles detection systems is the detection of the road surface conditions ahead of
the autonomous vehicles induced by the weather, such as dry, wet, icy, and snowy road
surfaces. According to [1,2], the risk of traffic accidents is significantly related to weather
conditions. In Europe, according to data from European Road Safety Observatory, 29%
of fatalities occurred in non-dry conditions (including rain, fog, snow, etc.) in 2016 [3].
These surface conditions, especially icy and snowy ones, decrease the road adhesion, which
increases the breaking distance. Thus, the distinction of road surface condition is crucial
for safe autonomous driving. Once the road surface conditions can be recognized, the
autonomous vehicles can brake in advance, which increases the safety of the autonomous
vehicles.
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Investigations into the recognition of road surface conditions have been conducted
since the 1990s [4–6]. During several years, research has been focused on methods to
detect road conditions in an attempt to decrease accidents caused by slippery roads. A
more promising technique for the road condition classification exploits the variation in
intensity of the scattered NIR (Near Infra-Red) light from the road surface. Authors in [7,8]
investigated the feasibility of the NIR system to recognize the road surface conditions. It is
proven that using a tri-wavelengths sourced in the NIR band can be feasible to distinguish
the road surface conditions. However, this system has the disadvantage of high cost.

In recent years, the growth of computer performance and the development of machine
learning algorithms have allowed us to analyze and extract information related to the road
surface conditions easily [9]. In the literature, Ref. [10] exploited the data from a weather
station to forecast the road surface condition in rainy days. Ref. [11] exploited the Model
of the Environment and Temperature of Road (METRo) to forecast the icy road surface
conditions. Other references were focused on the data captured from cameras, as video
information is the most intuitive information to distinguish the road surface conditions
and has good availability. Ref. [12] proposed a texture based model to detect wet road
surface conditions. Refs. [13,14] used SVM (Support Vector Machine) to classify road
surface conditions. The accuracy of the classification could be 90%. In [15], comparisons
were made between the SVM and Naive Bayes, where it was concluded that SVM is better
than Naive Bayes in accuracy. Ref. [16] achieved a classification accuracy of 97% with the
SqueezeNet model as one of the deep learning models.Ref. [17] went further, using the
running SqueezeNet model to reduce the computational complexity without significantly
decreasing its prediction accuracy. In addition, DenseNet121 and AlexNet/caffeNet are
exploited in [18,19] in order to classify the road surfaces or estimate the road friction. In [20],
a CNN-based model RCNet is proposed to classify the road surface conditions with an
accuracy of 99%. Furthermore, in order to solve the problem of database imbalance, a
CycleGAN is proposed in [21] to artificially generate images of wet and snow-covered
roads, which could help the road surface algorithms to obtain better performance.

The references above are mainly focused on the road surface conditions during the
day. However, in real life, slippery road surface conditions at night are more difficult
to be detected, due to the limited lighting conditions. Indeed, at night, the contrast of
the images captured by the camera is decreased. The risk of accidents caused by road
surface conditions at night is higher. Therefore, the importance of the obstacle system to
detect the road conditions at night-time for autonomous vehicles is obvious. Refs. [22,23]
investigated the cases at night via images from cameras. Both papers use the Mahalanobis
distance to distinguish the road conditions. Their accuracies are about 70–80%. Ref. [24]
extracted luminance, color information, and texture feature of images from cameras. The
nearest neighbor method was exploited to make classifications. The accuracy is about
90%. Compared to the references focused on the database during the day, fewer references
investigated the road surface conditions at night. In addition, one of the limitations
of [22–24] is that the databases that they collected are constrained to one given road, and
even the test data are acquired on the same road, which certainly undermines the feasibility
of the model to other scenes.

In the literature, deep learning models in [16,18], such as SqueezeNet and DenseNet,
were proven to be successful models to classify the road surface conditions during the
day. However, their performance to classify road surface conditions has not been assessed
for night. Considering the limitations of classification of the road surface conditions at
night, we propose the use of deep learning models to classify the road surface conditions at
night using images captured from cameras on the front of the vehicles. This system will be
implemented on the autonomous vehicles in order to increase driving safety. In [22–24],
the classification accuracy of models at night is lower compared with the accuracy of the
models in the day. A possible reason is that the images captured at night depend greatly on
the road illumination conditions. Illumination sources at night are mainly the headlamps
of the vehicles and ambient light sources such as street lamps. The positions of these light
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sources relative to the camera are different, which results in the features of the image being
different under the illumination of the two light sources. Thus, we will first discuss the
features of the images according to the illumination conditions. In addition, as previous
works about night road surface conditions utilize data from a fixed road, we aim to collect
data from more scenes depending on the illumination conditions, in order to give our
models better applicability. The road conditions will be classified based on the illumination
conditions discussed before. In this work, the road conditions aimed to be investigated are
dry, wet, and snowy road conditions. Therefore, the data of these road conditions will be
collected from public videos, and deep learning models will be assessed to these models to
obtain a better accuracy at night. The contributions of the paper are as follows:

• Different deep learning models, such as traditional CNN, SqueezeNet, VGG, ResNet,
and DenseNet models, are proposed and applied to classify road surface conditions at
night, which have not been investigated in detail before.

• Illumination conditions are discussed based on the reflection features. Models are
trained separately in different illumination conditions in order to increase accuracy.

• Data of different scenarios with and without ambient illuminations at night are
collected.

In this paper, Section 2 is devoted to the investigation of the features of the road
surface under different illumination conditions. In Section 3, according to these features,
databases are collected separately and the deep learning models that will be applied are
introduced. In Section 4, performance and comparison of the models will be presented.
Finally, a discussion will be given in Section 5, followed by a conclusion in Section 6.

2. Features of Images Captured at Night

In the investigation of the images captured at night, it is found that the features
of reflected light vary depending on the illumination conditions. For dry and snowy
conditions, light scatters on the surface. However, wet conditions have a different behavior.
Most of the light reflects on a wet road in the opposite direction to the incident direction,
which is because water on the road smooths the rough road surface.

This feature makes wet road conditions behave quite differently in different ambient
illuminations. Where the road surface is only illuminated by headlamps of vehicles, as in
Figure 1c, the light emitted from the vehicle will reflect forward and cannot be captured by
the camera on the vehicle. Thus, the wet road surface will look very dark in the camera
mounted on the vehicle. This is due to the specular reflection on the wet road surface.
Where the wet road is illuminated by ambient light sources, such as street lamps, or other
light sources along with the headlamps of the vehicle, as in Figure 1d, the light emitted
by street lamps will be captured by the camera through the specular reflection on the road
surface, which will make the images brighter than in cases without an ambient light source.
As for dry and snowy road conditions, presented in Figure 1a,b, the road surface is rough.
Thus, the camera mounted on vehicles can capture the light scattered on the road surface
with ambient light illuminations.

In Figure 2, the examples of different road conditions with and without ambient
light illumination are presented. Where the road surface is only illuminated by head-
lamps, luminance in the road image is slightly low for dry road surfaces, as illustrated
by Figure 2a. This is due to the fact that the color of asphalt is usually dark. Luminance is
high for snowy road surfaces, as shown in Figure 2c, because the road becomes bright or
white. The wet road surface in the image is very dark, even darker than dry road surfaces,
as shown in Figure 2b, which is due to the specular reflection. On the contrary, in cases
in which the road is illuminated by ambient light and headlamps, the images of dry and
snowy road surfaces are similar to those in the previous case, as shown in Figure 2d,f. The
images of wet road surface conditions present a very bright reflection of the street lamp as
shown in Figure 2e. These two illumination conditions often correspond to the illumination
conditions in urban areas and suburban areas (e.g., the countryside and highway). Thus,
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according to these features, we will collect the data in two illumination conditions: with
and without ambient illumination.

(a)
(b)

(c) (d)

Figure 1. (a) Dry or snowy road conditions without ambient light illumination. (b) Dry or snowy
road conditions with ambient light illumination. (c) Wet road conditions without ambient light
illumination. (d) Wet road conditions with ambient light illumination.

With ambient 

light illumination 

Without ambient 

light illumination 

(d) (e)

(a) (b)

(f)

(c)

Figure 2. Examples of different road conditions. (a–c) are taken without ambient light illumination.
(b,d,f) are taken under ambient light illumination. (a,d) are taken in dry road conditions. (b,e) are
taken in wet road conditions. (c,f) are taken in snowy road conditions.

3. Description of the Models

The models that are suggested to detect road surface conditions at night are CNN,
SqueezeNet, VGG, ResNet50, and DenseNet.

3.1. CNN Models

CNN models are well known for hybrid feature abstraction from images [25]. The
model is composed of convolution layers, pooling layers, and a dense flattening layer. Each
convolution layer is followed by a pooling layer with an activation function. The dense
layer follows after the last pooling layer.

This model needs to specify the number of convolution layers and the filter size. In
order to obtain best performance, the models are investigated from one to three consecutive
convolution layers. In addition, the filter size is tested from 3 to 17 with stride of 2. As a
result, the initial filter size that gives maximum test accuracy is [7 × 7 × 8]. Figure 3 shows
an example of three consecutive convolution layer CNN models with the selected filter.
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Image

7×7, Conv, 8

[256×256×6]

MaxPooling/2 [128×128×8]

[256×256×8]

7×7, Conv, 16

MaxPooling/2

[128×128×16]

7×7, Conv, 32

MaxPooling/2

[64×64×32]

[64×64×16]

[32×32×32]

Dense [1024]

Output [3]

Output size

Figure 3. Example of three convolution layer CNN models.

This CNN model is designed with an input image of size [256 × 256 × 6]. The six
dimensions refer to the six color channel features of the images. The sizes of the three
filters are, respectively, [7 × 7 × 8], [7 × 7 × 16], and [7 × 7 × 32]. The max-pooling layer
reduces the resolution of the convolved image by half, followed by a ReLU (Rectified Linear
Unit) activation function and batch normalization operation with a dropout probability
of 0.8. The loss function used for training the back-propagation is a cross-entropy loss
function. The dimension of the output of the model is [1 × 1 × 3], which represents the
probability that the image belongs to dry, wet, or snowy conditions, respectively. Thus, the
final predicted class label is the class with maximum predicted probability.

3.2. SqueezeNet Model

This deep learning model was proposed in [16,26]. It has proven to be a very efficient
model to process road surfaces at night. In addition, it replaces [3 × 3] convolution filters
in the AlexNet model with [1 × 1] filters, which leads to fewer input channels. Then,
it uses Fire module as an expand module. In Fire module, a [1 × 1] convolution and a
[3 × 3] convolution are both applied to the output of previous layer. Their output results
are concatenated. In addition, ReLU are used as the activation layer. This model uses
late max-pooling to improve accuracy and does not need additional parameters. Finally,
residual connections are applied between layers of the same dimensionality, followed by
parameter pruning from ‘Deep Compression’ to further reduce the parameters.

In our case, this model is adapted for the input and output dimensions. The input
of the model is [256 × 256 × 6]. Thus, the input channel sizes for each layer are as fol-
lows: Input: [256 × 256 × 6], Conv1: [128 × 128 × 96], MaxPooling1: [63 × 63 × 96],
Fire2: [63 × 63 × 128], Fire3: [63 × 63 × 128], Fire4: [63 × 63 × 256], MaxPooling2:
[31 × 31 × 256], Fire5: [31 × 31 × 256], Fire6: [31 × 31 × 384], Fire7: [31 × 31 × 384], Fire8:
[31 × 31 × 512], MaxPooling3: [15 × 15 × 512], Fire9: [15 × 15 × 512], Dense(Conv10):
[15 × 15 × 3], and Output: [1 × 1 × 3]. Figure 4 shows the adapted structure of the
SqueezeNet model.
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Image Conv1

MaxPooling/2

Fire2

96

Fire3

Fire4

MaxPooling/2

Fire5

Fire6

Fire7

Fire8

MaxPooling/2

Fire9

Conv10

Global avgpool

Softmax Output

128

128

256

384

384

512

512

256

Figure 4. SqueezeNet model [26].

3.3. VGG Model

The VGG model was first introduced in [27]. VGG is a classical convolutional neural
network architecture. It makes an improvement on AlexNet by replacing large kernel-sized
filters (11 and 5 in the first and second convolutional layer, respectively) with multiple
3 × 3 kernel-sized filters, one after another. The VGG16 and VGG19 in [27] are investigated
in our task, which, respectively, have 16 and 19 layers. The performances of VGG16 and
VGG19 will be compared. Their outputs are replaced by an output of three dimensions for
our classification task.

3.4. ResNet Model

The ResNet model was introduced in [28]. In order to solve the problem that deeper
neural networks are more difficult to train, a residual learning framework was proposed
to ease the training of deep networks. The layers are reformulated as learning residual
functions with reference to the layer inputs, instead of learning unreferenced functions. It
has been proven to be a very successful model in pattern recognition. The ResNet50 in [28]
is investigated in our task considering the complexity of computation and the model. The
ResNet50 is composed of 50 layers with ResNet architecture. The output of the ResNet50 is
replaced by an output of three dimensions for our classification task.

3.5. DenseNet Model

The DenseNet model was first introduced in [29]. A DenseNet is a type of convo-
lutional neural network that utilizes dense connections between layers, through dense
blocks, where we connect all layers (with matching feature-map sizes) directly with each
other. In [18], DenseNet121 is investigated to estimate the road frictions by images captured
by cameras on the front of vehicles during the day. The network structure is initialized
as in [29] with a basic convolution layer followed by four dense blocks and three transi-
tion layers, while the output layer is replaced by an output of three dimensions for our
classification task.

These models will be assessed with an individual database with and without ambient
light illumination.

4. Database and Pre-Processing

The evaluation of the models above should be assessed on a database. As no specific
database focused on road conditions at night is available, an individual database needs to be
collected. In order to ensure that the model can be applied to as many scenes as possible, the
database is collected from several YouTube videos. As in Section 2, the images taken under
ambient light illumination and the images taken without ambient light illumination have a
large difference. Therefore, the databases are collected separately for the two illumination
conditions and they will be trained separately. We found that the videos under ambient
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illumination are regularly taken in urban areas. On the other hand, the videos without
ambient illumination are regularly taken in the countryside or on a highway. Images are
extracted from the frames of the videos with an interval of at least one second between each
frame, in order to ensure variability within the database. The images are labeled manually.

In Table 1, the number of images in each class for training and validation under
different illumination conditions are presented. In order to test the feasibility of applying
the models to other scenes, the database for validation is collected from other videos. The
original resolution of the images are [1920 × 1080] or [1280 × 720]. Then, the images are
resized to match their respective model. The color space of the original images is RGB (Red,
Green, Blue). For the CNN and SqueezeNet models, the images are resized to [256 × 256]
and they are converted into HSV (Hue, Saturation, Value) color space. Due to the images in
RGB color space and HSV color space, each image can be represented in a [256 × 256 × 6]
matrix, in which the six channels are Red, Green, Blue, Hue, Saturation, and Value. For the
VGG, ResNet50, and DenseNet121 models, the images are resized to [224 × 224] and the
input of these models is [224 × 224 × 3]. The three dimensions correspond to RGB color
space. Additionally, histogram-based image equalization is applied to the images in the
databases.

Table 1. Number of images in each class for training and validation under different illumination.

Database for Training

With ambient illumination Without ambient illumination

Dry Wet Snow Dry Wet Snow

3219 3464 3510 3722 3830 3601

Database for Validation

With ambient illumination Without ambient illumination

Dry Wet Snow Dry Wet Snow

3722 2837 4222 6081 2809 4183

5. Training and Validation

An RTX 3080 GPU is used to train these models. The optimizer of the models is
selected as Adam optimization. The learning rates of the CNN, SqueezeNet, ResNet,
and DenseNet models are searched to be set as 0.001. The initial learning rates of model
VGG16 and VGG19 are set to be 10−6, and after 10 epochs the learning rates can be ex-
pressed as 10−6 × exp(0.1 × (10 − epoch)). The batch size is 50. In addition, the categorical
crossentropy loss function is chosen.

6. Performance Evaluation

The accuracy of the models is presented in Tables 2 and 3 for databases with and
without ambient light illumination, respectively. It can be noticed that the training accuracy
of all the models is about 99% for the two light illumination conditions, while the validation
accuracy of all models can reach 90%. The DenseNet121 model stands out with a validation
accuracy reaching 94.08% and 95.46% in the two illumination conditions, whereas the vali-
dation accuracy of other models is around 90–92%. Considering the storage of parameters,
the number of parameters DenseNet121 uses is the second lowest. It is only larger than that
of the SqueezeNet model. For example, for the VGG model and 1 convolution layer CNN
model, the storing space of the parameters is more than 1.5 GB, while the DenseNet121 and
SqueezeNet models only use 80 MB and 8.6 MB, respectively. Another core parameter is the
test time of the model. DenseNet121 has the longest test time, which is 41 ms/image, while
the other models have test times from 20–35 ms. However, the test time depends on the
configuration of the hardware. This test time is tested by the RTX 3080. In the autonomous
vehicles, this time might be changed depending on the hardware configuration. In our
configuration, the test time of DenseNet121 is enough for the autonomous vehicles to



Electronics 2022, 11, 786 8 of 11

make a decision. Based on the data training and validation, it can be concluded that the
DenseNet121 model is more promising for implementation to the autonomous vehicles,
with relatively small storing space requirement and a good accuracy for the three road
surface conditions. As the performance of the DenseNet121 model is better than the other
models tested, the confusion matrix of this model is presented in Figure 5. According to
the confusion matrix, the wet road condition is the most accurate condition that can be
identified, while some dry and snowy road surface conditions are recognized as wet road
conditions. For one single road surface condition, the accuracy is above 88.93%. With this
system, the autonomous vehicle can increase the safety when it encounters a slippery road
surface.

Table 2. Database with ambient light.

Models Training
Accuracy

Validation
Accuracy

Total
Parameters

Training
Time (min)

Test Time
(ms/Image)

3 convolution
layer CNN 99.98% 90.08% 33,592,523 13 21

2 convolution
layer CNN 99.92% 90.72% 67,121,707 15 22

1 convolution
layer CNN 99.90% 90.89% 134,224,219 9 23

SqueezeNet
model 100% 89.14% 751,075 22 34

VGG16 99.71% 90.65% 134,272,835 51 23

VGG19 99.74% 90.17% 139,582,531 41 24

ResNet50 99.96% 92.54% 23,593,859 12 30

DenseNet121 99.95% 94.08% 7,040,579 19 41

Table 3. Database without ambient light.

Models Training
Accuracy

Validation
Accuracy

Total
Parameters

Training
Time (min)

Test Time
(ms/Image)

3 convolution
layer CNN 99.69% 90.96% 33,592,523 10 20

2 convolution
layer CNN 99.87% 90.16% 67,121,707 13 22

1 convolution
layer CNN 99.80% 89.96% 134,224,219 5 24

SqueezeNet
model 99.91% 93.59% 751,075 12.5 35

VGG16 99.98% 91.65% 134,272,835 40 23

VGG19 99.95% 91.79% 139,582,531 45 24

ResNet50 99.88% 92.17% 23,593,859 16 30

DenseNet121 99.99% 95.46% 7,040,579 33 41
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Dry

Dry

SnowyWet

Wet

Snowy

92.20%3.03% 4.77%

1.73% 98.27% 0%
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Dry
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SnowyWet

Wet

Snowy
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1.21% 98.68% 0.01%

2.27% 8.80% 88.93%

Label

Prediction

(a) (b)

Figure 5. (a) Confusion matrix of DenseNet121 model for database with ambient illumination.
(b) Confusion matrix of DenseNet121 model for database without ambient illumination.

7. Discussion

In this work, dry, wet, and snowy road surface conditions are investigated. The black
ice is not under consideration, as it is too hard to be identified with the currently applied
cameras. Thus, it is hard to find a database containing black ice and to label the images.
Compared to existing works to detect the road surface conditions at night, the deep learning
models have advantage of high accuracy and can be applied to more scenes. In [22–24], data
were collected from a certain road, and the validation was also tested for the same road. The
feasibility of their models use in other scenes is not investigated, which is a limitation of their
models. In addition, we collected the data in two illumination conditions, whereas [22,23]
only examined conditions under street light illumination. Moreover, according to [16],
these two models can also be applied to the detection of road surface conditions at night
using a daytime database.

However, compared with the models aiming at the daytime, the accuracy of the night
conditions is lower. In [16,20], the accuracy of the models is, respectively, 99% and 97%,
which is higher than found by this work. This may be due to the different database, but
more importantly due to the different lighting conditions during day and night. At night,
although headlamps and street lamps can help to illuminate the road, they are much
weaker than sunlight, which leads to issues such as lack of contrast. Considering the
limitation of the night model, one solution might be to combine the deep learning with
other sensors. As introduced by [7,8], NIR light can provide more significant differences
between different road surface conditions. Combining deep learning and NIR systems
might be a development trend to classify the road surface conditions at night.

8. Conclusions

In this work, different deep learning models are applied and show their benefits to
detect road surface conditions at night with a high accuracy. According to the reflection
features of the different road conditions, databases with and without ambient light illumina-
tion are collected from public videos. Indeed, these data can increase the reliability to detect
the road surface conditions in urban areas and suburban areas such as the countryside
or highway. In addition, the used deep learning models show their advantages to detect
road surface conditions at night compared to the existing literature. CNN, SqueezeNet,
VGG, ResNet50, and DenseNet121 models are tested and validated. In comparing the
performance of these models, the DenseNet121 model is recommended, with an accuracy
that can reach 99% for the training and 94% for the validation. As the proposed models
have low computational time complexity for processing test images, we can conclude
that they are suitable for real-time prediction of road surface conditions for autonomous
vehicles with a high reliability. Due to these models, the safety of autonomous vehicles will
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be ensured for night activities. In the near future, this system will be implemented and
tested on autonomous vehicles in collaboration with the companies Renault and Valeo.
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