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ABSTRACT
Direct imaging of exoplanets requires to separate the background noise from the exoplanet signals. Statistical methods have been
recently proposed to avoid subtracting any signal of interest as opposed to initial self-subtracting methods based on Angular
Differential Imaging (ADI). However, unless conservative thresholds are chosen to claim for a detection, such approaches tend to
produce a list of candidates that include many false positives. Choosing high, conservative, thresholds leads to miss the faintest
planets. We extend a statistical framework with a logistic regression to filter the list of candidates. Features with physical/optical
meaning (in two wavelengths) are used, leading to a very fast and pragmatic approach. The overall method requires a simple edge
detection (image processing) and clustering algorithm to work with sub-images. To estimate its efficiency, we apply our approach
to targets observed with the ESO/SPHERE high contrast imager, that were previously used as tests for blind surveys. Experimental
results with injected signals show that either the number of false detections is considerably reduced or faint exoplanets that would
otherwise not be detected can be sometimes found. Typically, on the blind tests performed, we are now able to detect around
50% more of the injected planets with an SNR below 5, and with a very low number of additional candidates.

Key words: Exoplanets. Techniques: high angular resolution – techniques: image processing – methods: data analysis

1 INTRODUCTION

High contrast imaging (HCI) of exoplanets has become an important
area in astronomy, as it provides direct information of the exoplanets
orbital parameters, as well as measurements of their fluxes, which,
in turn, can be used to estimate, through comparisons with evolution
models, their masses, effective temperatures, and gravity. Coupled
to spectroscopy, HCI also allows for atmosphere characterization. It
is recognized as a key technique to study Earth twins in the future.
Given today instrumental capabilities, only massive giant planets
orbiting further than typically 10 au have been detected, and most of
them are young (tens to hundreds of Myr).

HCI relies on three pillars: adaptive optics (AO), coronagraphy
and data processing. Since the first AO imagers in the nineties on
4m class telescopes, two generations of instruments have been devel-
opped on 10m class telescopes, with increased AO and coronagraphy
capabilities. The first generation led to imaging of a few exoplanets
(see e.g. Chauvin et al. 2004; Marois et al. 2008; Lagrange et al.
2009). Second generation instruments using extreme AO and higher
performance coronagraphs (Beuzit et al. 2019; Macintosh et al. 2014)
have allowed us to detect a few more planets and provide interesting
constraints on the massive giant planet demographics beyond 10 au
(Nielsen et al. 2019; Vigan et al. 2021).

While more powerful instruments will allow detecting lighter and
closer planets and deriving more accurate and complete informa-
tion on exoplanets demographics, using better detection algorithms
to separate the stellar noise from the exoplanet signal as much as
possible can allow for improving exoplanets detection capabilities
on today data. A number of techniques have been designed to cancel
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out the background speckles by combining images taken at consec-
utive times. The key idea of the ADI technique Marois et al. (2005);
Lagrange et al. (2010) is to subtract the temporal median to each
frame and realign the residual images to recover the remaining sig-
nals of the companions at the same location. This median acts as
a reference Point Spread Function (PSF) that models the speckle
patterns to be subtracted. Various alternatives to this basic approach
have been proposed to estimate the reference stellar PSF to be re-
moved such as the LOCI algorithm Marois et al. (2013); Absil et al.
(2013), the principal component analysis based algorithms Soummer
et al. (2012) or LLSG Gomez Gonzalez et al. (2016) which uses a
low rank approximation to model the PSF. Yet, the subtraction of
the PSF may lead to a loss of the companion signal because it is
fitted in the PSF. This so-called self-subtraction is a limitation asso-
ciated to such approaches. Statistically-based methods then appeared
from the need to evaluate the confidence of each detection and have
been applied after the speckle cancellation step. For instance, AN-
DROMEDA (Cantalloube et al. 2015) uses a maximum likelihood
estimation to detect planetary signals. This estimation is performed
under the assumption of a Gaussian distribution of the noise. This
approach produces a Signal to Noise Ratio (SNR) map that can be
filtered out with a threshold to identify detected sources. A planetary
signal shows an expected pattern typically made of a positive oval
lobe surrounded by two negative lobes. But the resulting SNR map
still contains a number of artifacts whose signals are above the thresh-
old; three sources of false detections are diagnosed in Cantalloube
et al. (2015): a tertiary lobe in the expected pattern, spider diffraction
patterns and high speckle noise in close areas to the star. To find
and reject the artifacts, a number of tests are performed by fitting the
morphological expected shape of the planetary signal. All previously
mentioned works rely on unsupervised learning techniques. The lack
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of a large enough labelled dataset of positive and negative samples
is a challenge for supervised learning algorithms. Firstly, the small
number of confirmed exo-planets leads to class imbalance with very
few guaranteed positive samples. Secondly, images where no candi-
date planets have been detected can not be used as representative of
negative samples since yet undiscovered planets might be present.

Recently, a random forest and neural network classifier were pre-
sented in Gomez Gonzalez et al. (2018) where the training data is
obtained by injecting fake exo-planets and blurring pre-processed
ADI sequence of images. Alternatively, a Generative Adversarial
Network is trained in Yip et al. (2020) to get a generative model
of the speckle noise pattern and use it to create large negative la-
beled datasets. Fake planets are then injected in such guaranteed
negative samples. A Convolutional Neural Network is then trained
and planets are localized using Class Activation Maps (CAM). A
post-processing based on half-sibling regression (HSR) is proposed
in Gebhard et al. (2020). The authors argue that the speckle pattern
can be approximately anti-symmetric across the origin in some cir-
cumstances which can help to choose the predicators of the HSR
framework. Recently, supervised deep learning has been combined
with the statistical model of PACO, leading to a gain of 0.5 mag
compared to PACO (Flasseur et al. 2023).

In this paper, we extend the statistical framework of Flasseur et al.
(2018) using a simple logistic regression to filter the list of candidates
and simple features expected from a planetary signal and noise. The
overall methodology also relies on edge detection and clustering
to present a meaningful list of candidate planets to the user. The
approach is described in Section 2. We apply it on test cases in
Section 3, and analyse the results. We finally use this approach to
explore the environment of one iconic system (Section 4).

2 APPROACH

2.0.1 Input data

We use SPHERE/InfraRed Dual-band Imager and Spectrograph
(IRDIS) (Dohlen et al. 2008) data obtained in Angular and Spectral
Differential Imaging mode (ASDI). Both H2 and H3 spectral chan-
nels are considered. A pre-processing based on a standard pipeline in
astronomy is performed with a number of calibration steps (dark, flat,
offset, ...) partly dedicated to the instrument. The data sets contain
stellar noise close to the star, and background/detector noise further
away. The PACO algorithm for (PAtches COvariances) Flasseur et al.
(2018) is used to model the noise and to produce an SNR map. In
this approach, the background variations are considered to be spa-
tially correlated and non-stationary. A statistical model for theses
fluctuations is proposed in Flasseur et al. (2018) and the presence of
a companion is established using a statistical hypothesis test. More
precisely, the background is assumed to follow a multivariate Gaus-
sian distribution locally. The field of view is thus decomposed into
small patches that are large enough to contain the core of a point
source. A Gaussian distribution is estimated for each patch, to take
into account spatial correlation, by using the different images of the
patch over time. A hypothesis test is formulated for the pixel at the
center of the patch to decide whether a pure background hypothesis
can be rejected. The test statistic can be interpreted as a Signal to
Noise Ratio (SNR) producing an image or a map that can be inspected
(visually or algorithmically) for the presence of companions. Appli-
cation of PACO to astrophysical sources can be found in Chomez
et al. (2023b) and in Chomez et al. (2023a).

A simple threshold of this SNR map can in principle be used

to identify sources. A threshold of 5𝜎 has been used so far when
analysing the data with PACO. Using lower thresholds would indeed
lead to too many candidates (typically hundreds). Cantalloube et al.
(2015) considered slightly lower thresholds by adding a number of
dedicated tests to reject artifacts. We propose to enrich the threshold
with a limited number of features with optical/physical meanings.

2.1 Principle

We use a simple classifier based on logistic regression to filter the list
of source candidates. Simple features are computed on the speckle
and planet patterns resulting in a very fast and pragmatic algorithm
to classify sub-images of the SNR map.

It is similar to Gebhard et al. (2020) in the sense that scientific
knowledge is directly provided to the classifier but it follows a very
different implementation. The signal of an exoplanet in the original
image is expected to have a specific structure in the SNR map. Typi-
cally, an Airy figure in the original image affects the SNR distribution
and even if the corresponding structure does not necessarily have the
exact characteristics of an Airy Figure, it can still be indicative of
the presence of an exoplanet. For sake of simplicity, we shall refer
to it as an Airy Figure though this is not technically exact. In addi-
tion, a speckle is similar in both wavelengths but appears at different
locations in each channel according to a radial shift from the center
of the image (the star). A number of such features are computed on
small sub-images and a simple classifier is trained to discriminate
noise from planetary signals.

2.2 Methodology

The overall process starts from the H2 and H3 SNR maps available
after processing the original data cube with the PACO algorithm. The
process is summarized Figure 1 in five steps:

(i) (Training) Generation of the SNR maps with injected exoplan-
ets or noise. Small sub-images, also referred to as stamps, will be
extracted from these guaranteed SNR maps. Typically, a stamp con-
taining an injected exoplanet is considered as a positive stamp (of the
positive class). Positive stamps are directly produced from the SNR
maps injected with planets by centering the stamp at the location of
the injection.

(ii) (Training) Negative stamps refer to stamps that do not contain
a planet and can be centered at any pixel of the noise maps. This
would give rise to nearly a million stamps for a single map with a lot
of redundancy (overlapping). Since a candidate object can only be
detected at a peak of SNR value we use image processing techniques
to center the stamps on SNR peaks (see Section 2.2.2). This step
produces a collection of negative stamps extracted from the SNR
maps guaranteed with noise only.

(iii) (Training) A classifier is trained from the collection of stamps
whose class is known. Note that the classifier is thus dedicated to a
specific image that was used to produce the SNR maps with plan-
ets/noise.

(iv) (Usage) For each pixel 𝑢 of SNR intensity greater than a
threshold value (in practice set to 2), a stamp centered on 𝑢 is sub-
mitted to the classifier. This step produces a collection of candidates.

(v) (Usage) The stamps classified as possible candidates are then
clustered (since they can considerably overlap) and the set of clusters
is presented to the user.
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Figure 1. Overview of the methodology.

2.2.1 Step (1):Generation of the training data-set: planet’s
injections and noise map

A data cube is used to generate a number of SNR maps (see Figure
??) that contains either only noise or signals of previously injected
fake giant planets of various masses. The objective is to provide
guaranteed positive and negative samples for the machine learning
algorithm.

Noise maps. There are two ways to create a "noise map only"
from the data set. The first one is to invert the direction of rotation.
Because we use ADI-based techniques taking advantage of the rota-
tion, inverting the direction destroys any astrophysical signal, leaving
only noise. Another way to create noise only maps is to perform a
temporal shuffle of the frames.

Injection of fake planets. Fake planets (FPs) with given masses
(expressed in Jupiter masses Mjup) are randomly injected in the
reduced and centered data cubes provided by the SPHERE data center
(Delorme et al. 2017), (Chomez et al. 2023b) taking into account the
inverted direction of rotation (see above). The injected masses range
from 1 to 5 Mjup. A minimum distance between the injections is
enforced to avoid any stacked signal. To convert masses into contrasts
in the H2 and H3 bands, we use COND (Allard et al. 2001) evolution
models, and assume that the planet is coeval with its parent star.
Those data cubes are then processed by PACO using ADI and ASDI.

Each SNR map generated from an original image I (made of two
SNR maps in H2 and H3) gives a number of sub-images (stamp) that
are known to contain or not an object (an injected planet/companion).
The size of the stamps, 19x19 pixels, is large enough to give the con-
text needed to detect an astrophysical point source (field companion
or exoplanet).

2.2.2 Step (2): Negative stamps from the noise maps

The extraction of the stamps is performed using the H2 SNR map.
To reduce the number of stamps and center them on SNR peaks,
we apply edge detection techniques (Sobel’s filter, Duda & Hart
1973) and compute a gradient map of the SNR map. More precisely,
each pixel of such a map gives an approximation of the norm of the
gradient of the corresponding SNR function. An example of such a
gradient map can be seen Figure 2.

A pixel 𝑢 of an edge is identified as a pixel with a gradient value
𝑔𝑢 greater than a threshold (denoted 𝑡 in Algorithm 1). Consider the

graph of edges where vertices are pixels 𝑢 such that 𝑔𝑢 ≥ 𝑡 (edge pix-
els) and connect two such vertices if they are adjacent pixels in the im-
age. More precisely, consider the graph𝐺 = (𝑉, 𝐸)with𝑉 = {𝑢 |𝑔𝑢 ≥
𝑡, 𝑢 ∈ I} and 𝐸 = {(𝑢, 𝑣) |𝑢 ∈ 𝑉, 𝑣 ∈ 𝑉, 𝑢 and 𝑣 are adjacent}. An
area of high SNR in the original image is related to a connected
component of 𝐺. These components might take a variety of shapes
and for sake of simplicity we consider the smallest rectangular box
containing the component as the relevant area.

The value of 𝑡 controls the number of components found and
Algorithm 1 performs a dichotomy search to reach a given average
size of the boxes identifying the areas of interest. In practice we set
this target size to 12 pixels. Note that the stamps definition could
also be done from the H3 SNR map which migh contain SNR peaks
located differently. The final set of stamps would differ and might be
more complete but this remains to be investigated.

Algorithm 1 Stamps generation algorithm.
Input An SNR map I of noise in H2, a target size for the areas

of interest
Output A collection of stamps

1: Set the SNR of each pixel 𝑢 ∈ I with a negative SNR at 0
2: Compute an approximation of the norm of the gradient 𝑔𝑢 for

each pixel 𝑢 ∈ I
3: 𝑙𝑏 ← 0, 𝑢𝑏 ← 3 ×median({𝑔𝑢 |𝑢 ∈ I}), 𝑡 ← 𝑙𝑏+𝑢𝑏

2
4: do
5: Build 𝐺 = (𝑉, 𝐸) with 𝑉 = {𝑢 |𝑔𝑢 ≥ 𝑡, 𝑢 ∈ I} and

𝐸 = {(𝑢, 𝑣) |𝑢 and 𝑣 are adjacent pixels}
6: Compute connected components of 𝐺 and their boxes
7: if average size of boxes > target then
8: 𝑙𝑏 ← 𝑡

9: else 𝑢𝑏 ← 𝑡

10: 𝑡 ← 𝑙𝑏+𝑢𝑏
2

11: while (𝑢𝑏 − 𝑙𝑏) > 10−3

12: Build a stamp centered at the pixel of maximum SNR in each
box.

2.2.3 Step (3): Training

A simple classifier based on Logistic Regression is trained from the
collection of stamps whose class is known at this stage. We outline
two key points. Firstly, the classifier is dedicated to a specific original



4 H. Cambazard et al.

Figure 2. An SNR map (left) and the corresponding gradient map (right).

image. The stamps generated for learning are based on injections and
randomization of the original data cube on which the classifier is
finally used. So that it potentially takes into account the peculiarities
on this data set (e.g weather conditions). Secondly, the learning is not
performed on the whole image. On the contrary, a number of limited
and meaningful features are computed for each stamp. This typically
refers to old-fashioned learning as opposed to deep learning. A dozen
of features are computed and detailed in the Appendix. These fea-
tures relate to high level descriptive statistic of the stamp such a the
mean SNR value (MeanSnr) or the mean, maximum, and standard
deviation of the gradient approximation of the stamp (MeanGra,
MaxGra, StdevGra) but also to physical phenomenons. A key fea-
ture targets the pattern that can leave an Airy figure on the SNR map
(AiryFig). Another one (MeanSpec) tries to quantify whether the
9 central pixels of a stamp indicate that the SNR signal is due to
a speckle. Note that the features are not real physical models of the
phenomenon but simple numerical quantities that are correlated with
the presence of the phenomenon. An analysis of these correlations
is presented Section 3.3. Most of the features are computed on the
H2 SNR part of the stamp but a number of them are also computed
on the H3 signal (typically the features dealing with the presence of
a speckle). In total, a dozen of such features are used. Finally, the
logistic regression is trained using cross-validation.

2.2.4 Step (4): Usage

The classifier is then used only on stamps extracted on the original
image and whose center is a pixel with a SNR (in H2) greater than
2. We chose this value because below this threshold in H2, it would
currently not be considered as a potential candidate by a user (an
astrophysicist) in any case. A more elaborate criterion can be used,
for instance using the SNR value of multiple wavelengths. But in
principle, any pixel can be considered and this step is not computa-
tionally time consuming. The features of the stamp centered on that
pixel are computed and if the value of the logistic regression function
of the classifier is above 0.5, the stamp is kept as a candidate. It is
considered to belong to the class of objects. The probability of 0.5
can be tuned and this is discussed in Section 3.6.

2.2.5 Step (5): Usage - Clustering of candidates

Since stamps centered on any pixel are potentially submitted to the
classifier, adjacent pixels are likely to be classified similarly. As
a result, candidates are made of close clusters that overlap and two
closely overlapping stamps are most likely the same object. We there-
fore present the classification result as clusters of candidates.

The distance between two stamps is defined as the number of
distinct pixels. The smaller this distance, the more the stamps over-
lap. An agglomerative clustering algorithm (Müllner 2011) merges
a cluster pair if the minimum of the distances between the stamps of
a cluster is lower than a threshold. In practice this threshold is set to
55.5% of the pixels so two stamps of the same cluster overlap over at
least 55.5% (200 pixels for 19x19 stamps).

3 TESTS

The data as well as detailed results are available on a web page 1 and
upon request.

3.1 Data sets and terminology

We used four IRDIS data sets obtained on HD 108767B, HIP 1993,
HIP 12394 and HIP 107345. These stars were chosen as they were
also used in a blind test that was performed among the SPHERE
SHINE consortium to compare the merits of different algorithms (see
below). They are representative of different atmospheric conditions.
Table 1 summarize the aforementioned stars properties and Table 3.1
provide the observing conditions.

The four data sets were used to generate true positive (TP) stamps
(by planet’s injection) and true negative (TN) stamps for the learning
step (by processing, with algorithm 1, a map of pure noise generated
from the original image). The blind tests consist in performing a
number of injections in the original image and submitting the result-
ing modified data set to the classifier. Additional unknown exoplanets
might also be present since the original image is used for the test.

1 https://pagesperso.g-scop.grenoble-inp.fr/ catussen/exoplanet/report/
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Star name RA (J2000) DEC (J2000) Spectral Type Rmag Hmag Age𝑎 (Myr)
HD108767B 12 29 50.8908 -16 31 15.2081 K 1 8.2 6.3 180+170

−80
HIP1993 00 25 14.6618 -61 30 48.2527 M0V 10.7 7.9 45+5−10
HIP12394 02 39 35.3612 -68 16 01.0103 B8V 4.1 4.4 45+5−10
HIP107345 21 44 30.1227 -60 58 38.8946 M0 10.5 8.1 45+5−10

Table 1. Targets used for the tests.

Notes. 𝑎 : Ages values extracted from Desidera et al. (2021)

STAR OBS DATE FILTER DIT(s)×Nframe ΔPA (◦)𝑎 Seeing (")𝑏 Airmass𝑏 𝜏0 (ms)𝑎,𝑏 Program ID
HD108767B 2018-01-24 DB_H23 64x72 94.4 0.59 1.02 8.3 1100.C-0481(D)

HIP1993 2015-11-28 DB_H23 64x64 25.8 1.57 1.26 7.2 096.C-0241(B)
HIP12394 2016-09-15 DB_H23 32x160 29.1 0.42 1.38 9.2 097.C-0865(D)
HIP107345 2015-07-04 DB_H23 64x64 26.0 1.07 1.25 2 095.C-0298(C)

Table 2. Test targets observation logs. Notes: 𝑎: DIT corresponds to the detector integration time per frame, ΔPA is the amplitude of the parallactic rotation, 𝜏0
corresponds to the coherence time. 𝑏: Values extracted from the updated DIMM info and averaged over the sequence.

Figure 3. Box plots summarizing the SNR distribution of the injections in H2 and H3 (resp. left and right in each boxplot) for the three Blind Tests: BT1, BT2,
BT3. Each boxplot shows the minimum, first quartile, median, third quartile, maximum (by convention, the third quartile plus at most 1.5 of the inter-quartile
range) and additional points above.

In the following, we use the following notations and terminology:
#U is the number of stamps extracted on the original image and
considered at the Usage step. The classifier is used only on stamps
with a SNR greater than 2 in H2 and this number is reported in
columns #U𝑠𝑛𝑟≥2. #TP and #TN refers to numbers of stamps that
are known to contain an injected planet or noise i.e true positives or
true negatives. Finally, when considering the results obtained with
our algorithm, we note #TPF the number of True Positives Found, and
#C the number of remaining Candidates proposed by the algorithm.
These candidates are likely false positive but since the usage is done
on the original image, it could also be real, and so far undetected,
exoplanets. Therefore, we refer to them as candidates.

The first column of Table 4 reports the number of true positive
(column #TP) and negative stamps (column #TN) obtained with our
methodology and that have been used to train the classifier (column
Learning). The remaining columns gives an overview of the num-
ber of stamps generated for the three Blind Tests (BT1, BT2, BT3)
detailed below. Note that some injections might lead to SNR values
below 2 and thus would not be submitted to the classifier. The results
are therefore given only for injected planets giving an SNR greater
than 2 in H2 (the exact numbers of such injections are reported in
columns titled #TP for each blind test).

3.2 Tests description

We started with a blind test constructed by the SHINE consortium,
BT1. Eight fake companions featuring spectral types between early
M and late T were injected for each of the stars considered; their
contrasts were chosen to provide a TLOCI signal (Marois et al. 2014)
of about 5 sigma (mean of H2 and H3 contrasts). We note that the
objects do not necessarily represent realistic planets. Note also that
in a few cases, the injected planets are not detected with PACO even
with a low threshold. This happens when the planets are very close
to the stars, and their expected contrasts are overestimated. Finally,
one out of the 8 planets around HD10767B has an SNR in H2 lower
than 2, and two out of the 8 planets around HIP12394 have to SNR
in H2 lower than 2. They are therefore not be considered here.

BT2 and BT3 are blind tests generated using the process described
in section 2.2.1. The planet’s masses considered are 1, 2, 3, 4 and 5
MJup. The contrasts of the companions wrt the stars are computed
according to their masses and to the age of the stars (planets and stars
are assumed to be coeval), and using the COND models. Conversely
to BT1, the fake planets correspond to realistic cases. We note that
the respective contrasts in BT1 are very different from those in BT2
and BT3. Figure 3 shows the distribution of the SNR values of the
injections in the three blind tests.

The last test, BT4, is similar to BT2 and BT3. We massively
injected FPs close to the star, between 0.25 and 1 arcsec. The FPs
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star name Learning BT1 BT2 BT3
#TP #TN #TN𝑠𝑛𝑟≥2 #TP #U𝑠𝑛𝑟≥2 #TP #U𝑠𝑛𝑟≥2 #TP #U𝑠𝑛𝑟≥2

all 1026 77565 8180 29 14691 140 19017 90 15878
HD108767B 259 15621 1724 7 3577 26 3777 15 3390

HIP1993 253 15228 1271 8 2376 37 3479 24 2810
HIP12394 251 15636 2920 6 6670 39 8226 25 7191
HIP107345 263 31080 2265 8 2068 38 3535 26 2487

Table 3. Number of positive (planet’s injection) and negative stamps (extracted from a pure noise map generated with algorithm 1). The total number as well as
the number of negative stamps of SNR H2 greater than 2 are reported.

star name Learning BT4
#TP #TN #TP #U𝑠𝑛𝑟≥2

HIP1993 243 15076 34 2863
HIP12394-4M 214 15540 34 8384
HIP12394-3M 214 15540 34 7707

HIP107345 192 15791 34 2421

Table 4. Number of positive (planet’s injection) and negative stamps (extracted from a pure noise map generated with algorithm 1). The total number as well as
the number of negative stamps of SNR H2 greater than 2 are reported.

were chosen so that their contrasts be along the 5sigma contrast curves
to test the capability of the classifier. We chose to use the classifier
on HIP12394 with 3Mjup and 4Mjup injected planets because both
planets cross the contrast curve between 0 and 1 arcsec.

3.3 Features analysis

We analyse the distribution of six of the features (MeanSnr, Mean-
Gra, MaxGra, MaxMin, AiryFig, MeanSpec) across true positive
and true negative stamps. We recall that a feature is simply a real
number computed on a stamp and a good feature is correlated to
a class (positive/negative). Figure 4 provides, for each feature, two
box plots showing the distribution of its values for true positive (box
labeled pos) and true negative (box labeled neg) stamps. A box plot
gives a summary of the distribution in 5 numbers from bottom to
top: minimum, first quartile, median, third quartile and maximum.
Typically, the values of the feature for 50% of the stamps lie in the
box. The median value is the orange horizontal line within the box.
Values considered as outliers (below or above 1.5 the inter-quartile
range, which is defined as the maximum) are not shown for sake of
clarity. The correlation coefficient (r value) is given for each feature.

We expect useful features to show distinct distributions for positive
and negative stamps in order to help the classifier discriminating
between the two. The size of the intersection of the two distributions
(for the positive and negative class) gives an idea of the discrimination
power of the feature.

Four features appear decisive (correlation coefficient 𝑟 ≥ 0.6):
the mean snr intensity (MeanSnr), the gradient features (MeanGra,
MaxGra) as well as the feature related to the presence of an Airy
Figure (AiryFig).

The feature related to speckles is not strongly correlated to the
presence of a companion (𝑟 = 0.29). This is expected as speckles are
only present within the star halo. Restricting the analysis to the halo
region, between 30 and 140 pixels (i.e. 370 to 1700 mas), significantly
increases the correlation to 𝑟 = 0.61 (see Figure 5). It might therefore
be appropriate to build two distinct classifiers, one for the star halo
that includes MeanSpec and one for the remaining area without it.
But this tends to complicate further the overall process. We decided
to keep it simple for the moment and used the feature MeanSpec

on the entire field with an additional 0/1 indicative feature ( 𝑓9 in the
Appendix) defining whether a stamp is or not in the star halo. In other
words, this indicative feature tells when MeanSpec is relevant and
can be eventually help the classifier.

3.4 Analysis

The results are presented in Table 5 for BT1, BT2, BT3 and BT4. The
results of the classifier (column RegL) are compared to the threshold
approach (thresholds of 3 and 5) for two flavors of PACO: ADI and
ASDI. In ADI, the SNR is computed considering separately the H2
and H3 channels. So a detection is made if any of the SNR value in H2
or H3 is above the threshold. In ASDI, PACO optimally combines
both bands Flasseur, Olivier et al. (2020). The number of planets
found (#TPF) and the number of candidates (#C) are reported for
each approach (see Section 3.1 for the definition of #TPF and #C).

Overall, ADI, ASDI 3 and RegL retrieve most of the planets. Yet,
the former two detect also a huge number of candidates: typically
several hundreds candidates are found in ASDI 3 and often about one
hundred in ADI 3, while RegL detects a much more limited number
of candidates. Such large lists of candidates found by ADI and ASDI
3 prevent from identifying the true positives. This justifies the usual
choice of a threshold of 5 when using PACO. Using a threshold
of 5 removes nearly all candidates but the detection performances
are reduced (in particular for BT2 but also BT3) compared to our
classifier. Hence, RegL performs better than ADI or ASDI, giving a
better compromise between the number of detections and the number
of candidates. We detail the results of each test below.

BT1. RegL finds 23 planets while ADI 3 finds 27. Yet, RegL finds
16 false positives, to be compared to the 715 found by ADI 3. ASDI 5
find 25 planets and avoids any additional candidates. We will discuss
this result below.

BT2. RegL retrieves 120 out of the 140 injected planets, identi-
fying one more planet than ADI 3. Noticeably, RegL finds only 16
additional candidates (likely false positive), to be compared to the
543 found with the threshold approach. ASDI 3 finds 114 planets and
produces much more additional candidates than RegL. RegL finds
more planets than ADI and ASDI 5 (which find 96 planets), with
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Figure 4. Box plots summarizing the distribution of six features by showing the minimum, first quartile, median, third quartile, maximum. The distribution for
positive and negative stamps are shown for each feature to help visualize whether the feature discriminates the two classes. The values are computed over stamps
of SNR H2 ≥ 2 of the four images (In total 2069 positives, 18074 negatives).

Figure 5. Distribution of the MeanSpec feature for three selected subsets of stamps respectively from left to right: (1) all stamps of SNR H2 ≥ 2 (2069 positives,
18074 negatives), (2) all stamps of SNR H2 ≥ 2 located between 30 and 140 pixels (554 positives, 1969 negatives), (3) all stamps of SNR H2 ≥ 2.5 located
between 30 and 140 pixels (492 positives, 558 negatives).

a yet slightly larger number of candidates (16 instead of 0 and 4,
respectively).

BT3. RegL does not performs better than ADI or ASDI 3 regarding
the number of planets found but the number of candidates with RegL
(18) is significantly smaller with with ADI (592) or ASDI (1630).
It behaves better when compared to ADI or ASDI 5, with a larger
amount of detected planets (69 versus 58 with ADI 5 and 64 with
ASDI 5), and a small number of candidates (18 versus 0 and 3,
respectively).

BT4. RegL does not perform better than ADI or ASDI 3 regarding
the number of planets found but the number of candidates with
RegL is much smaller than with ADI 3 or ASDI 3. It is relevant to
notice that despite of the little gap between the number TPF and the
number of planets injected, RegL finds for HIP1993, HIP12394-4M
and HIP107345 almost all the sources with a center SNR>2 and
misses only 5 planets with SNR very close to 2 for HIP12394-3M. In
fact, only 26 planets out of the 34 have an SNR above the threshold
of RegL. This gap can be explained by the fact that we injected along

the 5sigma contrast curves at the constant mass so some planets close
to the star are below this curve.

Figure 7 shows the number of planets found (#TPF) (for all
blind tests) depending on their projected separations to the star (in
[0, 1715[ or ≥ 1715 mas), as well as on their SNR value in H2 (in
[2, 5[ or ≥ 5). Results for ADI 3 are not reported here since they
lead to far too many candidates. As expected, the logistic regression
improves over ADI/ASDI for low H2 SNR 2. It can also be noted
here that most of the injections of these blind tests have a high SNR
and are located outside of the star halo.

Finally, note that the classifier is expected to perform better on
BT2/BT3 than on BT1 because the exact same injection process is
used at the learning step and the usage step for BT2/BT3. Conversely,

2 A detection can be made by ASDI 5 below an SNR threshold of 5 in H2
because PACO combines both H2 and H3 bands in ASDI. It can also be made
in ADI 5 if the SNR in H3 alone is above 5.
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RegL ADI 3 ADI 5 ASDI 3 ASDI 5
#Inj #TPF #C #TPF #C #TPF #C #TPF #C #TPF #C

BT1
HD108767B 7 5 11 6 153 3 0 6 717 5 0
HIP1993 8 6 1 8 100 3 0 8 724 7 0
HIP12394 6 5 2 5 397 2 0 6 611 5 0
HIP107345 8 7 2 8 65 2 0 8 694 8 0
Total 29 23 16 27 715 10 0 28 2746 25 0

BT2
HD108767B 26 22 13 21 2 16 0 23 716 18 1
HIP1993 37 33 1 32 91 27 0 31 627 23 1
HIP12394 39 27 1 28 373 20 0 24 620 22 1
HIP107345 38 38 1 38 77 33 0 36 659 33 1
Total 140 120 16 119 543 96 0 114 2622 96 4

BT3
HD108767B 15 6 10 8 118 2 0 8 440 3 1
HIP1993 24 20 4 19 65 19 0 23 390 18 0
HIP12394 25 19 2 19 348 16 0 20 386 19 1
HIP107345 26 24 2 24 61 21 0 26 414 24 1
Total 90 69 18 70 592 58 0 77 1630 64 3

BT4
HIP1993 34 30 7 31 100 19 2 32 956 28 1
HIP12394-4MJup 34 33 12 34 392 26 7 33 909 29 0
HIP12394-3MJup 34 21 12 25 388 12 7 26 734 13 0
HIP107345 34 27 2 29 75 18 2 30 951 30 0
Total 136 111 33 119 955 75 18 121 3550 100 1

Table 5. Comparison between the results from the logistic regression approach (Column RegL) and those from threshold detections. Two thresholds are
considered: 3 and 5, and two setups are considered: ADI and ASDI. Columns #TPF reports the number of planets found whereas #C is the number of additional
candidates produced. #Inj is the number of injections (hidden planets) in the corresponding blind test.

the injections of BT1 were performed independently of the present
work with different parameters (thus a different opinion on what is
most realistic) and can show different patterns that are therefore not
learnt by the classifier. In particular, injections of BT1 can have a
low SNR in H2 but a high a SNR in H3. This pattern is not typical
of the injection process used in the present work (section 2.2.1) for
the learning step. As a result, the classifier does not learn to consider
such patterns and is less efficient on BT1. It remains competitive but
its performances on BT1 could certainly be improved by including
injections at the learning step that are consistent with the one used
for the test.

3.5 Image dedicated classifier versus a single classifier.

So far in our study, a classifier is learnt for each image and its usage
is dedicated to the original image from which the exoplanets are to
be detected. This has the advantage to take into account peculiarities
of the image such as the weather conditions at the time it was taken.
The alternative is to train a single and common classifier using the
four data sets together aiming for better generalization.

The table of Figure 6 gives the result of such a single classifier
trained over all data sets. The two approaches produce very similar
results. The single classifier identifies one additional planet on BT3
(70 versus 69) but misses one on BT1 (22 versus 23) and tend to
produce the same amount of candidates that are not injected planets.
However, these results might considerably depend on the quality and
uniformity of the images. We expect that a larger data set sampling
a wider range of weather conditions and quality might be needed to
investigate this option further.

3.6 Threshold of the logistic regression.

Logistic regression gives a probability of belonging to a class. By de-
fault, a threshold of 0.5 is used to decide whether the object belongs
to the class or not. However, it is possible to choose another thresh-
old value and thus obtain more or less samples classified as true.
A classical way to determine this threshold is to use a ROC curve
(receiver operating characteristic), the true positive rate against the
false positive rate. But, in the case of imbalanced data, the precision
recall curve is often preferred. Precision is the proportion of rele-
vant items among all the proposed items; recall is the proportion of
relevant items proposed among all the relevant items.

To determine a threshold from precision and recall, we use the
f-score calculated as follows: 𝐹𝛽 = (1 + 𝛽2) · precision · recall

(𝛽2 · precision)+recall
Increasing the value of 𝛽 increases the weight of the precision.

The threshold that maximizes the f-score on the training data is
calculated and then used for classification. As can be seen in figure
8, as 𝛽 increases, the number of candidates proposed can increase, as
well as the number of objects found. Comparing it with a threshold
set at 0.5 (on the right, Figure 8), we find a larger number of objects,
but also a much greater number of candidates.

The classifier can therefore be adjusted to the best compromise
(number of true positives versus number of false positives) that suits
the user. It depends on how much effort a user can afford to check by
hand the candidates in order to increase the chance of a true detection.
In the present case, we note that a significant increase of the number
of candidates is required to detect only a few more exoplanets.

3.7 Amount of data required.

We evaluated the amount of training data required to reach the per-
formance reported for the single classifier. The injection process can
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BT1 BT2 BT3
#Inj #TPF #C #Inj #TPF #C #Inj #TPF #C

Single classifier
4 stars 29 22 15 140 120 13 90 70 16

One classifier
per image

HD108767B 7 5 11 26 22 13 15 6 10
HIP1993 8 6 1 37 33 1 24 20 4
HIP12394 6 5 2 39 26 1 25 19 2
HIP107345 8 7 2 38 38 1 26 24 2

Total 29 23 16 140 120 16 90 69 18

Figure 6. Comparing a single classifier trained over the 4 data sets to a classifier dedicated to each data set.

Figure 7. Number of detections (#TPF) achieved by the different methods
depending on the SNR and separation from the stars of the targets.

Figure 8. Number of objects found (#TPF in blue) and candidates (#C in
black) according to the value of 𝛽. The black line represents the number of
injections (29 for BT1 and 140 for BT2).

require a non negligible computational effort in practice. It turns
out to be more costly than the learning, clustering and classifi-
cation steps. To evaluate the real need for the injections, we run
the training for the following numbers of injected planets: #pos
∈ {25, 50, 100, 150, 200, 250}. We also investigate different number
of guaranteed noise stamps with #neg ∈ {1000, 5000, 10000, 15000}
to get a sense of the effect of imbalance. This analysis was restricted
to BT2.

Overall the 120 planets (actual performance of our approach on
BT2) are found using only 150 injected planets in the training stage
(whereas 250 injections were initially used). A minimum of 10000
negative samples are needed to avoid to many false positives.

4 APPLICATION TO 51 ERI

4.1 51 Eridani

51 Eridani (HIP 21547) is an F0-type star that hosts one 2-4 Mjup
planet imaged in 2014 by the Gemini Planet Imager (Macintosh
et al. 2015). We apply the proposed methodology to four IRDIS data
sets taken with IRDIS on 25/12/2015, 15/01/2016, 11/12/2016 and
12/12/2016. The observing log and setup of these 4 observations can
be found in Table. 4.1. Note that on Dec 2016, the data, obtained
under good atmospheric conditions, are affected by the so called
low wind effect that occurred when the wind was very low, and
considerably degraded the image quality (Milli et al. 2018)3.

We consider the four data sets completely independently, as our
approach is not informed of the temporality. Table 7 reports the
SNR of the planet in each image with PACO ADI and PACO ASDI
(column SNR), whether it was found or not by our method (yes/no
of column Found) and the number of candidates proposed (column
#C).

Our approach allows to find 51 Eri b in 3 out of the 4 datasets, and
with an SNR lower than 5 (in the H2 band) in two cases. Moreover,
a very small number of additional candidates are proposed (2 or 3).
Unfortunately, none of the additional signals found by the classifier
seems gravitationally bound to the star (i.e. detected at multiple epoch
with a motion compatible with a bound object). We classify them as
false positives.

5 CONCLUSIONS

Statistical approaches have proved very efficient to avoid self-
subtraction when searching for exoplanets in ADI high contrast im-

3 this effect has been taken care of afterwards
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STAR DATE OBS FILTER DIT(s)×Nframe ΔPA (◦)𝑎 Seeing (")𝑏 Airmass𝑏 𝜏0 (ms)𝑎,𝑏 Program ID
HIP 21547 2015-12-25 DB_H23 16x256 37.6 1.18 1.10 1.8 096.C-0241(C)
HIP 21547 2016-01-15 DB_H23 16x256 41.8 1.91 1.08 1.3 096.C-0241(G)
HIP 21547 2016-12-11 DB_H23 64x54 25.3 1.97 1.12 1.5 198.C-0209(C)
HIP 21547 2016-12-12 DB_H23 64x72 45.0 0.84 1.09 5.7 198.C-0209(C)

Table 6. 51 Eri observation logs. Notes: 𝑎: DIT corresponds to the detector integration time per frame, ΔPA is the amplitude of the parallactic rotation, 𝜏0
corresponds to the coherence time. 𝑏: Values extracted from the updated DIMM info and averaged over the sequence.

25/12/2015 15/01/2016 11/12/2016 12/12/2016
SNR H2 SNR ASDI Found #C SNR H2 SNR ASDI Found #C SNR H2 SNR ASDI Found #C SNR H2 SNR ASDI Found #C

4.71 4.3 yes 3 5.28 6.6 yes 3 < 2.5 < 4 no 4 2.69 4.1 yes 2

Table 7. Results obtained on 51 Eridani.

ages, and to provide means to quantify the confidence of a detection.
The SNR maps produced still contain too many artifacts related to
background noise to simply identify planets with a threshold of SNR
typically lower than 5𝜎. But planetary signals and noise also leave
specific patterns and shapes within the SNR map that can help dis-
criminating them. We have proposed a methodology using simple
algorithmic techniques (edge-detection, regression and clustering)
to help separating noise and planetary signals in these SNR maps.
We demonstrated that the proposed methodology can considerably
reduce the number of false positives and even improve detection in
some cases (see for instance the case study of 51 Eridani). Moreover,
it is well suited to learning with small data-sets (limited number of
samples for the learning compared to current need of deep learning
techniques) since it relies on dedicated and informative features of
the application domain. This also helps explaining the results be-
cause the features have a meaning for the user. We now mostly intend
to generalize it to spectroscopic data and test it on a larger scale.
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APPENDIX A: FEATURES

In the following we denote the maximum, mean and standard de-
viation over a set of reals numbers 𝑋 ⊂ R by: max(𝑋), 𝜇(𝑋) and
𝜎(𝑋).

A stamp 𝑆 is a small sub-image restricted to a 𝐷×𝐷 area. This sub-
image gives two 𝐷 × 𝐷 matrices of pixels or SNR values extracted
from the original image in the two wavelengths 𝐻2 and 𝐻3. In
practice, we experimented with stamps of size 29 × 29 and 19 × 19
(𝐷 = 29 and 𝐷 = 19). For sake of simplicity, we assume 𝐷 is always
odd so that the center of the stamp is a pixel (and not in between two
pixels). Consider pixel 𝑢 = (𝑖, 𝑗) in the stamp 𝑆 (𝑢 ∈ 𝑆), we denote
by:

• 𝑠𝐻2
𝑢 (resp. 𝑠𝐻3

𝑢 ): the SNR value of pixel 𝑢 in wavelength 𝐻2
(resp 𝐻3).
• 𝑔𝑢: the norm of the SNR gradient at pixel 𝑢 in wavelength 𝐻2.
• 𝑐: the pixel at the center of the stamp i.e 𝑐 = (⌊𝐷/2⌋, ⌊𝐷/2⌋) .
• C: the set of nine pixels in a 3×3 area at the center of the stamp i.e
C = {(𝑖, 𝑗) |𝑖 ∈ ⟦⌊𝐷/2⌋−1, ⌊𝐷/2⌋+1⟧, 𝑗 ∈ ⟦⌊𝐷/2⌋−1, ⌊𝐷/2⌋+1⟧}

Note that we refer to pixel 𝑢 = (𝑖, 𝑗) using its 𝑖 and 𝑗 coordinates

[t]

Figure A1. Summary of the notations for a stamp.

when needed so that 𝑠𝐻2
𝑢 can also be written 𝑠𝐻2

𝑖 𝑗
. Figure A1 gives a

summary of the notations.
The features used are the following:

(i) (MeanSnr). Mean SNR value in 𝐻2 and 𝐻3:

𝑓 𝐻2
1 = 𝜇({𝑠𝐻2

𝑢 |𝑢 ∈ 𝑆}), 𝑓 𝐻3
1 = 𝜇({𝑠𝐻3

𝑢 |𝑢 ∈ 𝑆})

(ii) (MaxCenteredSnr). Max SNR value in 𝐻2 and 𝐻3 in the
center C:

𝑓 𝐻2
2 = max({𝑠𝐻2

𝑢 |𝑢 ∈ C}), 𝑓 𝐻3
2 = max({𝑠𝐻3

𝑢 |𝑢 ∈ C})

(iii) (MaxGra, MeanGra, StdevGra). Maximum, Mean and
Standart deviation of the gradient in 𝐻2:

𝑓3 = max({𝑔𝑢 |𝑢 ∈ 𝑆})

𝑓4 = 𝜇({𝑔𝑢 |𝑢 ∈ 𝑆})

𝑓5 = 𝜎({𝑔𝑢 |𝑢 ∈ 𝑆})

(iv) (MaxMin). Consider the image defined for each pixel 𝑢 by
the minimum SNR value between both wavelength: min(𝑠𝐻2

𝑢 , 𝑠𝐻3
𝑢 ).

This minimum image only keep the SNR quantities present in both
wavelength. The idea is that a speckle systematically move between
H2 and H3 whereas real companions can be present in both H2 and
H3. We use the following feature:

𝑓6 = max({min(𝑠𝐻2
𝑢 , 𝑠𝐻3

𝑢 ) |𝑢 ∈ 𝑆})

(v) (AiryFig). To capture the presence of an Airy figure, we rely
on an azimutal mean of SNR values. More precisely, let’s denote
ℎ𝑢 (𝑑) the mean SNR values in a ring of one pixel’s width located at
distance 𝑑 of pixel 𝑢. Figure A2 shows ℎ𝑐 (𝑑) i.e from the center 𝑐
of our example stamp.

An Airy figure at the center 𝑐 of the stamp is expected to have a
higher standard deviation 𝜎(𝑐) = 𝜎({ℎ𝑐 (𝑑) |𝑑 ∈ ⟦1, 𝐷/2⟦}) than
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Figure A2. ℎ𝑐 (𝑑) function for the stamp presented figure A1. The first dark
ring can be seen around distance 4 whereas the first white ring is around 7.

Figure A3. Motion of a speckle from H2 to H3

random noise. This however assumes that the stamp is precisely
centered. We therefore relax this constraint and take the best value
among the nine central pixels. We use the following feature:

𝑓7 = max({𝜎(𝑢) |𝑢 ∈ C})
Feature 𝑓6 is computed for each wavelength which gives, in practice,
two distinct features 𝑓 𝐻2

6 and 𝑓 𝐻3
6 .

(vi) (MeanSpec). A speckle moves radially away from the center
(the star) of the image depending on its distance to the center and
the ratio 𝑟 =

𝜆𝐻3
𝜆𝐻2

= 1.667
1.593 . Assuming the star is the origin of the

coordinate system, if pixel 𝑢 = (𝑖, 𝑗) in 𝐻2 is part of a speckle and its
center is located at coordinates (𝑥𝑖 , 𝑦 𝑗 ) in the star system, the point
𝑟𝑢 = (𝑟𝑥𝑖 , 𝑟 𝑦 𝑗 ) in 𝐻3 is expected to have the same SNR intensity.
Since (𝑟𝑥𝑖 , 𝑟 𝑦 𝑗 ) does not necessarily match exactly the center of
another pixel, we compute a weighted average of its four neighbors.
Let 𝑁 (𝑢) be the nine closest pixels of the real point 𝑟𝑢 = (𝑟𝑥𝑖 , 𝑟 𝑦 𝑗 ),
we compute 𝑤(𝑢) (where 𝑑′ (𝑢, 𝑣) = 1

𝑑 (𝑢,𝑣) is the inverse of the
distance between pixel 𝑢 and 𝑣):

𝑤(𝑢) =
∑

𝑣∈𝑁 (𝑢) 𝑑
′ (𝑟𝑢, 𝑣) × 𝑠𝐻3

𝑣∑
𝑣∈𝑁 (𝑢) 𝑑′ (𝑟𝑢, 𝑣)

The following quantity 𝑠𝑝(𝑢) is used to quantify how much the
SNR intensity 𝑠𝐻2

𝑢 is found at (𝑟𝑥𝑖 , 𝑟 𝑦 𝑗 ) in 𝐻3 i.e is close to 𝑤(𝑢):

𝑠𝑝(𝑢) = |𝑠𝐻2
𝑢 − 𝑤(𝑢) |

max(𝑠𝐻2
𝑢 , 𝑤(𝑢))

Finally the feature considers the 9 central pixels to identify a speckle:

𝑓8 = 𝜇({𝑠𝑝(𝑢) |𝑢 ∈ C})

The previous caracterization of a speckle is only valid at minimum
and maximum distance from the star. We therefore introduce an
indicative feature:

𝑓9 =

{
1 if 𝑑𝑚𝑖𝑛 ≤ 𝑑 (𝑐, 𝑠𝑡𝑎𝑟) ≤ 𝑑𝑚𝑎𝑥

0 otherwise

(vii) (MeanNoise, StdevNoise). At greater distances from the star
(> 𝑑𝑚𝑎𝑥) a companion object can sometimes disappear from 𝐻2 to
𝐻3. The quantity 𝑛(𝑢) measures how much of the intensity in 𝐻2 at
pixel 𝑢 disappears in 𝐻3:

𝑛(𝑢) = 𝑚𝑎𝑥(0, 𝑠𝐻2
𝑢 − 𝑠𝐻3

𝑢

max(𝑠𝐻2
𝑢 , 𝑠𝐻3

𝑢 )
)

We use the mean and the standart deviation of this quantity, at the
center of the stamp, as features:

𝑓10 = 𝜇({𝑛(𝑢) |𝑢 ∈ C}), 𝑓11 = 𝜎({𝑛(𝑢) |𝑢 ∈ C})

(viii) (Dist). The distance of the center of the stamp to the star is
also included in the features and denoted 𝑓12.
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Figure B1. Visualization of the results on BT1. An injected exoplanet is diplayed by a green square, a candidate proposed by PACO ASDI 5 is a little blue circle,
a candidate proposed by regL is a large red circle. Top left: HD108767B, Top right: HIP1993, Bottom left: HIP12394, Bottom right: HIP107345.



14 H. Cambazard et al.

Figure B2. Visualization of the results on BT2. An injected exoplanet is diplayed by a green square, a candidate proposed by PACO ASDI 5 is a little blue circle,
a candidate proposed by regL is a large red circle. Top left: HD108767B, Top right: HIP1993, Bottom left: HIP12394, Bottom right: HIP107345.



Logistic regression to boost exoplanet detection performances 15

Figure B3. Visualization of the results on BT3. An injected exoplanet is diplayed by a green square, a candidate proposed by PACO ASDI 5 is a little blue circle,
a candidate proposed by regL is a large red circle. Top left: HD108767B, Top right: HIP1993, Bottom left: HIP12394, Bottom right: HIP107345.
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