
HAL Id: hal-04491689
https://hal.science/hal-04491689

Preprint submitted on 6 Mar 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Quantitative Bounds on Resource Usage of Probabilistic
Programs

Krishnendu Chatterjee, Amir Goharshady, Tobias Meggendorfer, Ðorđe Žikelić

To cite this version:
Krishnendu Chatterjee, Amir Goharshady, Tobias Meggendorfer, Ðorđe Žikelić. Quantitative Bounds
on Resource Usage of Probabilistic Programs. 2024. �hal-04491689�

https://hal.science/hal-04491689
https://hal.archives-ouvertes.fr

Quantitative Bounds on Resource Usage of
Probabilistic Programs

KRISHNENDU CHATTERJEE, Institute of Science and Technology Austria (ISTA), Austria

AMIR KAFSHDAR GOHARSHADY, Hong Kong University of Science and Technology, Hong Kong

TOBIAS MEGGENDORFER, Lancaster University Leipzig, Germany

ÐORÐE ŽIKELIĆ, Singapore Management University, Singapore

Cost analysis, also known as resource usage analysis, is the task of finding bounds on the total cost of a

program and is a well-studied problem in static analysis. In this work, we consider two classical quantitative

problems in cost analysis for probabilistic programs. The first problem is to find a bound on the expected total

cost of the program. This is a natural measure for the resource usage of the program and can also be directly

applied to average-case runtime analysis. The second problem asks for a tail bound, i.e. given a threshold 𝑡 the

goal is to find a probability bound 𝑝 such that P[total cost ≥ 𝑡] ≤ 𝑝. Intuitively, given a threshold 𝑡 on the

resource, the problem is to find the likelihood that the total cost exceeds this threshold.

First, for expectation bounds, a major obstacle in previous works on cost analysis is that they can handle only

non-negative costs or bounded variable updates. In contrast, we provide a new variant of the standard notion

of cost martingales, that allows us to find expectation bounds for a class of programs with general positive or

negative costs and no restriction on the variable updates. More specifically, our approach is applicable as long

as there is a lower bound on the total cost incurred along every path.

Second, for tail bounds, all previous methods are limited to programs in which the expected total cost is

finite. In contrast, we present a novel approach, based on a combination of our martingale-based method for

expectation bounds with a quantitative safety analysis, to obtain a solution to the tail bound problem that

is applicable even to programs with infinite expected cost. Specifically, this allows us to obtain runtime tail

bounds for programs that do not terminate almost-surely.

In summary, we provide a novel combination of martingale-based cost analysis and quantitative safety

analysis that is able to find expectation and tail cost bounds for probabilistic programs, without the restrictions

of non-negative costs, bounded updates, or finiteness of the expected total cost. Finally, we provide experimental

results showcasing that our approach can solve instances that were beyond the reach of previous methods.

1 INTRODUCTION
Probabilistic programs Probabilistic programs extend classical programs with randomization

and allow specification and automated inference in expressive probabilistic models [Ghahramani

2015; Gordon et al. 2014; van de Meent et al. 2018]. They have been used in the analysis of

randomized algorithms [Barthe et al. 2018], cryptographic protocols [Barthe et al. 2009], machine

learning [Ghahramani 2015; Roy et al. 2008], and robotics [Thrun 2000]. There is a significant number

of probabilistic programming languages such as Anglican [Tolpin et al. 2016], Church [Goodman

et al. 2008], or Pyro [Bingham et al. 2019] and their static analysis is a very active research topic.

Probabilistic programs may also be extended with non-determinism in order to model unknown

user inputs, interactions with an unknown environment or enabling abstraction towards simplifying

their static analysis [McIver and Morgan 2005].

Cost analysis in probabilistic programs Cost analysis is concerned with computing bounds on

the total cost, or resource usage, of a program. It has a multitude of important applications such

as reasoning about program runtime, memory usage, energy consumption, or the total reward.

Cost analysis for non-probabilistic programs is a well-studied problem that is mainly concerned

with deriving worst-case bounds on cost of a program execution over a set of inputs [Carbonneaux

Authors’ addresses: Krishnendu Chatterjee, Institute of Science and Technology Austria (ISTA), Austria, krishnendu.

chatterjee@ist.ac.at; Amir Kafshdar Goharshady, Hong Kong University of Science and Technology, Hong Kong,

goharshady@cse.ust.hk; Tobias Meggendorfer, Lancaster University Leipzig, Germany, tobias@meggendorfer.de; Ðorđe

Žikelić, Singapore Management University, Singapore, dzikelic@smu.edu.sg.

2 Krishnendu Chatterjee, Amir Kafshdar Goharshady, Tobias Meggendorfer, and Ðorđe Žikelić

et al. 2015; Gulwani et al. 2009; Hoffmann and Hofmann 2010; Sinn et al. 2014]. For probabilistic

programs, there are two natural quantitative extensions of the cost analysis problem:

(1) Finding expectation bounds: Let Cost denote a random variable defined as the total cost of

a random run/execution in a given probabilistic program. Compute an upper bound on the

expected value E[Cost] of the total cost usage of a random program run under every resolution

of non-determinism.

(2) Finding tail bounds: Given a real-valued threshold 𝑡 , compute a probability 𝑝 ∈ [0, 1] such
that the tail bound P[Cost ≥ 𝑡] ≤ 𝑝 is satisfied under every resolution of non-determinism.

Both problems above analyze important information about cost/resource usage in probabilistic

programs. The expected value of total cost provides an aggregated summary of the probability

distribution of the cost and may be used to extract non-trivial properties about the probability

distribution. Tail bounds aim to estimate the likelihood of the total cost being larger than some

tolerable threshold and are particularly relevant for resource-critical applications.

Previous approaches Earlier works on cost analysis in probabilistic programs mainly focused on

deriving expectation and tail bounds on termination time [Batz et al. 2018; Chatterjee et al. 2016,

2018; Kaminski et al. 2018; Kura et al. 2019]. This is equivalent to assigning a unit cost to every

step of execution. More recently, [Ngo et al. 2018; Wang et al. 2020b] proposed methods for cost

analysis in programs with more general types of cost. However, the incurred costs are required to be

non-negative. In [Wang et al. 2019], this assumption was further relaxed by introducing a method

for computing bounds on the expected cost usage for programs that either (i) have non-negative

costs or (ii) in which all variable updates have bounded size. Finally, [Wang et al. 2021] proposes a

method for deriving tail bounds, central bounds and higher-order moment bounds on cost usage,

where programs are also assumed to either have non-negative costs or bounded variable updates.

Some previous works do lift these assumptions in order to derive expectation cost bounds, however

only for restrictive sublcasses of programs such as programs with bounded loops [Gehr et al. 2016]

and prob-solvable loops (i.e. loops whose body consists of a sequence probabilistic assignments

but with no conditional branching) [Bartocci et al. 2019]. Moreover, all these works only consider

programs that are almost-surely terminating, i.e. programs that terminate with probability 1 for all

resolutions of non-determinism.

Limitations of previous approaches While all works discussed above present significant ad-

vances in cost analysis of probabilistic programs, they have the following limitations:

(1) Expectation bounds:The underlying assumptions of the existingmethods for general programs

restrict their applicability to programs in which either (i) all incurred costs are non-negative

or (ii) all variable updates are bounded. This means that no existing method can be applied to

general programs with general costs and unbounded variable updates.
(2) Tail bounds: The existing methods for the tail bound problem first compute an upper bound on

either the expected cost usage [Chatterjee et al. 2016] or one of its higher moments, i.e. E[Cost𝑘]
for some integer 𝑘 ≥ 1 [Kura et al. 2019; Wang et al. 2021], and then apply concentration bounds.

Thus, to solve the tail bound problem, these works essentially first solve the expected value

or a higher moment bound problem. As finite higher moments also imply finiteness of the

expected value, this means that the existing methods cannot compute tail bounds for programs

with infinite expected cost usage. As an important special case, given a program whose expected

termination time is infinite, e.g. any program that does not terminate almost-surely, no existing

method can be used to derive tail bounds on its termination time.

Our approach and contributions Our goal in this work is to close the gaps in cost analysis of

probabilistic programs that were discussed above. To that end, we present novel methods for both

the expectation bounds problem and the tail bounds problem that overcome these limitations:

Quantitative Bounds on Resource Usage of Probabilistic Programs 3

(1) Expectation bounds:We propose a strengthened variant of the notion of cost supermartingales
that were introduced in [Wang et al. 2019]. Cost supermartingales were the first method for the

expectation bound problem that could handle negative costs. However, their applicability is

restricted to almost-surely terminating programs in which either (a) all incurred costs are non-

negative, or (b) all variable updates are bounded. In this work we prove that, if we strengthen

the definition of cost supermartingales to be non-negative at every reachable program state,

then the restriction to (a) and (b) can be lifted. Hence, their applicability is extended to almost-

surely terminating programs that are only required to satisfy the so-called lower-bounded total
cost condition. This condition only requires that the total incurred cost along every program

execution is bounded from below.

(2) Tail bounds: We present a new method which is applicable to programs with general costs,

unbounded variable updates and both finite or infinite expected total cost. The key idea behind

our method is to not analyze the cost usage over the whole program, but to restrict the analysis

to a core subset of the program states that is left with low probability and hence sufficiently

captures the overall behavior of the program. This part of the program is computed in the form

of a stochastic invariant. A stochastic invariant [Chatterjee et al. 2017] is a pair (SI , 𝑝SI) of a set
of states SI in the program and a probability 𝑝SI of ever leaving the set SI . Our method computes

a stochastic invariant (SI , 𝑝SI) simultaneously with a non-negative cost supermartingale which
achieves a tail bound on cost usage of program runs that either never leave SI or terminate

immediately upon leaving SI . This tail bound is then combined with the probability 𝑝SI of

leaving SI in order to derive a tail bound on cost usage in the whole program.

Crucially, the stochastic invariant and the cost supermartingale are computed simultaneously,
i.e. our approach obtains a single set of constraints that encode all requirements of both the

invariant and the supermartingale and passes it to an external solver. Doing this sequentially,

i.e. first finding a stochastic invariant and then attempting to synthesize a non-negative cost

supermartingale wrt to this fixed invariant, might not succeed since the computed invariant

might not be tight enough and may have infinite cost.

(3) Automation: For linear/polynomial programs, we present full automation of our methods by

employing a template-based synthesis approach. In particular, for the tail bounds problem,

our method synthesizes the stochastic invariant and the non-negative cost supermartingale

simultaneously while constraining the synthesis to satisfy the desired tail bound.

(4) Experimental results: For both analyses, we show, both theoretically and by experiment, that

our approach handles instances that were beyond the reach of previous methods. Specifically,

our experimental results include programs with general costs and unbounded updates. They

also include examples of tail bounds obtained on the runtime of programs that do not terminate

almost-surely and have infinite expected termination time. Finally, we consider examples from

the blockchain analysis literature to demonstrate the practical relevance of closing the gaps

in cost analysis of probabilistic programs that were discussed above. In particular, we have

identified example programs containing both positive and negative costs, unbounded updates,

having infinite expected total cost and lacking almost-sure termination. We show that our

approach is able to derive both expectation and tail bounds for these examples, thus providing

the first approach being able to do so.

LimitationsAs shown above, our approach significantly extends previousmethods for cost analysis.

However, it still has the following limitations, lifting which is an interesting topic of future work:

• Lower-bounded total cost: Our proof of soundness of non-negative cost supermartingales

(Thereom 5.2) depends on the lower-bounded total cost assumption. So, our approach is not

applicable to every probabilistic program. Finding proof concepts for expectation bounds in

general probabilistic programs with no extra assumptions remains a challenging open problem,

as then the conditions required for martingale-based analysis are not always satisfied. Also note

4 Krishnendu Chatterjee, Amir Kafshdar Goharshady, Tobias Meggendorfer, and Ðorđe Žikelić

that lower-bounded total cost is theoretically incomparable with the requirement of having

bounded updates. As such, the family of programs that can be handled by our approach is neither

a subset nor a superset of those handled by [Wang et al. 2019].

• Tightness of tail bounds: Our approach for tail bound analysis consists of two parts: (i) a

quantitative safety analysis that finds a core subset of the program modeled by the stochastic

invariant, and (ii) an expectation bound on the total cost incurred by runs that stay within this

core subset as long as they have not terminated. In part (ii), we use Markov’s inequality which

is not tight but is applicable in the general case. An interesting direction of future work is to

consider special cases such as programs with bounded updates or non-negative costs and, for

these subclasses, combine our approach with either (i) expectation bound approaches that bound

higher moments of the total cost, such as [Kura et al. 2019; Wang et al. 2021], or (ii) approaches

based on Azuma and Hoeffding’s inequalities [Chatterjee et al. 2016], to obtain tighter tail bounds.

• Automation: We automate our approach using a template-based method that relies on Farkas’

Lemma [Avis and Kaluzny 2004; Farkas 1902] and Positivstellensätze [Handelman 1988; Putinar

1993]. Similar methods have previously been used for termination analysis [Asadi et al. 2021;

Chatterjee et al. 2016, 2021a] and invariant generation [Chatterjee et al. 2020]. However, they are

only applicable to imperative programs with real variables in which every assignment’s RHS is a

polynomial expression in terms of program variables and every loop/branch guard is a boolean

combination of polynomial inequalities. While our mathematical results are general, automating

our approach over more expressive families of programs is an open problem.

2 MOTIVATING EXAMPLES
In this section, we underline the practical relevance of lifting the limitations identified in the

previous section by providing several example use-cases modeling real-world blockchain scenarios.

One of the main application domains mentioned in [Wang et al. 2019] is the analysis of probabilistic

Bitcoin mining protocols. The following examples are natural extensions of those in [Wang et al.

2019]. In every case, our approach is able to find expectation/tail bounds, but the programs do not

satisfy non-negative cost, bounded update or finite total cost conditions. Hence, previous methods

are inapplicable. See Appendix J for more details.

while 𝑥 ≥ 𝛼 do
𝑥 := 𝑥 − 𝛼
t i ck (𝛼)

i f prob (𝑝) then
i f prob (𝑝′) then

t i ck (−𝛽)
e l se i f ★ then

t i ck (−𝛽)

while 𝑥/𝑦 ≥𝑚 do
i f prob (𝑥/𝑦) then

i f prob (𝑝) then
t i ck (𝛼 + 𝛽 ∗ 𝑦)
𝑥 := 𝑥 + 𝛼 + 𝛽 ∗ 𝑦

𝑦 := 𝑦 + 𝛼 + 𝛽 ∗ 𝑦

Fig. 1. Bitcoin Mining [Wang et al. 2019] (left) and Proof-of-stake Mining (right).

Tail Bounds – Proof-of-stake cryptocurrency mining. Bitcoin is based on a proof-of-work

protocol in which miners have to compete in solving a hard computational puzzle by repeatedly

trying random candidate hashes. This was modeled as a probabilistic program, Figure 1 (left),

in [Wang et al. 2019]. A miner starts with an initial balance of 𝑥 and keeps performing proof-of-

work as long as they can pay for the electricity costs 𝛼 . The command tick(𝛼) denotes that a cost of
𝛼 was incurred for electricity. For each block, the miner has a probability 𝑝 of successfully solving

the puzzle. 𝑝 is constant and a function of the miner’s computational power. If successful, they

have to publish their block. There is a high probability 𝑝 ′ for the block to be accepted by other

Quantitative Bounds on Resource Usage of Probabilistic Programs 5

nodes and added to the blockchain, leading to a reward of 𝛽 for its miner
∗
. However, there is also a

small probability 1 − 𝑝 ′ that a different miner solves the puzzle at approximately the same time. In

this case, one of the new blocks will eventually end up in the consensus chain, but the process is

non-deterministic.

In this example, the expected total cost of the program is bounded. This is a requirement for

the soundness of all previous approaches that obtain tail bounds. However, this assumption does

not hold if we model newer proof-of-stake protocols [Gilad et al. 2017; Kiayias et al. 2017] used in

cryptocurrencies such as Ethereum, Cardano and Tezos. In such currencies, the probability of a

miner being selected to add the next block is no longer constant, but instead proportional to the

number of coins owned by this miner. Thus, rewards obtained in one iteration can increase the

probability of success in future iterations. Additionally, since each block adds new coins, there is a

multiplicative inflation factor that has to be considered in any probabilistic program modeling the

mining. Thus, the updates to program variables are not bounded, either.

Specifically, proof-of-stake mining can be modeled as a probabilistic program shown in Figure 1

(right). We consider a miner who owns 𝑥 coins out of a total of 𝑦. They can take part in mining if

their stake is at least𝑚. Their probability of being chosen to add the next block is proportional to

their stake, i.e. 𝑥/𝑦. This is in contrast to Bitcoin, in which the probability is constant. When the

miner proposes the new block, there are validators (usually a committee of other miners), who can

accept or reject this block. If the miner follows the protocol correctly, their block will be accepted

with overwhelming probability 𝑝. After the addition of each new block, the total number of coins 𝑦

increases by a preset multiplicative inflation factor 𝛽 and an additive factor 𝛼. The newly created

coins are always paid to the miner who added the block. Thus, if our miner is successful, their

number of coins, 𝑥, also increases by 𝛼 + 𝛽 ·𝑦. This is of course a reward as well, and is modeled by

the tick operation
†
. The total expected reward is not bounded as the miner is expected to earn

more in each iteration.

while 𝑦 ≥ 1 do
t i ck (𝛼 ∗ 𝑦)
𝑖 := 1

while 𝑖 ≤ 𝑦 do
i f prob (𝑝) then

i f prob (𝑝′) then
t i ck (−𝛽)

e l se i f ★ then
t i ck (−𝛽)

𝑖 := 𝑖 + 1
𝑦 := 𝑦 + (−1, 0, 1) : (0.5, 0.1, 0.4)

while 𝑦 ≥ 1 do
t i ck (𝛼 ∗ 𝑦)
𝑖 := 1

while 𝑖 ≤ 𝑦 do
i f prob (𝑝) then

i f prob (𝑝′) then
t i ck (−𝛽)

e l se i f ★ then
t i ck (−𝛽)

𝑖 := 𝑖 + 1
𝑦 := 𝑦 ∗ (0.95, 1, 1.05) : (0.5, 0.1, 0.4)

Fig. 2. Bitcoin pool mining [Wang et al. 2019] (left) and its multiplicative variant (right).

Expectation bounds – Pool mining. [Wang et al. 2019] also considers an example program

modeling Bitcoin poolmining. A pool is a collection of𝑦 cooperatingminers who pool their resources

for proof-of-work computations together in order to reduce the variance in their income [Lewenberg

et al. 2015]. It also has a manager who takes a portion of the income. The income of the pool’s

manager can be modeled by a probabilistic program as shown in Figure 2 (left). For each block, the

manager has to pay a fee of 𝛼 to each participating miner
‡
. This is modeled by tick(𝛼 ∗ 𝑦). Then,

there is an inner loop which mimicks the Bitcoin mining example of Figure 1 (left) for each miner,

∗
Currently, the block reward in Bitcoin is 6.25 BTC.

†
We model rewards as positive costs and find bounds on the total reward.

‡
We assume all miners have unit power. A large miner can be considered as a set of unit-powered miners.

6 Krishnendu Chatterjee, Amir Kafshdar Goharshady, Tobias Meggendorfer, and Ðorđe Žikelić

except that the reward 𝛽 is paid to the manager. Finally, the size of a pool changes dynamically (last

line) as miners migrate between pools. This program contains both positive and negative costs, but

every update to any variable changes it by a bounded amount. Specifically, 𝑦 increases or decrease

by at most 1. Such bounded updates are a requirement for the soundness of the approach in [Wang

et al. 2019], as well as all other previous methods for expectation bounds, when we have both

positive and negative costs. All previous approaches are unsound for a program having a mixture

of positive and negative costs, as well as unbounded updates.

We argue that the program used in Figure 2 (left) is unrealistic. Specifically, the updates to 𝑦 are

kept bounded with no real-world justification. Recall that 𝑦 is the total number of miners taking

part in the pool. Moreover, each iteration of the topmost loop corresponds to a fixed amount of

time, i.e. a single block in the blockchain which takes almost 10 minutes in Bitcoin. Thus, it is

unrealistic to assume that the number of miners who migrate from/to the pool is constant and

independent of the pool’s size. In practice, we expect the change to be multiplicative. Intuitively, a

low-performing pool will not lose a constant number of miners irrespective of the size of the pool,

but will of course lose a fraction of its miners. To that end, we provide a more realistic multiplicative

variant in Figure 2 (right) which contains both positive and negative costs and unbounded updates in
its last line. Thus, no previous approach is sound for this program. See Appendix J for details.

Tail bounds – Block withholding. Our last example also comes from Bitcoin mining. Bitcoin

pools are known to employ dishonest techniques to stifle their competition. One of these techniques

is called block withholding [Bag et al. 2016; Haghighat and Shajari 2019]. This is achieved by a pool

signing up as a miner in a competing pool and sharing in the revenues but not actually contributing

to the earnings, i.e. withholding valid proof-of-work solutions instead of publishing them. We show

that this classical attack can be modeled as a probabilistic program with infinite expected cost.

Intuitively, the cost is infinite since the attacking pool is losing revenue in every block. However,

the attackers are interested in the probability of being able to bankrupt their victim before they

themselves run out of money. This is of course a tail bound. Since all previous approaches for

obtaining tail bounds require the assumption of bounded expected total cost, none of them are

applicable to this example. The details are relegated to Appendix J due to space constraints. If

provided with extra pages in the final version, we will bring this example into the main text, too.

3 OVERVIEW OF OUR APPROACH
3.1 Illustrative Examples
Before presenting technical details, in this section we provide an overview of our approach on two

simple illustrative examples shown in Figure 3. The program in Figure 3a contains both positive

and negative costs, as well as unbounded variable updates. The program in Figure 3b has infinite

expected cost usage. Thus, these illustrative examples are beyond the reach of previous methods.

Example 3.1. The program in Figure 3a contains two variables 𝑥 and 𝑦, initialized to 𝑥 = 𝑦 = 1.

In each loop iteration, 𝑥 is incremented by a value that is sampled uniformly at random from the

continuous interval [−1, 0.5]. Then, with probability 0.5, the value of 𝑦 is either halved or increased

by half its value. The program terminates once a state with 𝑥 < 1 is reached. Note that this program

terminates almost-surely since 𝑥 decreases by 0.25 in expectation in every loop iteration. On the

other hand, we always have 𝑦 ≥ 0 since halving a non-negative value yields a non-negative value.

We are interested in deriving tail bounds on the value of 𝑦 upon termination. Thus, we specify a

cost model that incurs cost whenever 𝑦 is modified, indicated in program syntax by tick commands.

Note that incurred costs may be both positive and negative and that 𝑦 does not have bounded

updates, since a state with arbitrarily large value of 𝑦 may be reached with positive probability.

Example 3.2. The program in Figure 3b (taken from [Chatterjee et al. 2022, Figure 1]) contains a

variable 𝑥 initialized to 𝑥 = 0 and it terminates once 𝑥 becomes negative. In each loop iteration, if

𝑥 < 200 then 𝑥 is incremented by a value that is sampled uniformly at random from the continuous

Quantitative Bounds on Resource Usage of Probabilistic Programs 7

𝑥 := 1 , 𝑦 := 1

ℓinit : t i ck (y)

ℓ1 : while 𝑥 ≥ 1 do
ℓ2 : 𝑟 := Uniform([−1, 0.5])
ℓ3 : 𝑥 := 𝑥 + 𝑟
ℓ4 : i f prob (0 . 5) then
ℓ5 : t i ck (−𝑦/2)
ℓ6 : 𝑦 := 𝑦 − 𝑦/2

e l se
ℓ7 : t i ck (𝑦/2)
ℓ8 : 𝑦 := 𝑦 + 𝑦/2
ℓout :

(a)

𝑥 = 0

ℓinit : while 𝑥 ≥ 0 do
ℓ1 : t i ck (1)

ℓ2 : 𝑟1 := Uniform([−1, 0.5])
ℓ3 : 𝑥 := 𝑥 + 𝑟1
ℓ4 : i f 𝑥 ≥ 200 then
ℓ5 : 𝑟2 := Uniform([−1, 2])
ℓ6 : 𝑥 := 𝑥 + 𝑟2
ℓout :

(b)

Fig. 3. Illustrative examples.

interval [−1, 0.5], otherwise another increment is sampled from [−1, 2]. Note that this program
does not terminate almost-surely, as it reaches a state with 𝑥 ≥ 200 and then diverges with positive

probability due to the probabilistic update of 𝑥 having a strictly positive increase in expected value

if 𝑥 ≥ 200. Therefore, the expected number of loop iterations in the program is infinite. We are

interested in deriving tail bounds on the number of loop iterations. Thus, we specify a cost model

that incurs cost 1 in every loop iteration, again indicated by tick commands.

3.2 Non-negative Cost Supermartingales
We now show how non-negative cost supermartingales may be used to compute upper bounds on

the expected cost usage in probabilistic programs with both positive and negative costs, as well as

unbounded variable updates. To the best of our knowledge, we present the first such method.

Cost supermartingales were introduced in [Wang et al. 2019] for the expected value bound prob-

lem in programs that terminate almost-surely and have finite expected cost. A cost supermartingale

𝜙 is a function that maps program states to real values and satisfies the following two conditions:

• Expected decrease by incurred cost. 𝜙 decreases in expected value at least by the incurred cost

upon every one-step execution of the program at a reachable state.

• Non-negativity upon termination. 𝜙 is non-negative at every reachable terminal state.

We formally define cost supermartingales in Section 5. It can be verified by inspection that the

following function is a cost supermartingale for the program in Figure 3a:

𝜙 (ℓ, 𝑥,𝑦, 𝑟) =


𝑥 + 2 · 𝑦, if ℓ ∈ {ℓinit, ℓ7} 𝑥, if ℓ = ℓ5

𝑥 + 𝑦, if ℓ ∈ {ℓ1, ℓ2, ℓ4, ℓout} 𝑥 + 𝑦/2, if ℓ = ℓ6

𝑥 + 𝑦 + 𝑟, if ℓ = ℓ3 𝑥 + 3 · 𝑦/2, if ℓ = ℓ8
(1)

It was shown in [Wang et al. 2019] that, for an almost-surely terminating program, a cost super-

martingale at every state evaluates to an upper bound on the expected cost usage from that state

if either (1) all incurred costs in the program are non-negative and the cost supermartingale is

non-negative at every reachable state, or (2) the program has bounded variable updates, i.e. the

absolute value of changes in variable values upon updates is bounded by some𝑀 > 0. However, in

Example 3.1 we showed that the program in Figure 3a satisfies neither of these two conditions.

Given an almost-surely terminating program, in Section 5we prove that if the cost supermartingale
is non-negative and the program satisfies the lower-bounded total cost condition, then the non-

negative cost supermartingale is indeed an upper bound on the expected cost usage. A program

satisfies the lower-bounded total cost condition if there exists 𝐾 ∈ R such that the total incurred

8 Krishnendu Chatterjee, Amir Kafshdar Goharshady, Tobias Meggendorfer, and Ðorđe Žikelić

cost along every run in the program is bounded from below by 𝐾 . This condition is satisfied in

many cost analysis applications. For instance, in memory usage analysis we cannot de-allocate

more memory than what has already been allocated so the memory usage is always bounded from

below by 𝐾 = 0. Similarly, any execution of a smart contract in Ethereum incurs both positive

and negative gas costs, but the total cost of a path can never be less than a fixed minimum fee

𝐾 > 0 [Dameron 2018]. Note that it is natural to allocate/deallocate large parts of memory whose

size is not bounded by a constant, e.g. when copying an array. As another example, a robot cannot

use a negative amount of energy so the energy usage of a robot is also bounded from below by

𝐾 = 0. Regarding the non-negativity condition that we impose on cost supermartingales, we note

that non-negativity of cost supermartingales is also required by [Wang et al. 2019] in the case of

programs with non-negative costs.

Since in the program in Figure 3a we always have𝑦 ≥ 0, this program satisfies the lower-bounded

total cost condition with 𝐾 = 0. Thus, the non-negative cost supermartingale 𝜙 in Equation (1)

evaluates to an upper bound on expected cost usage of this program. In particular, for the initial

state (𝑥,𝑦) = (1, 1), the expected value of 𝑦 upon termination is at most 𝜙 (ℓinit, 1, 1, 𝑟) = 3.

3.3 Tail Bounds for Programs with Infinite Expected Total Cost
While the results in Section 3.2 extend the applicability of cost supermartingales for the expected

value bound problem, their usage still requires either (1) non-negative costs, or (2) almost-sure

termination and bounded variable updates, or (3) almost-sure termination and the lower-bounded

total cost condition. In addition, previous methods for tail bound analysis require the program

to have finite expected cost usage. For instance, this means that they cannot be used to derive

tail bounds on termination time in programs that do not terminate almost-surely and hence have

infinite expected termination time. We now outline our new method for the tail bound problem

that neither imposes any of these assumptions nor requires finite expected cost usage.

To illustrate our method, consider the program in Figure 3b. As noted in Example 3.2, this

program has infinite expected cost usage. However, by closer inspection, we observe that the

challenging parts in the cost analysis of this program are those runs that reach a state with 𝑥 ≥ 200

at which time there is a positive probability of a run looping forever and never terminating. If,

instead, the program were to terminate once a state with 𝑥 ≥ 200 is reached, then the existing

approaches could be applied towards deriving cost bounds for this program. Therefore, if we could

(1) identify program runs that reach a state with 𝑥 ≥ 200 as challenging for cost analysis;

(2) derive an upper bound on the probability of reaching a challenging state with 𝑥 ≥ 200; and

(3) derive a tail bound on cost usage for the modified program that terminates once a challenging

state with 𝑥 ≥ 200 is reached,

then it seems intuitive that we could combine these two probability bounds in (2) and (3) above in

order to obtain a tail bound on cost usage for the original program in Figure 3b. This observation is

at the heart of our novel method for the tail bound problem. It computes the following two objects:

(1) Stochastic invariant. A stochastic invariant [Chatterjee et al. 2017] is a tuple (SI , 𝑝SI) where SI is
a set of program states that a random program run leaves with probability at most 𝑝SI ∈ [0, 1] .
As an example, for the program in Figure 3b, a tuple defined via

SI (ℓ) :=


(𝑥 < 200), if ℓ ∈ {ℓinit, ℓ1, ℓ2, ℓ4, ℓout}
(𝑥 + 𝑟1 < 200), if ℓ = ℓ3

false, otherwise

(2)

and 𝑝SI = 0.005 defines a stochastic invariant. The intuition behind the computation of a

stochastic invariant is that it will allow us to restrict the tail bound analysis to a core part of

the program that can be handled using our technique for expectation bounds.

Quantitative Bounds on Resource Usage of Probabilistic Programs 9

(2) Cost bound for the stochastic invariant. Our method also computes an upper bound 𝑝cost on the

probability that the cost usage of a part of a program run that does not leave SI exceeds the
threshold 𝑡 . This bound is obtained by first computing a non-negative cost supermartingale 𝜙

for the stochastic invariant, which considers the modified program that terminates whenever a

program run in the original program leaves the set of states SI . The construction of this modified

program is formalized in Section 6.

Next, our method uses our notion of non-negative cost supermartingales (as illustrated in

Section 3.2) to show that 𝜙 evaluates to an upper bound on the expected cost usage until a

program run terminates or leaves the set SI . Note that, to do this, we need to ensure that

the modified program is almost-surely terminating and satisfies the lower-bounded total cost

condition with some lower bound 𝐾 , and we describe in Section 6 how our computation of the

stochastic invariant ensures these two conditions. However, these conditions are enforced only
on the part of the program defined by the stochastic invariant and not on the whole program. It

is precisely this restriction that makes our method applicable to general programs with infinite

expected total cost, including non-terminating programs.

Finally, our method applies Markov’s inequality [Williams 1991] to the cost supermartingale 𝜙

to get an upper bound 𝑝cost =
𝜙 (ℓinit ,xinit)−𝐾

𝑡−𝐾 on the probability that the cost usage of the part of a

program run that does not leave SI exceeds the threshold 𝑡 . Here, (ℓinit, xinit) denotes the initial
state in the program. The correctness of this bound is also proven in Section 6.

Going back to our example program in Figure 3b, a non-negative cost supermartingale for the

stochastc invariant in Equation (2) is given by

𝜙 (ℓ, 𝑥, 𝑟1, 𝑟2) =


4 · 𝑥 + 1, if ℓ = {ℓinit, ℓ1, ℓ4, ℓ5, ℓ6, ℓout}
4 · 𝑥, if ℓ = ℓ2

4 · 𝑥 + 1 + 4 · 𝑟1, if ℓ = ℓ3

. (3)

Since the part of the program defined by SI is easily observed to be almost-surely terminating

and satisfying the lower-bounded total cost condition with 𝐾 = 0, our method concludes that

the probability that the cost usage of a part of a program run that does not leave SI exceeds the
threshold 𝑡 from the initial state with 𝑥 = 0 is bounded from above by

𝜙 (0,𝑟1,𝑟2)−0
𝑡−0 = 1

𝑡
.

Finally, our approach combines 𝑝SI and 𝑝cost towards obtaining an upper bound on the probability

that cost usage of a program run (in the whole original program) exceeds 𝑡 and concludes that

P [Cost ≥ 𝑡] ≤ 𝑝SI + 𝑝cost .
Hence, in order to prove a tail bound P[Cost ≥ 𝑡] ≤ 𝑝 on cost usage for a given threshold value

𝑡 and probability parameter 𝑝 ∈ [0, 1], it suffices to constrain the computation of the stocastic

invariant and the cost bound in a way that ensures 𝑝SI + 𝑝cost ≤ 𝑝 . The intuition behind this result

is that, for cost usage to exceed 𝑡 , a program run must either stay within SI and incur a greater cost
or eventually leave SI . However, our approach proves that the probabilities of these two events

are bounded from above by 𝑝cost and 𝑝SI , respectively. Revisiting our example in Figure 3b, our

method can thus show that P[Cost ≥ 𝑡] ≤ 0.005 + 1

𝑡
. Note that this is a symbolic bound based on

the threshold 𝑡 . For example, if 𝑡 is given as 200, then we obtain P[Cost ≥ 200] ≤ 0.01.

3.4 Fully Automated Template-based Synthesis
For linear/polynomial programs, we show that our method can be automated by a template-

based synthesis approach similar to [Asadi et al. 2021]. In particular, our method synthesizes the

stochastic invariant and the non-negative cost supermartingale simultaneously while constraining

the synthesis to satisfy the tail bound on cost usage that is required to be proven.

10 Krishnendu Chatterjee, Amir Kafshdar Goharshady, Tobias Meggendorfer, and Ðorđe Žikelić

4 PRELIMINARIES
4.1 Program Syntax and Semantics
We consider imperative arithmetic probabilistic programs with non-determinism. Our detailed

syntax is given in Appendix A. Our programs allow standard programming constructs including

conditional branching, loops and variable assignments. In addition, they allow sampling instructions

and non-deterministic assignments. Sampling instructions are indicated in syntax by a command

of the form “𝑥 := sample(𝑑)” which samples a random value from a probability distribution 𝑑

and assigns it to 𝑥 . Our programs allow both discrete, e.g. Bernoulli and Poisson, and continuous,

e.g. uniform and normal, probability distributions in sampling instructions. Non-deterministic
assignments are assignments of the form “𝑥 := ndet(𝐵)” that non-deterministically pick an element

of the set 𝐵 and assign it to 𝑥 . Our syntax also supports probabilistic branching of the form

“if prob(𝑝) then ... else ...” and non-deterministic branching of the form “if ★ then ... else ...”.
Finally, we have a dedicated command tick(𝑒), that is used to model cost usage and indicates that

the program incurs a cost equal to the value of the arithmetic expression 𝑒 over program variables.

We assume that variables in our programs are real-valued. Given a finite set of variables 𝑉 , a

variable valuation of𝑉 is a vector x ∈ R |𝑉 | that assigns a value to every variable. A predicate over a
set of variables is a boolean combination of finitely many inequalities over them. For a predicate 𝜙

over a finite set of variables 𝑉 and a valuation x of 𝑉 , we write x |= 𝜙 to denote that the formula

obtained by substituting into 𝜙 the values of variables defined by x evaluates to true.

Wemodel programs via probabilistic control-flow graphs (pCFGs) [Agrawal et al. 2018; Chatterjee

et al. 2018, 2021b]. A probabilistic programwritten in our syntax can be straightforwardly translated

to an equivalent pCFG [Chatterjee et al. 2018]. Specifically to cost analysis, the map Tk assigns

costs that are incurred by executing a transition in the pCFG.

Probabilistic control-flow graphs (pCFGs) A probabilistic control-flow graph (pCFG) is a tuple
C = (L,𝑉 , ℓinit, xinit, ↦→,𝐺,Up, Tk), where:
• L is a finite set of locations;
• 𝑉 = {𝑥1, 𝑥2, . . . , 𝑥 |𝑉 |} is a finite set of program variables;
• ℓinit is the initial program location and xinit ∈ R |𝑉 | is the initial variable valuation;
• ↦→ is a finite set of transitions. Each transition is a tuple of the form 𝜏 = (ℓ, 𝛿), where ℓ is the
source location and 𝛿 is the probability distribution over target locations of 𝜏 ;
• 𝐺 is a map assigning to each transition 𝜏 ∈ ↦→ a guard 𝐺 (𝜏), which is a logical formula over 𝑉

specifying whether the transition 𝜏 can be executed;

• Up is a map assigning to each transition 𝜏 ∈ ↦→ an update Up(𝜏) = (𝑗, 𝑢) where 𝑗 ∈ {1, . . . , |𝑉 |}
is a target variable index and 𝑢 is an update element which can be:

– the bottom element 𝑢 = ⊥, denoting no update;

– a Borel-measurable map 𝑢 : R |𝑉 | → R, denoting deterministic variable assignment;

– a probability distribution 𝑢 = 𝑑 , denoting that the new variable value is sampled according to

the probability distribution 𝑑 ;

– an interval 𝑢 = [𝑎, 𝑏] ⊆ R ∪ {±∞}, denoting a non-deterministic update. We also allow one or

both sides of the interval to be open.

• Tk is a map assigning to each transition 𝜏 ∈ ↦→ a Borel-measurable tick expression Tk(𝜏) over
program variables, that for each variable valuation x ∈ R |𝑉 | evaluates to the cost of executing 𝜏

when program variable values are defined by the valuation x.

We assume the existence of a terminal location ℓout that a program enters upon termination. This

location only has a self-loop with a trivial guard and update as an outgoing transition. Also, we

assume that it is always possible to execute at least one transition, i.e. that for each location ℓ the

disjunction

∨
𝜏=(𝑙,_) 𝐺 (𝜏) of guards of all outgoing transitions is equivalent to true. Note that this

assumption is imposed without loss of generality as we may introduce additional transitions to ℓout .

Quantitative Bounds on Resource Usage of Probabilistic Programs 11

States, paths and runs A state in a pCFG C is a tuple (ℓ, x), where ℓ is a location and x ∈ R |𝑉 |
is a variable valuation in C. A transition 𝜏 = (ℓ, 𝛿) is enabled at a state (ℓ, x) if x |= 𝐺 (𝜏). A state

(ℓ ′, x′) is a successor of (ℓ, x), if there exists an enabled transition 𝜏 = (ℓ, 𝛿) in C such that 𝛿 (ℓ ′) > 0

and such that (ℓ ′, x′) can be reached from (ℓ, x) by executing 𝜏 and applying the updates of 𝜏 to x.
A finite path in C is a sequence (ℓ0, x0), (ℓ1, x1), . . . , (ℓ𝑘 , x𝑘) of states with (ℓ0, x0) = (ℓinit, xinit)

and with (ℓ𝑖+1, x𝑖+1) being a successor of (ℓ𝑖 , x𝑖) for each 0 ≤ 𝑖 ≤ 𝑘 − 1. A state (ℓ, x) is reachable in
C if there exists a finite path in C with the last state (ℓ, x). A run (or execution) in C is an infinite

sequence of states in which each finite prefix is a finite path. We use StateC , FpathC , RunC , ReachC
to denote the set of all states, finite paths, runs and reachable states in C, respectively.
SchedulersAs we will show below, the semantics of pCFGs are formalized by defining a probability

space over the set of all runs in the pCFG. However, due to the possible existence of non-determinism,

we cannot define such a probability space directly but need to first resolve the non-determinism.

This is achieved by introducing the notion of a scheduler. A scheduler in a pCFG C is a map 𝜎 which

to each finite path 𝜌 ∈ FpathC assigns a probability distribution 𝜎 (𝜌) over successor states of the
last state in 𝜌 . We introduce an additional measurability assumption on schedulers in order for

the semantics of probabilistc programs with non-determinism to be mathematically well-defined.

The restriction to measurable schedulers is standard in the analysis of non-deterministic stochastic

systems [Neuhäußer and Katoen 2007; Neuhäußer et al. 2009]. Thus, we omit the formal definition.

Semantics of pCFGs A pCFG C together with a scheduler 𝜎 define a stochastic process taking

values in the set of states of C, whose trajectories correspond to runs in C. This gives rise to a

probability space (RunC, FC, P𝜎) over the set of all runs in C and a stochastic process C𝜎 = {C𝜎
𝑖
}∞𝑖=0

in this space where C𝜎
𝑖
(𝜌) is the 𝑖-th configuration along 𝜌 for each run 𝜌 ∈ RunC . The construction

of this stochastic process is standard in probabilistic program analysis (see e.g. [Agrawal et al. 2018]),

however we provide both the intuitive description and formal details in Appendix B. We denote by

E𝜎 the expectation operator over (RunC, FC, P𝜎). We may analogously define a probability space

(RunC(ℓ,x) , FC(ℓ,x) , P𝜎C(ℓ,x)) over the set of all runs in C that start in some specified state (ℓ, x).
State and predicate functions A state function 𝑓 is a map that, to each location ℓ ∈ L in C, assigns
a Borel-measurable expression 𝑓 (ℓ) : R |𝑉 | → R over program variables. We use 𝑓 (ℓ, x) to denote

the value of the expression 𝑓 (ℓ) on valuation x ∈ R |𝑉 | . A predicate function in C is a map 𝜙 that

to every location ℓ ∈ L assigns a predicate 𝜙 (ℓ). It naturally induces a set of states at which the

assigned predicate is satisfied, i.e.

⋃
ℓ∈L{(ℓ, x) | x |= 𝜙 (ℓ)}. For a predicate function 𝜙 , we use ¬𝜙

to denote the negated predicate function, i.e. (¬𝜙) (ℓ) = ¬(𝜙 (ℓ)) for each ℓ ∈ L.
Almost-sure termination We say that a state (ℓ, x) in C is a terminal state if ℓ = ℓout and a run

𝜌 ∈ RunC is said to be terminating if it reaches some terminal state. We use Term ⊆ RunC to denote
the set of all terminating runs in C. A pCFG C is then said to be almost-surely terminating if the
probability of a random run terminating is 1 with respect to every scheduler, i.e. if inf𝜎 P

𝜎 [Term] = 1.

4.2 Formal Definitions of Expectation and Tail Bounds on Resource Usage
We now formalize the quantitative cost analysis problems in probabilistic programs that we consider

in this work. We first need to formally define the notion of a cost of a probabilistic program run.

Cost of a run Given a run 𝜌 = (ℓ𝑖 , x𝑖)∞𝑖=0 ∈ RunC , for every 𝑖 ∈ N0 let Tk𝑖 (𝜌) denote the tick expres-
sion assigned to the 𝑖-th transition along 𝜌 . Then, the cost CostC (𝜌) of 𝜌 is equal to the limit superior

value of the sums of costs incurred by the run 𝜌 , i.e. CostC (𝜌) = lim sup𝑚≥0
∑𝑚
𝑖=0Tk𝑖 (𝜌) (x𝑖).§

Quantitative cost analysis problems Let C be a pCFG. We consider the following two problems:

§
Note that we cannot simply replace lim sup in the definition with lim, since if a run 𝜌 does not terminate then the

sequence might not have a limit. Since lim sup of a sequence of real values coincides with its limit whenever the limit exists,

this definition agrees with and generalizes the standard definition of cost in almost-surely terminating programs.

12 Krishnendu Chatterjee, Amir Kafshdar Goharshady, Tobias Meggendorfer, and Ðorđe Žikelić

• Given a threshold value 𝑡 ∈ R, the expectation bound problem aims to prove that for every

scheduler the expected value of the total cost does not exceed 𝑡 , i.e. sup𝜎 E
𝜎 [CostC] ≤ 𝑡 .

• Given a threshold value 𝑡 ∈ R and a probability parameter 𝑝 ∈ [0, 1], the tail bound problem
aims to prove that for every scheduler the probability of cost usage exceeding the threshold 𝑡

is at most 𝑝 , i.e. sup𝜎 P
𝜎 [CostC ≥ 𝑡] ≤ 𝑝 .

In both cases we consider the decision variants of the problems. For optimization, one may use the

method for the corresponding decision problem as a subroutine and perform a binary search.

5 COST SUPERMARTINGALES FOR GENERAL COSTS AND UPDATES
We now present our extension of cost supermartingales to probabilistic programs with both positive

and negative costs and with unbounded variable updates. Cost supermartingales [Wang et al. 2019]

are a class of state functions that at each state evaluate to an upper bound on the expected cost

usage from that state. However, they are only applicable to almost-surely terminating programs in

which either all incurred costs are non-negative or all variable assignments have bounded updates.

We now prove that, if a cost supermartingale is in addition required to be non-negative at every
reachable state, then it evaluates to an upper bound on the expected cost usage in probabilistic

programs with general costs and unbounded variable updates if the program is almost-surely

terminating and satisfies the lower-bounded total cost condition. Note that the lower-bounded total

cost condition applies to every run of the program and is not part of the martingale constraints.

Assumptions. Our result in this section requires programs to be almost-surely terminating and to

satisfy the lower-bounded total cost condition. For a pCFG C that models a program, we say that it

satisfies the lower-bounded total cost condition with lower bound 𝐾 ∈ R if the cost usage along

every path is bounded from below by 𝐾 , i.e.
∑𝑚
𝑖=0 Tk𝑖 (𝜌) (x𝑖) ≥ 𝐾 for each 𝜌 ∈ RunC and𝑚 ∈ N0.

Invariants. As mentioned in Section 3, the defining conditions of cost supermartingales impose

conditions on their values at reachable states. Since it is infeasible to compute the exact set of

reachable states in a program, we define cost supermartingales with respect to a supporting

invariant. An invariant 𝐼 is a predicate function in C which contains all reachable states in C.
Cost supermartingales. Let C = (L,𝑉 , ℓinit, xinit, ↦→,𝐺,Up, Tk) be a pCFG and 𝐼 an invariant in C.
Definition 5.1 below formally defines cost supermartingales. Intuitively, the condition (𝐶1) requires
the cost supermartingale to be non-negative at every reachable terminal state. The condition (𝐶2)
requires the value of the cost supermartingale at every reachable state to decrease in expected value

upon executing a transition in the pCFG at least by the cost of executing the transition. Recall that

the cost of executing a transition is specified by the map Tk in the pCFG. We use the supporting

invariant 𝐼 to capture the set of reachable states.

Definition 5.1 (Cost supermartingale [Wang et al. 2019]). A state function 𝜙 in C is said to be a

cost supermartingale with respect to an invariant 𝐼 , if it satisfies the following conditions:

(𝐶1) Non-negativity upon termination. We have x |= 𝐼 (ℓout) ⇒ 𝜙 (ℓout, x) ≥ 0.

(𝐶2) Expected decrease by incurred cost. For every location ℓ ∈ L and transition 𝜏 = (ℓ, 𝛿) ∈ ↦→
outgoing from ℓ with Up(𝜏) = (𝑗, 𝑢), depending on the type of the update 𝑢 we have:

• If Up(𝜏) = (𝑗,⊥), then
x |= 𝐼 (ℓ) ∧𝐺 (𝜏) ⇒ 𝜙 (ℓ, x) ≥ ∑

ℓ′∈L𝛿 (ℓ ′) · 𝜙 (ℓ ′, x) + Tk(𝜏) (x).
• If Up(𝜏) = (𝑗, 𝑢) with 𝑢 : R |𝑉 | → R a Borel-measurable map, then

x |= 𝐼 (ℓ) ∧𝐺 (𝜏) ⇒ 𝜙 (ℓ, x) ≥ ∑
ℓ′∈L𝛿 (ℓ ′) · 𝜙 (ℓ ′, x[𝑥 𝑗 ← 𝑢 (x)]) + Tk(𝜏) (x).

• If Up(𝜏) = (𝑗, 𝑢) with 𝑢 = 𝑑 a probability distribution, then

x |= 𝐼 (ℓ) ∧𝐺 (𝜏) ⇒ 𝜙 (ℓ, x) ≥ ∑
ℓ′∈L𝛿 (ℓ ′) · E𝑋∼𝑑 [𝜙 (ℓ ′, x[𝑥 𝑗 ← 𝑋])] + Tk(𝜏) (x).

• If Up(𝜏) = (𝑗, 𝑢) with 𝑢 = [𝑎, 𝑏] a real-valued interval, then

x |= 𝐼 (ℓ) ∧𝐺 (𝜏) ⇒ 𝜙 (ℓ, x) ≥ ∑
ℓ′∈L𝛿 (ℓ ′) · sup𝑋 ∈[𝑎,𝑏]{𝜙 (ℓ ′, x[𝑥 𝑗 ← 𝑋])} + Tk(𝜏) (x).

Quantitative Bounds on Resource Usage of Probabilistic Programs 13

Non-negative Cost Supermartingales. We say that a cost supermartingale 𝜙 is non-negative if
𝜙 (ℓ, x) ≥ 0 for each ℓ ∈ L and x |= 𝐼 (ℓ). In other words, non-negative cost supermartingales have

non-negative values over all reachable states, not just terminal states. The following theorem is our

main result in this section.

Theorem 5.2 (Proof in Appendix D). Let C be a pCFG, 𝐼 an invariant in C and 𝜙 a non-negative
cost supermartingale with respect to 𝐼 . Suppose that C terminates almost-surely and that it satisfies the
lower-bounded total cost condition with lower bound 𝐾 ∈ R. Then, the expected cost usage with respect
to every scheduler in C is bounded from above by the initial value of the cost supermartingale 𝜙 , i.e.

sup𝜎 E
𝜎 [CostC] ≤ 𝜙 (ℓinit, xinit).

In our proof of Theorem 5.2 in Appendix D, we show that a non-negative cost supermartingale 𝜙

induces an instance of the mathematical notion of a non-negative supermartingale [Williams 1991]

in the probability space over the set of all pCFG runs. We then prove the theorem claim by using

Optional Stopping Theorem for non-negative supermartingales (OST). The key technical novelty

compared to the proof of [Wang et al. 2019] for programs with bounded variable updates is that

we observe that using this variant of OST allows us to drop the positive costs and the bounded

variable updates assumptions while only requiring the lower-bounded total cost assumption. We

refer the reader to Appendices C and D for the detailed proof.

Remark 5.1. We conclude this section by observing that, if all costs in a probabilistic program
are non-negative, then we may remove the almost-sure termination assumption. Note that the lower
bounded total cost condition in this case is satisfied by default with 𝐾 = 0. This is in fact the result
of [Wang et al. 2019] on non-negative cost supermartingales for probabilistic programs with non-
negative costs. The work [Wang et al. 2019] considers almost-surely terminating programs, however
the proof of [Wang et al. 2019, Theorem 6.14] does not require almost-sure termination assumption.

6 TAIL BOUNDS ON THE RESOURCE USAGE OF PROBABILISTIC PROGRAMS
We now show how non-negative cost supermartingales and stochastic invariants can be combined

in order to obtain, to the best of our knowledge, the first approach to tail bound cost analysis

in probabilistic programs that can handle both positive and negative costs, unbounded variable

updates and even infinite expected cost usage. This section presents the theory behind our new

method for tail bound analysis. We will then present a fully automated algorithm in Section 7.

We start by showing how non-negative cost supermartingales can be used to derive tail bounds

in probabilistic programs with finite expected cost usage in Section 6.1. Next, in Section 6.2 we

consider stochastic invariants and stochastic invariant indicators. Finally, in Section 6.3 we show

how non-negative cost supermartingales and stochastic invariants can together be used to prove

tail bounds in general probabilistic programs that need not have finite expected cost usage. Below,

let C = (L,𝑉 , ℓinit, xinit, ↦→,𝐺,Up, Tk) be a pCFG and 𝐼 be an invariant in C.

6.1 Tail Bounds via Non-negative Cost Supermartingales
We showed in Theorem 5.2 that non-negative cost supermartingales evaluate to an upper bound

on the expected cost usage in probabilistic programs that are almost-surely terminating and satisfy

the lower-bounded total cost condition. Thus, one can derive tail bounds on cost usage by first

computing a non-negative cost supermartingale in order to bound the expected cost usage, and then

applying any theorem or concentration bound from probability theory which uses the expected

value of a random variable to bound its tail probabilities. In particular, we use the classical Markov’s

inequality to derive tail bounds.

Proposition 6.1 (Markov’s ineqality [Williams 1991]). Let (Ω, F , P) be a probability space,
and let 𝑋 be a non-negative random variable in (Ω, F , P). Then, for any 𝑡 > 0, P[𝑋 ≥ 𝑡] ≤ E[𝑋]

𝑡
.

14 Krishnendu Chatterjee, Amir Kafshdar Goharshady, Tobias Meggendorfer, and Ðorđe Žikelić

The challenge in applying Markov’s inequality is that the random variable defined by the total

cost usage need not be non-negative. Nevertheless, as non-negative cost supermartingales already

require the lower-bounded total cost condition with some lower bound 𝐾 ∈ R, we may increase the

total cost usage and therefore its expected value by −𝐾 in order to obtain a non-negative random

variable to which Markov’s inequality becomes applicable. This leads to the following theorem:

Theorem 6.2 (Proof in Appendix E). Let C be a pCFG, 𝐼 an invariant in C, and 𝜙 a non-negative
cost supermartingale with respect to 𝐼 . Suppose that C terminates almost-surely and that it satisfies
the lower-bounded total cost condition with lower bound 𝐾 ∈ R. Then, for every 𝑡 > 𝐾 , we have

sup𝜎 P
𝜎 [CostC ≥ 𝑡] ≤ 𝜙 (ℓinit ,xinit)−𝐾

𝑡−𝐾 .

On the other hand, for every 𝑡 ≤ 𝐾 , we have sup𝜎 P𝜎 [CostC ≥ 𝑡] = 1.

For programs with non-negative costs, we may again relax the almost-sure termination assump-

tion by using Remark 5.1 instead of Theorem 5.2 (note that such programs have lower-bounded

total cost with 𝐾 = 0). The proof of the following theorem is then analogous to that of Theorem 6.2.

Theorem 6.3. Let C be a pCFG, 𝐼 an invariant in C and 𝜙 a non-negative cost supermartingale
with respect to 𝐼 . Suppose that all incurred costs in C are non-negative. Then, for every 𝑡 > 0, we have

sup𝜎 P
𝜎 [CostC ≥ 𝑡] ≤ 𝜙 (ℓinit ,xinit)

𝑡
.

On the other hand, for every 𝑡 ≤ 0, we have sup𝜎 P
𝜎 [CostC ≥ 𝑡] = 1.

6.2 Stochastic Invariants
We now provide an overview of stochastic invariants, which are a proof concept for quantitative

safety. The next section will show how to combine stochastic invariants with non-negative cost

supermartingales to enable tail bound analysis. Stochastic invariants generalize invariants which

are a classical notion in non-probabilistic programs and specify a set of states in the program’s

pCFG together with an upper bound on the probability of a random program run leaving this set of

states.

Definition 6.4 (Stochastic invariant [Chatterjee et al. 2017]). Let SI be a predicate function in C and

𝑝SI ∈ [0, 1] be a probability parameter. The tuple (SI , 𝑝SI) is a stochastic invariant if the probability
of a run in C ever leaving the set of states defined by SI is at most 𝑝SI under any scheduler 𝜎 , i.e. if

sup𝜎 P
𝜎
[{
𝜌 ∈ RunC | 𝜌 reaches (ℓ, x) with x ̸ |= SI (ℓ)

}]
≤ 𝑝SI .

Computing stochastic invariants directly from their definition is a challenging task, and previous

works have sought alternative characterizations that allow automated computation of stochastic

invariants. In particular, in our method we use the recent characterization of [Chatterjee et al. 2022]

via stochastic invariant indicators (SI-indicators). Intuitively, an SI-indicator is an ordered tuple

(𝑓SI , 𝑝SI), consisting of a state function 𝑓SI that to each state in the pCFG assigns an upper bound

on the probability that a random program run from that state reaches a state at which 𝑓SI ≥ 1,

and a probability parameter 𝑝SI which is an upper bound on the value of 𝑓SI at the initial state in

the pCFG. Intuitively, SI is defined implicitly as the set of states in which 𝑓SI < 1. The defining

conditions of SI-indicators indeed ensure that these properties are satisfied.

Definition 6.5 (Stochastic invariant indicator [Chatterjee et al. 2022]). Let 𝑓SI be a state function
and 𝑝SI ∈ [0, 1] be a probability parameter. The tuple (𝑓SI , 𝑝SI) is a stochastic invariant indicator
(SI-indicator) with respect to an invariant 𝐼 , if it satisfies the following conditions:

(𝐶1) Non-negativity. For every location ℓ ∈ L, we have x |= 𝐼 (ℓ) ⇒ 𝑓SI (ℓ, x) ≥ 0.

(𝐶2) Non-increasing expected value. For every location ℓ ∈ L and transition 𝜏 = (ℓ, 𝛿) ∈ ↦→ outgoing

from ℓ with Up(𝜏) = (𝑗, 𝑢), depending on the type of the update 𝑢 we have:

• If Up(𝜏) = (𝑗,⊥), then
x |= 𝐼 (ℓ) ∧𝐺 (𝜏) ⇒ 𝑓SI (ℓ, x) ≥

∑
ℓ′∈L𝛿 (ℓ ′) · 𝑓SI (ℓ ′, x).

Quantitative Bounds on Resource Usage of Probabilistic Programs 15

• If Up(𝜏) = (𝑗, 𝑢) with 𝑢 : R |𝑉 | → R a Borel-measurable expression, then

x |= 𝐼 (ℓ) ∧𝐺 (𝜏) ⇒ 𝑓SI (ℓ, x) ≥
∑
ℓ′∈L𝛿 (ℓ ′) · 𝑓SI (ℓ ′, x[𝑥 𝑗 ← 𝑢 (x𝑖)]).

• If Up(𝜏) = (𝑗, 𝑢) with 𝑢 = 𝑑 a probability distribution, then

x |= 𝐼 (ℓ) ∧𝐺 (𝜏) ⇒ 𝑓SI (ℓ, x) ≥
∑
ℓ′∈L𝛿 (ℓ ′) · E𝑋∼𝑑 [𝑓SI (ℓ ′, x[𝑥 𝑗 ← 𝑋])] .

• If Up(𝜏) = (𝑗, 𝑢) with 𝑢 = [𝑎, 𝑏] a real-valued interval, then

x |= 𝐼 (ℓ) ∧𝐺 (𝜏) ⇒ 𝑓SI (ℓ, x) ≥
∑
ℓ′∈L𝛿 (ℓ ′) · sup𝑋 ∈[𝑎,𝑏]{𝑓SI (ℓ ′, x[𝑥 𝑗 ← 𝑋])}.

(𝐶3) Initial condition. We have 𝑓SI (ℓinit, xinit) ≤ 𝑝SI .

The first two defining conditions of an SI-indicator (𝑓SI , 𝑝SI) require 𝑓SI to be a state function

that at each state contained in the invariant is non-negative and non-increasing in expected value

upon a one-step execution of the pCFG at that state, with respect to every scheduler used to

resolve non-determinism. It can be shown that these two conditions together imply that 𝑓SI at each

reachable state evaluates to an upper bound on the probability of reaching a state with 𝑓SI ≥ 1.

The third condition additionally requires 𝑓 (ℓinit, xinit) ≤ 𝑝SI . Hence, the conditions imply that

the set of states that are contained in the invariant 𝐼 and in which 𝑓SI < 1 together with 𝑝SI define a

stochastic invariant. In other words, we have SI = {(ℓ, x) | x |= 𝐼 (ℓ) ∧ 𝑓SI (ℓ, x) < 1}. Thus, every
SI-indicator naturally induces a stochastic invariant. This claim is formalized in Theorem 6.6, which

shows that characterization of stochastic invariants via SI-indicators is not only sound but also

complete. In particular, it shows that for every stochastic invariant there exists an SI-indicator with

this property. Thus, in order to compute stochastic invariants, we may equivalently search for

SI-indicators with the same probability threshold.

Theorem 6.6 ([Chatterjee et al. 2022]). Let C be a pCFG and 𝐼 be an invariant in C. If (𝑓SI , 𝑝SI) is
an SI-indicator with respect to 𝐼 , then the predicate map SI defined as SI (ℓ) = (x |= 𝐼 (ℓ)∧ 𝑓SI (ℓ, x) < 1)
for every ℓ ∈ L yields a stochastic invariant (SI , 𝑝SI) in C.

Conversely, if (SI , 𝑝SI) is a stochastic invariant, then there exist an invariant 𝐼SI and a state function
𝑓SI in C such that (𝑓SI , 𝑝SI) is an SI-indicator with respect to 𝐼SI and such that for each ℓ ∈ L we have
SI (ℓ) ⊇ (x |= 𝐼SI (ℓ) ∧ 𝑓SI (ℓ, x) < 1).

6.3 Combining Stochastic Invariants and Non-negative Cost Supermartingales for Tail
Bound Analysis

We now have all the ingredients of our approach for tail bounds in probabilistic programs with

arbitrary costs and updates and potentially infinite expected total cost. Recall that the goal of the

tail bounds problem is to prove the tail bound on cost usage sup𝜎 P
𝜎 [CostC ≥ 𝑡] ≤ 𝑝 , where 𝑡 ∈ R

and 𝑝 ∈ [0, 1] are a given threshold value and a probability parameter, respectively.

At a high level, our method proves the tail bound by computing a stochastic invariant in the pCFG

together with a cost supermartingale for the part of the pCFG defined by the stochastic invariant. As

sketched in Section 3, the stochastic invariant restricts cost analysis to a subset of runs over which

the expected cost usage is finite and thus using cost analysis methods that bound the expected

cost usage becomes feasible. Based on this, our method uses the computed cost supermartingale

to derive a tail bound on cost usage for the part of the pCFG defined by the stochastic invariant

and adds this tail bound to the probability of a random program run ever leaving the stochastic

invariant in order to prove that the probability of cost usage in the whole program exceeding the

threshold 𝑡 is at most 𝑝 . We now formalize these ideas.

Non-negative cost supermartingale for a stochastic invariant Let (SI , 𝑝SI) be a stochastic

invariant in C. We define a new pCFG CSI from C, which is intuitively obtained from C by letting a

run in C terminate whenever it leaves SI . Formally, CSI is constructed by conjuncting the guard of

each transition 𝜏 = (ℓ, ℓ ′) in C with the predicate SI (ℓ) and introducing a new zero cost transition

from ℓ to ℓout with guard ¬SI (ℓ). As such, the set of runs that never leave SI in C is trivially in a

one-to-one correspondence with the set of runs that never take any of the newly added transitions

16 Krishnendu Chatterjee, Amir Kafshdar Goharshady, Tobias Meggendorfer, and Ðorđe Žikelić

in CSI . A non-negative cost supermartingale for the stochastic invariant (SI , 𝑝SI) with respect to the

invariant 𝐼 is defined as a non-negative cost supermartingale with respect to the invariant 𝐼 in CSI .
The following theorem is a technical result which shows how non-negative cost supermartingales

for the stochastic invariant (SI , 𝑝SI) can be used to derive probability bounds on cost usage in

the original pCFG C. The proof follows from our tail bounds in Section 6.1 and the one-to-one

correspondence between the runs in C and CSI described above. In the sequel, we use Reach(¬SI) ⊆
RunC to denote the set of all runs in C that eventually leave the stochastic invariant SI .

Theorem 6.7 (Proof in Appendix F). Let C be a pCFG, 𝐼 an invariant in C, (SI , 𝑝SI) a stochastic
invariant in C and 𝜙 a non-negative cost supermartingale for (SI , 𝑝SI) with respect to 𝐼 .
(1) If all incurred costs in C are non-negative and 𝑡 > 0, then

sup𝜎 P
𝜎 [{CostC ≥ 𝑡}\Reach(¬SI)] ≤ 𝜙 (ℓinit ,xinit)

𝑡
.

(2) If the pCFG CSI is almost-surely terminating and satisfies the lower-bounded total cost condition
with lower bound 𝐾 ∈ R and 𝑡 > 𝐾 , then

sup𝜎 P
𝜎 [{CostC ≥ 𝑡}\Reach(¬SI)] ≤ 𝜙 (ℓinit ,xinit)−𝐾

𝑡−𝐾 .

Tail bounds for programs with non-negative costs We now describe our method for the

case when all incurred costs in the pCFG C are non-negative. We start with this simpler case

since it will not require us to worry about the almost-sure termination and the lower-bounded

total cost conditions that need to be checked for the pCFG CSI in order to use non-negative cost

supermartingales. We will then extend the method to pCFGs with general costs.

Suppose that C is induced by a program in which all incurred costs are non-negative. Note that,

if the threshold 𝑡 is not positive, then sup𝜎 P
𝜎 [CostC ≥ 𝑡] ≤ 𝑝 is true if and only if 𝑝 = 1 and the

tail bound problem becomes trivial. Thus, we assume without loss of generality that 𝑡 > 0. In order

to prove the desired tail bound, our method synthesizes the following objects:

(1) an SI-indicator (𝑓SI , 𝑝SI) with respect to 𝐼 that defines a stochastic invariant (SI , 𝑝SI), and
(2) a non-negative cost supermartingale 𝜙 for (SI , 𝑝SI) such that 𝑝SI + 𝜙 (ℓinit ,xinit)

𝑡
≤ 𝑝.

The following theorem establishes correctness of our method, i.e. that if such an SI-indicator and

non-negative cost supermartingale exist then the desired tail bound on cost usage is guaranteed.

Theorem 6.8 (Proof in Appendix G). Let C be a pCFG, 𝐼 an invariant in C, 𝑡 > 0 and 𝑝 ∈ [0, 1].
Suppose that there exist a stochastic invariant (SI , 𝑝SI) and a non-negative cost supermartingale 𝜙 for
the stochastic invariant (SI , 𝑝SI) with respect to the invariant 𝐼 , such that 𝑝SI + 𝜙 (ℓinit ,xinit)

𝑡
≤ 𝑝 . Then,

sup𝜎 P
𝜎 [CostC ≥ 𝑡] ≤ 𝑝.

Tail bounds for programs with general costsWe now consider the case of pCFGs with general

costs. The key challenge in extending our method for pCFGs with non-negative costs to the general

setting is that we need to ensure that the pCFG CSI obtained by considering the part of the pCFG

defined by the stochastic invariant is almost-surely terminating and that it satisfies the lower-

bounded total cost condition. This is necessary in order to be able to use the non-negative cost

supermartingale for the stochastic invariant towards deriving tail bounds on cost usage. Note that

these conditions need to be imposed only for the part of the pCFG defined by the stochastic invariant
to which we restrict cost analysis. In other words, they apply to CSI and not to C itself. The fact

that our method does not impose these conditions on the original pCFG is precisely what makes it

applicable to general probabilistic programs. We show how these conditions can be guaranteed:

• Almost-sure termination. In addition to computing an SI-indicator and a cost supermartingale,

our method also computes a ranking supermartingale (RSM) for the target set of states {(ℓout, x) |
x |= 𝐼 (ℓout)} ∪ ¬SI . RSMs are a classical certificate for probability 1 reachability and termination

in probabilistic programs [Chakarov and Sankaranarayanan 2013; Chatterjee et al. 2018; Takisaka

et al. 2021]. An RSM is a state function that is required to be non-negative at every reachable

Quantitative Bounds on Resource Usage of Probabilistic Programs 17

state and to decrease in expected value by some 𝜀 > 0 upon every one-step execution of the

pCFG. Thus, RSMs are equivalent to non-negative cost supermartingales if each transition were

to incur cost 𝜀 for some 𝜀 > 0.

• Lower-bounded total cost. To impose that CSI satisfies the lower-bounded total cost condition, our

method first modifies C by adding a new variable cost that is used to track the total cost usage

and is incremented by the cost of executed transition at each time step. Then, it constraints the

SI-indicator (𝑓SI , 𝑝SI) to satisfy for some 𝐾 ∈ R and every ℓ ∈ L
x |= 𝐼 (ℓ) ∧ 𝑓SI (ℓ, x) < 1⇒ x[cost] ≥ 𝐾,

where x[cost] is used to denote the value of the new variable cost defined by the variable valuation
x. This extra condition ensures that, whenever at some reachable state we have 𝑓SI (ℓ, x) < 1 so

that x ∈ SI (ℓ), we must also have that the total cost of any run in C with the last state in (ℓ, x) is
bounded from below by 𝐾 . Since CSI is obtained from C by terminating all runs that leave SI ,
this additional condition on the SI-indicator indeed implies that CSI satisfies the lower bounded
total cost condition with lower bound 𝐾 .

Hence, our method for pCFGs with general costs can be summarized as simultaneously synthesizing:

(1) a real value 𝐾 ∈ R,
(2) an SI-indicator (𝑓SI , 𝑝SI) with respect to 𝐼 that defines a stochastic invariant (SI , 𝑝SI), which

is required to satisfy x |= 𝐼 (ℓ) ∧ 𝑓SI (ℓ, x) < 1⇒ x[cost] ≥ 𝐾 for every ℓ ∈ L,
(3) an RSM 𝑔 ensuring almost-sure termination in CSI ,
(4) a non-negative cost supermartingale 𝜙 for (SI , 𝑝SI), such that 𝑝SI + 𝜙 (ℓinit ,xinit)−𝐾

𝑡−𝐾 ≤ 𝑝.
Note that

𝜙 (ℓinit ,xinit)−𝐾
𝑡−𝐾 is exactly the upper bound on the tail probability in Theorem 6.7, Part 2. The

following theorem establishes the correctness of our method.

Theorem 6.9 (Proof in Appendix H). Let C be a pCFG, 𝐼 an invariant in C, 𝑡 > 0 and 𝑝 ∈ [0, 1].
Suppose that there exist a stochastic invariant (SI , 𝑝SI) and a non-negative cost supermartingale 𝜙
for the stochastic invariant (SI , 𝑝SI) with respect to the invariant 𝐼 , such that CSI is almost-surely
terminating, satisfies the lower-bounded total cost condition with lower bound 𝐾 ∈ R and such that
𝑝SI + 𝜙 (ℓinit ,xinit)−𝐾

𝑡−𝐾 ≤ 𝑝 . Then, we have sup𝜎 P𝜎 [CostC ≥ 𝑡] ≤ 𝑝.

7 TEMPLATE-BASED SYNTHESIS ALGORITHM
We now provide an automated algorithm for template-based synthesis of expectation and tail

bounds. Our algorithm relies on classical theorems in polyhedral and real algebraic geometry

including Farkas’ Lemma [Avis and Kaluzny 2004; Farkas 1902], Handelman’s Theorem [Handelman

1988] and Putinar’s Positivstellensatz [Putinar 1993]. It is applicable to linear/polynomial programs,

i.e. programs inwhich all arithmetic expressions are linear/polynomial expressions over the program

variables.While our theoretical results in the previous sections are applicable to general probabilistic

programs, we restrict ourselves to linear/polynomial programs in this section to obtain automation.

In this work, we considered three distinct problems and obtained proof concepts for all of them:

(1) Expectation bounds: As shown in Section 5, if the pCFG C is almost-surely terminating and

satisfies the lower-bounded total cost condition, we need to synthesize a non-negative cost

supermartingale 𝜙 such that 𝜙 (ℓinit, xinit) ≤ 𝑡 .
(2) Tail bounds in presence of non-negative costs: As shown in Section 6.3, if all the costs in

the pCFG C are non-negative, we need to synthesize (i) an SI-indicator (𝑓SI , 𝑝SI), and (ii) a

non-negative cost supermartingale 𝜙 for the SI-indicator, s.t. 𝑝SI + 𝜙 (ℓinit ,xinit)
𝑡

≤ 𝑝.
(3) Tail bounds in presence of general costs: Finally, as shown in Section 6.3, to establish a tail

bound on a pCFG with arbitrary costs, we need to synthesize four objects: (i) a real value

𝐾, (ii) an SI-indicator (𝑓SI , 𝑝SI) satisfying certain side conditions, (iii) an RSM 𝑔 proving the

almost-sure termination of CSI , and (iv) a non-negative cost supermartingale 𝜙 for (SI , 𝑝SI) such

18 Krishnendu Chatterjee, Amir Kafshdar Goharshady, Tobias Meggendorfer, and Ðorđe Žikelić

that 𝑝SI + 𝜙 (ℓinit ,xinit)−𝐾𝑡−𝐾 ≤ 𝑝. Note that all these should be synthesized simultaneously in order to

ensure that the desired tail bound is satisfied.

We present our synthesis algorithm for Case (1) above. The algorithm is exactly the same for the

other cases, except that more templates and constraints should be generated to cover all the desired

objects that have to be synthesized. Consider a pCFG C, together with an invariant 𝐼 given as part

of the input
¶
. We assume that C models an almost-surely terminating linear/polynomial program

that satisfies the lower-bounded total cost condition. Similarly, 𝐼 (ℓ) is a boolean combination of

linear/polynomial inequalities at every location ℓ ∈ L.Without loss of generality, we assume 𝐼 (ℓ)
is in disjunctive normal form. Our goal is to prove the expectation bound sup𝜎 E

𝜎 [CostC] ≤ 𝑡
by synthesizing a linear/polynomial non-negative cost supermartingale 𝜙, i.e. for every location

ℓ ∈ L, 𝜙 (ℓ) ∈ R[𝑉] should be a linear/polynomial expression over the program variables 𝑉 . Our

algorithm additionally requires a degree bound 𝐷 for all the polynomials as part of its input. In the

linear case, we have 𝐷 = 1. The algorithm synthesizes 𝜙 in the following four steps:

Step 1. Setting Up Templates Let 𝑀 be the set of all monomials of degree at most 𝐷 over the

program variables 𝑉 = {𝑥1, . . . , 𝑥𝑘 }. More formally,

𝑀 = {𝑚1, . . . ,𝑚𝑟 } := {𝑥𝑎1
1
· 𝑥𝑎2

2
· · · 𝑥𝑎𝑘

𝑘
| 𝑎1, . . . , 𝑎𝑘 ∈ N0 ∧ 𝑎1 + · · · + 𝑎𝑘 ≤ 𝐷}.

For every location ℓ ∈ L, the algorithm sets up a template by symbolically computing

𝜙 (ℓ) := 𝑐ℓ,1 ·𝑚1 + 𝑐ℓ,2 ·𝑚2 + · · · + 𝑐ℓ,𝑟 ·𝑚𝑟 .

Here, the 𝑐ℓ,𝑖 ’s are new unknown variables. We shall call them template variables. The goal of the
algorithm is to synthesize values for these unknown variables such that the resulting 𝜙 becomes a

valid non-negative cost supermartingale.

Example 7.1. Assuming 𝐷 = 2, our algorithm generates the following template at every location

ℓ of the program in Figure 3a:

𝜙 (ℓ) = 𝑐ℓ,1 + 𝑐ℓ,2 · 𝑥 + 𝑐ℓ,3 ·𝑦 + 𝑐ℓ,4 · 𝑟 + 𝑐ℓ,5 · 𝑥2 + 𝑐ℓ,6 · 𝑥 ·𝑦 + 𝑐ℓ,7 · 𝑥 · 𝑟 + 𝑐ℓ,8 ·𝑦2 + 𝑐ℓ,9 ·𝑦 · 𝑟 + 𝑐ℓ,10 · 𝑟 2 .
Basically,𝜙 (ℓ) is themost general template for a polynomial of degree𝐷 and our goal is to synthesize

values for the coefficients of 𝜙 (ℓ)’s such that 𝜙 becomes a valid non-negative cost supermartingale.

Step 2. Generating Polynomial Entailment Constraints The algorithm symbolically computes

all the constraints of a non-negative cost supermartingale, i.e. 𝐶1 and 𝐶2 in Definition 5.1, as well

as non-negativity, using the templates generated in the previous step. Note that these constraints

can all be written in the following standard form:

∀x ∈ R𝑉
(
𝑔1 (x) ≥ 0 ∧ 𝑔2 (x) ≥ 0 ∧ · · · ∧ 𝑔𝑠 (x) ≥ 0

)
⇒ 𝑔(x) ≥ 0. (4)

where 𝑔,𝑔1, . . . , 𝑔𝑠 are polynomials over program variables 𝑉 whose coefficients might contain the

template variables. We call (4) a polynomial entailment constraint.

Example 7.2. Consider the program in Figure 3a and suppose that 𝐼 (ℓout) :=
(
𝑥 ≥ 0 ∧ 𝑦 ≥ 0

)
.

The algorithm symbolically computes condition 𝐶1 of Definition 5.1 at location ℓout and obtains:

∀𝑥,𝑦 ∈ R 𝑥 ≥ 0 ∧ 𝑦 ≥ 0⇒ 𝜙 (ℓout, 𝑥,𝑦) ≥ 0.

which is then symbolically expanded to

∀𝑥,𝑦 ∈ R 𝑥 ≥ 0 ∧ 𝑦 ≥ 0⇒�𝑐ℓout ,1+𝑐ℓ,2 ·𝑥+�𝑐ℓout ,3 ·𝑦+�𝑐ℓout ,4 ·𝑟 +�𝑐ℓout ,5 ·𝑥2+�𝑐ℓout ,6 ·𝑥 ·𝑦+�𝑐ℓout ,7 ·𝑥 ·𝑟 +�𝑐ℓout ,8 ·𝑦2+�𝑐ℓout ,9 ·𝑦 ·𝑟 +�𝑐ℓout ,10 ·𝑟 2 ≥ 0.

The algorithm generates similar constraints for every location ℓ ∈ L and both 𝐶1 and 𝐶2.

At this point, we can simply pass our systems of polynomial entailment constraints to an

SMT solver. However, this is unlikely to work since the SMT solver has to synthesize values for

¶
We assume that a linear/polynomial invariant is given as part of the input. Linear and polynomial invariant generation

are well-studied problems, orthogonal to our work. They can be automated using [Chatterjee et al. 2020; Feautrier and

Gonnord 2010; Kincaid et al. 2017; Sankaranarayanan et al. 2004].

Quantitative Bounds on Resource Usage of Probabilistic Programs 19

template variables such that all the quantified constraints hold. In other words, it has to solve a

formula in the first order theory of the reals with a quantifier alternation. While such formulas

are decidable [Collins 1982], decision procedures for solving them are notoriously unscalable and

cannot even handle toy problems [Renegar 1992].

Step 3. Dedicated Quantifier Elimination To circumvent this problem, our algorithm handles

polynomial entailment constraints of form (4) using the following three methods:

(1) If 𝑔 and all the 𝑔𝑖 ’s are linear/affine expressions over program variables, the algorithm tries to

write 𝑔 as a non-negative linear combination of the 𝑔𝑖 ’s. Formally, it symbolically computes:

∀x ∈ R𝑉 𝑔 = 𝜆0 + 𝜆1 · 𝑔1 + · · · + 𝜆𝑠 · 𝑔𝑠 𝜆0, . . . , 𝜆𝑠 ≥ 0. (5)

Here, the 𝜆𝑖 ’s are new unknown template variables whose value should be synthesized. It is

clear that if 𝑔 can be written as a non-negative combination of the 𝑔𝑖 ’s, then 𝑔 is non-negative

whenever the 𝑔𝑖 ’s are and hence the entailment holds. Note that both sides of (5) are linear

expressions over the program variables 𝑉 . So, in order for (5) to hold, the constant terms of

polynomials on its LHS and its RHS should be equal and the corresponding coefficients of the

program variables should also be equal on both sides. The algorithm symbolically computes

these equalities and uses them to replace the entailment in (4).

(2) If all the 𝑔𝑖 ’s are affine expressions over program variables but 𝑔 is of a higher degree, then the

algorithm tries to write 𝑔 as a sum of multiplications of 𝑔𝑖 ’s. More formally, we define

M = {𝜇1, 𝜇2, . . . , 𝜇 𝑗 } := {𝑔𝑎1
1
· 𝑔𝑎2

2
· · ·𝑔𝑎𝑠𝑠 | 𝑎1, . . . , 𝑎𝑠 ∈ N0 ∧ deg(𝑔𝑎1

1
· 𝑔𝑎2

2
· · ·𝑔𝑎𝑠𝑠) ≤ 𝐷}.

In other words,M is the set of all polynomials of degree at most 𝐷 that can be obtained as a

multiplication of 𝑔𝑖 ’s. It is clear that whenever the 𝑔𝑖 ’s are non-negative, so are the 𝜇𝑖 ’s and

hence so is any non-negative combination of the 𝜇𝑖 ’s. The algorithm symbolically computes

∀x ∈ R𝑉 𝑔 = 𝜆0 + 𝜆1 · 𝜇1 + · · · + 𝜆 𝑗 · 𝜇 𝑗 ; 𝜆0, . . . , 𝜆 𝑗 ≥ 0. (6)

where the 𝜆𝑖 ’s are new template variables. It then equates the coefficients of corresponding

monomials on the two sides and obtains quadratic constrains over the template variables.

(3) Finally, if some or all of the 𝑔𝑖 ’s have a degree of at least 2, then the algorithm tries to write 𝑔 as

a combination of the 𝑔𝑖 ’s in which every coefficient is a sum-of-squares polynomial. Concretely,

the algorithm symbolically computes

∀x ∈ R𝑉 𝑔 = ℎ0 + ℎ1 · 𝑔1 + · · · + ℎ𝑠 · 𝑔𝑠 , (7)

inwhich everyℎ𝑖 is a sum-of-squares polynomial. To ensure that everyℎ𝑖 is a sum-of-squares, the

algorithm first sets up a template for eachℎ𝑖 just as in Step 1:ℎ𝑖 := 𝑑𝑖,1 ·𝑚1+𝑑𝑖,2 ·𝑚2+· · ·+𝑑𝑖,𝑟 ·𝑚𝑟 .

Here, the 𝑑𝑖, 𝑗 ’s are new template variables. It then adds quadratic constraints on 𝑑𝑖, 𝑗 ’s that

ensure ℎ𝑖 is a sum-of-squares. This is a standard process and we refer to [Asadi et al. 2021,

Appendix F] for details. Finally, the algorithm equates the corresponding coefficients on the

two sides of (7) and obtains quadratic constraints on the template variables.

Step 4. Solution via SMT Solver After the previous steps, the conditions in the definition of

a non-negative cost supermartingale (Definition 5.1) are now soundly encoded as a Quadratic

Programming (QP) instance over the template variables. The algorithm adds the boundary condition

𝜙 (ℓinit, xinit) ≤ 𝑡 to the QP instance and passes the resulting system to an SMT solver. When the

SMT solver succeeds in finding values for the template variables, the algorithm plugs these values

back into the template of 𝜙 in Step 1 to obtain the non-negative cost supermartingale.

Soundness and Completeness It is easy to see that the synthesis algorithm above is sound

since Step 2 simply encodes the definition of a non-negative cost supermartingale and Step 3 is

a sound quantifier elimination. However, the procedures used in Step 3 can also preserve com-

pleteness, i.e. guarantee to find polynomial stochastic invariants and cost supermartingales of

the desired degree if they exist, provided that the chosen degree 𝐷 large enough. This is because

Equations (5), (6) and (7) are respectively taken from Farkas’ Lemma [Avis and Kaluzny 2004; Farkas

20 Krishnendu Chatterjee, Amir Kafshdar Goharshady, Tobias Meggendorfer, and Ðorđe Žikelić

1902], Handelman’s Theorem [Handelman 1988] and Putinar’s Positivstellensatz [Putinar 1993],

which are classical theorems in polyhedral and real algebraic geometry that provide necessary

and sufficient conditions for the non-negativity/positivity of a linear/polynomial expression over a

polyhedron/semi-algebraic set. See [Asadi et al. 2021] for a more detailed treatment of completeness

and methods for handling non-strict inequalities.

8 EXPERIMENTAL RESULTS
We implemented a prototype of our approach for the purpose of experimentally evaluating our

algorithms in Section 7. Our goal is to answer the following three research questions:

RQ1 Expectation bound problem – new class of programs. Can our method compute a non-negative

cost supermartingale that proves an upper bound on the expected cost in almost-surely termi-

nating programs that have lower-bounded total cost but which may have both positive and

negative costs and unbounded variable updates, to which prior methods are not applicable?

RQ2 Expectation bound problem – comparison to prior methods. For programs that have either

(i) non-negative costs or (ii) bounded variable updates, how do the proved upper bounds on

the expected cost and the runtime of our method compare to those of prior methods?

RQ3 Tail bound problem – new class of programs. Can our method compute a non-negative cost

supermartingale and a stochastic invariant that prove a tail bound on cost usage in programs

with infinite expected cost usage, to which prior methods are not applicable?

As discussed in the “Limitations” paragraph in Section 1, our method for the tail bound problem

uses Markov’s inequality in order to be applicable to the general class of programs with possibly

infinite expected cost usage. For subclasses of programs that satisfy additional assumptions, one

can use tighter concentration inequalities in order to obtain better tail bounds. Hence, given that

our focus is not on tight tail bounds, we do not compare our tail bound method to prior methods.

Benchmarks and Baselines To answer these questions, we consider the following benchmarks:

To answer RQ1, in Table 1 we consider 6 programs that incur both positive and negative costs and

have unbounded variable updates. Example 1 is the program in Fig. 3a. Examples 2-5 are crafted by

the authors of this work and are provided in Appendix I. Example 2 modifies the program in Fig. 3a

so that updates of variables 𝑥 and 𝑦 are correlated. Example 3 extends the program in Fig. 3a with

non-determinism. Example 4 models a stochastic chemical reaction with two types of molecules

until one type becomes extinct, where cost analysis is concerned with the size of one type upon

termination. Example 5 considers stochastic evolutionary process of two species, represented by a

multiplicative random walk. “Mult. Pool Mining” is the program in Fig. 2 (right).

To answer RQ2, in Table 1 we also consider 24 programs collected from [Wang et al. 2019].

The first 14
∥
programs have non-negative costs and are collected from [Wang et al. 2019, Table 2]

(originally from [Ngo et al. 2018]). The latter 10 programs either have non-negative costs or

bounded variable updates and are collected from [Wang et al. 2019, Table 3]. We run our method

for the expectation bound problem on these programs and compare it with two baselines. The first

baseline is the method of [Wang et al. 2019], which computes (not necessarily non-negative) cost

supermartingales in almost-surely terminating programs with non-negative costs or with bounded

variable updates. Since both methods are based on cost supermartingales, we implement the first

baseline on top of our tool to allow for a fair runtime comparison. The second baseline is [Ngo et al.

2018], which follows a different approach and is applicable to almost-surely terminating programs

with non-negative costs. For this, we reuse the experimental results of [Wang et al. 2019].

To answer RQ3, in Table 2 we consider 18 programs which all have infinite expected cost usage.

The first 5 programs are modifications of programs in Table 1 that have infinite expected cost usage.

They also have both positive and negative costs and unbounded variable updates and are provided

∥
We exclude the benchmark bin as it contains a construct for the sampling instruction from binomial distribution,

which is currently not supported in our prototype tool.

Quantitative Bounds on Resource Usage of Probabilistic Programs 21

Table 1. Experimental results for the expectation bound problem. For each program and for each method, we
list whether (1) the program satisfies the method assumptions (Sat), (2) the smallest threshold 𝑡 for which the
method proved the expected value bound (Bound) and (3) runtime in seconds (Time). For each benchmark and
method, we manually check whether the benchmark satisfies the method assumptions. We do not include
runtimes for the method of [Ngo et al. 2018] as the results are collected from [Wang et al. 2019]. The symbol
† denotes usage of polynomial degree 𝐷 = 4. We set the timeout for each experiment to 600s.

Benchmark Our method [Wang et al. 2019] [Ngo et al. 2018]

Sat Bound Time Sat Bound Time Sat Bound

Example 1 (Figure 3a) ✓ 2 2.2𝑠 ✗ - - ✗ -

Example 2 ✓ 2 1.0𝑠 ✗ - - ✗ -

Example 3 ✓ 2 2.6𝑠 ✗ - - ✗ -

Example 4 ✓ 23 1.2𝑠 ✗ - - ✗ -

Example 5 ✓ 22 0.8𝑠 ✗ - - ✗ -

Mult. Pool Mining (Figure 2 right) ✓ 9795050 1.1𝑠 ✗ - - ✗ -

[Wang et al. 2019, Table 2]

ber ✓ 201 1.0𝑠 ✓ 200 1.0𝑠 ✓ 200

linear01 ✓ 60 0.8𝑠 ✓ 60 0.9𝑠 ✓ 60

prdwalk ✓ 120 1.3𝑠 ✓ 120 1.3𝑠 ✓ 120

race ✓ 27 1.2𝑠 ✓ 27 1.2𝑠 ✓ 27

rdseql ✓ 325 1.1𝑠 ✓ 325 1.1𝑠 ✓ 325

rdwalk ✓ 202 1.1𝑠 ✓ 202 1.0𝑠 ✓ 202

sprdwalk ✓ 202 1.1𝑠 ✓ 202 1.0𝑠 ✓ 200

C4B_t13 ✓ 225 1.4𝑠 ✓ 225 1.4𝑠 ✓ 225

prnes ✓ 5848 1.4𝑠 ✓ 5848 1.3𝑠 ✓ 5848

condand ✓ 199 1.2𝑠 ✓ 199 1.1𝑠 ✓ 200

pol04 ✓ 46050 2.2𝑠† ✓ 46050 1.9𝑠† ✓ 45750

pol05 ✓ 7975 6.4𝑠† ✓ 7975 5.2𝑠† ✓ 10100

rdbub ✓ 30150 8.0𝑠† ✓ 30150 6.1𝑠† ✓ 30000

trader ✓ 4954500 6.3𝑠† ✓ 4954500 4.3𝑠† ✓ 4954500

[Wang et al. 2019, Table 3]

Bitcoin Mining (Figure 1 left) ✓ 100 1.0𝑠 ✓ −146 1.0𝑠 ✗ -

Bitcoin Mining Pool ✗ - - ✓ −77863 3.0𝑠 ✗ -

Queuing Network ✓ 1000000 29𝑠† ✓ 1000000 18𝑠† ✓ not reported
∗∗

Species Fight ✓ 2531 9.0𝑠† ✓ 2531 6.7𝑠† ✓ not reported

Figure 2 ✗ - - ✓ 13400 1.8𝑠† ✗ -

Nested Loop ✗ - - ✓ 7650 4.8𝑠† ✗ -

Random Walk ✗ - - ✓ −20 1.1𝑠 ✗ -

2D Robot ✗ - - ✓ 1000000 82𝑠† ✗ -

Goods Discount ✓ 1000 6.6𝑠† ✓ −23 4.9𝑠† ✗ -

Pollutant Disposal ✗ - - ✓ 3020 31𝑠† ✗ -

in Appendix I. The next 10 programs are probabilistic reachability examples that do not terminate

almost-surely and where the goal is to compute tail bounds on termination time. These include

our illustrative example in Fig. 3b and 9 more programs collected from [Chatterjee et al. 2022].

While [Chatterjee et al. 2022] considered them to bound termination probability, we consider them

for the tail bounds on runtime. Finally, the last 2 programs model applications from blockchain

analysis discussed in Section 2. See Appendix J for details.

Experimental Setup Since in Section 4.2 we define the decision variants of both the expected

value and the tail bound problem, we consider the following experimental setup:

(1) For the expectation bound problem, for each benchmark in Table 1 we evaluate our method

and the first baseline by manually performing a binary search in the value of the threshold 𝑡

∗∗
These two benchmarks have non-negative costs and therefore satisfy the assumptions of [Ngo et al. 2018]. However,

no results were reported in [Wang et al. 2019].

22 Krishnendu Chatterjee, Amir Kafshdar Goharshady, Tobias Meggendorfer, and Ðorđe Žikelić

and report the smallest threshold for which the method manages to prove the desired bound

(rounded up to the closest integer value). For the second baseline, we report the results of the

experimental evaluation in [Wang et al. 2019, Table 2].

(2) For the tail bound problem, for each benchmark in Table 2 we consider two different values of

the threshold 𝑡 . We chose values of 𝑡 arbitrarily, with the goal of showing that our approach

is robust and can find bounds for different threshold values. We then evaluate our method on

each value of 𝑡 by manually performing a binary search in the value of the probability 𝑝 ∈ [0, 1]
and report the smallest value of 𝑝 for which the tail bound is proved.

For both problems, we first run our tool with the maximal polynomial degree bound 𝐷 = 1. For

benchmarks where this was insufficient (results marked with the symbol †), we then use 𝐷 = 4.

Results The data of Table 1 and 2 lead to the following conclusions:

RQ1. Our prototype tool proves an upper bound on the expected cost usage for Examples 1-5

in Table 1. Hence we conclude that our method is practically applicable to programs with both

positive and negative costs and with unbounded variable updates, that are beyond the reach of

prior methods. The runtimes of our tool are consistently small and mostly below 60s.

RQ2. The results on 14 programs taken from [Wang et al. 2019, Table 2] show that our method

performs on par with the existing methods on programs with non-negative costs. Our method

proves the same expectation bounds as the method of [Wang et al. 2019] for all programs but ber.
This is not surprising, since the restriction to non-negative cost supermartingales should not matter

in programs with non-negative costs. The restriction does lead to a slight increase in runtime due

to additional non-negativity constraints in the resulting quadratic programming instance in Step 4

of our algorithm, however the runtime increase is not significant. Our expectation bounds also

mostly coincide with those of [Ngo et al. 2018], with the exception of slightly looser bounds for

ber, sprdwalk, pol04 and rdbub and slightly tighter bounds for condand and pol05.
The results on 10 programs taken from [Wang et al. 2019, Table 3] show that non-negative cost

supermartingales and the lower bounded total cost condition are impeding factors for computing

expectation bounds in programs that have both positive and negative costs. In particular, by manual

inspection, we observe that Bitcoin Pool Mining, Figure 2, Nested Loop, Random Walk, 2D
Robot and Pollutant Disposal all model random walk-like processes where in each step the

incurred cost may be either positive or negative. Such programs do not satisfy the lower bounded

total cost condition, since an infinite run in the random walk which at each step incurs negative

costs can achieve an arbitrarily negative total cost. While this indicates a limitation of our method,

one should not view our method and [Wang et al. 2019] as competing approaches. Rather, the

two methods provide different conditions under which cost supermartingales are applicable to

computing expectation bounds on cost usage. In particular, our answer to the RQ1 shows that our

work significantly extends the class of programs to which cost supermartingales are applicable.

RQ3. Our tool proves tail bounds on cost usage for all benchmarks considered in Table 2. This

demonstrates that our method is also practically applicable to computing tail bounds in programs

with infinite expected cost usage. The runtimes mostly remain below 60s.

Implementation DetailsWe implemented our prototype in Python 3, using Lark [Shinan et al.

2023] to parse the programs, SymPy [Meurer et al. 2017] to manipulate symbolic expressions, pySMT
[Gario and Micheli 2015] to handle SMT solving, and Z3 [Moura and Bjørner 2008] and mathsat5
[Cimatti et al. 2013] as SMT solvers. In most cases, mathsat5 terminated faster. We ran experiments

inside a Docker container on a machine with an AMD Ryzen 5 3600 CPU and 16GB of RAM.

9 RELATEDWORKS
Existing approaches to cost analysis of probabilistic programs have been discussed in Section 1.

Quantitative Bounds on Resource Usage of Probabilistic Programs 23

Table 2. Experimental results for the tail bound problem. For each program, we list two triples consisting of
(1) a threshold 𝑡 , (2) the smallest probability 𝑝 for which our tool proved the tail bound and (3) runtime. Each
Example X Inf refers to the variant of Example X in Table 1 in with infinite expected cost usage. Each P X
refers to the program in Figure X in [Chatterjee et al. 2022]. † denotes usage of polynomial degree 𝐷 = 4.

Benchmark Prob. 𝑝 Thresh. 𝑡 Time Prob. 𝑝 Thresh. 𝑡 Time

Example 1 Inf .4 40 12𝑠 .05 200 39𝑠

Example 2 Inf .5 300 1.7𝑠 .2 800 4.4𝑠

Example 3 Inf .1 200 22𝑠 .05 1,750 7.3𝑠

Example 4 Inf .4 10
7

9.9𝑠 .2 1.8 · 107 3.5𝑠

Example 5 Inf .1 2,200 1.7𝑠† .05 6,000 1.6𝑠†

Termination Time Bounds

Figure 3b .1 50 7.1𝑠† .05 90 5.6𝑠†

P 1 .1 200 1.5𝑠 .01 500 1.7𝑠

P 5 .2 100 1.2𝑠 .1 190 1.2𝑠

P 7 .4 10 0.6𝑠 .3 40 0.6𝑠

P 8 .1 1,000 0.8𝑠 .001 10
6

0.8𝑠

P 10 .3 1,000 1.0𝑠 .2 2,000 1.0𝑠

P 11 .75 5,000 6.7𝑠 .7 9,000 171𝑠

P 12 .3 750 1.5𝑠 .2 1,400 1.2𝑠

P 17 .5 500 1.5𝑠 .41 4,500 1.4𝑠

P 22 .1 2,000 1.4𝑠 .05 5,000 2.4𝑠

Blockchain Applications

Proof-of-Stake (Figure 1 right) .2 1000 7.1𝑠† .01 9000 7.2𝑠†

Block Withholding .1 10
5

526𝑠 .01 10
6

114𝑠

Supermartingales for other probabilistic program analyses Supermartingales are an estab-

lished approaches to probabilistic program analysis. Originally, the work of [Chakarov and Sankara-

narayanan 2013] introduced ranking supermartingales (RSMs) for proving almost-sure termination

and since then several extensions of RSMs have been proposed for termination analysis in proba-

bilistic programs [Abate et al. 2021; Agrawal et al. 2018; Chatterjee et al. 2016, 2018, 2021b; Chen

and He 2020; Fioriti and Hermanns 2015; Fu and Chatterjee 2019; Huang et al. 2019; Kenyon-Roberts

and Ong 2021; McIver et al. 2018; Moosbrugger et al. 2021]. In addition to termination and cost

analysis, supermartingales were also proposed for analyzing properties such as reachability and

safety [Chatterjee et al. 2022, 2017; Takisaka et al. 2021] and sensitivity [Wang et al. 2020a].

Other approaches to probabilistic program analysis An established approach is based on the

weakest pre-expectation calculus. Logical calculi for reasoning about probabilistic programs with

non-determinism and properties such as termination, expected runtime, safety and sensitivity have

been developed in [Aguirre et al. 2021; Batz et al. 2021; Feldman 1984; Kaminski et al. 2018; Kozen

1981; McIver and Morgan 2004, 2005; Olmedo et al. 2018, 2016]. The expressiveness of these logical

calculi makes them applicable to a wide class of programs. However, the proofs in this calculi

usually require human assistance particularly in the presence of loops. In contrast, we aim for fully

automated methods for cost analysis. The work of [Monniaux 2001] used abstract interpretation to

prove almost-sure termination. Sampling-based approaches with formal guarantees for termination

and safety were considered in [Beutner et al. 2022; Beutner and Ong 2021].

Cores in MDPs Cores [Křetínský and Meggendorfer 2020] for finite-state Markov decision pro-

cesses (MDPs) are an equivalent notion to stochastic invariants for programs [Chatterjee et al.

2017]. [Křetínský and Meggendorfer 2020] present a sampling-based method for their computation.

Cost analysis in non-probabilistic programs There are many existing methods for cost analy-

sis in non-probabilsitic programs. Existing automated approaches are based on amortized analy-

sis [Carbonneaux et al. 2015; Hoffmann et al. 2012a,b, 2017; Hoffmann and Hofmann 2010], abstract

24 Krishnendu Chatterjee, Amir Kafshdar Goharshady, Tobias Meggendorfer, and Ðorđe Žikelić

interpretation [Gulwani et al. 2009; Gulwani and Zuleger 2010], invariant generation [Kincaid et al.

2017], ranking functions [Alias et al. 2010], and analysis of abstract resource models [Sinn et al.

2014, 2017; Zuleger et al. 2011]. Recent works have also considered differential cost analysis that is

concerned with bounding the difference in cost between two programs [Çiçek et al. 2017, 2019; Qu

et al. 2019; Radicek et al. 2018; Žikelić et al. 2022].

10 CONCLUSION
We studied cost analysis of probabilistic programs with non-determinism. For the expectation

bound problem, we proposed a strengthened variant of cost supermartingales which are required

to be non-negative at every reachable program state and proved that they evaluate to an upper

bound on cost usage in almost-surely terminating programs that satisfy the lower-bounded total

cost condition. Our strengthened variant can handle programs in which incurred costs can be both

positive and negative and variable updates can be unbounded, which were beyond the reach of

previous methods. For tail bounds, we proposed a new method which combines quantitative safety

analysis and cost analysis and can for the first time handle programs with infinite expected cost.

For both analyses we presented fully automated algorithms based on template-based synthesis.

ACKNOWLEDGMENTS
This work was supported in part by the European Research Council (ERC) under Grant No. 863818

(ForM-SMArt) and the Hong Kong Research Grants Council under ECS Project No. 26208122.

REFERENCES
Alessandro Abate, Mirco Giacobbe, and Diptarko Roy. 2021. Learning Probabilistic Termination Proofs. In Computer Aided

Verification - 33rd International Conference, CAV 2021, Virtual Event, July 20-23, 2021, Proceedings, Part II (Lecture Notes in
Computer Science, Vol. 12760), Alexandra Silva and K. Rustan M. Leino (Eds.). Springer, 3–26. https://doi.org/10.1007/978-

3-030-81688-9_1

Sheshansh Agrawal, Krishnendu Chatterjee, and Petr Novotný. 2018. Lexicographic ranking supermartingales: an efficient

approach to termination of probabilistic programs. Proc. ACM Program. Lang. 2, POPL (2018), 34:1–34:32. https:

//doi.org/10.1145/3158122

Alejandro Aguirre, Gilles Barthe, Justin Hsu, Benjamin Lucien Kaminski, Joost-Pieter Katoen, and Christoph Matheja.

2021. A pre-expectation calculus for probabilistic sensitivity. Proc. ACM Program. Lang. 5, POPL (2021), 1–28. https:

//doi.org/10.1145/3434333

Christophe Alias, Alain Darte, Paul Feautrier, and Laure Gonnord. 2010. Multi-dimensional Rankings, Program Termination,

and Complexity Bounds of Flowchart Programs. In Static Analysis - 17th International Symposium, SAS 2010, Perpignan,
France, September 14-16, 2010. Proceedings (Lecture Notes in Computer Science, Vol. 6337), Radhia Cousot and Matthieu

Martel (Eds.). Springer, 117–133. https://doi.org/10.1007/978-3-642-15769-1_8

Ali Asadi, Krishnendu Chatterjee, Hongfei Fu, Amir Kafshdar Goharshady, and Mohammad Mahdavi. 2021. Polynomial

reachability witnesses via Stellensätze. In PLDI ’21: 42nd ACM SIGPLAN International Conference on Programming
Language Design and Implementation, Virtual Event, Canada, June 20-25, 2021, Stephen N. Freund and Eran Yahav (Eds.).

ACM, 772–787. https://doi.org/10.1145/3453483.3454076

R.B. Ash and C. Doléans-Dade. 2000. Probability and Measure Theory. Harcourt/Academic Press.

David Avis and Bohdan Kaluzny. 2004. Solving inequalities and proving Farkas’s lemma made easy. The American
Mathematical Monthly 111, 2 (2004), 152–157.

Samiran Bag, Sushmita Ruj, and Kouichi Sakurai. 2016. Bitcoin block withholding attack: Analysis and mitigation. IEEE
Transactions on Information Forensics and Security 12, 8 (2016), 1967–1978.

Gilles Barthe, Thomas Espitau, Marco Gaboardi, Benjamin Grégoire, Justin Hsu, and Pierre-Yves Strub. 2018. An Assertion-

Based Program Logic for Probabilistic Programs. In Programming Languages and Systems - 27th European Symposium on
Programming, ESOP 2018, Held as Part of the European Joint Conferences on Theory and Practice of Software, ETAPS 2018,
Thessaloniki, Greece, April 14-20, 2018, Proceedings (Lecture Notes in Computer Science, Vol. 10801), Amal Ahmed (Ed.).

Springer, 117–144. https://doi.org/10.1007/978-3-319-89884-1_5

Gilles Barthe, Benjamin Grégoire, and Santiago Zanella Béguelin. 2009. Formal certification of code-based cryptographic

proofs. In Proceedings of the 36th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL
2009, Savannah, GA, USA, January 21-23, 2009, Zhong Shao and Benjamin C. Pierce (Eds.). ACM, 90–101. https:

//doi.org/10.1145/1480881.1480894

Ezio Bartocci, Laura Kovács, and Miroslav Stankovic. 2019. Automatic Generation of Moment-Based Invariants for Prob-

Solvable Loops. In Automated Technology for Verification and Analysis - 17th International Symposium, ATVA 2019, Taipei,

https://doi.org/10.1007/978-3-030-81688-9_1
https://doi.org/10.1007/978-3-030-81688-9_1
https://doi.org/10.1145/3158122
https://doi.org/10.1145/3158122
https://doi.org/10.1145/3434333
https://doi.org/10.1145/3434333
https://doi.org/10.1007/978-3-642-15769-1_8
https://doi.org/10.1145/3453483.3454076
https://doi.org/10.1007/978-3-319-89884-1_5
https://doi.org/10.1145/1480881.1480894
https://doi.org/10.1145/1480881.1480894

Quantitative Bounds on Resource Usage of Probabilistic Programs 25

Taiwan, October 28-31, 2019, Proceedings (Lecture Notes in Computer Science, Vol. 11781), Yu-Fang Chen, Chih-Hong Cheng,
and Javier Esparza (Eds.). Springer, 255–276. https://doi.org/10.1007/978-3-030-31784-3_15

Kevin Batz, Benjamin Lucien Kaminski, Joost-Pieter Katoen, and Christoph Matheja. 2018. How long, O Bayesian network,

will I sample thee? - A program analysis perspective on expected sampling times. In Programming Languages and Systems
- 27th European Symposium on Programming, ESOP 2018, Held as Part of the European Joint Conferences on Theory and
Practice of Software, ETAPS 2018, Thessaloniki, Greece, April 14-20, 2018, Proceedings (Lecture Notes in Computer Science,
Vol. 10801), Amal Ahmed (Ed.). Springer, 186–213. https://doi.org/10.1007/978-3-319-89884-1_7

Kevin Batz, Benjamin Lucien Kaminski, Joost-Pieter Katoen, and Christoph Matheja. 2021. Relatively complete verification

of probabilistic programs: an expressive language for expectation-based reasoning. Proc. ACM Program. Lang. 5, POPL
(2021), 1–30. https://doi.org/10.1145/3434320

Raven Beutner, C.-H. Luke Ong, and Fabian Zaiser. 2022. Guaranteed bounds for posterior inference in universal

probabilistic programming. In PLDI ’22: 43rd ACM SIGPLAN International Conference on Programming Language De-
sign and Implementation, San Diego, CA, USA, June 13 - 17, 2022, Ranjit Jhala and Isil Dillig (Eds.). ACM, 536–551.

https://doi.org/10.1145/3519939.3523721

Raven Beutner and Luke Ong. 2021. On probabilistic termination of functional programs with continuous distributions. In

PLDI ’21: 42nd ACM SIGPLAN International Conference on Programming Language Design and Implementation, Virtual
Event, Canada, June 20-25, 2021, Stephen N. Freund and Eran Yahav (Eds.). ACM, 1312–1326. https://doi.org/10.1145/

3453483.3454111

Eli Bingham, Jonathan P. Chen, Martin Jankowiak, Fritz Obermeyer, Neeraj Pradhan, Theofanis Karaletsos, Rohit Singh,

Paul A. Szerlip, Paul Horsfall, and Noah D. Goodman. 2019. Pyro: Deep Universal Probabilistic Programming. J. Mach.
Learn. Res. 20 (2019), 28:1–28:6. http://jmlr.org/papers/v20/18-403.html

Quentin Carbonneaux, Jan Hoffmann, and Zhong Shao. 2015. Compositional certified resource bounds. In Proceedings of the
36th ACM SIGPLAN Conference on Programming Language Design and Implementation, Portland, OR, USA, June 15-17,
2015, David Grove and Stephen M. Blackburn (Eds.). ACM, 467–478. https://doi.org/10.1145/2737924.2737955

Aleksandar Chakarov and Sriram Sankaranarayanan. 2013. Probabilistic Program Analysis with Martingales. In Computer
Aided Verification - 25th International Conference, CAV 2013, Saint Petersburg, Russia, July 13-19, 2013. Proceedings
(Lecture Notes in Computer Science, Vol. 8044), Natasha Sharygina and Helmut Veith (Eds.). Springer, 511–526. https:

//doi.org/10.1007/978-3-642-39799-8_34

Krishnendu Chatterjee, Hongfei Fu, and Amir Kafshdar Goharshady. 2016. Termination Analysis of Probabilistic Programs

Through Positivstellensatz’s. In Computer Aided Verification - 28th International Conference, CAV 2016, Toronto, ON,
Canada, July 17-23, 2016, Proceedings, Part I (Lecture Notes in Computer Science, Vol. 9779), Swarat Chaudhuri and Azadeh

Farzan (Eds.). Springer, 3–22. https://doi.org/10.1007/978-3-319-41528-4_1

Krishnendu Chatterjee, Hongfei Fu, Amir Kafshdar Goharshady, and Ehsan Kafshdar Goharshady. 2020. Polynomial

invariant generation for non-deterministic recursive programs. In Proceedings of the 41st ACM SIGPLAN International
Conference on Programming Language Design and Implementation, PLDI 2020, London, UK, June 15-20, 2020, Alastair F.
Donaldson and Emina Torlak (Eds.). ACM, 672–687. https://doi.org/10.1145/3385412.3385969

Krishnendu Chatterjee, Hongfei Fu, Petr Novotný, and Rouzbeh Hasheminezhad. 2018. Algorithmic Analysis of Qualitative

and Quantitative Termination Problems for Affine Probabilistic Programs. TOPLAS 40, 2 (2018), 7:1–7:45. https:

//doi.org/10.1145/3174800

Krishnendu Chatterjee, Amir Kafshdar Goharshady, Tobias Meggendorfer, and Ðorđe Žikelić. 2022. Sound and Complete

Certificates for Quantitative Termination Analysis of Probabilistic Programs. In Computer Aided Verification - 34th
International Conference, CAV 2022, Haifa, Israel, August 7-10, 2022, Proceedings, Part I (Lecture Notes in Computer Science,
Vol. 13371), Sharon Shoham and Yakir Vizel (Eds.). Springer, 55–78. https://doi.org/10.1007/978-3-031-13185-1_4

Krishnendu Chatterjee, Ehsan Kafshdar Goharshady, Petr Novotný, and Ðorđe Žikelić. 2021a. Proving non-termination

by program reversal. In PLDI ’21: 42nd ACM SIGPLAN International Conference on Programming Language Design and
Implementation, Virtual Event, Canada, June 20-25, 2021, Stephen N. Freund and Eran Yahav (Eds.). ACM, 1033–1048.

https://doi.org/10.1145/3453483.3454093

Krishnendu Chatterjee, Ehsan Kafshdar Goharshady, Petr Novotný, Jiri Zárevúcky, and Ðorđe Žikelić. 2021b. On Lexico-

graphic Proof Rules for Probabilistic Termination. In FM, Vol. 13047. 619–639. https://doi.org/10.1007/978-3-030-90870-

6_33

Krishnendu Chatterjee, Petr Novotný, and Ðorđe Žikelić. 2017. Stochastic Invariants for Probabilistic Termination. In POPL.
145–160. https://doi.org/10.1145/3009837.3009873

Jianhui Chen and Fei He. 2020. Proving almost-sure termination by omega-regular decomposition. In PLDI. 869–882.
https://doi.org/10.1145/3385412.3386002

Ezgi Çiçek, Gilles Barthe, Marco Gaboardi, Deepak Garg, and Jan Hoffmann. 2017. Relational cost analysis. In Proceedings of
the 44th ACM SIGPLAN Symposium on Principles of Programming Languages, POPL 2017, Paris, France, January 18-20,
2017, Giuseppe Castagna and Andrew D. Gordon (Eds.). ACM, 316–329. https://doi.org/10.1145/3009837.3009858

Ezgi Çiçek, Weihao Qu, Gilles Barthe, Marco Gaboardi, and Deepak Garg. 2019. Bidirectional type checking for relational

properties. In Proceedings of the 40th ACM SIGPLAN Conference on Programming Language Design and Implementation,
PLDI 2019, Phoenix, AZ, USA, June 22-26, 2019, Kathryn S. McKinley and Kathleen Fisher (Eds.). ACM, 533–547. https:

https://doi.org/10.1007/978-3-030-31784-3_15
https://doi.org/10.1007/978-3-319-89884-1_7
https://doi.org/10.1145/3434320
https://doi.org/10.1145/3519939.3523721
https://doi.org/10.1145/3453483.3454111
https://doi.org/10.1145/3453483.3454111
http://jmlr.org/papers/v20/18-403.html
https://doi.org/10.1145/2737924.2737955
https://doi.org/10.1007/978-3-642-39799-8_34
https://doi.org/10.1007/978-3-642-39799-8_34
https://doi.org/10.1007/978-3-319-41528-4_1
https://doi.org/10.1145/3385412.3385969
https://doi.org/10.1145/3174800
https://doi.org/10.1145/3174800
https://doi.org/10.1007/978-3-031-13185-1_4
https://doi.org/10.1145/3453483.3454093
https://doi.org/10.1007/978-3-030-90870-6_33
https://doi.org/10.1007/978-3-030-90870-6_33
https://doi.org/10.1145/3009837.3009873
https://doi.org/10.1145/3385412.3386002
https://doi.org/10.1145/3009837.3009858
https://doi.org/10.1145/3314221.3314603
https://doi.org/10.1145/3314221.3314603

26 Krishnendu Chatterjee, Amir Kafshdar Goharshady, Tobias Meggendorfer, and Ðorđe Žikelić

//doi.org/10.1145/3314221.3314603

Alessandro Cimatti, Alberto Griggio, Bastiaan Joost Schaafsma, and Roberto Sebastiani. 2013. The mathsat5 smt solver. In

International Conference on Tools and Algorithms for the Construction and Analysis of Systems. Springer, 93–107.
GE Collins. 1982. Quantifier elimination for real closed fields: a guide to the literature. Computer Algebra (1982), 79–81.
Micah Dameron. 2018. Beigepaper: an ethereum technical specification. Ethereum Foundation (2018).

Julius Farkas. 1902. Theorie der einfachen Ungleichungen. Journal für die reine und angewandte Mathematik (Crelles Journal)
1902, 124 (1902), 1–27.

Paul Feautrier and Laure Gonnord. 2010. Accelerated Invariant Generation for C Programs with Aspic and C2fsm. Electronic
Notes in Theoretical Computer Science 267, 2 (2010), 3 – 13. https://doi.org/10.1016/j.entcs.2010.09.014 Proceedings of the

Tools for Automatic Program AnalysiS (TAPAS).

Yishai A. Feldman. 1984. A decidable propositional dynamic logic with explicit probabilities. Information and Control 63, 1
(1984), 11–38. https://doi.org/10.1016/S0019-9958(84)80039-X

Luis María Ferrer Fioriti and Holger Hermanns. 2015. Probabilistic Termination: Soundness, Completeness, and Composi-

tionality. In POPL. 489–501. https://doi.org/10.1145/2676726.2677001

Hongfei Fu and Krishnendu Chatterjee. 2019. Termination of Nondeterministic Probabilistic Programs. In VMCAI. 468–490.
https://doi.org/10.1007/978-3-030-11245-5_22

Marco Gario and Andrea Micheli. 2015. PySMT: a solver-agnostic library for fast prototyping of SMT-based algorithms. In

SMT Workshop 2015.
Timon Gehr, Sasa Misailovic, and Martin T. Vechev. 2016. PSI: Exact Symbolic Inference for Probabilistic Programs. In

Computer Aided Verification - 28th International Conference, CAV 2016, Toronto, ON, Canada, July 17-23, 2016, Proceedings,
Part I (Lecture Notes in Computer Science, Vol. 9779), Swarat Chaudhuri and Azadeh Farzan (Eds.). Springer, 62–83.

https://doi.org/10.1007/978-3-319-41528-4_4

Zoubin Ghahramani. 2015. Probabilistic machine learning and artificial intelligence. Nat. 521, 7553 (2015), 452–459.

https://doi.org/10.1038/nature14541

Yossi Gilad, Rotem Hemo, Silvio Micali, Georgios Vlachos, and Nickolai Zeldovich. 2017. Algorand: Scaling Byzantine

Agreements for Cryptocurrencies. In SOSP. 51–68.
Noah D Goodman, Vikash K Mansinghka, Daniel Roy, Keith Bonawitz, and Joshua B Tenenbaum. 2008. Church: a language

for generative models. In UAI. AUAI Press, 220–229.
Andrew D. Gordon, Thomas A. Henzinger, Aditya V. Nori, and Sriram K. Rajamani. 2014. Probabilistic programming. In

Proceedings of the on Future of Software Engineering, FOSE 2014, Hyderabad, India, May 31 - June 7, 2014, James D. Herbsleb

and Matthew B. Dwyer (Eds.). ACM, 167–181. https://doi.org/10.1145/2593882.2593900

Sumit Gulwani, Krishna K. Mehra, and Trishul M. Chilimbi. 2009. SPEED: precise and efficient static estimation of program

computational complexity. In Proceedings of the 36th ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, POPL 2009, Savannah, GA, USA, January 21-23, 2009, Zhong Shao and Benjamin C. Pierce (Eds.). ACM, 127–139.

https://doi.org/10.1145/1480881.1480898

Sumit Gulwani and Florian Zuleger. 2010. The reachability-bound problem. In Proceedings of the 2010 ACM SIGPLAN
Conference on Programming Language Design and Implementation, PLDI 2010, Toronto, Ontario, Canada, June 5-10, 2010,
Benjamin G. Zorn and Alexander Aiken (Eds.). ACM, 292–304. https://doi.org/10.1145/1806596.1806630

Alireza Toroghi Haghighat and Mehdi Shajari. 2019. Block withholding game among bitcoin mining pools. Future Gener.
Comput. Syst. 97 (2019), 482–491.

David Handelman. 1988. Representing polynomials by positive linear functions on compact convex polyhedra. Pacific J.
Math. 132, 1 (1988), 35–62.

Jan Hoffmann, Klaus Aehlig, and Martin Hofmann. 2012a. Multivariate amortized resource analysis. ACM Trans. Program.
Lang. Syst. 34, 3 (2012), 14:1–14:62. https://doi.org/10.1145/2362389.2362393

Jan Hoffmann, Klaus Aehlig, and Martin Hofmann. 2012b. Resource Aware ML. In Computer Aided Verification - 24th
International Conference, CAV 2012, Berkeley, CA, USA, July 7-13, 2012 Proceedings (Lecture Notes in Computer Science,
Vol. 7358), P. Madhusudan and Sanjit A. Seshia (Eds.). Springer, 781–786. https://doi.org/10.1007/978-3-642-31424-7_64

JanHoffmann, AnkushDas, and Shu-ChunWeng. 2017. Towards automatic resource bound analysis for OCaml. In Proceedings
of the 44th ACM SIGPLAN Symposium on Principles of Programming Languages, POPL 2017, Paris, France, January 18-20,
2017, Giuseppe Castagna and Andrew D. Gordon (Eds.). ACM, 359–373. https://doi.org/10.1145/3009837.3009842

Jan Hoffmann and Martin Hofmann. 2010. Amortized Resource Analysis with Polynomial Potential. In Programming
Languages and Systems, 19th European Symposium on Programming, ESOP 2010, Held as Part of the Joint European
Conferences on Theory and Practice of Software, ETAPS 2010, Paphos, Cyprus, March 20-28, 2010. Proceedings (Lecture Notes
in Computer Science, Vol. 6012), Andrew D. Gordon (Ed.). Springer, 287–306. https://doi.org/10.1007/978-3-642-11957-6_16

Mingzhang Huang, Hongfei Fu, Krishnendu Chatterjee, and Amir Kafshdar Goharshady. 2019. Modular verification for

almost-sure termination of probabilistic programs. In OOPSLA. 129:1–129:29. https://doi.org/10.1145/3360555

Jan Křetínský and Tobias Meggendorfer. 2020. Of Cores: A Partial-Exploration Framework for Markov Decision Processes.

Logical Methods in Computer Science (Oct. 2020). https://doi.org/10.23638/LMCS-16(4:3)2020

Benjamin Lucien Kaminski, Joost-Pieter Katoen, Christoph Matheja, and Federico Olmedo. 2018. Weakest Precondition

Reasoning for Expected Runtimes of Randomized Algorithms. J. ACM 65, 5 (2018), 30:1–30:68. https://doi.org/10.1145/

https://doi.org/10.1145/3314221.3314603
https://doi.org/10.1145/3314221.3314603
https://doi.org/10.1016/j.entcs.2010.09.014
https://doi.org/10.1016/S0019-9958(84)80039-X
https://doi.org/10.1145/2676726.2677001
https://doi.org/10.1007/978-3-030-11245-5_22
https://doi.org/10.1007/978-3-319-41528-4_4
https://doi.org/10.1038/nature14541
https://doi.org/10.1145/2593882.2593900
https://doi.org/10.1145/1480881.1480898
https://doi.org/10.1145/1806596.1806630
https://doi.org/10.1145/2362389.2362393
https://doi.org/10.1007/978-3-642-31424-7_64
https://doi.org/10.1145/3009837.3009842
https://doi.org/10.1007/978-3-642-11957-6_16
https://doi.org/10.1145/3360555
https://doi.org/10.23638/LMCS-16(4:3)2020
https://doi.org/10.1145/3208102
https://doi.org/10.1145/3208102

Quantitative Bounds on Resource Usage of Probabilistic Programs 27

3208102

Andrew Kenyon-Roberts and C.-H. Luke Ong. 2021. Supermartingales, Ranking Functions and Probabilistic Lambda Calculus.

In LICS. 1–13. https://doi.org/10.1109/LICS52264.2021.9470550

Aggelos Kiayias, Alexander Russell, Bernardo David, and Roman Oliynykov. 2017. Ouroboros: A Provably Secure Proof-of-

Stake Blockchain Protocol. In CRYPTO (1) (Lecture Notes in Computer Science, Vol. 10401). Springer, 357–388.
Zachary Kincaid, Jason Breck, Ashkan Forouhi Boroujeni, and Thomas W. Reps. 2017. Compositional recurrence analysis

revisited. In Proceedings of the 38th ACM SIGPLAN Conference on Programming Language Design and Implementation,
PLDI 2017, Barcelona, Spain, June 18-23, 2017, Albert Cohen and Martin T. Vechev (Eds.). ACM, 248–262. https://doi.org/

10.1145/3062341.3062373

Dexter Kozen. 1981. Semantics of Probabilistic Programs. J. Comput. System Sci. 22, 3 (1981), 328–350. https://doi.org/10.

1016/0022-0000(81)90036-2

Satoshi Kura, Natsuki Urabe, and Ichiro Hasuo. 2019. Tail Probabilities for Randomized Program Runtimes via Martingales

for Higher Moments. In Tools and Algorithms for the Construction and Analysis of Systems - 25th International Conference,
TACAS 2019, Held as Part of the European Joint Conferences on Theory and Practice of Software, ETAPS 2019, Prague, Czech
Republic, April 6-11, 2019, Proceedings, Part II (Lecture Notes in Computer Science, Vol. 11428), Tomás Vojnar and Lijun

Zhang (Eds.). Springer, 135–153. https://doi.org/10.1007/978-3-030-17465-1_8

Yoad Lewenberg, Yoram Bachrach, Yonatan Sompolinsky, Aviv Zohar, and Jeffrey S. Rosenschein. 2015. Bitcoin Mining

Pools: A Cooperative Game Theoretic Analysis. In AAMAS. 919–927.
Annabelle McIver and Carroll Morgan. 2004. Developing and Reasoning About Probabilistic Programs in pGCL. In Refinement

Techniques in Software Engineering, First Pernambuco Summer School on Software Engineering, PSSE 2004, Recife, Brazil,
November 23-December 5, 2004, Revised Lectures (Lecture Notes in Computer Science, Vol. 3167), Ana Cavalcanti, Augusto
Sampaio, and Jim Woodcock (Eds.). Springer, 123–155. https://doi.org/10.1007/11889229_4

Annabelle McIver and Carroll Morgan. 2005. Abstraction, Refinement and Proof for Probabilistic Systems. Springer. https:

//doi.org/10.1007/b138392

Annabelle McIver, Carroll Morgan, Benjamin Lucien Kaminski, and Joost-Pieter Katoen. 2018. A new proof rule for

almost-sure termination. Proc. ACM Program. Lang. 2, POPL (2018), 33:1–33:28. https://doi.org/10.1145/3158121

Aaron Meurer, Christopher P. Smith, Mateusz Paprocki, Ondřej Čertík, Sergey B. Kirpichev, Matthew Rocklin, AMiT Kumar,

Sergiu Ivanov, Jason K. Moore, Sartaj Singh, Thilina Rathnayake, Sean Vig, Brian E. Granger, Richard P. Muller, Francesco

Bonazzi, Harsh Gupta, Shivam Vats, Fredrik Johansson, Fabian Pedregosa, Matthew J. Curry, Andy R. Terrel, Štěpán

Roučka, Ashutosh Saboo, Isuru Fernando, Sumith Kulal, Robert Cimrman, and Anthony Scopatz. 2017. SymPy: symbolic

computing in Python. PeerJ Computer Science 3 (Jan. 2017), e103. https://doi.org/10.7717/peerj-cs.103

David Monniaux. 2001. An Abstract Analysis of the Probabilistic Termination of Programs. In SAS. 111–126. https:

//doi.org/10.1007/3-540-47764-0_7

Marcel Moosbrugger, Ezio Bartocci, Joost-Pieter Katoen, and Laura Kovács. 2021. Automated Termination Analysis of

Polynomial Probabilistic Programs. In Programming Languages and Systems - 30th European Symposium on Programming,
ESOP 2021, Held as Part of the European Joint Conferences on Theory and Practice of Software, ETAPS 2021, Luxembourg
City, Luxembourg, March 27 - April 1, 2021, Proceedings (Lecture Notes in Computer Science, Vol. 12648), Nobuko Yoshida

(Ed.). Springer, 491–518. https://doi.org/10.1007/978-3-030-72019-3_18

Leonardo de Moura and Nikolaj Bjørner. 2008. Z3: An efficient SMT solver. In International conference on Tools and Algorithms
for the Construction and Analysis of Systems. Springer, 337–340.

Satoshi Nakamoto. 2008. Bitcoin: A peer-to-peer electronic cash system. Decentralized Business Review (2008), 21260.

Martin R. Neuhäußer and Joost-Pieter Katoen. 2007. Bisimulation and Logical Preservation for Continuous-Time Markov

Decision Processes. In CONCUR 2007 - Concurrency Theory, 18th International Conference, CONCUR 2007, Lisbon, Portugal,
September 3-8, 2007, Proceedings (Lecture Notes in Computer Science, Vol. 4703), Luís Caires and Vasco Thudichum

Vasconcelos (Eds.). Springer, 412–427. https://doi.org/10.1007/978-3-540-74407-8_28

Martin R. Neuhäußer, Mariëlle Stoelinga, and Joost-Pieter Katoen. 2009. Delayed Nondeterminism in Continuous-Time

Markov Decision Processes. In FOSSACS. 364–379. https://doi.org/10.1007/978-3-642-00596-1_26

Van Chan Ngo, Quentin Carbonneaux, and Jan Hoffmann. 2018. Bounded expectations: resource analysis for probabilistic

programs. In Proceedings of the 39th ACM SIGPLAN Conference on Programming Language Design and Implementation,
PLDI 2018, Philadelphia, PA, USA, June 18-22, 2018, Jeffrey S. Foster and Dan Grossman (Eds.). ACM, 496–512. https:

//doi.org/10.1145/3192366.3192394

Federico Olmedo, Friedrich Gretz, Nils Jansen, Benjamin Lucien Kaminski, Joost-Pieter Katoen, and Annabelle McIver.

2018. Conditioning in Probabilistic Programming. ACM Trans. Program. Lang. Syst. 40, 1 (2018), 4:1–4:50. https:

//doi.org/10.1145/3156018

Federico Olmedo, Benjamin Lucien Kaminski, Joost-Pieter Katoen, and Christoph Matheja. 2016. Reasoning About Recursive

Probabilistic Programs. In LICS. 672–681. https://doi.org/10.1145/2933575.2935317

Mihai Putinar. 1993. Positive polynomials on compact semi-algebraic sets. Indiana University Mathematics Journal 42, 3
(1993), 969–984.

Weihao Qu, Marco Gaboardi, and Deepak Garg. 2019. Relational cost analysis for functional-imperative programs. Proc.
ACM Program. Lang. 3, ICFP (2019), 92:1–92:29. https://doi.org/10.1145/3341696

https://doi.org/10.1145/3208102
https://doi.org/10.1145/3208102
https://doi.org/10.1109/LICS52264.2021.9470550
https://doi.org/10.1145/3062341.3062373
https://doi.org/10.1145/3062341.3062373
https://doi.org/10.1016/0022-0000(81)90036-2
https://doi.org/10.1016/0022-0000(81)90036-2
https://doi.org/10.1007/978-3-030-17465-1_8
https://doi.org/10.1007/11889229_4
https://doi.org/10.1007/b138392
https://doi.org/10.1007/b138392
https://doi.org/10.1145/3158121
https://doi.org/10.7717/peerj-cs.103
https://doi.org/10.1007/3-540-47764-0_7
https://doi.org/10.1007/3-540-47764-0_7
https://doi.org/10.1007/978-3-030-72019-3_18
https://doi.org/10.1007/978-3-540-74407-8_28
https://doi.org/10.1007/978-3-642-00596-1_26
https://doi.org/10.1145/3192366.3192394
https://doi.org/10.1145/3192366.3192394
https://doi.org/10.1145/3156018
https://doi.org/10.1145/3156018
https://doi.org/10.1145/2933575.2935317
https://doi.org/10.1145/3341696

28 Krishnendu Chatterjee, Amir Kafshdar Goharshady, Tobias Meggendorfer, and Ðorđe Žikelić

Ivan Radicek, Gilles Barthe, Marco Gaboardi, Deepak Garg, and Florian Zuleger. 2018. Monadic refinements for relational

cost analysis. Proc. ACM Program. Lang. 2, POPL (2018), 36:1–36:32. https://doi.org/10.1145/3158124

James Renegar. 1992. On the computational complexity and geometry of the first-order theory of the reals. Part III: Quantifier

elimination. Journal of Symbolic Computation 13, 3 (1992), 329–352.

DM Roy, VK Mansinghka, ND Goodman, and JB Tenenbaum. 2008. A stochastic programming perspective on nonparametric

Bayes. In ICML, Vol. 22. 26.
Sriram Sankaranarayanan, Henny B. Sipma, and Zohar Manna. 2004. Constraint-Based Linear-Relations Analysis. In Static

Analysis, 11th International Symposium, SAS 2004, Verona, Italy, August 26-28, 2004, Proceedings (Lecture Notes in Computer
Science, Vol. 3148), Roberto Giacobazzi (Ed.). Springer, 53–68. https://doi.org/10.1007/978-3-540-27864-1_7

Erez Shinan et al. 2023. Lark - a parsing toolkit for Python. https://github.com/lark-parser/lark/

Moritz Sinn, Florian Zuleger, and Helmut Veith. 2014. A Simple and Scalable Static Analysis for Bound Analysis and

Amortized Complexity Analysis. In Computer Aided Verification - 26th International Conference, CAV 2014, Held as Part of
the Vienna Summer of Logic, VSL 2014, Vienna, Austria, July 18-22, 2014. Proceedings (Lecture Notes in Computer Science,
Vol. 8559), Armin Biere and Roderick Bloem (Eds.). Springer, 745–761. https://doi.org/10.1007/978-3-319-08867-9_50

Moritz Sinn, Florian Zuleger, and Helmut Veith. 2017. Complexity and Resource Bound Analysis of Imperative Programs

Using Difference Constraints. J. Autom. Reason. 59, 1 (2017), 3–45. https://doi.org/10.1007/s10817-016-9402-4

Toru Takisaka, Yuichiro Oyabu, Natsuki Urabe, and Ichiro Hasuo. 2021. Ranking and Repulsing Supermartingales for

Reachability in Randomized Programs. ACM Trans. Program. Lang. Syst. 43, 2 (2021), 5:1–5:46. https://doi.org/10.1145/

3450967

Sebastian Thrun. 2000. Probabilistic Algorithms in Robotics. AI Mag. 21, 4 (2000), 93–109. https://doi.org/10.1609/aimag.

v21i4.1534

David Tolpin, Jan-Willem van de Meent, Hongseok Yang, and Frank Wood. 2016. Design and Implementation of Probabilistic

Programming Language Anglican. In IFL 2016. ACM, 6:1–6:12. https://doi.org/10.1145/3064899.3064910

Jan-Willem van de Meent, Brooks Paige, Hongseok Yang, and Frank Wood. 2018. An Introduction to Probabilistic Program-

ming. CoRR abs/1809.10756 (2018). arXiv:1809.10756 http://arxiv.org/abs/1809.10756

Ðorđe Žikelić, Bor-Yuh Evan Chang, Pauline Bolignano, and Franco Raimondi. 2022. Differential cost analysis with

simultaneous potentials and anti-potentials. In PLDI ’22: 43rd ACM SIGPLAN International Conference on Programming
Language Design and Implementation, San Diego, CA, USA, June 13 - 17, 2022, Ranjit Jhala and Isil Dillig (Eds.). ACM,

442–457. https://doi.org/10.1145/3519939.3523435

DiWang, Jan Hoffmann, and ThomasW. Reps. 2021. Central moment analysis for cost accumulators in probabilistic programs.

In PLDI ’21: 42nd ACM SIGPLAN International Conference on Programming Language Design and Implementation, Virtual
Event, Canada, June 20-25, 20211, Stephen N. Freund and Eran Yahav (Eds.). ACM, 559–573. https://doi.org/10.1145/

3453483.3454062

Di Wang, David M. Kahn, and Jan Hoffmann. 2020b. Raising expectations: automating expected cost analysis with types.

Proc. ACM Program. Lang. 4, ICFP (2020), 110:1–110:31. https://doi.org/10.1145/3408992

Peixin Wang, Hongfei Fu, Krishnendu Chatterjee, Yuxin Deng, and Ming Xu. 2020a. Proving expected sensitivity of

probabilistic programs with randomized variable-dependent termination time. In POPL. 25:1–25:30. https://doi.org/10.

1145/3371093

Peixin Wang, Hongfei Fu, Amir Kafshdar Goharshady, Krishnendu Chatterjee, Xudong Qin, and Wenjun Shi. 2019. Cost

analysis of nondeterministic probabilistic programs. In Proceedings of the 40th ACM SIGPLAN Conference on Programming
Language Design and Implementation, PLDI 2019, Phoenix, AZ, USA, June 22-26, 2019, Kathryn S. McKinley and Kathleen

Fisher (Eds.). ACM, 204–220. https://doi.org/10.1145/3314221.3314581

D. Williams. 1991. Probability with Martingales. Cambridge University Press, Cambridge, UK. 251 pages.

Florian Zuleger, Sumit Gulwani, Moritz Sinn, and Helmut Veith. 2011. Bound Analysis of Imperative Programs with the

Size-Change Abstraction. In Static Analysis - 18th International Symposium, SAS 2011, Venice, Italy, September 14-16, 2011.
Proceedings (Lecture Notes in Computer Science, Vol. 6887), Eran Yahav (Ed.). Springer, 280–297. https://doi.org/10.1007/978-
3-642-23702-7_22

https://doi.org/10.1145/3158124
https://doi.org/10.1007/978-3-540-27864-1_7
https://github.com/lark-parser/lark/
https://doi.org/10.1007/978-3-319-08867-9_50
https://doi.org/10.1007/s10817-016-9402-4
https://doi.org/10.1145/3450967
https://doi.org/10.1145/3450967
https://doi.org/10.1609/aimag.v21i4.1534
https://doi.org/10.1609/aimag.v21i4.1534
https://doi.org/10.1145/3064899.3064910
http://arxiv.org/abs/1809.10756
https://doi.org/10.1145/3519939.3523435
https://doi.org/10.1145/3453483.3454062
https://doi.org/10.1145/3453483.3454062
https://doi.org/10.1145/3408992
https://doi.org/10.1145/3371093
https://doi.org/10.1145/3371093
https://doi.org/10.1145/3314221.3314581
https://doi.org/10.1007/978-3-642-23702-7_22
https://doi.org/10.1007/978-3-642-23702-7_22

Quantitative Bounds on Resource Usage of Probabilistic Programs 29

A SYNTAX
Figure 4 provides a grammar that defines the syntax of the probabilistic programs used in this

work.

⟨stmt⟩ ::= ⟨assgn⟩ | ’skip’ | ⟨stmt⟩ ’;’ ⟨stmt⟩
| ’if’ ⟨bexpr⟩ ’then’ ⟨stmt⟩ ’else’ ⟨stmt⟩ ’fi’
| ’while’ ⟨predicate⟩ ’do’ ⟨stmt⟩ ’od’
| ’tick(⟨expr⟩)’

⟨assgn⟩ ::= ⟨pvar⟩ ’:=’ ⟨expr⟩ | ⟨pvar⟩ ’:=ndet(⟨dom⟩)’ | ⟨pvar⟩ ’:= sample(⟨dist⟩)’
⟨expr⟩ ::= ⟨constant⟩ | ⟨pvar⟩ | ⟨expr⟩ ’·’ ⟨expr⟩ | ⟨expr⟩ ’+’⟨expr⟩

| ⟨expr⟩ ’−’ ⟨expr⟩ | ⟨expr⟩ ’/’ ⟨expr⟩ | 𝑓 (⟨expr⟩)
⟨dom⟩ ::= ’Real’ | ’Real[⟨constant⟩, ⟨constant⟩]’ | ’Real(⟨constant⟩, ⟨constant⟩]’

| ’Real[⟨constant⟩, ⟨constant⟩)’ | ’Real(⟨constant⟩, ⟨constant⟩)’
⟨bexpr⟩ ::= ⟨predicate⟩ | ★ | ’prob(p)’

⟨predicate⟩ ::= ⟨literal⟩ | ¬⟨literal⟩ | ⟨predicate⟩ ’and’ ⟨predicate⟩ | ⟨predicate⟩ ’or’ ⟨predicate⟩
⟨literal⟩ ::= ⟨expr⟩ ’⊲⊳’ ⟨expr⟩

’⊲⊳’ ::= ’≥’ | ’>’ | ’<’ | ’≤’ | ’=’

Fig. 4. Syntax of Our Probabilistic Programs.

B SEMANTICS OF PCFGS
A pCFG C together with a scheduler 𝜎 define a stochastic process taking values in the set of states

of C, whose trajectories correspond to runs in C. Informally, the process evolves as follows: we

start in the initial state (ℓinit, xinit) and inductively extend the path. Suppose that, at time step 𝑖 ,

the path produced so far is 𝜌𝑖 and its last state is (ℓ𝑖 , x𝑖). We define the next state (ℓ𝑖+1, x𝑖+1) as
follows: If there are multiple enabled transitions at state (ℓ𝑖 , x𝑖), a subsequent transition 𝜏 = (ℓ𝑖 , 𝛿𝑖)
is sampled from the set of all enabled transitions at (ℓ𝑖 , x𝑖) according to the probability distribution

𝜎 (𝜌𝑖). Then, the next location ℓ𝑖+1 is sampled according to the probability distribution 𝛿𝑖 defined by

the transition. Finally, the next variable valuation is defined as follows, depending on the type of

the update element 𝑢 in Up(𝜏) = (𝑗, 𝑢):
• If 𝑢 = ⊥, then (ℓ𝑖+1, x𝑖+1) = (ℓ ′, x𝑖);
• If 𝑢 : R |𝑉 | → R is a Borel-measurable expression, then (ℓ𝑖+1, x𝑖+1) = (ℓ ′, x𝑖 [𝑥 𝑗 ← 𝑢 (x𝑖)]);
• If 𝑢 = 𝑑 is a distribution, sample 𝑋 according to 𝑢 and (ℓ𝑖+1, x𝑖+1) = (ℓ ′, x𝑖 [𝑥 𝑗 ← 𝑋]);
• If 𝑢 = [𝑎, 𝑏] is an interval, sample 𝑋 according to 𝜎 (𝜌𝑖) and (ℓ𝑖+1, x𝑖+1) = (ℓ ′, x𝑖 [𝑥 𝑗 ← 𝑋]).

The process then moves to (ℓ𝑖+1, x𝑖+1) and the total cost usage of the path is increased by Tk(𝜏) (x𝑖).
Formally, a pCFG C together with a scheduler 𝜎 yield a unique probability space (RunC, FC, P𝜎)

over the set of all runs in C and a stochastic process C𝜎 = {C𝜎
𝑖
}∞𝑖=0 in this space where C𝜎

𝑖
(𝜌)

is the 𝑖-th configuration along 𝜌 for each run 𝜌 ∈ RunC . The sigma-algebra FC is the smallest

(with respect to set inclusion) sigma-algebra under which all the functions C𝜎
𝑖
, for all 𝑖 ≥ 0,

are FC-measurable, i.e. for each C𝜎
𝑖
and each Borel-measurable set 𝐵 ∈ B(R |𝑉 |) it holds that

{𝜌 | C𝜎
𝑖
(𝜌) = (ℓ, x) with x ∈ 𝐵} ∈ FC . The formal construction of P𝜎(ℓinit ,xinit) proceeds via the

standard cylinder construction [Ash and Doléans-Dade 2000, Theorem 2.7.2]. We denote by E𝜎

the expectation operator over (RunC, FC, P𝜎). We may analogously define a probability space

(RunC(ℓ,x) , FC(ℓ,x) , P𝜎C(ℓ,x)) over the set of all runs in C that start in some specified state (ℓ, x).

30 Krishnendu Chatterjee, Amir Kafshdar Goharshady, Tobias Meggendorfer, and Ðorđe Žikelić

C BACKGROUND ON PROBABILITY AND MARTINGALE THEORY

Probability space. A probability space is a triple (Ω, F , P), where Ω is a non-empty set called

sample space, F is a 𝜎-algebra over Ω (which is a collection of subsets of Ω that contains the empty

set ∅ and is closed under complementation and countable union), and P is a probability measure
over F , i.e. a function P : F → [0, 1] that satisfies the following three properties: (1) P[∅] = 0,

(2) P[Ω\𝐴] = 1 − P[𝐴] for each 𝐴 ∈ F , and (3) P[∪∞𝑖=0𝐴𝑖] =
∑∞
𝑖=0 P[𝐴𝑖] for any sequence (𝐴𝑖)∞𝑖=0 of

pairwise disjoint sets in F . An element of F is said to be an event.

Random variables. Given a probability space (Ω, F , P), a random variable is an F -measurable

function 𝑋 : Ω → R ∪ {±∞}, i.e. for each 𝑎 ∈ R we have that {𝜔 ∈ Ω | 𝑋 (𝜔) ≤ 𝑎} ∈ F . We use

E[𝑋] to denote the expected value of 𝑋 (for the formal definition of expected value, see [Williams

1991]). A (discrete-time) stochastic process is a sequence of random variables (𝑋𝑖)∞𝑖=0 in (Ω, F , P).

Conditional expectation. Let 𝑋 be a random variable in a probability space (Ω, F , P), and let

F ′ ⊆ F be a sub-𝜎-algebra of F . A conditional expectation of 𝑋 given F ′ is any F ′-measurable

random variable 𝑌 such that E[𝑋 · I𝐴] = E[𝑌 · I𝐴] for any 𝐴 ∈ F ′. Here, I𝐴 : Ω → {0, 1}
is the indicator function of 𝐴 defined via I𝐴 (𝜔) = 1 if 𝜔 ∈ 𝐴, and I𝐴 (𝜔) = 0 otherwise. It is

known [Williams 1991] that a conditional expectation of 𝑋 given F ′ exists if either
(1) 𝑋 is integrable, i.e. E[𝑋] < ∞, or
(2) 𝑋 is nonnegative, i.e. 𝑋 (𝜔) ≥ 0 for any 𝜔 ∈ Ω,

though these two conditions are not necessary for the existence of the conditional expectation.

Furthermore, whenever a conditional expectation exists it is almost-surely unique, meaning that

for any two F ′-measurable random variables 𝑌 and 𝑌 ′ that satisfy the above conditions, we have

that P[𝑌 = 𝑌 ′] = 1. Thus, we may pick a single conditional expectation and denote it by E[𝑋 | F ′].

Stopping time. A filtration in a probability space (Ω, F , P) is a sequence (F𝑖)∞𝑖=0 of sub-𝜎-algebras
of F which is increasing under set inclusion, so that F𝑖 ⊆ F𝑖+1 for each 𝑖 ∈ N0. A stopping
time with respect to the filtration (F𝑖)∞𝑖=0 is a random variable 𝑇 : Ω → N0 ∪ {∞} such that

{𝜔 ∈ Ω | 𝑇 (𝜔) ≤ 𝑖} ∈ F𝑖 for each 𝑖 ∈ N0. Intuitively, a stopping time describes at which time step

should a process be stopped, and the condition {𝜔 ∈ Ω | 𝑇 (𝜔) ≤ 𝑖} ∈ F𝑖 says that the decision to

stop at time 𝑖 is based solely on the information available up to time 𝑖 .

Canonical filtration and termination time. Before proceeding to defining supermartingales, we

present an example of a filtration and a stopping time in probability spaces defined by probabilistic

programs. These will serve both as illustrating examples of concepts that were introduced above

and will also be used later in our proofs about probabilistic programs.

Fix a scheduler 𝜎 in a probabilistic program and consider the probability space (ΩC, FC, P𝜎)
defined by the pCFG C and the scheduler 𝜎 . We define the canonical filtration (R𝑖)∞𝑖=0 in this

probability space as follows. For each 𝑖 ∈ N0, the sub-sigma-algebra R𝑖 of FC contains all sets

𝐴 ∈ FC of runs in Ω whose finite path prefix of length 𝑖 satisfies some property. The termination
time is a stopping time with respect to the canonical filtration (R𝑖)∞𝑖=0 in (ΩC, FC, P𝜎) which is

defined to be the random variable TimeTerm : ΩC → N0 ∪ {∞} that returns the first time-step at

which a run in C hits the terminal location ℓout . It follows from the definition of the termination

time that a program terminates a.s. if and only if inf𝜎 P
𝜎 [TimeTerm < ∞] = 1.

Supermartingale. We are finally ready to define supermartingale processes. Let (F𝑖)∞𝑖=0 be a

filtration in a probability space (Ω, F , P). A supermartingale with respect to the filtration (F𝑖)∞𝑖=0 is
a stochastic process (𝑋𝑖)∞𝑖=0 such that:

• Each 𝑋𝑖 is F𝑖 -measurable.

• Each E[𝑋𝑖+1 | F𝑖] exists.
• E[𝑋𝑖+1 | F𝑖] ≤ 𝑋𝑖 holds almost-surely for each 𝑖 ∈ N0.

Quantitative Bounds on Resource Usage of Probabilistic Programs 31

Intuitively, a supermartingale is a stochastic process that is measurable with respect to the filtration

(𝑋𝑖)∞𝑖=0 such that, given the value of the supermartingale at the current step, the expected value of

the supermartingale at the next step is less than or equal to the current value.

Optional stopping theorem for non-negative supermartingales. A supermartingale (𝑋𝑖)∞𝑖=0
with respect to the filtration (F𝑖)∞𝑖=0 in the probability space (Ω, F , P) is said to be non-negative, if
for every 𝑖 ∈ N0 and 𝜔 ∈ Ω we have 𝑋𝑖 (𝜔) ≥ 0. In our proofs, we will use the following important

results from martingale theory which is a variant of the classical Optional Stopping Theorem (OST)

for non-negative superamrtingales.

Theorem C.1 ([Williams 1991], Theorem 10.10(d)). Let (Ω, F , P) be a probability space and
(F𝑖)∞𝑖=0 a filtration. Suppose that (𝑋𝑖)∞𝑖=0 is a non-negative supermartingale with respect to (F𝑖)∞𝑖=0 and
that 𝑇 is a stopping time with respect to (F𝑖)∞𝑖=0 which is almost-surely finite, i.e. P[𝑇 < ∞] = 1. Then

E[𝑋𝑇] ≤ E[𝑋0],
where 𝑋𝑇 is a random variable in (Ω, F , P) defined via 𝑋𝑇 (𝜔) := 𝑋𝑇 (𝜔) (𝜔) for each 𝜔 ∈ Ω.

D PROOF OF THEOREM 4.2
In order to prove the claim of Theorem 5.2, we fix a scheduler 𝜎 and consider the probability space

(RunC, FC, P𝜎) over the set of all runs in C. Define a stochastic process (𝑋𝑚)∞𝑚=0 in this probability

space by letting

𝑋𝑚 (𝜌) = 𝜙 (ℓ𝑚, x𝑚) +
𝑚−1∑
𝑖=0

Tk𝑖 (𝜌) (x𝑖) − 𝐾

for each𝑚 ∈ N0 and a run 𝜌 = (ℓ𝑖 , x𝑖)∞𝑖=0.

Claim. The stochastic process (𝑋𝑚)∞𝑚=0 is a non-negative supermartingale with respect to the

canonical filtration (R𝑖)∞𝑖=0 in (RunC, FC, P𝜎).
To prove the claim, we need to verify that each of the three defining conditions of super-

martingales in Appendix C is satisfied. In the second item below, we also prove that each 𝑋𝑚 is

non-negative.

• Each 𝑋𝑚 is defined in terms of the𝑚-th state along a program run, hence is R𝑚-measurable.

• Each 𝑋𝑚 is non-negative therefore the conditional expectations in the definition of a su-

permartingale exist. To see this, first recall that the cost supermartingale 𝜙 is assumed to

be non-negative. On the other hand, C is assumed to satisfy the lower-bounded total cost

condition with lower bound 𝐾 . Hence, for each run 𝜌 we have that 𝜙 (ℓ𝑚, x𝑚) ≥ 0 and∑𝑚−1
𝑖=0 Tk𝑖 (𝜌) (x𝑖) − 𝐾 ≥ 0. Therefore, 𝑋𝑚 (𝜌) ≥ 0, as desired.

• We need to show that E[𝑋𝑚+1 | F𝑚] (𝜌) ≤ 𝑋𝑚 (𝜌) for each𝑚 and 𝜌 ∈ RunC . To see this, let
𝜌𝑚 be the prefix of 𝜌 of length𝑚. Then one can verify from the definition of conditional

expectation that

E[𝑋𝑚+1 | F𝑚] (𝜌) =
𝑚−1∑
𝑖=0

Tk𝑖 (𝜌) (x𝑖) − 𝐾 +
∑

𝜏=(ℓ𝑚,𝛿),x𝑚 |=𝐺 (𝜏)
𝜎 (𝜌𝑚) (𝜏) · Φ(𝜏) (x𝑚),

where for each 𝜏 = (ℓ𝑚, 𝛿) the value Φ(𝜏) (x𝑚) is defined as follows:

– If Up(𝜏) = (𝑗, 𝑢) with Up(𝜏) = (𝑗,⊥), then
Φ(𝜏) (x𝑚) =

∑
ℓ′∈L

𝛿 (ℓ ′) · 𝜙 (ℓ ′, x𝑚) + Tk(𝜏) (x𝑚) .

– If Up(𝜏) = (𝑗, 𝑢) with 𝑢 : R |𝑉 | → R a Borel-measurable expression, then

Φ(𝜏) (x𝑚) =
∑
ℓ′∈L

𝛿 (ℓ ′) · 𝜙 (ℓ ′, x𝑚 [𝑥 𝑗 ← 𝑢 (x𝑚)]) + Tk(𝜏) (x𝑚).

32 Krishnendu Chatterjee, Amir Kafshdar Goharshady, Tobias Meggendorfer, and Ðorđe Žikelić

– If Up(𝜏) = (𝑗, 𝑢) with 𝑢 = 𝑑 a probability distribution, then

Φ(𝜏) (x𝑚) =
∑
ℓ′∈L

𝛿 (ℓ ′) · E𝑋∼𝑑 [𝜙 (ℓ ′, x𝑚 [𝑥 𝑗 ← 𝑋])] + Tk(𝜏) (x𝑚).

– If Up(𝜏) = (𝑗, 𝑢) with 𝑢 = [𝑎, 𝑏] a real-valued interval, then

Φ(𝜏) (x𝑚) =
∑
ℓ′∈L

𝛿 (ℓ ′) · E𝑋∼𝜎 (𝜌𝑚) [𝜙 (ℓ ′, x𝑚 [𝑥 𝑗 ← 𝑋])] + Tk(𝜏) (x𝑚) .

Hence, we have that

𝑋𝑚 (𝜌) − E[𝑋𝑚+1 | F𝑚] (𝜌) = 𝜙 (ℓ𝑚, x𝑚) −
∑

𝜏=(ℓ𝑚,𝛿),x𝑚 |=𝐺 (𝜏)
𝜎 (𝜌𝑚) (𝜏) · Φ(𝜏) (x𝑚)

≥ 𝜙 (ℓ𝑚, x𝑚) − sup

𝜏=(ℓ𝑚,𝛿),x𝑚 |=𝐺 (𝜏)
Φ(𝜏) (x𝑚).

But the above inequality is satisfied for each 𝜏 = (ℓ𝑚, 𝛿) with x𝑚 |= 𝐺 (𝜏) by the Expected

decrease by incurred cost condition in Definition 5.1 since 𝜙 is a cost supermartingale. Hence,

E[𝑋𝑚+1 | F𝑚] (𝜌) ≤ 𝑋𝑚 (𝜌).
Hence, we have proved that (𝑋𝑚)∞𝑚=0 is a non-negative supermartingale. On the other hand, since

C is assumed to be a.s. terminating we know that the termination time TimeTerm is a.s. finite. Thus,

we may use the Optional Stopping Theorem for non-negative supermartingales (i.e. Theorem C.1)

to conclude that E𝜎 [𝑋TimeTerm] ≤ E𝜎 [𝑋0]. This implies that

E𝜎 [𝜙 (ℓTimeTerm, xTimeTerm)] + E𝜎 [
TimeTerm∑
𝑖=0

Tk𝑖 (𝜌) (x𝑖)] − 𝐾 ≤ E𝜎 [𝜙 (ℓ0, x0)] − 𝐾.

Therefore, since 𝜙 (ℓTimeTerm(𝜌) , xTimeTerm(𝜌)) ≥ 0 for each run 𝜌 by non-negativity of the cost super-

martingale 𝜙 , (ℓ0, x0) = (ℓinit, xinit) and
∑TimeTerm
𝑖=0 Tk𝑖 (𝜌) (x𝑖) = CostC (𝜌) holds with probability 1

since C is a.s. terminating, we have that E𝜎 [CostC] ≤ 𝜙 (ℓinit, xinit). Since the scheduler 𝜎 was arbi-

trary, this inequality holds for every scheduler 𝜎 and we conclude sup𝜎 E
𝜎 [CostC] ≤ 𝜙 (ℓinit, xinit).

E PROOF OF THEOREM 5.2
The claim for 𝑡 ≤ 𝐾 follows trivially since C is assumed to satisfy the lower-bounded total cost

condition with lower bound 𝐾 ∈ R, thus we know that CostC (𝜌) ≥ 𝑡 for every 𝜌 ∈ RunC . Hence,
sup𝜎 P

𝜎 [CostC ≥ 𝑡] = 1.

We now prove the claim for 𝑡 > 𝐾 . Fix a scheduler 𝜎 . By Theorem 5.2, we know that E𝜎 [CostC] ≤
𝜙 (ℓinit, xinit). Therefore, we may subtract 𝐾 from both sides of the inequality in order to get

E𝜎 [CostC − 𝐾] ≤ 𝜙 (ℓinit, xinit) − 𝐾 . But CostC − 𝐾 is a non-negative random variable in the

probability space (RunC, FC, P𝜎). Thus, by Markov’s inequality

P𝜎 [CostC ≥ 𝑡] = P𝜎 [CostC − 𝐾 ≥ 𝑡 − 𝐾] ≤ E
𝜎 [CostC−𝐾]

𝑡−𝐾 ≤ 𝜙 (ℓinit ,xinit)−𝐾
𝑡−𝐾 .

Since the scheduler 𝜎 was arbitrary, we conclude that sup𝜎 P
𝜎 [CostC ≥ 𝑡] ≤ 𝜙 (ℓinit ,xinit)−𝐾

𝑡−𝐾 .

F PROOF OF THEOREM 5.7
First, consider the case when all incurred costs in C are non-negative and 𝑡 > 0. Fix a scheduler 𝜎

in C. We need to show that

sup

𝜎

P𝜎 [{CostC ≥ 𝑡}\Reach(¬SI)] ≤
𝜙 (ℓinit, xinit)

𝑡
. (8)

By definition of non-negative cost supermartingales for stochastic invariants, we have that 𝜙 is

a non-negative cost supermartingale with respect to the invariant 𝐼 in the pCFG CSI . Since every
scheduler in C naturally induces a scheduler in CSI , by our bound in Theorem 6.3 we have that

P𝜎CSI [{CostCSI ≥ 𝑡}] ≤
𝜙 (ℓinit, xinit)

𝑡

Quantitative Bounds on Resource Usage of Probabilistic Programs 33

where we use the subscript CSI in P𝜎CSI in order to differentiate between the probability measures

associated to CSI and to C.
On the other hand, recall that CSI is constructed from C by conjuncting the guard of each

transition 𝜏 = (ℓ, ℓ ′) in C with the predicate SI (ℓ) and introducing a new zero cost transition from ℓ

to ℓout with guard ¬SI (ℓ). As such, the set of runs that never leave SI in C is trivially in a one-to-one

correspondence with the set of runs that never take any of the newly added transitions in CSI . Let
Φ denote this one-to-one correspondence map. Furthermore, the probability measures P𝜎 and P𝜎SI
agree on all measurable subsets of this set. Hence, as {CostC ≥ 𝑡}\Reach(¬SI) is a measurable

subset of this set and since Φ({CostC ≥ 𝑡}\Reach(¬SI)) ⊆ {CostCSI ≥ 𝑡}, we conclude that
P𝜎

[
{CostC ≥ 𝑡}\Reach(¬SI)

]
= P𝜎CSI

[
Φ
(
{CostC ≥ 𝑡}\Reach(¬SI)

)]
≤ P𝜎CSI

[
{CostCSI ≥ 𝑡}

]
≤ 𝜙 (ℓinit, xinit)

𝑡
,

as desired. Since the scheduler 𝜎 was arbitrary, it follows that the inequality in eq. (8) holds.

The proof that the inequality

sup

𝜎

P𝜎 [{CostC ≥ 𝑡}\Reach(¬SI)] ≤
𝜙 (ℓinit, xinit) − 𝐾

𝑡 − 𝐾
holds for the case when CSI is a.s. terminating and satisfies the lower-bounded total cost condition

with lower bound 𝐾 follows by exactly the same argument, where instead of Theorem 6.3 we apply

Theorem 6.2.

G PROOF OF THEOREM 5.8
Since 𝑝SI + 𝜙 (ℓinit ,xinit)

𝑡
≤ 𝑝 , in order to prove the claim it suffices to prove that

sup𝜎 P
𝜎
[{
𝜌 ∈ RunC | CostC (𝜌) ≥ 𝑡

}]
≤ 𝑝SI + 𝜙 (ℓinit ,xinit)

𝑡
.

To see this, observe that

sup𝜎 P
𝜎 [CostC ≥ 𝑡] = sup𝜎 P

𝜎
[
{CostC ≥ 𝑡} ∩ Reach(¬SI)

]
+ sup𝜎 P𝜎

[
{CostC ≥ 𝑡}\Reach(¬SI)

]
≤ sup𝜎 P

𝜎
[
Reach(¬SI)

]
+ sup𝜎 P𝜎

[
{CostC ≥ 𝑡}\Reach(¬SI)

]
≤ 𝑝SI + sup𝜎 P𝜎

[
{CostC ≥ 𝑡}\Reach(¬SI)

]
≤ 𝑝SI + 𝜙 (ℓinit ,xinit)

𝑡
.

The first equality and the second inequality above follow by the law of total probability. The third

inequality follows since (SI , 𝑝SI) is a stochastic invariant. Finally, the last inequality follows from

Theorem 6.7. This concludes the proof.

H PROOF OF THEOREM 5.9
Since 𝑝SI + 𝑝SI + 𝜙 (ℓinit ,xinit)−𝐾

𝑡−𝐾 ≤ 𝑝 , in order to prove the claim it suffices to prove that

sup

𝜎

P𝜎
[{
𝜌 ∈ RunC | CostC (𝜌) ≥ 𝑡

}]
≤ 𝑝SI +

𝜙 (ℓinit, xinit) − 𝐾
𝑡 − 𝐾 .

34 Krishnendu Chatterjee, Amir Kafshdar Goharshady, Tobias Meggendorfer, and Ðorđe Žikelić

To see this, observe that

sup

𝜎

P𝜎
[
CostC ≥ 𝑡

]
= sup

𝜎

P𝜎
[
{CostC ≥ 𝑡} ∩ Reach(¬SI)

]
+ sup

𝜎

P𝜎
[
{CostC ≥ 𝑡}\Reach(¬SI)

]
≤ sup

𝜎

P𝜎
[
Reach(¬SI)

]
+ sup

𝜎

P𝜎
[
{CostC ≥ 𝑡}\Reach(¬SI)

]
≤ 𝑝SI + sup

𝜎

P𝜎
[
{CostC ≥ 𝑡}\Reach(¬SI)

]
≤ 𝑝SI +

𝜙 (ℓinit, xinit) − 𝐾
𝑡 − 𝐾 .

The first equality and the second inequality above follow by the law of total probability. The third

inequality follows since (SI , 𝑝SI) is a stochastic invariant. Finally, the last inequality follows from

Theorem 6.7, which is applicable since CSI is assumed to be a.s. terminating and to satisfy the

lower-bounded total cost condition with lower bound 𝐾 . This concludes the proof.

I BENCHMARKS
In this section, we provide details of our benchmarks, i.e. Examples 1-5 in Table 1 and Examples

1-5 Inf in Table 2, that we used in our experimental evaluation, together with the supporting

invariants. We omit the benchmarks that have been taken from [Chatterjee et al. 2022] for which

the corresponding figures in the mentioned work are referenced in Table 2.

𝑥 := 1 , 𝑦 := 1 , 𝑟 := 0

t i ck (y) {𝑥 = 1, 𝑦 = 1}
while 𝑥 ≥ 1 do {𝑥 ≥ 0, 𝑦 ≥ 0}
𝑟 := Uniform([−1, 0.5]) {𝑥 ≥ 1, 𝑦 ≥ 0}
𝑥 := 𝑥 + 𝑟 {𝑥 ≥ 1, 𝑦 ≥ 0,−1 ≤ 𝑟, 𝑟 ≤ 0.5}
i f prob (0 . 5) then {𝑥 ≥ 0, 𝑦 ≥ 0}

t i ck (−𝑦/2) {𝑥 ≥ 0, 𝑦 ≥ 0}
𝑦 := 𝑦 − 𝑦/2 {𝑥 ≥ 0, 𝑦 ≥ 0}

e l se
t i ck (𝑦/2) {𝑥 ≥ 0, 𝑦 ≥ 0}
𝑦 := 𝑦 + 𝑦/2 {𝑥 ≥ 0, 𝑦 ≥ 0}

{𝑥 ≥ 0, 𝑦 ≥ 0}

Fig. 5. Example 1 (Figure 3.1).

𝑥 := 1 , 𝑦 := 1

t i ck (y) {𝑥 ≥ 0, 𝑦 ≥ 0}
while 𝑥 ≥ 1 do {𝑥 ≥ 0, 𝑦 ≥ 0}

i f prob (0 . 5) then {𝑥 ≥ 1, 𝑦 ≥ 0}
t i ck (−𝑦/2) {𝑥 ≥ 1, 𝑦 ≥ 0}
𝑥 := 𝑥 − 1 {𝑥 ≥ 1, 𝑦 ≥ 0}
𝑦 := 𝑦 − 0.5 ∗ 𝑦 {𝑥 ≥ 0, 𝑦 ≥ 0}

e l se
t i ck (𝑦/2) {𝑥 ≥ 1, 𝑦 ≥ 0}
𝑥 := 𝑥 + 1 {𝑥 ≥ 1, 𝑦 ≥ 0}
𝑦 := 𝑦 + 0.5 ∗ 𝑦 {𝑥 ≥ 1, 𝑦 ≥ 0}

{𝑥 ≥ 0, 𝑦 ≥ 0}

Fig. 6. Example 2.

Quantitative Bounds on Resource Usage of Probabilistic Programs 35

𝑥 := 1 , 𝑦 := 1 , 𝑟 := 0

t i ck (y) {𝑥 ≥ 1, 𝑥 ≤ 1, 𝑦 ≥ 1, 𝑦 ≤ 1, 𝑟 ≥ −1, 𝑟 ≤ 0.5}
while 𝑥 ≥ 1 do {𝑥 ≥ 0, 𝑦 ≥ 0, 𝑟 ≥ −1, 𝑟 ≤ 0.5}
𝑟 := Uniform([−1, 0.5]) {𝑥 ≥ 1, 𝑦 ≥ 0, 𝑟 ≥ −1, 𝑟 ≤ 0.5}
𝑥 := 𝑥 + 𝑟 {𝑥 ≥ 1, 𝑦 ≥ 0, 𝑟 ≥ −1, 𝑟 ≤ 0.5}
i f ★ then {𝑥 ≥ 0, 𝑦 ≥ 0, 𝑟 ≥ −1, 𝑟 ≤ 0.5}

i f prob (0 . 5) then {𝑥 ≥ 0, 𝑦 ≥ 0, 𝑟 ≥ −1, 𝑟 ≤ 0.5}
t i ck (−𝑦/2) {𝑥 ≥ 0, 𝑦 ≥ 0, 𝑟 ≥ −1, 𝑟 ≤ 0.5}
𝑦 := 𝑦 − 𝑦/2 {𝑥 ≥ 0, 𝑦 ≥ 0, 𝑟 ≥ −1, 𝑟 ≤ 0.5}

e l se
t i ck (𝑦/2) {𝑥 ≥ 0, 𝑦 ≥ 0, 𝑟 ≥ −1, 𝑟 ≤ 0.5}
𝑦 := 𝑦 + 𝑦/2 {𝑥 ≥ 0, 𝑦 ≥ 0, 𝑟 ≥ −1, 𝑟 ≤ 0.5}

{𝑥 ≥ 0, 𝑥 ≤ 1, 𝑦 ≥ 0, 𝑟 ≥ −1, 𝑟 ≤ 0.5}

Fig. 7. Example 3.

𝑎 := 16 , 𝑏 := 10

t i ck (a) {𝑎 ≥ 4.5, 𝑏 ≥ 4.5}
while 𝑥 ≥ 5 and 𝑏 ≥ 5 do {𝑎 ≥ 4.5, 𝑏 ≥ 4.5}

i f prob (0 . 5) then {𝑎 ≥ 5, 𝑏 ≥ 5}
𝑏 := 0.9 ∗ 𝑏 {𝑎 ≥ 5, 𝑏 ≥ 5}
t i ck (0.1 · 𝑏) {𝑎 ≥ 5, 𝑏 ≥ 5}
𝑎 := 0.1 ∗ 𝑏 + 𝑎 {𝑎 ≥ 5, 𝑏 ≥ 5}

e l se
𝑏 := 0.1 ∗ 𝑎 + 𝑏 {𝑎 ≥ 5, 𝑏 ≥ 5}
t i ck (−0.1 · 𝑎) {𝑎 ≥ 5, 𝑏 ≥ 5}
𝑎 := 0.9 ∗ 𝑎 {𝑎 ≥ 5, 𝑏 ≥ 5}

{𝑎 ≥ 5, 𝑏 ≥ 5}

Fig. 8. Example 4.

𝑥 := 10

while 𝑥 ≥ 1 do {𝑥 ≥ 0}
i f prob (0 . 7) then {𝑥 ≥ 1}
𝑥 := 𝑥 ∗ 0.5 {𝑥 ≥ 1}

e l se
𝑥 := 𝑥 ∗ 1.1 {𝑥 ≥ 1}

t i ck (𝑥 − 1) {𝑥 ≥ 0}
{𝑥 ≥ 0}

Fig. 9. Example 5.

36 Krishnendu Chatterjee, Amir Kafshdar Goharshady, Tobias Meggendorfer, and Ðorđe Žikelić

𝑥 := 1 , 𝑦 := 1 , 𝑟 := 0

t i ck (y) {𝑥 ≥ 1, 𝑥 ≤ 1, 𝑦 ≥ 1, 𝑦 ≤ 1}
while 𝑥 ≥ 1 do {𝑥 ≥ 0, 𝑦 ≥ 0}
𝑟 := Uniform([−1, 0.5]) {𝑥 ≥ 1, 𝑦 ≥ 0}
𝑥 := 𝑥 + 𝑟 {𝑥 ≥ 1, 𝑦 ≥ 0,−1 ≤ 𝑟, 𝑟 ≤ 0.5}
i f prob (0 . 5) then {𝑥 ≥ 0, 𝑦 ≥ 0}

t i ck (−𝑦/2) {𝑥 ≥ 0, 𝑦 ≥ 0}
𝑦 := 𝑦 − 𝑦/2 {𝑥 ≥ 0, 𝑦 ≥ 0}

e l se
t i ck (𝑦/2) {𝑥 ≥ 0, 𝑦 ≥ 0}
𝑦 := 𝑦 + 𝑦/2 {𝑥 ≥ 0, 𝑦 ≥ 0}

i f 𝑥 ≥ 100 then {𝑥 ≥ 0, 𝑦 ≥ 0}
while 𝑥 ≥ 100 do {𝑥 ≥ 100, 𝑦 ≥ 0}
t i ck (1) {𝑥 ≥ 100, 𝑦 ≥ 0}

{𝑥 ≥ 0, 𝑦 ≥ 0}

Fig. 10. Example 1 Inf.

𝑥 := 1 , 𝑦 := 1

t i ck (y) {𝑥 ≥ 0, 𝑦 ≥ 0}
while 𝑥 ≥ 1 do {𝑥 ≥ 0, 𝑦 ≥ 0}

i f prob (0 . 5) then {𝑥 ≥ 1, 𝑦 ≥ 0}
t i ck (−𝑦/2) {𝑥 ≥ 1, 𝑦 ≥ 0}
𝑥 := 𝑥 − 1 {𝑥 ≥ 1, 𝑦 ≥ 0}
𝑦 := 𝑦 − 0.5 ∗ 𝑦 {𝑥 ≥ 0, 𝑦 ≥ 0}

e l se
t i ck (𝑦/2) {𝑥 ≥ 1, 𝑦 ≥ 0}
𝑥 := 𝑥 + 1 {𝑥 ≥ 1, 𝑦 ≥ 0}
𝑦 := 𝑦 + 0.5 ∗ 𝑦 {𝑥 ≥ 1, 𝑦 ≥ 0}

i f 𝑥 ≥ 100 then {𝑥 ≥ 0, 𝑦 ≥ 0}
while 𝑥 ≥ 100 do {𝑥 ≥ 100, 𝑦 ≥ 0}

t i ck (1) {𝑥 ≥ 100, 𝑦 ≥ 0}
{𝑥 ≥ 0, 𝑦 ≥ 0}

Fig. 11. Example 2 Inf.

𝑥 := 1 , 𝑦 := 1 , 𝑟 := 0

t i ck (y) {𝑥 ≥ 1, 𝑥 ≤ 1, 𝑦 ≥ 1, 𝑦 ≤ 1, 𝑟 ≥ −1, 𝑟 ≤ 0.5}
while 𝑥 ≥ 1 do {𝑥 ≥ 0, 𝑦 ≥ 0, 𝑟 ≥ −1, 𝑟 ≤ 0.5}
𝑟 := Uniform([−1, 0.5]) {𝑥 ≥ 1, 𝑦 ≥ 0, 𝑟 ≥ −1, 𝑟 ≤ 0.5}
𝑥 := 𝑥 + 𝑟 {𝑥 ≥ 1, 𝑦 ≥ 0, 𝑟 ≥ −1, 𝑟 ≤ 0.5}
i f ★ then {𝑥 ≥ 0, 𝑦 ≥ 0, 𝑟 ≥ −1, 𝑟 ≤ 0.5}

i f prob (0 . 5) then {𝑥 ≥ 0, 𝑦 ≥ 0, 𝑟 ≥ −1, 𝑟 ≤ 0.5}
t i ck (−𝑦/2) {𝑥 ≥ 0, 𝑦 ≥ 0, 𝑟 ≥ −1, 𝑟 ≤ 0.5}
𝑦 := 𝑦 − 𝑦/2 {𝑥 ≥ 0, 𝑦 ≥ 0, 𝑟 ≥ −1, 𝑟 ≤ 0.5}

e l se
t i ck (𝑦/2) {𝑥 ≥ 0, 𝑦 ≥ 0, 𝑟 ≥ −1, 𝑟 ≤ 0.5}
𝑦 := 𝑦 + 𝑦/2 {𝑥 ≥ 0, 𝑦 ≥ 0, 𝑟 ≥ −1, 𝑟 ≤ 0.5}

i f 𝑥 ≥ 100 then {𝑥 ≥ 0, 𝑦 ≥ 0, 𝑟 ≥ −1, 𝑟 ≤ 0.5}
while 𝑥 ≥ 100 do {𝑥 ≥ 100, 𝑦 ≥ 0, 𝑟 ≥ −1, 𝑟 ≤ 0.5}

t i ck (1) {𝑥 ≥ 100, 𝑦 ≥ 0, 𝑟 ≥ −1, 𝑟 ≤ 0.5}
{𝑥 ≥ 0, 𝑥 ≤ 1, 𝑦 ≥ 0, 𝑟 ≥ −1, 𝑟 ≤ 0.5}

Fig. 12. Example 3 Inf.

Quantitative Bounds on Resource Usage of Probabilistic Programs 37

𝑎 := 16 , 𝑏 := 10

t i ck (a) {𝑎 ≥ 4.5, 𝑏 ≥ 4.5}
while 𝑥 ≥ 5 and 𝑏 ≥ 5 do {𝑎 ≥ 4.5, 𝑏 ≥ 4.5}

i f prob (0 . 5) then {𝑎 ≥ 5, 𝑏 ≥ 5}
𝑏 := 0.9 ∗ 𝑏 {𝑎 ≥ 5, 𝑏 ≥ 5}
t i ck (0.1𝑏) {𝑎 ≥ 5, 𝑏 ≥ 5}
𝑎 := 0.1 ∗ 𝑏 + 𝑎 {𝑎 ≥ 5, 𝑏 ≥ 5}

e l se
𝑏 := 0.1 ∗ 𝑎 + 𝑏 {𝑎 ≥ 5, 𝑏 ≥ 5}
t i ck (−0.1𝑎) {𝑎 ≥ 5, 𝑏 ≥ 5}
𝑎 := 0.9 ∗ 𝑎 {𝑎 ≥ 5, 𝑏 ≥ 5}

i f 𝑎 ≥ 100 then {𝑎 ≥ 4.5, 𝑏 ≥ 4.5}
while 𝑎 ≥ 100 do {𝑎 ≥ 100, 𝑏 ≥ 4.5}

t i ck (1) {𝑎 ≥ 100, 𝑏 ≥ 4.5}
{𝑎 ≥ 5, 𝑏 ≥ 5}

Fig. 13. Example 4 Inf.

𝑥 := 10

while 𝑥 ≥ 1 do {𝑥 ≥ 0}
i f prob (0 . 7) then {𝑥 ≥ 1}
𝑥 := 𝑥 ∗ 0.5 {𝑥 ≥ 1}

e l se
𝑥 := 𝑥 ∗ 1.1 {𝑥 ≥ 1}

t i ck (𝑥 − 1) {𝑥 ≥ 0}
i f 𝑥 ≥ 100 then {𝑥 ≥ 0}

while 𝑥 ≥ 100 do {𝑥 ≥ 100}
t i ck (1) {𝑥 ≥ 100}

{𝑥 ≥ 0}

Fig. 14. Example 5 Inf.

38 Krishnendu Chatterjee, Amir Kafshdar Goharshady, Tobias Meggendorfer, and Ðorđe Žikelić

J BLOCKCHAIN PROGRAMS
In this section, we explain the details of our blockchain-related programs. We consider 3 new

motivating programs which all come out of blockchain scenarios. We first look at two examples,

namely “Bitcoin Mining” and “Pool Mining”, which are taken from [Wang et al. 2019] and have

bounded updates to the variables. For these, our approach can obtain the same results as [Wang et al.

2019]. However, we focus on extensions of them by observing that (i) mining in non-Bitcoin proof-

of-stake blockchains will lead to a probabilistic program with unbounded updates, hence adding a

new example called “Proof-of-stake Mining” and (ii) the modelling of pool mining in [Wang et al.

2019] is arguably unrealistic and has artificially enforced the bounded update condition to enable

the application of their method. We present a more realistic modelling called “Multiplicative Pool

Mining”which does not have bounded updates. For both “Proof-of-stakeMining” and “Multiplicative

Pool Mining”, our approach is the first to handle them since they have unbounded updates and both

positive and negative costs. Our final example models a common attack in blockchain ecosystems.

It has infinite expected cost and the focus is on finding tail bounds. Since the total expected cost is

infinite, our approach is the first to be able to handle this example.

while 𝑥 ≥ 𝛼 do
𝑥 := 𝑥 − 𝛼
t i ck (𝛼)

i f prob (𝑝) then
i f prob (𝑝′) then

t i ck (−𝛽)
e l se i f ★ then

t i ck (−𝛽)

Fig. 15. Bitcoin Mining [Wang et al. 2019].

Bitcoin Mining
In proof-of-work blockchains, such as Bitcoin, consensus is reached by mining. A group of nodes on

the network, called miners, have to constantly try to solve a hard computational puzzle. In Bitcoin,

the puzzle is to find a nonce 𝑛, such that the hash of the newly added block and 𝑛 is less than a

predefined threshold [Nakamoto 2008]. Therefore, a Bitcoin miner has to constantly try new values

of 𝑛 in the hope of finding a small hash and being able to add a new block to the blockchain, hence

obtaining rewards in the form of newly created cryptocurrency. Bitcoin mining can be modelled by

the program in Fig. 15, in which a miner starts with an initial balance of 𝑥 and keeps mining as long

as they have money to pay for electricity costs. At each unit of time, this causes a cost of 𝛼 , but

will lead to a successful nonce with probability 𝑝 . The cost 𝛼 depends, e.g., on the miner’s location

and the cost of electricity, and 𝑝 is dependent on the hardware and the number of hashes that it

can test in one unit of time. However, even after finding a valid nonce, it is not guaranteed that the

miner is the only one to have found a valid nonce. If the miner is the only one (with probability 𝑝 ′),
then they get a reward of 𝛽 , modelled as negative cost. If instead another miner finds a block at

roughly the same time, then one of the two valid blocks will end up on the blockchain and this is

non-deterministic. The value of 𝛽 is fixed by the underlying Blockchain protocol, and 𝑝 and 𝑝 ′ can
be approximated by running the mining operation for a small amount of time and sampling. In

[Wang et al. 2019] the authors set 𝛼 = 1, 𝛽 = 5000, 𝑝 = 0.0005, 𝑝 ′ = 0.99. We use the same values in

our experiment.

Proof-of-Stake Mining
Since proof-of-work uses a huge amount of electricity and resources, many alternative mining

rules have been suggested by the Blockchain community. The most prominent among these is

Quantitative Bounds on Resource Usage of Probabilistic Programs 39

while 𝑥/𝑦 ≥𝑚 do
i f prob (𝑥/𝑦) then

i f prob (𝑝) then
t i ck (𝛼 + 𝛽 ∗ 𝑦)
𝑥 := 𝑥 + 𝛼 + 𝛽 ∗ 𝑦

𝑦 := 𝑦 + 𝛼 + 𝛽 ∗ 𝑦

Fig. 16. Proof-of-Stake Mining

proof-of-stake, e.g. [Kiayias et al. 2017], in which a miner’s chance (probability) of adding the next

block is not proportional to their computational power, but instead proportional to their stake

in the currency, i.e. the number of coins that they hold. Currently, proof-of-stake protocols are

used in many real-world cryptocurrencies, such as Ethereum, Cardano, and Tezos. The program in

Fig. 16 models mining in a proof-of-stake environment. Consider a miner who owns 𝑥 coins in an

environment with a total of 𝑦 coins (𝑦 ≥ 𝑥). At each time, if the miner has at least𝑚 fraction of the

total supply, then the miner has an
𝑥
𝑦
probability of being chosen to add the next block. The block

proposed by the miner is then accepted by the network (and usually signed by other “verifiers”)

with a probability of 𝑝 . If this happens and the block is successfully added, then the miner receives

a reward of 𝛼 + 𝛽 · 𝑦. We treat this reward as a positive cost. Here, 𝛽 is the inflation parameter, i.e.

the total amount of currency in the network increases by a factor of (1 + 𝛽) in each block and the

additionally created units of currency are paid to the miner who added the block. Additionally,

there is a minimum reward of 𝛼 per block, which is also obtained by creating new currency units.

The values of 𝛼 and 𝛽 depend on the underlying protocol and differ in each cryptocurrency. For the

sake of this example, we set 𝛼 = 1 and 𝛽 = 0.000001. The value of 𝑝 can be obtained by sampling.

We set 𝑝 = 0.99 in this example and the initial values are set at 𝑥 = 10, 𝑦 = 1000, and𝑚 = 0.001.

while 𝑦 ≥ 1 do
t i ck (𝛼 ∗ 𝑦)
𝑖 := 1

while 𝑖 ≤ 𝑦 do
i f prob (𝑝) then

i f prob (𝑝′) then
t i ck (−𝛽)

e l se i f ★ then
t i ck (−𝛽)

𝑖 := 𝑖 + 1
𝑦 := 𝑦 + (−1, 0, 1) : (0.5, 0.1, 0.4)

Fig. 17. Bitcoin Pool Mining [Wang et al. 2019].

Bitcoin Pool Mining
Mining in cryptocurrencies has unpredictable rewards with a high variance. Although the expected

net profit might be positive for a typical miner, it usually takes them months or even years to mine

a single block. As such, to reduce the variance in the income, miners often collaborate in mining

pools, i.e. they share their computational power and the revenue. (Of course, the pool manager

takes a small cut, too.) The program in Fig. 17 models the earnings of a pool manager in a mining

pool with 𝑦 miners, each with an identical computational power (miners of higher power can be

modelled as several miners of lower power [Wang et al. 2019]). The pool manager has to pay a

cost of 𝛼 to each participating miner in each round. Moreover, just as in the first example, each

participant finds a valid new block with probability 𝑝 . With probability 𝑝 ′, this is the only valid

40 Krishnendu Chatterjee, Amir Kafshdar Goharshady, Tobias Meggendorfer, and Ðorđe Žikelić

new block. Otherwise, there are more than one valid blocks and it is non-deterministic which one

gets added to the consensus chain. In any case, if a block of the current pool is successfully added to

the chain, it carries a reward of 𝛽 , modelled as negative cost. Moreover, at the end of each iteration

of the main while loop (after each block), the pool might lose or gain new participants. In this

example, the pool loses a participant with probability 0.5 and gains one with probability 0.4. We

set 𝛼 = 4900, 𝛽 = 5000, 𝑝 = 0.0005, 𝑝 ′ = 0.99. Our approach is able to synthesize solutions for any

initial value.

while 𝑦 ≥ 1 do
t i ck (𝛼 ∗ 𝑦)
𝑖 := 1

while 𝑖 ≤ 𝑦 do
i f prob (𝑝) then

i f prob (𝑝′) then
t i ck (−𝛽)

e l se i f ★ then
t i ck (−𝛽)

𝑖 := 𝑖 + 1
𝑦 := 𝑦 ∗ (0.95, 1, 1.05) : (0.5, 0.1, 0.4)

Fig. 18. Multiplicative Pool Mining

Multiplicative Pool Mining
While the program from Fig. 17 faithfully models the earnings and costs of a mining pool, the

assumption that the change in the pool’s size is a constant after each iteration is not realistic,

especially for huge pools with a lot of participants. We believe this assumption was made in [Wang

et al. 2019] solely because their approach can only handle bounded updates to the variables. In

reality, when a pool underperforms, it loses its appeal and miners who lose interest will leave it.

Similarly, a pool that overperforms compared to other pools will attract a portion of their miners. So,

it is more natural to model the gains and losses multiplicatively, instead of additively. This leads to

the program in Fig. 18, which can be handled by our method, but not any of the previous approaches,

since it has both positive and negative costs and also unbounded updates to the variables. We use

the same 𝛼 , 𝛽 , 𝑝 , and 𝑝 ′ values as in the Pool Mining example and the initial value of 𝑦 is set to 10.

Our approach is able to synthesize solutions for any initial value.

Block Withholding
Consider a successful and growing mining pool A. Another pool B sees this success and might

decide to sabotage it by making the current pool less attractive for miners. The classical attack

in this case is called “block withholding” [Bag et al. 2016]. In short, B can use some of its own

mining power to sign up in A as a miner and mine blocks for A. This way, B would share the

revenues of A. However, whenever B finds a valid block, instead of announcing it to A and the

network, it keeps the newly found valid block unannounced/withheld. Hence, B takes its share

from the total profits of A but does not contribute to these profits. This shrinks the profits of all

miners in A and makes A less attractive, leading to miners leaving the pool and potentially making

it bankrupt, which is the ultimate goal of this attack. However, B is contributing computational

power to A and so the attack is not free for B. The program above models this scenario from the

point-of-view of the attacker B. Suppose that A has a total of y miners and z of them actually

belong to B. At each unit of time (block), A pays B a reward of 𝑧 ∗ 𝛼 , modelled as negative cost.

Then, each of the miners has a probability 𝑝 of finding the next block, which will be accepted as the

sole valid block with probability 𝑝 ′. If there are more than one valid blocks, then a block is chosen

Quantitative Bounds on Resource Usage of Probabilistic Programs 41

while 𝑦 ≥ 1 do
𝑖 := 1

t i ck (−𝑧 ∗ 𝛼)

while 𝑖 ≤ 𝑦 do
i f prob (𝑝) then

i f prob (𝑝′) then
i f 𝑖 ≤ 𝑧

t i ck (𝛽)

e l se i f ★ then
i f 𝑖 ≤ 𝑧

t i ck (𝛽)

𝑖 := 𝑖 + 1
i f 𝑦 ≥ 𝑧 ∗ 𝑡 then
𝑦 := 𝑦 ∗ (0.95, 1, 1.05) : (0.05, 0.8, 0.15)

e l se
𝑦 := 𝑦 ∗ (0.95, 1, 1.05) : (0.15, 0.8, 0.05)

Fig. 19. Block Withholding

non-deterministically. If the valid block was found by one of the 𝑧 miners that belong to B, then

B is losing the reward they could obtain if they did not take part in the attack and instead mined

on their own. So, this has a cost of beta for B. Finally, if the number and computational power of

attackers is small in comparison with the total number of miners in the pool, the attack does not

change the revenues significantly and hence A continues to grow. In contrast, if 𝑧 is more than
𝑦

𝑡
,

then the miners would notice their lowered payoff and will leave the pool with higher probability.

Note that the total expected cost in this program, and hence the total expected cost of the attack, is

infinite. Nevertheless, B is betting on being able to bankrupt A before they themselves run out of

money. Therefore, we need a tail bound on the total cost for B. In this example, 𝛼 , 𝛽 , 𝑝 , and 𝑝 ′ are
the same as before and we set the following initial values: 𝑦 = 10, 𝑧 = 3, 𝑡 = 2. Again, our approach

is able to synthesize solutions for any initial value.

	Abstract
	1 Introduction
	2 Motivating Examples
	3 Overview of Our Approach
	3.1 Illustrative Examples
	3.2 Non-negative Cost Supermartingales
	3.3 Tail Bounds for Programs with Infinite Expected Total Cost
	3.4 Fully Automated Template-based Synthesis

	4 Preliminaries
	4.1 Program Syntax and Semantics
	4.2 Formal Definitions of Expectation and Tail Bounds on Resource Usage

	5 Cost Supermartingales for General Costs and Updates
	6 Tail Bounds on the Resource Usage of Probabilistic Programs
	6.1 Tail Bounds via Non-negative Cost Supermartingales
	6.2 Stochastic Invariants
	6.3 Combining Stochastic Invariants and Non-negative Cost Supermartingales for Tail Bound Analysis

	7 Template-based Synthesis Algorithm
	8 Experimental Results
	9 Related Works
	10 Conclusion
	Acknowledgments
	References
	A Syntax
	B Semantics of pCFGs
	C Background on Probability and Martingale Theory
	D Proof of Theorem 4.2
	E Proof of Theorem 5.2
	F Proof of Theorem 5.7
	G Proof of Theorem 5.8
	H Proof of Theorem 5.9
	I Benchmarks
	J Blockchain Programs

