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Geodesic tracking and the shape of ergodic rotation sets

Alejo Garćıa-Sassi, Pierre-Antoine Guihéneuf, Pablo Lessa

March 1, 2024

Abstract

We prove a structure theorem for ergodic homological rotation sets of homeomor-
phisms isotopic to the identity on a closed orientable hyperbolic surface: this set is
made of a finite number of pieces that are either one-dimensional or almost convex.
The latter ones give birth to horseshoes; in the case of a zero-entropy homeomorphism,
we show that there exists a geodesic lamination containing the directions in which
generic orbits with respect to ergodic invariant probabilities turn around the surface
under iterations of the homeomorphism. The proof is based on the idea of geodesic
tracking of orbits that are typical for some invariant measure by geodesics on the sur-
face, that allows to get links between the dynamics of such points and the one of the
geodesic flow on some invariant subset of the unit tangent bundle of the surface.
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1 Introduction

Consider a closed orientable hyperbolic surface S of genus g and denote by S̃ its universal
cover. This space is conformly equivalent to the hyperbolic disk H2. Denote dist a distance
on S and d̃ist its lift to S̃ so that (S̃, d̃ist) is isometric to H2. As a hyperbolic space, the
lift S̃ has a well defined boundary at infinity ∂S̃, which is homeomorphic to the circle. We
denote Homeo0(S) the space of homeomorphisms of S that are isotopic to the identity.
Let f ∈ Homeo0(S). The group of covering transformations Γ : S̃ → S̃ acts freely and
discretely on S̃ by isometries which preserve orientation, and there exists a unique preferred
lift f̃ : S̃ → S̃ of f commuting with the covering transformations:

f̃ ◦ γ = γ ◦ f̃ for all γ ∈ Γ. (1.1)

1.1 Homological rotation sets

Let us start by defining the notion of homological rotation set, due to Schwarzman [Sch57].
Consider the Abelianization Γ′ = Γ/[Γ,Γ] of the group of covering transformations Γ

as a Z-module and identify the first real homology of S with

H1(S,R) = R⊗Z Γ′,

(that is formal linear combinations with real coefficients of elements of Γ′ where sums with
integer coefficients are identified with the actual Z-linear combination given by the Abelian
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group structure). We recall that as S is a closed surface of genus g, the set H1(S,R) is a
real vector space of dimension 2g.

We equip the homology H1(S,R) with a norm ‖ · ‖ and the intersection form ∧ coming
from the classical cup product on cohomology via Poincaré duality. This intersection
form coincides with the classical algebraic intersection number in restriction to elements of
H1(S,Z) (e.g. [Lel23]). Given a ∈ Γ, we denote [a] ∈ H1(S,R) its homology class.

Fix a bounded and measurable fundamental domain D ⊂ S̃ for the action of Γ on S̃
and let x 7→ x̃ denote the lift of x ∈ S to D. For each y ∈ S let ay ∈ Γ be the unique
element such that a−1

y f̃(ỹ) ∈ D.
The following definition is allowed by Birkhoff Ergodic Theorem.

Definition 1.1. Given an ergodic f -invariant probability measure µ, the homological ro-
tation vector of µ is

ρH1(µ) =

∫
S

[ay] dµ(y) = lim
n→+∞

1

n

n−1∑
i=0

[af i(x)], (1.2)

for µ-almost every x ∈ S. If x ∈ S satisfies (1.2), we will denote ρH1(x) = ρH1(µ).

Remark 1.2. This definition is independent of the choice of the fundamental domain D. To
see this, note that the deck transformation (axaf(x) · · · afn−1(x))

−1 sends f̃n(x̃) to D, and
that two fundamental domains are at bounded Hausdorff distance, and hence the sums on
the right of (1.2) associated to two different fundamental domains only differ by a constant
independent of n and x (see also Remark 4.3).

Definition 1.3 (Homological rotation sets). Let f ∈ Homeo0(S). The (homological) ro-
tation set ρH1(f) of f is the set of vectors r ∈ H1(S,R) such that there exists (xk)k ∈ SN

and (nk)k ∈ NN with limk→+∞ nk = +∞ and such that

lim
k→+∞

1

nk

nk−1∑
i=0

[af i(xk)] = r.

The ergodic (homological) rotation set ρerg
H1

(f) of f is

ρerg
H1

(f) =
{
ρH1(µ) | µ ∈Merg(f)

}
,

where Merg(f) is the set of f -invariant ergodic probability Borel measures.

It is trivial that the inclusion ρerg
H1

(f) ⊂ ρH1(f) always holds. We have moreover that
[Pol92, Corollary 1.2] ρH1(f) ⊂ conv ρerg

H1
(f). In the case of the torus, there is a more

precise description of the relations between these two sets.
Indeed, the same definition of rotation sets can be applied in the case of the two torus

T2, with the difference that the obtained sets do depend on the chosen lift f̃ of f ; however
the sets associated to two different lifts only differ by an integer translation.
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In [MZ90], Misiurewicz and Ziemian show that for f ∈ Homeo0(T2), the set ρH1(f̃)
is convex. It allows to prove directly that ρH1(f̃) = conv(ρerg

H1
(f̃)). In [MZ91] the same

authors prove that any point of the interior of ρH1(f̃) is realised as the rotation vector of
some ergodic measure, in other words int(ρH1(f̃)) = int(ρerg

H1
(f̃)). Under the hypothesis

that ρH1(f̃) has nonempty interior, Llibre and Mackay prove that the homeomorphism f
has positive topological entropy [LM91] and Franks shows that any rational point of the
interior of the rotation set is realised as the rotation vector of a periodic orbit [Fra89].

If, however, the set ρH1(f̃) is a segment, it can happen that the set ρerg
H1

(f̃) is totally
disconnected (think about a flow on the torus with a lot of essential Reeb components).

For higher genus surfaces, the difference between the sets ρH1(f) and ρerg
H1

(f) can be
much bigger: for example the equality ρH1(f) = conv(ρerg

H1
(f)) is no longer true (see Fig-

ure 12). While much progress has been done in the 35 last years to understand the dynam-
ical features of ρH1(f̃) in the torus case, there were to our knowledge only little progress in
higher genus. Most of these works suppose some property about the existence of a system
of periodic points (or orbits) having certain kind of rotational behaviour, hypothesis that
frequently implies that the rotation set is sufficiently big [Pol92, Hay95, Fra96, Mat97,
Boy09, AZdPJ21]. The only work getting rid of this kind of hypothesis is [Lel23], where
Lellouch gets the existence of horseshoes under the hypothesis of nontrivial intersection
number of the rotation vectors of two different ergodic measures. Part of the proof of
our main theorem will improve his result, involving in particular the use of some of his
techniques. Note also the work of Alonso, Brum and Passeggi that gets a structure theo-
rem for the rotation set ρH1(f) in the C0 generic case, by studying the case of Axiom A
diffeomorphisms [ABP23].

In the present work, we tackle the case of ρerg
H1

(f) in the hope it could be a gateway for
the understanding of ρH1(f). Still, the set ρerg

H1
(f) seems to have its own interest as — as we

will see — it carries important properties of the dynamics that cannot be seen directly on
the classical rotation set ρH1(f) (rotational horseshoes, rotational periodic points, pseudo-
Anosov components relative to a finite set. . . ).

Theorem A (Shape of ergodic rotation sets). Let f ∈ Homeo0(S), where S has genus g.
Then, its ergodic rotation set ρerg

H1
(f) can be written as

ρerg
H1

(f) = ρ1 ∪ ρ+,

where

1. The set ρ1 is included in the union of at most 3g − 3 lines.

2. The set ρ+ is the union of at most 3g − 3 sets ρ+
i , such that, for every i:

� The set ρ+
i spans a linear subspace Vi which has a basis formed by elements of

H1(S,Z);
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� The set ρ+
i is a convex set containing 0 (where denotes the topological closure);

� We have intVi(ρ
+
i ) = intVi(ρ

+
i ) (in other words, ρ+

i is convex up to the fact that
elements of ∂Vi(ρ

+
i ) \ extrem(ρ+

i ) can be in the complement of ρ+
i );

� Every element of intVi(ρ
+
i ) ∩H1(S,Q) is the rotation vector of some f -periodic

orbit (because Vi has a rational basis, such elements are dense in intVi(ρ
+
i )).

3. For every pair of vectors v, w ∈ ρerg
H1

(f) such that v ∧ w 6= 0, there exists i such that

v, w ∈ ρ+
i . In particular, span(ρ1) is a totally isotropic subspace.

Moreover, if ρerg
H1

(f) is not contained in a finite union of lines, then f has a rotational
horseshoe (see Definition 5.3) and hence htop(f) > 0.

Note that there is to our knowledge a single known obstruction for a compact and
convex subset of the plane to be the rotation set of a torus homeomorphism, due to Le
Calvez and Tal [LCT18]. Hence, obtaining restrictions on the possible shapes of the sets

ρ+
i seems to be a very difficult task.

Note also that there are examples of torus homeomorphisms with nonempty interior
rotation set whose ergodic rotation sets ρerg

H1
are not convex (more precisely, elements of

∂(ρerg
H1

) \ extrem(ρerg
H1

) do not belong to ρerg
H1

), see [MZ91, Section 3]. This construction can
be easily adapted to higher genus surfaces to show that one cannot hope having the full
convexity of the set ρ+

i .
The example of [GM23, Figure 1] shows that there are homeomorphisms of a closed

surface S of genus 2 with rotation set ρH1(f) having nonempty interior but ρerg
H1

(f) included
in the union of two planes of H1(S,R). Hence, the sets int(ρH1(f)) and int(ρerg

H1
(f)) are

in general different. This suggests that both invariants ρH1(f) and ρerg
H1

(f) have their own
interest, as Theorem A shows in particular that ρerg

H1
(f) encodes the rotational periodic

points and rotational horseshoes of f , while these cannot be deduced from ρH1(f) as can
be seen in [GM23, Figure 1] (but this latter set contains information about wandering
dynamics). The ergodic rotation set also encodes the action of the homeomorphism on the
fine curve graph [GM23].

We will obtain Theorem A as a consequence of homotopical (and not only homological)
properties of typical trajectories of ergodic measures: one of the morals of our proof strategy
is that one has to understand the homotopical properties of the orbits (in the sense of
[GM22]) to harvest consequences in the homological world.

Let us describe these properties that will lead to a more precise picture of the mech-
anisms giving birth to the decomposition of the ergodic rotation set. It will allow us to
state a more precise version of Theorem A in Theorem F.

1.2 Geodesic tracking

The key idea of our work is that there exists a tracking of orbits that are typical with
respect to some ergodic measure of the homeomorphism, by the orbits of the geodesic flow

5



of the surface. In some sense, the behaviour of typical points for some invariant measure
is encoded by a sub-dynamics of the geodesic flow, and one task is to understand to what
extent this parallel can be made rigorous. Let us first introduce some definitions. The
same kind of ideas is already formulated by Boyland in [Boy00].

Definition 1.4 (Rotation distance). For x ∈ S and n ∈ N, we define the rotation distance
Ln : S → [0,+∞) of x as

Ln(x) = d̃ist(x̃, f̃n(x̃)), (1.3)

where x̃ is any lift of x to S̃ (this last quantity does not depend on the chosen lift).

These functions are well defined and continuous by (1.1).

Definition 1.5 (Rotation speed). The rotation speed ϑ(x) of a point x ∈ S is the common
value of the following limits if they exist and coincide

ϑ(x) = lim
n→+∞

1

n
Ln(x) = lim

n→+∞

1

n
Ln(f−n(x)). (1.4)

Lemma 1.6 (Ergodic measures have rotation speed). Let µ be an f -invariant ergodic
probability on S. Then there exists a constant ϑµ, that we call the rotation speed of µ,
such that

ϑ(x) = ϑµ,

for µ-almost every point x ∈ S.

Proof. It comes from Kingman’s subadditive ergodic theorem applied to the maps Ln(x) =

d̃ist(x̃, f̃n(x̃)).

We will use the term geodesic to mean a local isometry γ : R→ S, and we will denote
by γ̇ : R→ T1S the lift of a geodesic to the unit tangent bundle T1S of S. The space of all
geodesics (up to reparametrization) is identified with T1S via γ 7→ γ̇(0) and in particular
is compact and metrizable.

Definition 1.7 (Tracking geodesic). We say x ∈ S admits a tracking geodesic γ if ϑ(x) > 0
and if for each lift x̃ of x, there exists a lift γ̃ of γ such that:

lim
n→+∞

1

n
d̃ist

(
f̃n(x̃), γ̃(nϑ(x)

)
= lim

n→+∞

1

n
d̃ist

(
f̃−n(x̃), γ̃(−nϑ(x)

)
= 0. (1.5)

Tracking geodesics (when they exist) are unique up to reparametrization by translation,
in particular the set γ̇(R) ⊂ T1S does not depend on the choice of tracking geodesic γ for
x.

Definition 1.8 (Normalized tracking geodesic). Given x ∈ S, we say a tracking geodesic
γx is normalized if there exist lifts x̃, γ̃x̃ satisfying Equation (1.5) and such that

d̃ist(x̃, γ̃x̃(0)) = d̃ist(x̃, γ̃x̃(R)) (1.6)
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Note that each point x admitting a tracking geodesic admits a unique normalized
tracking geodesic γx.

We denote byMerg
ϑ>0(f) the set of ergodic f -invariant probability measures with positive

rotation speed (defined by Lemma 1.6). The following result implies in particular that if
Merg

ϑ>0(f) is non-empty then there exist points admitting tracking geodesics.

Theorem B (Tracking geodesics). The set ST of points in S that admit a tracking geodesic
(Definition 1.7) is a Borel set, and has full measure for all µ ∈ Merg

ϑ>0(f). Furthermore,
there exists a Borel mapping x 7→ γx assigning to each x ∈ ST its normalized tracking
geodesic γx : R→ S (see Definition 1.8).

Theorem B was essentially proved for S̃ with non-positive sectional curvature satisfying
the visibility property in [Les11, Theorem 2 and Corollary 21]. However, for constant nega-
tive curvature the proof is much simpler so we will give it here for the sake of completeness.
It involves mainly geometry of the hyperbolic plane and ergodic theory.

A roughly equivalent result for flows on bundles over a hyperbolic base manifold was
proved in [Boy00, Lemmas 2.2 and 2.3]. This work can be adapted to the case of C1

diffeomorphisms on a closed hyperbolic surface by considering its suspension flow. It is
unclear to us (and to Philip Boyland himself) whether this proof strategy can be directly
adapted to the C0 case.

1.3 Equidistribution of tracking geodesics and minimal laminations

The next step is to understand what happens collectively for tracking geodesics associated
to some f -ergodic measure µ with positive rotation speed. In particular, we get that
tracking geodesics of a µ-typical point equidistribute to a measure νµ on T1S; moreover
the measure νµ is invariant and ergodic for the geodesic flow (Theorem C). The support
of this measure νµ gives a set Λ̇µ ⊂ T1S naturally associated to µ, which is invariant and
transitive under the geodesic flow.

Definition 1.9. We say a geodesic γ equidistributes to a probability measure ν on T1S if
for every continuous function ϕ : T1S → R we have

lim
T→+∞

1

T

∫ T

0
ϕ(γ̇(t)) dt = lim

T→+∞

1

T

∫ 0

−T
ϕ(γ̇(t)) dt =

∫
T1S

ϕ(v) dν(v).

We recall that the support of a probability measure is the smallest closed set with full
measure.

Theorem C (Equidistribution of tracking geodesics). For each µ ∈Merg
ϑ>0(f) there exists

a probability measure νµ on T1S such that γx equidistributes to νµ for µ-a.e. x ∈ S.
Furthermore, the measure νµ is invariant and ergodic with respect to the geodesic flow on
T1S. Its support is equal to

Λ̇µ := supp(νµ) = γ̇x(R)
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for µ-a.e. x ∈ S

We will denote by Λµ the projection of Λ̇µ on S.
We say a geodesic is simple if it has no transverse self-intersections. Such a geodesic is

either injective, or periodic (closed). A particularly interesting consequence of Theorem C
is obtained when tracking geodesics are simple. Recall that a geodesic lamination is a
closed set Λ ⊂ S of the form

Λ =
⋃
x∈Λ

βx(R),

where each βx is a simple geodesic with βx(0) = x, and for all x, y ∈ Λ one has that βx(R)
and βy(R) are either disjoint or coincide. A geodesic lamination is said to be minimal if

Λ = βx(R) for all x ∈ Λ.

Theorem D (Simple tracking geodesics). Suppose µ ∈Merg
ϑ>0(f) is such that γx is simple

for µ-a.e. x ∈ S. Then there exists a minimal geodesic lamination Λµ ⊂ S such that, for
µ-a.e. x ∈ S,

γx(R) = Λµ.

It is therefore natural to look for a criterion ensuring that the tracking geodesics are
simple. This is performed in the next step of the proof.

1.4 Intersections of tracking geodesics

We then prove that the intersection of some tracking geodesics implies the existence of new
orbits with some type of rotational behaviour.

Let us recall the definition of homotopic rotation set in the sense of [GM22]. In the
following we will denote the geodesics of S̃ ' H2 by the couple (α, ω) of their endpoints in
∂S̃ ' S1.

Definition 1.10. A triple (α, ω, v) ∈ ∂S̃ × ∂S̃ × (0,+∞) is a rotation vector in the sense
of [GM22] if there exists a sequence x̃k in S̃ and an increasing sequence nk of integers
tending to +∞ such that

lim
k→+∞

x̃k = α, lim
k→+∞

f̃nk(x̃k) = ω,

and

v = lim
k→+∞

1

nk
d̃ist

(
pr(α,ω)(x̃k), pr(α,ω)(f̃

nk(x̃k))
)
,

where pr(α,ω) denotes the orthogonal projection on the geodesic (α, ω).

Definition 1.11. Let µ, µ′ ∈ Merg
ϑ>0(f). We will say that µ and µ′ are dynamically trans-

verse if there exist v ∈ Λ̇µ, v
′ ∈ Λ̇µ′ such that πS(v) = πS(v′) and v 6= v′.
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Note that if v, v′ ∈ T1S are as in last definition, then any pair of geodesics γ, γ′ such
that γ(t) = v, γ′(t′) = v′ for some t, t′ ∈ R, intersect transversally.

In the following theorem, if x is a point having a tracking geodesic γx, and if γ̃x̃ is a
lift of this geodesic to S̃, we denote α(x̃), ω(x̃) ∈ ∂S̃ the α and ω-limits of γ̃x̃.

Theorem E (Intersections of tracking geodesics and rotation sets). Suppose there exist
µ1, µ2 ∈Merg

ϑ>0(f) which are dynamically transverse. Then:

� The homeomorphism f has a topological rotational horseshoe (see Definition 5.3),
and in particular has positive topological entropy;

� Both
(
α(x̃1), ω(x̃2),max(ϑµ1 , ϑµ2)

)
and

(
α(x̃2), ω(x̃1),max(ϑµ1 , ϑµ2)

)
are rotation vec-

tors in the sense of [GM22];

� For any r ∈ H1(S,R) in the triangle spanned by 0, ρH1(µ1), ρH1(µ2) and any ε > 0,
there exists a periodic point z ∈ S such that ‖ρH1(z)− r‖ ≤ ε.

We will need an improved version of this statement for the proof of Theorem F, we
postpone this statement to Section 5.3 (Theorem 5.8).

Theorem E improves [GM22, Proposition C] in the case of points that are typical for
some measure, and generalizes [GM22, Theorem F] (with weaker conclusions) in the case
where the geodesics are not closed. Note that Theorem E strictly improves Lellouch’s
theorem about the existence of horseshoes and new rotation vectors of ρerg

H1
in the case

of rotation vectors of ergodic measures having nonzero intersection in homology [Lel23,
Théorème A, Théorème C]: indeed, Proposition 4.7 ensures that if two ergodic measures
have rotation vectors with nontrivial intersection in homology, then some tracking geodesics
for typical points for these measures do intersect.

The proof of Theorem E is the most technical part of this article; it involves the powerful
forcing theory of Le Calvez and Tal [LCT18, LCT22], which is based on the equivariant
Brouwer theory of Le Calvez [LC05].

1.5 Rotation sets and tracking geodesics

We are now ready to state an improved version of Theorem A. The pieces of the rotation
set’s decomposition are obtained as equivalence classes for the following relation involving
intersections of tracking geodesics.

Let us define the equivalence relation1 ∼ onMerg
ϑ>0(f) by: µ1 ∼ µ2 if one of the following

is true (see right after Theorem C for the definition of the set Λµ):

� Λµ1 = Λµ2 ;

� There exist τ1, . . . , τm ∈Merg
ϑ>0(f) such that τ1 = µ1, τm = µ2 and for all 1 ≤ i < m,

the measures τi and τi+1 are dynamically transverse.

1This is inspired from the equivalence relation of [GM23].
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The fact that this is an equivalence relation is straightforward. We then denote {Ni}i∈I =
Merg

ϑ>0(f)/ ∼ the equivalence classes of ∼. We call I1 the set of classes with the property
that any two measures µ1 and µ2 of Ni satisfy Λµ1 = Λµ2 ; we will see that by Theorem 5.8
this implies that the geodesics corresponding to vectors in Λ̇µ1 are simple. Let I+ denote
the other classes, which are such that for any µ ∈ Ni with i ∈ I+, there exists µ′ ∈Merg

ϑ>0(f)
such that µ and µ′ are dynamically transverse.

This decomposition into classes leads to the main theorem of our article, which improves
Theorem A:

Theorem F. Let f ∈ Homeo0(S). Write

Merg
ϑ>0(f) =

⊔
i∈I
Ni =

⊔
i∈I1
Ni t

⊔
i∈I+
Ni

the decomposition of the set of ergodic measures with positive rotation speed into equivalence
classes for the relation ∼ such that, and denote for i ∈ I,

ρi =
{
ρH1(µ) | µ ∈ Ni

}
, Vi = Span(ρi), Λi =

⋃
µ∈Ni

Λµ.

then:

1. For every i ∈ I1, we have

� Λi is a minimal geodesic lamination of S.

� ρI1 =
⋃
i∈I1

ρi is included in a union of at most 3g − 3 lines of H1(S,R).

2. If I+ 6= ∅, then f has a topological horseshoe (and in particular, positive topological
entropy), and for every i ∈ I+:

� The linear subspace Vi has a basis formed by elements of H1(S,Z);

� The set ρi is a convex set containing 0;

� We have intVi(ρi) = intVi(ρi) (in other words, ρi is convex up to the fact that
elements of ∂Vi(ρi) \ extrem(ρi) can be in the complement of ρi);

� Every element of intVi(ρi) ∩H1(S,Q) is the rotation vector of some f -periodic
orbit (because Vi has a rational basis, such elements are dense in intVi(ρi)).

3. For i, j ∈ I, i 6= j, for vi ∈ Vi and vj ∈ Vj, we have vi∧vj = 0. Moreover, if i, j ∈ I1,
then Λi ∩ Λj = ∅.

4. Card(I) ≤ 6g − 6. More precisely, Card I1 ≤ 3g − 3 and Card I+ ≤ 3g − 3.
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Note that for i ∈ I+, we have some kind of “quantitative estimate” about the periods
of the periodic points realizing the vectors of intVi(ρi) ∩H1(S,Q): for any finite set F ⊂
intVi(ρi), denoting R = conv({0}, F ), there exists a constant M > 0 such that for any
p/q ∈ R ∩H1(S,Q), with p ∈ H1(S,Z) and q ∈ N∗, there exists a f -periodic point with its
period dividing Mq and with rotation vector p/q.

1.6 Zero entropy homeomorphisms

A direct consequence of Theorem F is that if the topological entropy of f is zero then
there are no pieces of dimension ≥ 2 in the rotation set. The study of zero entropy surface
homeomorphisms has a long story and was one of the motivations of the present work.

1.6.1 Handel’s preprint

Let htop(f) denote the topological entropy of f . In an unpublished preprint, among many
interesting results, the idea was put forth (see [Han86, Theorem 2.5]) that if htop(f) = 0,
then all f -orbits should track a geodesic lamination Λ ⊂ S (at least during the time when
they are far from the set of fixed points of f).

Many of the results and techniques of [Han86] are by now well known. For example,
a fixed point result used to exclude oriented cycles from the dynamics has now received
several proofs and improvements in [Han99], [LC06], [Xav12], [Xav13], and [LC21]. Some
of the Homotopy Brouwer Theory has been developed for example in [LR17]. Some results
for area preserving zero entropy homeomorphisms of the two-sphere appear in [FH12]. The
new technique of forcing developed by Le Calvez and Tal [LCT18] has recently been used
to obtain many results, including further results on the two-sphere, and a proof of [Han86,
Theorem 9.1] for annulus homeomorphisms (see [LCT22]).

However, as far as the authors are aware, there is still no published, or even widely
accepted, proof of [Han86, Theorem 2.5].

1.6.2 Flows

Let us consider first the case where f is the time-one map of a flow on S. In this case it
was shown in [You77] that htop(f) = 0.

In this context, the solution to the so-called Anosov-Weil problem for flows (see [Nik01,
Theorems 5.1.2 and 5.5.1], and also [AGZ95], [AGZ01]) implies that, if f is the time-one
map of a C∞ flow on S and has a finite number of fixed points, then each f̃ -orbit is either
bounded, at bounded distance from a geodesic ray, or at bounded distance from a geodesic.
Because different flow lines do not intersect, the projection to S of all geodesics occuring
in the last case will belong to some geodesic lamination Λ ⊂ S. Hence, in this case, a
complete picture of tracking by a geodesic lamination is available.
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We note that some results of this kind pertaining to flows predate Handel’s preprint,
such as the classification up to orbit equivalence of certain transitive flows [AG74] (see also
[AG78]).

1.6.3 Non-contractible periodic points

Without assuming that f is the time-one map of a flow, a complete picture of tracking by
geodesic laminations is attainable for periodic orbits.

The technique involved consists of puncturing S on some finite f -invariant set and using
the Nielsen-Thurston classification of homeomorphisms up to isotopy on the punctured
surface [Thu88].

This idea has been previously used to ensure the existence of positive entropy, given a
certain configuration of periodic points (for example in [LM91], [Pol92], and [Mat97]). But
the particular result below seems to have no published (or even well known) proof, so we
include one here.

We say an f -periodic point x ∈ S with minimal period n is non-contractible if for some
lift x̃ one has f̃n(x̃) 6= x̃. In this case, there is a loxodromic element in Γ taking x̃ to f̃n(x̃)
and its axis projects to a normalized tracking γx for x which is closed.

Theorem 1.12 (Tracking of non-contractible periodic orbits by a geodesic lamination). ´

Let f ∈ Homeo0(S) be such that htop(f) = 0. Then there exists a finite union of pairwise
disjoint simple closed geodesics Λ =

⊔
i αi(R) such that γx(R) ⊂ Λ for all non-contractible

periodic points x ∈ S.

Proof. First suppose that there exists a non-contractible periodic point x with minimal
period n such that γx is not simple.

Let g = fn and let t 7→ gt be an isotopy from the identity to g. Since Homeo0(S) is
contractible (see [Ham66]), the free homotopy class of the closed curve t 7→ gt(x) given by
this isotopy is independent of the given isotopy. Let us call this class [α].

The class [α] is some power of the free homotopy class of γx restricted to its minimal
period. In particular, there is no simple curve in [α].

From [Kra81, Theorem 2] this implies that the Nielsen-Thurston class of g on S \ {x}
contains a pseudo-Anosov component. Hence, from [Boy94, Theorem 7.7], g has positive
entropy, which implies that f does as well.

Now suppose that x 6= y are non-contractible periodic points whose tracking geodesics
are simple but intersect transversally. Similarly, to the previous case we consider g = fn

for n the minimal common period of x and y.
Again because geodesics minimize the geometric intersection number in their free ho-

motopy class, the classes [α] and [β] of the isotopy curves t 7→ gt(x) and t 7→ gt(y) have
positive intersection number.

From [IIY03, Main Theorem] this implies that g has a pseudo-Anosov, and hence f has
positive entropy as before.

12



From the two cases above we obtain that if htop(f) = 0 then

Λ =
⋃
γx(R),

is a finite union of pairwise disjoint simple closed geodesics, as required.

1.6.4 Forcing

The more recent techniques of foliations by Brouwer lines [LC05], and forcing [LCT18,
LCT22, Gui21], have allowed in [GM22] extensions of the previous results to non-periodic
orbits (and the present work is another example of this). In particular [GM22, Theorem
E] roughly states that if there is a trajectory following a closed geodesic in S at positive
speed, then either the geodesic has no transverse self-intersections or htop(f) > 0.

1.6.5 Non-hyperbolic surfaces

Note that the case of other closed surfaces (i.e. the sphere S2 and the torus T2) are way
better understood.

For the sphere, Franks and Handel [FH12] (for smooth area-preserving diffeomorphisms)
and then Le Calvez and Tal [LCT18, LCT22] (for general homeomorphisms) obtained a
classification of the non wandering set of homeomorphisms of S2 having zero entropy (or
more generally without topological horseshoe): roughly speaking, this non wandering set
is covered by a family of invariant annuli on which all points turn in the same direction.

There is, to our knowledge, no tentative of systematic classification of zero entropy
torus homeomorphisms. From Llibre and Mackay [LM91], such homeomorphisms must
have their rotation set included in some line of the plane. Hence, for any homeomorphism
f ∈ Homeo0(T2), there is a line D of the plane such that any lifting orbit (f̃n(x̃))n in the
universal cover R2 of T2 stays at sublinear distance from D.

In some cases, it is possible to prove that this distance stays finite (a property called
“bounded deviation” or “bounded displacement”), proving that the dynamics is really much
like the one of a flow. It is proven true if the rotation set is a non-degenerate line segment
and if the homeomorphism has at least one periodic point [GKT14, Dáv18, SST22], or if
the homeomorphism preserves the area and has its fixed point set nonempty and contained
in a topological disk [LT22].

1.6.6 A consequence of Theorem F

A particularly interesting consequence of Theorem F is a weakened form of tracking by
a geodesic lamination (compared to Handel’s conjecture), which applies only to generic
points with respect to certain f -invariant ergodic measures:
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Corollary G (Ergodic measures are tracked by geodesic laminations). Let f ∈ Homeo0(S).
If f has no topological horseshoe2 then for each measure µ ∈ Merg

ϑ>0(f) (meaning that µ
is f -invariant, ergodic, and with positive rotation speed, see Lemma 1.6 and (1.4)) there
exists a minimal geodesic lamination Λµ ⊂ S such that

γx(R) = Λµ,

for µ-almost every point x ∈ S, where γx is given by Theorem B.
Furthermore, for each pair µ, µ′ ∈ Merg

ϑ>0(f) one has that either Λµ and Λµ′ are equal
or they are disjoint.

The set
Λ =

⋃
µ∈Merg

ϑ>0(f)

Λµ, (1.7)

is a geodesic lamination, which has at most 3g − 3 minimal sublaminations.

Since each non-contractible periodic orbit supports a measure inMerg
ϑ>0(f), the corollary

above generalizes Theorem 1.12.

1.6.7 Examples with non-trivial laminations

The last section of the present article is devoted to some examples of dynamics in closed
hyperbolic surfaces. We observe that, even though we have γ̇x(R) = γ̇f(x)(R) for all x ∈ ST ,
this does not imply that γ̇x(R) is µ-a.e. constant for each µ ∈Merg

ϑ>0(f). This is due to the
fact that space of orbits of the geodesic flow on T1S is non-Hausdorff. In fact, non-trivial
laminations may occur in Theorem B.

Proposition H (Ergodic measures with many tracking geodesics). For every closed ori-
entable hyperbolic surface S there exists a homeomorphism f ∈ Homeo0(S), and µ ∈
Merg

ϑ>0(f) such that the map
x 7→ γ̇x(R),

is not µ-a.e. constant, where x 7→ γx is given by Theorem B. More precisely, for any
measurable set E ⊂ S such that µ(E) > 0, the set {γ̇x(R) | x ∈ E} is uncountable.

Two constructions are indicated in [Han86, example S and example Λ]. The first,
credited to Stepanov, is to take an irrational flow on the two torus, slow it down to add
two fixed points, blow these points up to circles and paste. The second, is to directly
consider a non-trivial minimal orientable lamination Λ and let f be the time-one map of
the flow of a vector field which is non-zero and tangent along Λ. We provide details of
these constructions for the sake of completeness.

2In particular, if htop(f) = 0.
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1.7 Some open questions

Here are some open questions raised by the techniques developped in the present paper.

A) Get sharp estimates for the number of classes. In particular, one would like to define
a subsurface of S associated to each class and get an estimate of the number of classes
that depends on the topological properties (like the genus) of such surfaces. Also,
it seems like the bound 3g − 3 of number of classes of I+ (in Theorem F) could be
improved to 2g − 2, that would be optimal (see the example of Figure 11).

B) Is it true that if i, j ∈ I with i 6= j, then Λi ∩ Λj = ∅? We only prove this result in
restriction to the set I1.

C) Are the laminations Λi, for i ∈ I1, orientable? At least, the tracking geodesics of
these laminations get an orientation from the orbits that produce them.

D) Could one get applications of this work to the “classical” rotation set ρH1? Is this
latter set a finite union of convex sets? Is it convex when it has nonempty interior ? In
both those directions, the present work about typical points may be used as a fulcrum
to tackle the case of other orbits: in the case of zero entropy homeomorphisms, is the
set Λ of (1.7) sufficient to describe the asymptotic behaviour of all non-wandering
orbits?

E) Is it possible to get results of bounded displacement with respect to the rotation set
ρH1 , under weaker hypothesis than [AZdPJ21, Lel23]?

F) Consider the flip on T1S sending each unit tangent vector to its opposite. We notice
that since geodesic currents are in bijection with flip invariant positive measures on
T1S which are invariant under the geodesic flow (see for example [ES22, Theorem
3.4]), symmetrizing the measures in Rf by the flip yields a natural family of geodesic
currents associated to f . Given a closed geodesic C, the intersection number of these
currents with C encodes the rate of intersection of isotopy curves f with C. Hence,
they also seem like a natural object for further study. Also, it could be possible that
considering the suspension φf of the homeomorphism f , equipped with the suspension
dt⊗µ of the f -ergodic measure µ yields as in [Boy00] to a semi-conjugation between
the measured flows (φf , dt⊗ µ) and the geodesic flow on T1S equipped with νµ.

G) There is still quite a large gap between our Corollary G and [Han86, Theorem 2.5].
Of course, one would like to be able to describe not only the orbits that are typical
for measures but all of them, or at least the ones having some form of recurrence
(e.g. recurrent or non wandering). One could also ask whether our conclusions can
be strengthened to get bounded deviations from the geodesics in the the zero entropy
case. Note that at the end of Section 7.2 of [GM22] there is an example (based
on a construction of Koropecki and Tal) of an “almost annular” homeomorphism

15



that has unbounded displacements in all directions not intersecting the direction of
some embedded invariant annulus A, but nontrivial rotation set in restriction to the
annulus A.

1.8 Organization of the paper

We devote Section 2 to getting to the proof of Theorem B.
In Section 3 we prove that for µ ∈ Merg

ϑ>0(f), almost all tracking geodesics equidis-
tribute to the same measure, and thus we obtain Theorem C. We also show that under the
assumption that tracking geodesics are simple, this yields a minimal lamination containing
almost every tracking geodesic, which proves Theorem D.

In Section 4 we link geodesic tracking with a notion of homotopical rotation. We also
show that ergodic measures with non-zero homological rotation belong to Merg

ϑ>0(f).
In Section 5 we show that if f does not contain a topological horshoe then generic

tracking geodesics for measures µ, µ′ ∈Merg
ϑ>0(f) cannot intersect transversally.

These results are combined to prove Theorem 6.1, which yields a partition ofMerg
ϑ>0(f)

into rotationally disjoint equivalence classes. This allows to obtain Theorem A as a byprod-
uct. By restricting these results to the zero-entropy context, we recover Corollary G. All
of this is done in Section 6.

The examples of Proposition H are constructed in Section 7.
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2 Tracking geodesics — proof of Theorem B

The goal of this section is to prove Theorem B. First, we prove that the set ST of points
admitting a tracking geodesic (Theorem 1.7) is equal to the set S′T of points with positive
rotation speed (Theorem 1.5) whose limit points in ∂H2 are different (Lemma 2.2). Then,
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we prove in Lemma 2.3 that points which are typical for some ergodic measure with positive
rotation speed, belong to S′T .

2.1 Characterization of geodesic tracking

We first show that the set ST of points admitting a tracking geodesic (Theorem 1.7), and
the mapping x 7→ γx, are both Borel measurable.

For this purpose, endow X = RN with the topology of pointwise convergence and X×X
with the product topology.

We observe that the subset L ⊂ X consisting of Cauchy sequences, and the subset
E ⊂ X ×X of pairs of sequences ((xn), (yn)), such that lim

n→+∞
|xn − yn| = 0, are Borel.

It is immediate that the following mappings into X are continuous (recall that Ln is

defined in (1.3) by Ln(x) = d̃ist(x̃, f̃n(x̃)))

ϕ1(x) =

(
1

n
Ln(x)

)
n∈N

, ϕ2(x) =

(
1

n
Ln(f−n(x))

)
n∈N

,

and therefore the mapping ϕ3 = (ϕ1, ϕ2) into X ×X is continuous as well.
It follows that the set

Sϑ = {x ∈ S : ϕ1(x) ∈ L, ϕ2(x) ∈ L, ϕ3(x) ∈ E},

of points x having a well defined rotation speed ϑ(x) (defined in (1.4)) is a Borel subset of
S.

Since for each ε > 0, the set Xε of sequences in X eventually greater than ε is Borel,
we obtain that the set

Sϑ>0 = Sϑ ∩
⋃
n∈N
{x ∈ S : ϕ1(x) ∈ X 1

n
}

of points with positive rotation speed is Borel as well.
We fix from now on a measurable section x 7→ x̃ of the covering projection π : S̃ → S,

i.e. a Borel mapping such that π(x̃) = x for all x ∈ S. This exists by general measurable
selection theorems, and also may be constructed from a polygonal fundamental domain for
the group Γ of cover transformations.

We identify S̃ with the unit disc H2 = {z ∈ C : |z| < 1} and d̃ist with the Poincaré
metric on H2.

Lemma 2.1. For each x ∈ Sϑ>0 and any lift x̃ of x, there exist α(x̃), ω(x̃) ∈ ∂H2 = {z ∈
C : |z| = 1} such that α(x̃) = limn→+∞ f̃

−n(x̃) and ω(x̃) = limn→+∞ f̃
n(x̃).

Furthermore, if β−, β+ : [0,+∞)→ R are geodesic rays with limit points α(x̃) and ω(x̃)
respectively, then

0 = lim
n→+∞

1

n
d̃ist

(
f̃n(x̃), β+(R)

)
= lim

n→+∞

1

n
d̃ist

(
f̃−n(x̃), β−(R)

)
.
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Proof. We will prove the existence of ω(x̃) and tracking property for the ray β+. Applying
this to f−1 yields the result for α(x̃) and β− as well.

For this purpose, fix the origin O as O = β+(0), which allows to Euclidean polar
coordinates f̃n(x̃) = rn exp(iθn).

Picking 0 < a < ϑ(x) (defined in (1.4)) we have

an < d̃ist(O, f̃n(x̃)),

for all n large enough. In particular, this implies that limn→+∞ rn = 1 since the Poincaré
metric is bi-lipschitz with respect to the Euclidean metric on compact subsets of H2.

To control θn we observe that since L1 : S → R, x 7→ d̃ist(x̃, f̃(x̃)) is continuous, there
exists b > 0 such that, for all n ∈ Z,

d̃ist(f̃n(x̃), f̃n+1(x̃)) ≤ b.

We now consider the hyperbolic triangle with vertices O, f̃n(x̃) and f̃n+1(x̃), and notice
that the angle at O (for the Poincaré metric) is |θn − θn+1| because the Poincaré metric is
conformal with respect to the Euclidean one. By the hyperbolic law of sines we have

sin(|θn − θn+1|) ≤ sinh(b) sinh(an)−1, (2.1)

for all n large enough, and in particular (θn)n∈N is a Cauchy sequence, hence converges.
We may suppose that β+ is the geodesic ray from O to ω(x̃). We fix ε > 0, ε < ϑ,

denote by dn = d̃ist(f̃n(x̃), β+(R)), and set θ = limn→+∞ θn and ϑ = ϑ(x).
From (2.1) applied to a = ϑ− ε/2 and the definition of ϑ we obtain

|θ − θn| ≤ exp(−(ϑ− ε)n),

and
d̃ist(O, f̃n(x̃)) ≤ (ϑ+ ε)n,

for all n large enough.
We apply the hyperbolic law of sines to the triangle O, f̃n(x̃), pn where pn is the closest

point to f̃n(x̃) in β+(R). This yields:

sinh(dn)

sin(|θ − θn|)
=

sinh(d̃ist(O, f̃n(x̃))

sin(π/2)
≤ sinh((ϑ+ ε)n),

for all n large enough.
It follows that

sinh dn ≤ e−(ϑ−ε)ne−(ϑ+ε)n = e2εn,

and hence dn ≤ 4εn for all n large enough, which since ε > 0 was arbitrary yields

lim
n→+∞

1

n
dn = 0,

as required.
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We now consider the set S′T defined by

S′T = {x ∈ Sϑ>0 | α(x̃) 6= ω(x̃)}.

Since by Lemma 2.1 one has that α(x̃) and ω(x̃) are well defined on Sϑ>0, it follows
that they are Borel measurable and therefore S′T is a Borel set.

The claim that the set ST of points in S admitting a tracking geodesic is Borel mea-
surable now follows from the following lemma.

Lemma 2.2. One has ST = S′T .

Proof. ST ⊂ S′T: Suppose first that x ∈ ST . By definition, ϑ(x) > 0, so it follows by
Lemma 2.1 that ω(x̃) and α(x̃) exist. Now let γ̃ be the geodesic satisfying the tracking
Equation (1.5); we will show that α(x̃) = limt→+∞ γ̃(−t) and ω(x̃) = limt→+∞ γ̃(t) which
will imply that α(x̃) 6= ω(x̃).

Again it suffices to establish ω(x̃) = limt→+∞ γ̃(t) since the other claim follows applying
this to f−1.

From the definition (1.5) of tracking geodesics, for each ε > 0 one has

d̃ist
(
f̃n(x̃), γ̃(nϑ(x))

)
≤ εn

and
(ϑ(x)− ε)n < d̃ist

(
γ̃(nϑ(x)), γ̃(0)

)
,

for all n large enough.
Applying the hyperbolic law of sines to the hyperbolic triangle with vertices γ̃(0), f̃n(x̃),

and γ̃(nϑ(x)), denoting by θn the angle at γ̃(0) we obtain

sin(θn) ≤ sinh(εn) sinh((ϑ(x)− ε)n)−1,

for all n large enough. Taking ε < ϑ(x)/2, this implies that limn→+∞ θn = 0, and hence,
ω(x̃) = limt→+∞ γ̃(t) as claimed.

From this we obtain that α(x̃) 6= ω(x̃); we have proved that ST ⊂ S′T .

S′T ⊂ ST: We now suppose that x ∈ S′T ; let γ̃ denote the unique geodesic with
limt→−∞ γ̃(t) = α(x̃) and limt→+∞ γ̃(t) = ω(x̃).

Let tn ∈ R and rn ≥ 0 be defined by

rn = d̃ist
(
f̃n(x̃), γ̃(tn)

)
= d̃ist

(
f̃n(x̃), γ̃(R)

)
, (2.2)

and observe that since ω(x̃) = lim
t→+∞

γ̃(t) we have

lim
n→+∞

tn = +∞. (2.3)
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From the triangle inequality it follows that

ϑ = ϑ(x) = lim
n→+∞

1

n
d̃ist

(
x̃, f̃n(x̃)

)
≤ lim inf

n→+∞

tn + rn
n

. (2.4)

Suppose that there exists ε > 0 such that

tn
n
≤ (1− ε)ϑ, (2.5)

for infinitely many n ≥ 0. Fix b = maxL1, and let R > 0 be such that

cosh(R)−1b ≤ (1− ε)ϑ, (2.6)

and N be large enough so that (see equation (2.4))

ε

2
ϑn > R+ b and

(
1− ε

2

)
ϑ ≤ tn + rn

n
. (2.7)

for all n ≥ N .
If n ≥ N satisfies the inequality (2.5) then by the second inequality of (2.7) we have

rn ≥
ε

2
ϑn, (2.8)

but, from the first inequality of (2.7) this implies that rn > R+b and hence that rn+1 > R.
The Fermi coordinates (t, r) given by projection and distance to a geodesic are dr2 +
cosh(r)2 dt2 and hence we obtain for the n under consideration

|tn+1 − tn| ≤ b cosh(min(rn, rn+1))−1 ≤ b cosh(R)−1 ≤ (1− ε)ϑ,

by inequality (2.6).
It follows that, using (2.5) once again,

tn+1

n+ 1
=
tn+1 − tn + tn

n+ 1
≤ (1− ε)ϑ+ n(1− ε)ϑ

n+ 1
= (1− ε)ϑ

and by induction we have (2.5) for all n large enough.
But this implies that (2.8) holds for all n large enough and therefore

|tn+1 − tn| ≤ b cosh(nεϑ/2)−1,

for all n large enough.
However, this contradicts Equation (2.3), so we have shown that

ϑ ≤ lim inf
n→+∞

tn
n
. (2.9)
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Consider the hyperbolic triangle with vertices γ̃(0), γ̃(tn), f̃n(x̃); its sides have length

tn, rn and dn = d̃ist(γ̃(0), f̃n(x̃)). The angle between the sides of length tn and rn is a right
angle so one has dn ≥ tn. However, by hypothesis

lim
n→+∞

1

n
dn = ϑ(x),

so it follows that

lim sup
n→+∞

tn
n
≤ ϑ(x),

which, combined with (2.9), implies that

lim
n→+∞

tn
n

= ϑ(x). (2.10)

Hence, by applying the hyperbolic law of cosines and Equation (2.10) for the last line,
we obtain

ϑ(x) = lim
n→+∞

1

n
dn

= lim
n→+∞

1

n
log cosh(dn)

= lim
n→+∞

1

n
log
(

cosh(tn) cosh(rn)
)

= lim
n→+∞

(
1

n
tn +

1

n
rn

)
,

= ϑ(x) + lim
n→+∞

1

n
rn,

from where we deduce that limn→+∞
1
nrn = 0.

This implies by the triangle inequality that the tracking Equation (1.5) is satisfied
for the positive iterates of f̃ . The same argument shows that Equation (1.5) is satisfied
for negative iterates of x̃ as well. To conclude we obtain that since f̃ commutes with Γ
(Equation (1.1)) the projection of γ̃ to S is a tracking geodesic for x.

We observe that the mapping ϕ assigning to a triplet (α, ω, r) with α, ω ∈ ∂H2 distinct
and r ∈ H2, the geodesic γ̃ joining α to ω – with γ̃(0) being the closest point to r –,
is continuous. In view of Lemma 2.2 the measurability of x 7→ γx follows since it is a
composition of this mapping at (α(x̃), ω(x̃), x̃) with π.

2.2 Ergodic measures and tracking geodesics

If µ ∈ Merg
ϑ>0(f) then by definition µ(Sϑ>0) = 1 and by Lemma 2.1, the limit points α(x̃)

and ω(x̃) are well defined at µ-almost every point.
The fact that ST has full measure for µ, and hence the statement of Theorem B, follows

from Lemma 2.2 and the following result.
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Lemma 2.3. For each µ ∈Merg
ϑ>0(f) one has α(x̃) 6= ω(x̃) for µ-a.e. x ∈ S.

Proof. Let β+, β− be the geodesic rays from a basepointO to α(x̃) and β(x̃) as in Lemma 2.1.
We consider the Busemann functions B+ and B− associated to these geodesic half rays,

that is
B±(y) = lim

t→+∞

(
t− d̃ist(y, β±(t))

)
.

We will use that B± is 1-Lipschitz and B±(β±(t)) = t.
Let ϕ± : S → R be defined by

ϕ±(x) = B±(f̃(x̃))−B±(x̃),

where x̃ is any lift of x.
Because B± is 1-Lipschitz, ϕ± is bounded above by L1 and therefore integrable on S.

By Birkhoff ergodic theorem we have∫
S
ϕ±(x) dµ(x) = lim

n→+∞

1

n

n−1∑
k=0

ϕ±(fk(x)) = − lim
n→+∞

1

n

n∑
k=1

ϕ±(f−k(x)). (2.11)

Lemma 2.1, says that for µ-a.e. x and any lift x̃,

0 = lim
n→+∞

1

n
d̃ist

(
f̃n(x̃), β+(R)

)
,

so, using the fact that β+ is 1-Lipschitz, the definition (1.5) of the rotation speed ϑ and
B+(β+(t)) = t, one gets

ϑ = lim
n→+∞

1

n
B+(f̃n(x̃)) = − lim

n→+∞

1

n
B+(f̃−n(x̃)) = lim

n→+∞

1

n
B−(f̃−n(x̃)),

which implies B+ 6= B−, and hence α(x̃) 6= ω(x̃).

3 Equidistribution of tracking geodesics and minimal lami-
nations — proof of Theorems C and D

3.1 Proof of equidistribution

For each x ∈ S consider a lift x̃ and the corresponding lift γ̃x̃ of γx satisfying the tracking
Equation (1.5).

Let T (x) be the difference between the projections of x̃ and f̃(x̃) on γ̃x̃ measured by
the parametrization of γ̃x̃ by R, in other words

d̃ist(f̃(x̃), γ̃x̃(R)) = d̃ist(f̃(x̃), γ̃x̃(T (x))).
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Recall that by definition of the parametrization of γ̃x̃, one has

d̃ist(x̃, γ̃x̃(R)) = d̃ist(x̃, γ̃x̃(0)).

Notice that T is measurable, and well defined by Equation (1.1). We also have:

Claim 3.1. T : S → R is bounded from above by L̂1 = maxx∈S L1(x).

Proof. Let x ∈ S, let x̃ a lift of x, and take Fermi coordinates (t, r) with respect to
the geodesic γ̃x̃. Note that the t-coordinates of x̃ and f̃(x̃) are 0 and T (x), respectively.
Recalling that in these coordinates we have that ds2 = dr2 + cosh(r)2dt2, we obtain that

L1(x) = d̃ist(f̃(x), x̃) ≥ T (x).

Defining Tn for n ∈ N by

Tn(x) = T (x) + T (f(x)) + · · ·+ T (fn−1(x)),

we have
d̃ist

(
f̃n(x̃), γ̃x̃(R)

)
= d̃ist

(
f̃n(x̃), γ̃x̃(Tn(x))

)
.

From this observation, Birkhoff ergodic theorem and the tracking equation, we obtain
the following.

Remark 3.2. For each µ ∈Merg
ϑ>0(f), the rotation speed defined in (1.5) satisfies

ϑµ =

∫
S
T dµ = lim

n→+∞

1

n
Tn(x),

for µ-a.e. x ∈ S.

Note that in particular, lim
n→+∞

Tn(x) = +∞ for µ-a.e. x ∈ S.

Proof of Theorem C. Equidistribution: Take a continuous function ϕ : T1S → R, and
define Mϕ : S → R by

(Mϕ)(x) =

∫ T (x)

0
ϕ(γ̇x(t)) dt. (3.1)

Given that the speed of γ̇x is µ-almost everywhere equal to 1, ϕ is continuous and T is
bounded, we have that Mϕ ∈ L1(µ). Let us define the linear operator

I(ϕ) :=

∫
S

Mϕdµ (3.2)

Since ϕ 7→ I(ϕ) is linear and positive, by the Riesz representation theorem there is
some positive measure νµ on T1S such that∫

T1S
ϕdνµ =

I(ϕ)

ϑµ
,
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for all continuous ϕ.
Note that (the last equality is Remark 3.2)

νµ
(
T1S

)
=
I(1)

ϑµ
=

∫
S M1 dµ

ϑµ
=

∫
S T dµ

ϑµ
= 1;

in other words νµ is a probability measure.
We then apply the ergodic theorem and obtain, for µ-a.e. x ∈ S,

I(ϕ) = lim
n→+∞

1

n

n−1∑
k=0

(Mϕ)(fk(x))

= lim
n→+∞

1

n

∫ Tn(x)

0
ϕ(γ̇x(t)) dt

=
Rk.3.2

ϑµ lim
n→+∞

1

Tn(x)

∫ Tn(x)

0
ϕ(γ̇x(t)) dt

= ϑµ lim
n→+∞

1

Tn(x)

∫ 0

Tn(f−n(x))
ϕ(γ̇x(t)) dt.

Since Tn+1 − Tn is uniformly bounded and Tn tends to infinity as n tends to infinity,
this implies that, for µ-a.e. x ∈ S,∫

T1S
ϕdνµ = lim

t→+∞

1

t

∫ t

0
ϕ(γ̇x(t)) dt

= lim
t→+∞

1

t

∫ 0

−t
ϕ(γ̇x(t)) dt,

hence γ̇x equidistributes to νµ for µ-a.e. x.
This fact also implies that νµ is invariant under the geodesic flow.

Ergodicity of νµ: Suppose that the measure νµ is not ergodic. Then, there exists a
measurable subset A ⊂ T1S invariant by the geodesic flow and of non-trivial νµ-measure.

The set of points x ∈ S such that γ̇x ∈ A is invariant by f (because γ̇x = γ̇f(x) up to
reparametrization), then has measure 0 or 1. Up to changing A to S \ A, we can assume
it is 0.

The map I defined in (3.2) can be applied to any continuous map; let us extend it to
indicator functions. Let λµ be the Borel probability measure defined on T1S by λµ(B) =∫
S M(1B) dµ/ϑµ (the operator M is defined in (3.1)); it follows from the following classical

arguments that λµ = νµ.
Indeed, let B ⊂ T1M be a Borel set, and ε > 0. By the exterior regularity of the

measure νµ, there exists an open set O ⊂ T 1S containing B such that νµ(O)− νµ(B) < ε.
By the exterior regularity of the measure λµ, there exists an open set O′ ⊂ S containing
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B such that λµ(O′) − λµ(B) < ε. Let U = O ∩ O′, then 0 ≤ νµ(U) − νµ(B) < ε and
0 ≤ λµ(U) − λµ(B) < ε. Consider a non decreasing sequence (φn)n of continuous maps
that converges simply to 1U (obtained for example by playing with the distance to the
complement of U). With the monotone convergence theorem, one gets

νµ(U) =

∫
T1S

1U dνµ ←−
n→+∞

∫
T1S

φn dνµ =

∫
S

Mφn
ϑµ

dµ −→
n→+∞

∫
S

M1U
ϑµ

dµ = λµ(U).

Hence, |νµ(B)− λ(B)| < 2ε for any ε > 0, in other words

νµ(B) = λµ(B) =

∫
S

M1B dµ.

However, by hypothesis we have νµ(A) ∈ (0, 1); moreover for µ-a.e. x ∈ S one has
γ̇x /∈ A, hence (because A is invariant under the geodesic flow) (M1A)(x) = 0 and so∫
S M1A dµ = 0. This is a contradiction with the above equality.

Almost every tracking geodesic is included in the support of νµ:
Let A = supp(νµ). By the proof of ergodicity of νµ, we know that

1 = νµ(A) = λµ(A) =
1

ϑµ

∫
S

(M1A)(x) dµ =
1

ϑµ

∫
S

∫ T (x)

0
1A(γ̇x(t)) dt dµ.

Note that for every x ∈ S we have (M1A)(x) ≤ T (x), as we are integrating a function
which is bounded by 1. Furthermore, for every x, (M1A)(x) is either equal to 0 or to T (x),
because A is invariant under the geodesic flow. We know by Remark 3.2, that

1

ϑµ

∫
S
T (x) dµ = 1.

Given that these two integrals are equal, we obtain that for µ-a.e. point,∫ T (x)

0
1A(γ̇x(t)) dt = T (x),

from where we conclude that γ̇x ∈ A, as desired.
Finally, let us check that µ-a.e. x, we have that γ̇x(R) is dense in supp(νµ). Take an

open neighbourhood V of a vector v ∈ supp(νµ). Given νµ(V ) is positive, and that γ̇x
equidistributes to νµ, we have that γ̇x must intersect V , which concludes the proof.

3.2 Minimal laminations for simple tracking geodesics

We say a geodesic γ : R → S is simple if it has no transverse self-intersections; that is:
γ(t) = γ(s) implies γ̇(t) = γ̇(s).
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Recall that Theorem C ensures that for µ-a.e. x ∈ S, we have

supp(νµ) = γ̇x(R),

Moreover, again from Theorem C, we get that γx is recurrent for µ-a.e. x ∈ S, by which
we mean that for t there exists tn → +∞ such that

γ̇x(t) = lim
n→+∞

γ̇x(tn).

Theorem D now follows immediately from:

Lemma 3.3 (Recurrent simple geodesics yield minimal laminations). If γ : R → S is a
recurrent simple geodesic then

Λ = γ(R),

is a minimal geodesic lamination.

Proof. The case where γ is periodic is obvious, so we assume from now on that γ is injective.
It is immediate that Λ is a geodesic lamination. By [CB88, corollary 4.7.2] to conclude

that Λ is minimal it suffices to show that

� Λ is connected, and

� Λ has no isolated leaves.

The first property is evident since the closure of a connected set is connected.
We recall that the existence of an isolated leaf means there is some point y ∈ Λ with a

neighborhood U homeomorphic to the unit disc H2 in such a way that U ∩Λ is sent to the
diameter [−1, 1] of H2.

If such a pair y, U existed then, by recurrence of γ, there would exist a sequence
tn → +∞ such that γ(tn) ∈ U for all n. In particular one would have γ(tn) ∈ Λ ∩ U
for all n, and it follows that γ(tn) belongs to the leaf of y in Λ for all n. However, this
would imply that γ is periodic. Hence, Λ has no isolated leaves and therefore is minimal,
concluding the proof.

4 Rotation vectors

The purpose of this section is to relate the current work to the several different notions
measuring rotation for homeomorphisms on closed hyperbolic surfaces.

� We give a necessary and sufficient condition forMerg
ϑ>0(f) to be non-empty in terms of

growth of the diameter of iterates of a fundamental domain (Proposition 4.1). This
is the occasion to discuss the relation of tracking geodesics with the homotopical
rotation vectors of [GM22].

26



� We show that if there exists an ergodic measure with a non-zero homological rotation
vector then this measure belongs to Merg

ϑ>0(f) and its tracking geodesics “converge”
to the corresponding homology vector (Proposition 4.6).

� Finally we prove in Proposition 4.7 that if two ergodic measures µ1, µ2 satisfy ρH1(µ1)∧
ρH1(µ2) 6= 0, then for typical x1 for µ1, x2 for µ2, their tracking geodesics γx1 and
γx2 intersect transversally, i.e. are dynamically transverse, see Lemma 5.10 (moral:
“intersection in homology implies intersection of tracking geodesics”).

Recall that the fundamental group Γ of our surface S acts by isometries on the universal
cover S̃, in fact Γ coincides with the group of deck transformations of S̃. Also, note that
S̃ is a length space, i.e. the distance between two points can be defined as the infimum of
lengths among curves joining those points.

4.1 Condition for non-trivial rotation

We consider a bounded fundamental domain D ⊂ S̃ for the action of Γ on S̃ ' H2. It
is known that there exists at least one fixed point of f̃ in D (this is Lefschetz fixed point
theorem). Therefore, ifMerg

ϑ>0(f) is non-empty then by Theorem B the diameter of f̃n(D)
must grow linearly. We show that this condition is in fact also sufficient for Merg

ϑ>0(f) to
be non-empty. This proposition was the initial motivation of the present work: it started
from here!

Proposition 4.1. Let D be a bounded fundamental domain for the action of Γ on S̃. If

lim sup
n→+∞

1

n
diam(f̃n(D)) = C > 0,

then there exists µ ∈Merg
ϑ>0(f) with ϑµ ≥ C/2.

In particular, for every x ∈ ST with tracking geodesic γ, each lift x̃ yields a rotation
vector (α, ω, v) in the sense of [GM22] (see Definition 1.10), with α, ω the limit points in ∂S̃
of the lift γ̃ of the tracking geodesic satisfying the tracking Equation (1.5), and v = ϑ(x).
Hence, Proposition 4.1 gives a criteria under which there are rotation vectors of f̃ that are
realized by a sequence x̃k belonging to a single f̃ -orbit.

Proof. We let δ = diam(D) and consider sequences xk, yk ∈ D and nk → +∞ such that

lim
k→+∞

1

nk
d̃ist

(
f̃nk(x̃k), f̃

nk(ỹk)
)

= C.

By the triangle inequality we have

d̃ist(f̃nk(x̃k), f̃
nk(ỹk)) ≤ d̃ist

(
f̃nk(x̃k), x̃k

)
+ d̃ist

(
x̃k, ỹk

)
+ d̃ist

(
ỹk, f̃

nk(ỹk)
)

≤ δ + d̃ist
(
f̃nk(x̃k), x̃k

)
+ d̃ist

(
ỹk, f̃

nk(ỹk)
)
,

27



so (possibly exchanging xk and yk and taking a subsequence) we may assume without loss
of generality that

d(x̃k, f̃
nk(x̃k)) ≥

C

2
nk − δ, (4.1)

for all k large enough.
Now, define

µk =
1

nk + 1

nk∑
i=0

δf i(xk).

By taking a subsequence if necessary, one can suppose that limk→+∞ µk = µ for the weak-*
topology.

It is immediate that µ is f -invariant. From Kingman’s subadditive ergodic theorem,
for µ-almost every x ∈ S, one has (Ln is defined in (1.3))

ϑ(x) = lim
n→+∞

1

n
Ln(x),

and by dominated convergence theorem it follows that∫
S
ϑ(x) dµ(x) = lim

n→+∞

1

n

∫
S
Ln(x) dµ(x). (4.2)

We claim that

lim
n→+∞

1

n

∫
S
Ln(x) dµ(x) ≥ 1

2
C.

From this it follows that some ergodic component of µ yields the desired element of
Merg

ϑ>0(f) with rotation speed at least 1
2C.

To prove the claim we observe that since Lm is continuous for each m we have∫
S
Lm(x) dµ(x) = lim

k→+∞

∫
S
Lm(x) dµk(x)

= lim
k→+∞

1

nk + 1

∫
S

d̃ist(x̃, f̃m(x̃)) d

(
nk∑
i=0

δf i(xk)

)
(x)

= lim
k→+∞

1

nk + 1

nk∑
i=0

d̃ist
(
f̃ i(x̃k), f̃

i+m(x̃k)
)
.

We separate the sum on the right into disjoint arithmetic progressions in the iterates
of common difference m, plus a remainder which will be bounded:

∫
S
Lm(x) dµk(x) =

1

nk + 1

m−1∑
j=0

bnk/mc−1∑
`=0

d̃ist
(
f̃ j+`m(x̃k), f̃

j+(`+1)m(x̃k)
)−Rm

 ,
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where |Rm| ≤ mmaxLm. The last sum, for it part, satisfies, with |R′m| ≤ 2 max1≤i≤m Li
(by triangle inequality, the last inequality comes from (4.1)),

bnk/mc−1∑
`=0

d̃ist
(
f̃ j+`m(x̃k), f̃

j+(`+1)m(x̃k)
)
≥ d̃ist

(
f̃ j(x̃k), f̃

j+bnk/mcm(x̃k)
)

≥ d̃ist
(
x̃k, f̃

nk(x̃k)
)
−R′m

≥ C

2
nk − δ −R′m,

Finally we obtain,∫
S
Lm(x) dµ(x) = lim

k→+∞

∫
S
Lm(x) dµk(x)

≥ lim inf
k→+∞

 1

nk + 1

m−1∑
j=0

(C
2
nk − δ −R′m

)
− Rm
nk + 1


≥ lim inf

k→+∞

mC
2 nk −mδ −mR

′
m −Rm

nk + 1
=
Cm

2
,

hence, by (4.2),

ϑµ =

∫
S
ϑ(x) dµ(x) ≥ C

2
,

which concludes the proof.

4.2 Homological rotation vectors and tracking geodesics

We now relate tracking geodesics to the homological rotation vectors of [Sch57] and [Pol92].

Definition 4.2. Fix a bounded fundamental domain D. For every curve γ̃ : [0, t] → S̃,
we define its homological class [γ̃]D = [a], where a ∈ Γ is the only element such that
ba−1γ̃(t), bγ̃(0) ∈ D, for some other b ∈ Γ.

While this definition relies on the chosen fundamental domain, it is roughly independent
for long curves:

Remark 4.3. Fix two bounded fundamental domains D1, D2. For every ε > 0, there exists
L > 0 such that for any geodesic γ̃ with length greater than L, we have that

[γ̃]D1 − [γ̃]D2

L
< ε.

This implies that the following notion does not depend on the choice of fundamental
domain:
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Definition 4.4 (Homological class for geodesics). Given a parametrized geodesic γ̃ ⊂ S̃
we define its homological class [γ̃] as (when the limits are well defined)

[γ̃] = lim
t→+∞

1

t
[γ̃(t)] = lim

t→+∞

1

t
[γ̃|[0,t]],

where the second equality will be a notation convention.

Proofs for the following lemma can be found in [BH09, p. 140], and [BDM06].

Lemma 4.5 (Švarc-Milnor Lemma). Let Γ be a group which acts properly and cocompactly
by isometries on a proper length space X. Then, Γ is finitely generated (and inherits from
it a metric by wordlength that is canonical up to quasi-isometry) and for every x ∈ X, the
function γ 7→ γx is a quasi-isometry.

Proposition 4.6 (Ergodic measures’ homological rotation is a.e. constant). If µ is an
ergodic invariant measure for which ρH1(µ) 6= 0, then µ ∈Merg

ϑ>0(f) and furthermore

ρH1(µ) = [γ̃x̃],

for µ-almost every x ∈ S, where γ̃x̃ is the lift of the tracking geodesic γx which satisfies
(1.5).

Proof. Let x be a typical point for µ. Recall that ay was defined as the element of Γ

satisfying a−1
y f̃(ỹ) ∈ D. By Švarc-Milnor Lemma, the distance d̃ist(x̃, f̃n(x̃)) is, up to

a constant, at least the word length of afn−1(x) · · · ax with respect to some fixed finite
symmetric generating set of Γ. This is bounded from below by the norm of [afn−1(x) . . . ax]
which is roughly n‖ρH1(µ)‖ by (1.2).

Hence, we have

ϑµ = lim
n→+∞

1

n
d̃ist(x̃, f̃n(x̃)) ≥ C‖ρH1(µ)‖

for some C > 0, from which we deduce that µ ∈Merg
ϑ>0(f).

By Theorem B, if x is typical with respect to µ, then γx has a lift γ̃x satisfying the
tracking Equation (1.5). It follows that

lim
t→+∞

1

t
[γ̃x(t)] = lim

n→+∞

1

n

([
afn−1(x) . . . ax

]
+ o(n)

)
= ρH1(µ),

as claimed.

Proposition 4.7. If µ1, µ2 are ergodic invariant measures for which ρH1(µ1)∧ ρH1(µ2) 6=
0, then for typical x1 for µ1, x2 for µ2, their tracking geodesics γx1 and γx2 intersect
transversally.
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Proof. Let us take a small geodesic arc I which has γx1(0) in its interior and is transverse
to γx1 . We moreover suppose that I is not included in γx2 . From Theorem C we have
that for typical points, the geodesic γ̇x1 ⊂ T1S is recurrent. Then, there exists a sequence
{tk}k∈N of growing-to-infinity times, such that limk→+∞ γ̇x1(tk) = γ̇x1(0), and γx1(tk) ∈ I.

Up to taking a subsequence we may complete each open geodesic γx1 |[0,tk] with a small

arc Ik ⊂ I of length less than 1
2k

(with speed near ϑµ1), to obtain a simple closed curve γ1
k .

Let us first check that, setting

lim
t→+∞

1

t
[γ1
k |[0,t]] := ρH1(γ1

k),

we have

lim
k→+∞

ρH1(γ1
k) = lim

t→+∞

1

t
[γx1(t)] = ρH1(µ1).

Indeed, the last of the equalities is true by Proposition 4.6. For the first one, parametrizing
γ1
k by arclenght, we have

ρH1(γ1
k) =

1

tk + len(Ik)
[γ1
k |[0,tk+len(Ik)]] =

[γ1
k |[0,tk]]

tk + len(Ik)
+

[γ1
k |[tk,tk+len(Ik)]]

tk + len(Ik)
.

The numerator of the second fraction is bounded, as len(Ik), hence

lim
k→+∞

ρH1(γ1
k) = lim

k→+∞

[γ1
k |[0,tk]]

tk
= lim

k→+∞

[γx1 |[0,tk]]

tk
= ρH1(µ1).

This implies that for any k large enough, we have

∣∣ρH1(γ1
k) ∧ ρH1(µ2)

∣∣ ≥ ∣∣ρH1(µ1) ∧ ρH1(µ2)
∣∣

2
:=

r

2
> 0.

Hence, decomposing γ1
k into a piece of γx1 and Ik, one gets:

lim inf
t→+∞

∣∣∣[γx1 |[0,tk]] ∧ [γx2 |[0,t]]
∣∣∣+
∣∣∣Ik ∧ [γx2 |[0,t]]

∣∣∣
t(tk + len(Ik))

≥ lim
t→+∞

∣∣∣[γ1
k |[0,tk+len(Ik)]] ∧ [γx2 |[0,t]]

∣∣∣
t(tk + len(Ik))

≥ r

2
.

However, there exists some r′ > 0 such that, for any t ≥ 1 and any k ∈ N,∣∣Ik ∧ [γx2 |[0,t]]
∣∣ ≤ r′t

(because the return time of γx2 to Ik is bounded from below by the geometry of the surface).
This implies that

lim inf
t→+∞

∣∣∣[γx1 |[0,tk]] ∧ [γx2 |[0,t]]
∣∣∣

t(tk + len(Ik))
≥ r

2
− r′

tk + len(Ik)
.
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Hence, for k large enough we have

lim inf
t→+∞

∣∣∣[γx1 |[0,tk]] ∧ [γx2 |[0,t]]
∣∣∣

t(tk + len(Ik))
> 0,

which implies that γx2 intersects γx1 |[0,tk] transversely at a linear rate, which concludes the
proof.

Corollary 4.8. Let µ1, µ2 ∈ Merg
ϑ>0(f) such that their typical tracking geodesics belong to

the same geodesic lamination. Then we have ρH1(µ1) ∧ ρH1(µ2) = 0.

5 Intersection of tracking geodesics — proof of Theorem E

The aim of this section is to prove Theorem E of the introduction by means of the so-called
forcing theory of Le Calvez and Tal [LCT18, LCT22, Gui21]. The proof strategy is inspired
by the works of Lellouch [Lel23] and Guihéneuf and Militon [GM22]. As premilimaries,
we first introduce the notion of rotational topological horseshoe and some statements of
forcing theory.

5.1 Preliminaries on rotational horseshoes

The following notions are thoroughly explained in [PPS18], [LCT22] and [GM22, Section
9.2].

Given a homeomorphism f of a surface S, we will say that g is an extension of f (and
equivalently, we will also say that f is a factor of g) if there is a semiconjugacy from g to
f . We will say we have a m-finite extension, when the fibres of the factor map are finite
with cardinality uniformly bounded by m ∈ N.

Definition 5.1. We will say a compact connected set R ⊂ S is a rectangle if it is homeo-
morphic to [0, 1]2 by a homeomorphism h : [0, 1]2 → h([0, 1]2) ⊂ S. We will call sides of R
the image of the sides of [0, 1]2 by h, the horizontal sides being R− = h([0, 1] × {0}) and
R+ = h([0, 1]× {1}).

Definition 5.2. Let R1, R2 ⊂ S be two rectangles. We will say that R1∩R2 is a Markovian
intersection if there exists a homeomorphism h from a neighbourhood of R1 ∪ R2 to an
open subset of R2, such that

� h(R2) = [0, 1]2;

� Either h(R+
1 ) ⊂ {(x, y) ∈ R2 : y > 1} and h(R−1 ) ⊂ {(x, y) ∈ R2 : y < 0}; or

h(R+
1 ) ⊂ {(x, y) ∈ R2 : y < 0} and h(R−1 ) ⊂ {(x, y) ∈ R2 : y > 1};

� h(R1) ⊂ {(x, y) ∈ R2 | y > 1} ∪ [0, 1]2 ∪ {(x, y) ∈ R2 | y < 0}.
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Definition 5.3 (Rotational Horseshoe [GM22]). Let f : S → S be a homeomorphism of a
hyperbolic surface S. We say that f has a rotational horseshoe associated to the covering
transformations U1, . . . , Ur if there exists a rectangle R ⊂ S̃ and j ≥ 1 such that for any
1 ≤ i ≤ r, the intersections f̃ j(R) ∩ Ui(R) are Markovian. The set

X =
⋂
n∈Z

fnj(R)

is the rotational horseshoe and j is its period.

The proof of the following result can be found in [GM22].

Proposition 5.4. Let f ∈ Homeo(S). Suppose that f has a rotational horseshoe X of
period j with associated covering transformations U1, . . . , Ur (with r ≥ 2), which form a
free group. Then

� the map f j |X has an m-finite extension g : Y → Y , which on its turn is an extension
of the Bernoulli shift σ : {1, . . . , r}Z → {1, . . . , r}Z in r symbols. In particular, the
following diagram commutes:

X X

Y Y

{1, . . . , r}Z {1, . . . , r}Z

f j

g

σ

h h

π π

� The preimage of any σ-periodic sequence by the factor map h : Y → {1, . . . , r}Z
contains a periodic point of g.

Remark 5.5. If f ∈ Homeo(S) has a rotational horseshoe X in r symbols, then htop(f) ≥
log(r). In particular, the existence of a topological horseshoe for f implies positiveness of
topological entropy of f .

5.2 Preliminaries on forcing theory

Given an isotopy I = {ft}t∈[0,1] from the identity map to f , we define its fixed point
set Fix(I) =

⋂
t∈[0,1] Fix(ft), and denote its domain Σ = dom(I) = S\Fix(I). Note

that dom(I) is an oriented boundaryless surface, not necessarily closed, not necessarily
connected.

In this section we will consider an oriented surface Σ without boundary, not necessarily
closed or connected, and a non singular oriented topological foliation F on Σ. We will
consider:
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� the universal covering space Σ̂ of Σ;

� the covering projection π̂ : Σ̂→ Σ;

� the group G of covering automorphisms;

� the lifted foliation F̂ on Σ̂.

For every point z ∈ Σ, we denote φz the leaf of F that contains z. The complement
of any simple injective proper path α̂ of Σ̂ has two connected components, denoted by
L(α̂) and R(α̂), chosen accordingly to some fixed orientation of Σ̂ and the orientation of
α̂. Given a simple injective oriented proper path α̂ and ẑ ∈ α̂, we denote α̂+

ẑ and α̂−ẑ the
connected components of α̂ \ {ẑ}, chosen accordingly to the orientation of α̂.

F-transverse paths and F-transverse intersections A path η : J → Σ is called
positively transverse3 to F if it locally crosses each leaf of F from the right to the left.
Observe that every lift η̂ : J → Σ̂ of η is positively transverse to F̂ and that for every a < b
in J :

� η̂|[a,b] meets once every leaf φ̂ of F̂ such that R(φ̂η̂(a)) ⊂ R(φ̂) ⊂ R(φ̂η̂(b));

� η̂|[a,b] does not meet any other leaf.

We will say that two transverse paths η̂1 : J1 → Σ̂ and η̂2 : J2 → Σ̂ are equivalent if
they meet the same leaves of F̂ . Two transverse paths η1 : J1 → Σ and η2 : J2 → Σ are
equivalent if there exists a lift η̂1 : J1 → Σ̂ of η and a lift η̂2 : J2 → Σ̂ of η2 which are
equivalent.

Let η̂1 : J1 → Σ̂ and η̂2 : J2 → Σ̂ be two transverse paths such that there exist t1 ∈ J1

and t2 ∈ J2 satisfying η̂1(t1) = η̂2(t2). We will say that η̂1 and η̂2 have an F̂-transverse
intersection at η̂1(t1) = η̂2(t2) (see Figure 1) if there exist a1, b1 ∈ J1 satisfying a1 < t1 < b1
and a2, b2 ∈ J2 satisfying a2 < t2 < b2 such that:

� φ̂η̂1(a1) ⊂ L(φ̂η̂2(a2)), φ̂η̂2(a2) ⊂ L(φ̂η̂1(a1));

� φ̂η̂1(b1) ⊂ R(φ̂η̂2(b2)), φ̂η̂2(b2) ⊂ R(φ̂η̂1(b1));

� every path joining φ̂η̂1(a1) to φ̂η̂1(b1) and every path joining φ̂η̂2(a2) to φ̂η̂2(b2) intersect.

A transverse intersection means that there is a “crossing” between the two paths natu-
rally defined by η̂1 and η̂2 in the space of leaves of F̂ , which is a one-dimensional topological
manifold, usually non Hausdorff.

Now, let η1 : J1 → Σ and η2 : J2 → Σ be two transverse paths such that there exist
t1 ∈ J1 and t2 ∈ J2 satisfying η1(t1) = η2(t2). We say that η1 and η2 have an F-transverse

3In the sequel, “transverse” will mean “positively transverse”.
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η̂1(t1) = η̂2(t2)

η̂1

η̂2

η̂2(b2)

η̂1(b1)η̂2(a2)

η̂1(a1)

Figure 1: Example of F̂-transverse intersection.

intersection at η1(t1) = η2(t2) if, given η̂1 : J1 → Σ̂ and η̂2 : J2 → Σ̂ any two lifts of η1 and
η2 such that η̂1(t1) = η̂2(t2), we have that η̂1 and η̂2 have a F̂-transverse intersection at
η̂1(t1) = η̂2(t2), If η1 = η2 one speaks of a F-transverse self-intersection. In this case, if η̂1

is a lift of η1, then there exists T ∈ G such that η̂1 and T η̂1 have a F̂-transverse intersection
at η̂1(t1) = T η̂1(t2).

Recurrence, equivalence and accumulation We will say a transverse path η : R→ Σ
is positively recurrent if, for every a < b, there exist c < d, with b < c, such that η|[a,b]
and η|[c,d] are equivalent. Similarly η is negatively recurrent if, for every a < b, there exist
c < d, with d < a, such that η|[a,b] and η|[c,d] are equivalent. Finally η is recurrent if it is
both positively and negatively recurrent.

Two transverse paths η1 : R→ Σ and η2 : R→ Σ are equivalent at +∞ if there exists
a1 and a2 in R such that η1|[a1,+∞) and η2|[a2,+∞) are equivalent. Similarly η1 and η2

are equivalent at −∞ if there exists b1 and b2 in R such that η1|(−∞,b1] and η2|(−∞,b2] are
equivalent.

A transverse path η1 : R→ Σ accumulates positively on the transverse path η2 : R→ Σ
if there exist real numbers a1 and a2 < b2 such that η1|[a1,+∞) and η2|[a2,b2) are equivalent
(see Figure 2). Similarly, η1 accumulates negatively on η2 if there exist real numbers b1 and
a2 < b2 such that η1|(−∞,b1] and η2|(a2,b2] are equivalent. Finally η1 accumulates on η2 if it
accumulates positively or negatively on η2.

Strips We fix T ∈ G \ {0}, and α̂ a T -invariant F̂-transverse path. The set

B̂ = {ẑ ∈ Σ̂ | φ̂ẑ ∩ α̂ 6= ∅}

is an F̂-saturated and T -invariant plane. We will call such a set a strip or a T -strip. The
boundary ∂B̂ of B̂ is a union of leaves (possibly empty) and can be written as ∂B̂ =
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η2

η1 φη2(b2)

Figure 2: An accumulation configuration in R2: the transverse path η1 accumulates posi-
tively on the transverse path η2. The leaves are in orange, the limit leaf in red.

∂B̂R t ∂B̂L, where

∂B̂R = ∂B̂ ∩R(α̂) , ∂B̂L = ∂B̂ ∩ L(α̂).

Let us state some facts that can be proven easily (see [LCT22] or [Lel23]). Note first that
if there is a T -invariant leaf φ̂ ⊂ ∂B̂, then the set ∂B̂R or ∂B̂L that contains φ̂ is reduced
to this leaf.

Suppose now that η̂ : R→ Σ̂ is transverse to F̂ and that{
t ∈ R | η(t) ∈ B̂

}
= (a, b),

where −∞ ≤ a < b ≤ ∞. Say that

� η̂ draws B̂ if there exist t < t′ in (a, b) such that φ̂η̂(t′) = T φ̂η̂(t)).

If, moreover, we have −∞ < a < b < +∞, say that:

� η̂ crosses B̂ from the left to the right if η̂(a) ∈ ∂B̂L and η̂(b) ∈ ∂B̂R;

� η̂ crosses B̂ from the right to the left if η̂(a) ∈ ∂B̂R and η̂(b) ∈ ∂B̂L;

� η̂ visits B̂ on the left if η̂(a) ∈ ∂B̂L and η̂(b) ∈ ∂B̂L;

� η̂ visits B̂ on the right if η̂(a) ∈ ∂B̂R and η̂(b) ∈ ∂B̂R.

We will say that η̂ crosses B̂ if it crosses it from the right to the left or from the left to the
right. Similarly, we will say that η̂ visits B̂ if it visits it on the right or on the left. Finally,
observe that at least one of the following situations occurs (the two last assertions are not
incompatible):

� η̂ crosses B̂;
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� η̂ visits B̂;

� η̂ is equivalent to α̂ at +∞ or at −∞;

� η̂ accumulates on α̂ positively or negatively.

Brouwer foliations Let F be a singular foliation of a surface S; Sing(F) the set of
singularities of F , and let us call dom(F) := S\Sing(F). The forcing theory grounds
on the following result of existence of transverse foliations, which can be obtained as a
combination of [LC05] with [BCLR20].

Theorem 5.6. Let S be a surface and f ∈ Homeo0(S). Then there exists an isotopy
I linking Id to f , and a transverse topological oriented singular foliation F of S with
dom(F) = S\Fix(I) = Σ, such that:

For any z ∈ Σ, there exists an F-transverse path denoted by
(
ItF (z)

)
t∈[0,1]

, linking z to

f(z), that is homotopic in Σ, relative to its endpoints, to the arc (It(z))t∈[0,1].

This allows to define the path IZF (x) as the concatenation of the paths
(
ItF (fn(z))

)
t∈[0,1]

for n ∈ Z.
In the sequel we will need the following result about the local transversality of trajec-

tories.

Proposition 5.7. Let Σ be a surface, F a singular foliation on Σ and f ∈ Homeo0(Σ).
Suppose that for any x ∈ Σ \ SingF we are given an F-transverse trajectory IF (x) linking
x to f(x) and homotopic relative to fixed points to a fixed isotopy I from identity to f .
Then for any neighbourhood V0 ⊂ Σ of SingF , there exists a neighbourhood U0 ⊂ V0 of
SingF such that for any x ∈ U0 \ SingF , there exists an F-transverse trajectory I ′F (x)
linking x to f(x), homotopic to IF (x) and included in V0.

We postpone the proof of this proposition to Appendix A.

5.3 Intersection of tracking geodesics

The goal of this subsection is to prove the following statement, which specifies Theorem E
of the introduction.

Theorem 5.8. Consider two f -invariant ergodic probability measures µ1, µ2 ∈ Merg
ϑ>0(f)

that are dynamically transverse (defined in Definition 1.11). Then:

� The homeomorphism f has a topological horseshoe (see Definition 5.3), in particular
the topological entropy of f is positive.

� For µ1-a.e. x1 ∈ S and µ2-a.e. x2 ∈ S, the triples
(
α(x̃1), ω(x̃2),max(ϑµ1 , ϑµ2)

)
and(

α(x̃2), ω(x̃1),max(ϑµ1 , ϑµ2)
)

are rotation vectors in the sense of [GM22] (Defini-
tion 1.10).
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� For any r ∈ H1(S,R) in the triangle spanned by 0, ρH1(µ1), ρH1(µ2) and any ε > 0,
there exists a periodic point z ∈ S and two lifts z̃1 and z̃2 of z in S̃ such that
ρH1(z) ∈ B(r, ε), that d(γ̃x̃1 , γ̃z̃1) < ε and d(γ̃x̃2 , γ̃z̃2) < ε, where d denotes the distance
on geodesics induced by some distance on S1 × S1 on the couples of their endpoints.

The last point expresses that any convex combination of 0, ρH1(µ1), ρH1(µ2) is accumu-
lated by rotation vectors of periodic points of f , such that some lifts of the axes of these
points accumulate on both tracking geodesics γ̃x̃1 and γ̃x̃2 .

Let us start with a lemma stating that if µ1 and µ2 are dynamically transverse, then
tracking geodesics for typical points of respectively µ1 and µ2 intersect transversally with
an angle bounded away from 0.

Lemma 5.9. Let µ1, µ2 ∈Merg
ϑ>0(f) be two dynamically transverse ergodic measures. Then

there exists θ0 > 0 such that for µ1-a.e. x1 and µ2-a.e. x2, the geodesics γx1 and γx2
intersect transversally with angle of intersection bigger than θ0. In particular, given a lift
γ̃x̃1 of γx1, there exists a lift γ̃x̃2 of γx2 such that γ̃x̃1 and γ̃x̃2 intersect transversally.

Proof. Because µ1 and µ2 are dynamically transverse, there exist v1 ∈ Λ̇µ1 , v2 ∈ Λ̇µ2 such
that πS(v1) = πS(v2) and v1 6= v2. Provided ε is sufficiently small, any two geodesics γ1

passing ε-close to v1, and γ2 passing ε-close to v2, must intersect transversally, with angle
at least 1

2∠(v1, v2) := θ0. The proof is then a direct consequence of the density in supp(νµ1)
of µ1-a.e. tracking geodesic (and the same for µ2), stated in Theorem C.

Proof of Theorem 5.8. Let x̃1 and x̃2 be two points as in the statement of Lemma 5.9:
they are lifts of x1, x2 that are typical for respectively µ1 and µ2, and their tracking
geodesics γ̃x̃1 and γ̃x̃2 intersect. Later on, we will make additional assumptions on these
points, assumptions that will be typical for the measures µ1 and µ2. Let F be a transverse
foliation given by Theorem 5.6 and F̃ a lift of it to S̃. Let ĨZF̃ (x̃1) and ĨZF̃ (x̃2) be the

transverse trajectories (given by Theorem 5.6) — parametrized by R — in S̃ associated to
these orbits. We remark that here we lift to S̃ and not the universal cover of the domain
of the isotopy.

Lemma 5.10. Let µ1, µ2 ∈ Merg
ϑ>0(f) be two dynamically transverse ergodic measures.

Then for µ1-a.e. x1 ∈ S, µ2-a.e. x2 ∈ S, for i = 1, 2, there exists an F-transverse loop
βi+1 associated to a deck transformation T whose axis is close enough to γxi+1 so that it
intersects γxi with angle at least θ0/2.

Proof. We fix a regular fundamental domain D of S in S̃ (its boundary has 0 µi+1-measure)
and define the map x ∈ S 7→ x̃ ∈ S̃ accordingly. By Lusin theorem, there exists a set A
of continuity of the map x 7→ γ̃x̃ of positive µi+1-measure. If xi+1 ∈ A is µi+1-typical,
then it has a well defined tracking geodesic γ̃x̃i+1

that intersects some lift of the tracking
geodesic γxi of a µi-typical point xi with angle ≥ θ0 (by Lemma 5.9); moreover the point
xi+1 is recurrent in A. Let W be a small open chart of the singular foliation F on S around
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xi+1, that is included in the projection of the interior of D. Let n > 0 (to be chosen large
thereafter) such that fn(xi+1) ∈ A∩W . Let T be the deck transformation such that if W̃
is the lift of W satisfying x̃i+1 ∈ W̃ , then f̃n(x̃i+1) ∈ TW̃ .

Let us explain why if W is chosen small enough, and if n is large enough, then the
axis of the deck transformation T is close to γ̃x̃i+1

. Indeed, on the one hand, if n is large

enough, then prγ̃x̃i+1
(f̃n(x̃i+1)) is large; in particular T x̃i+1, which belongs to the same

fundamental domain as f̃n(x̃i+1), is close to ω(x̃i+1). On the other hand,

− prγ̃
T−1f̃n(x̃i+1)

(T−1x̃i+1) = −prγ̃
f̃n(x̃i+1)

(x̃i+1) = prγ̃x̃i+1
(f̃n(x̃i+1)) is large. (5.1)

If W is small enough, then by continuity of x 7→ γ̃x̃ on A, we have that the (unparametrized)
geodesics γ̃

T−1f̃n(x̃i+1)
and γ̃x̃i+1

are close; moreover T−1f̃n(x̃i+1) and x̃i+1 lie in the same

fundamental domain; this implies that the parametrized geodesics γ̃
T−1f̃n(x̃i+1)

and γ̃x̃i+1
are

close. By (5.1) we deduce that −prγ̃x̃i+1
(T−1x̃i+1) is large, in other words that T−1x̃i+1 is

close to α(x̃i+1). Hence, T maps x̃i+1 close to ω(x̃i+1) and T−1 maps x̃i+1 close to α(x̃i+1);
by elementary hyperbolic geometry we deduce that the axis of T is close to γ̃x̃i+1

for n
large enough.

Proposition 5.11. Let µ1, µ2 ∈Merg
ϑ>0(f) be two dynamically transverse ergodic measures.

Then for i = 1, 2, for µi-a.e. xi ∈ S, we have (we identify γ̃x̃i with R via its parametrization
by arclength):

1

t
prγ̃x̃i

(
ĨtF̃ (x̃i)

)
−→
t→±∞

ϑµi .

Proof. Note that the proposition is true when t is restricted to the set of integers: if n ∈ Z,
then ĨnF̃ (x̃i) = f̃n(x̃i), and the result follows from Theorem B. Let us prove that the result
remains true for arbitrary real numbers t. In the sequel, we identify {1, 2} with Z/2Z. The
idea of the proof is depicted in Figure 3.

Let βi+1 and T the transverse loop and its deck transformation given by Lemma 5.10.
We suppose that the axis of T intersects some lift of the tracking geodesic γxi of a µi-typical
point xi with angle ≥ θ0/2.

By local modification of the transverse trajectory ĨnF̃ (x̃i+1) in W̃ , it is possible to

create another transverse path β̃i+1 : [0, 1] → S̃ such that β̃i+1(1) = T β̃i+1(0). We can
concatenate β̃i+1 with the sequence (T iβ̃i+1)i to get an extension β̃i+1 : R → S̃ that is
F̃-transverse and T -invariant. We denote by βi+1 the projection of β̃i+1 to S.

Let us apply Proposition 5.7 to V0 equal to the complement of βi+1: there exists U0 ⊂ S
such that if x ∈ U0 \ SingF , then IF (x) does not meet βi+1. Moreover, by local triviality
of the foliation in a neighbourhood of a transverse trajectory in the universal cover of
S \ SingF , we deduce that the transverse trajectories can be supposed locally bounded
and hence bounded in the compact set S \ U0: there exists C > 0 such that if x ∈ S \ U0,
then diam(ĨF̃ (x̃)) < C.
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×

ĨZF̃ (x̃1)

ĨZF̃ (x̃2)

β̃1

S1β̃1

S−1β̃1

Figure 3: The idea of the proof of Proposition 5.11: if the point f̃n(x̃1) is close to a
singularity of the foliation F (black cross), then the transverse trajectory IF̃ (x̃1) stays in

the domain between two curves Skβ̃1 and Sk+1β̃1.

Recall that xi is a point that is µi-typical, and that some lift of the geodesic γxi intersects
β̃i+1 with angle ≥ θ0/2. In the sequel, we will suppose this lift is γ̃x̃i (this can be made
by changing β̃i+1 to some translate of it if necessary). As the geodesic γ̃x̃i is recurrent
(Theorem C), it will cross translates of β̃i+1 with positive frequency: there exists κ > 0, a
sequence (tm)m∈Z such that tm ∼±∞ κm, and a sequence (Sm)m∈Z of deck transformations
such that γ̃x̃i(tm) ∈ Smβ̃i+1, the angle of the intersection between γ̃x̃i and Smβ̃i+1 being
≥ θ0/4. This property on the angle of the intersection, together with the fact that β̃i+1

stays at bounded distance from the axis of T , implies that

inf prγ̃x̃i

(
Smβ̃i+1

)
∼

m→±∞
sup prγ̃x̃i

(
Smβ̃i+1

)
∼

m→±∞
tm.

Moreover, by Theorem B, we have that

prγ̃x̃i

(
f̃n(x̃i)

)
∼

n→±∞
ϑµin. (5.2)

Hence, for any n ∈ N (using tm ∼ κm), there exist mn,m
′
n such that{

sup prγ̃x̃i

(
Smn β̃i+1

)
≤ prγ̃x̃i

(
f̃n(x̃i)

)
≤ inf prγ̃x̃i

(
Sm′n β̃i+1

)
mn ∼±∞ m′n ∼±∞ ϑµin.

(5.3)

To conclude we have two cases to consider:
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� Either fn(xi) ∈ U0; in this case by definition of U0 the transverse trajectory ĨF̃ (f̃n(x̃i))

does not meet neither Smn β̃i+1 nor Sm′n β̃i+1, in particular we have, by (5.3),

ϑµin ∼
m→±∞

sup
t∈R

prγ̃x̃i

(
Smn β̃i+1(t)

)
≤ inf

s∈[0,1]
prγ̃x̃i

(
ĨsF̃ (f̃n(x̃i))

)
≤ sup

s∈[0,1]
prγ̃x̃i

(
ĨsF̃ (f̃n(x̃i))

)
≤

inf
t∈R

prγ̃x̃i

(
Sm′n β̃i+1(t)

)
∼

m→±∞
ϑµin;

� Or fn(xi) /∈ U0; in this case by the above argument, the diameter of the transverse
trajectory ĨF̃ (f̃n(x̃i)) is uniformly bounded by C, which implies that we have, by
(5.2),

ĨsF̃ (f̃n(x̃i)) ∼
m→±∞

ϑµin

uniformly in s ∈ [0, 1].

There are two cases to consider, which are equivalent: either ĨZF̃ (x̃1) crosses ĨZF̃ (x̃2)
from left to right or from right to left. We choose the first one for the proof, the other
being identical.

Lemma 5.12. There exists R0 > 0 such that given R > R0 + 1, there exist deck transfor-
mations T1, T

′
1, T2, T

′
2 satisfying the following (see Figure 4):

� we have the inclusions:

prγ̃x̃2

(
T1

(
ĨZF̃ (x̃1) ∪ T2Ĩ

Z
F̃ (x̃2)

))
⊂ [−2R,−R],

prγ̃x̃2

(
ĨZF̃ (x̃1) ∪ T ′2

(
ĨZF̃ (x̃2) ∪ T ′1ĨZF̃ (x̃1)

)
∪ T2

(
ĨZF̃ (x̃2) ∪ T1Ĩ

Z
F̃ (x̃1)

))
⊂ [−R0, R0],

prγ̃x̃2

(
T ′1

(
ĨZF̃ (x̃1) ∪ T ′2ĨZF̃ (x̃2)

))
⊂ [R, 2R];

� we have the inclusions:

prγ̃x̃1

(
T2

(
ĨZF̃ (x̃2) ∪ T1Ĩ

Z
F̃ (x̃1)

))
⊂ [−2R,−R],

prγ̃x̃1

(
ĨZF̃ (x̃2) ∪ T1

(
ĨZF̃ (x̃1) ∪ T2Ĩ

Z
F̃ (x̃2)

)
∪ T ′1

(
ĨZF̃ (x̃1) ∪ T ′2ĨZF̃ (x̃2)

))
⊂ [−R0, R0],

prγ̃x̃1

(
T ′2

(
ĨZF̃ (x̃2) ∪ T ′1ĨZF̃ (x̃1)

))
⊂ [R, 2R].
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ĨZF̃ (x̃2)

T1T2Ĩ
Z
F̃ (x̃2)

T2Ĩ
Z
F̃ (x̃2)
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Z
F̃ (x̃2)

T ′
1T

′
2Ĩ

Z
F̃ (x̃2)

ĨZF̃ (x̃1)

T1Ĩ
Z
F̃ (x̃1)

T2T1Ĩ
Z
F̃ (x̃1)

T ′
1Ĩ

Z
F̃ (x̃1)

T ′
2T

′
1Ĩ

Z
F̃ (x̃1)

Figure 4: The configuration of Lemma 5.12. The orange arrow is an example of leaf.

In particular, the sets

T1

(
ĨZF̃ (x̃1) ∪ T2Ĩ

Z
F̃ (x̃2)

)
,

ĨZF̃ (x̃1) ∪ T ′2
(
ĨZF̃ (x̃2) ∪ T ′1ĨZF̃ (x̃1)

)
∪ T2

(
ĨZF̃ (x̃2) ∪ T1Ĩ

Z
F̃ (x̃1)

)
,

T ′1

(
ĨZF̃ (x̃1) ∪ T ′2ĨZF̃ (x̃2)

)
are pairwise disjoint, and cross γ̃x̃2 in an increasing order (and the same for the crossings
of γ̃x̃1 with the other sets).

In the proof we will reuse the paths β̃i built in Lemma 5.10.

Proof. Denote θ0 the angle of intersection between γ̃x̃1 and γ̃x̃2 . Let δ > 0 such that

any geodesics γ̃1, γ̃2 of S̃ at distance at most 2δ from respectively γ̃x̃1 and γ̃x̃2 intersect
transversally with an angle bigger than θ0/2. Recall that the distance on geodesics comes
from a distance on (S1)2 with the identification of a geodesic of S̃ with its two endpoints.

Let β̃1 and β̃2 be the paths built in the proof of Proposition 5.11, such that the tracking
geodesics of these paths are at distance at most δ from respectively γ̃x̃1 and γ̃x̃2 . Let also
U0 ⊂ S be a neighbourhood of SingF (obtained, as in the proof of Proposition 5.11, as an
application of Proposition 5.7) such that if x ∈ U0 \ SingF , then IF (x) does not meet β1

nor β2. Let C > 0 be such that if x ∈ S \ U0, then diam(ĨF̃ (x̃)) < C.
Let R1 > 0 such that, for i = 1, 2,

prγ̃x̃i

(
{f̃n(x̃i+1) | n ∈ Z} ∪ β̃i+1

)
⊂ [−R1, R1]
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and R0 > 0 such that
prγ̃i

(
pr−1
γ̃x̃i

([−R1, R1])
)
⊂ [−R0, R0] (5.4)

for any geodesic γ̃i of S̃ at distance at most 2δ from γ̃x̃i . In particular, we get

prγ̃i
(
{f̃n(x̃i+1) | n ∈ Z} ∪ β̃i+1

)
⊂ [−R0, R0] (5.5)

For i = 1, 2, let Wi be a neighbourhood of ˙̃γx̃i in T1S̃ such that if γ̃ is a geodesic of S̃

satisfying ˙̃γ(0) ∈Wi, then the distance between γ̃ and γ̃x̃i is smaller than δ.
Let {ỹ0} = γ̃x̃1 ∩ γ̃x̃2 and let us parametrize γ̃x̃1 and γ̃x̃2 such that γ̃x̃1(0) = γ̃x̃2(0) = ỹ0.
For i = 1, 2, by typicality of the geodesic γ̃x̃i with respect to the ergodic measure νµi

(Theorem C), there exist a sequence of times (ti,k)k∈Z, a sequence of deck transformations
(Si,k)k∈Z and κ > 0 such that:

a) ti,k ∼k→±∞ κk;

b) ti,k+1 − ti,k ≥ 2R0 + 2C;

c) S−1
i,k ( ˙̃γx̃i(ti,k)) ∈Wi.

In the end of the proof we will take Ti = Si,−k and T ′i = Si,k for k large enough. The
reader is encouraged to follow the proof on Figure 4.

By applying (5.5) to γ̃i = S−1
i,k (γ̃x̃i), condition c) implies that

prγ̃x̃i

(
Si,k
(
{f̃n(x̃i+1) | n ∈ Z} ∪ β̃i+1

))
⊂ [ti,k −R0, ti,k +R0]. (5.6)

In particular, up to deleting the first terms of the sequences (ti,k)k∈Z and (Si,k)k∈Z, we can
suppose that for k 6= 0, we have

prγ̃x̃i+1

(
Si,k
(
{f̃n(x̃i+1) | n ∈ Z} ∪ β̃i+1

))
⊂ [−R1, R1].

Using condition c) again to apply (5.4) to γ̃i = S−1
i,k γ̃x̃i and to the previous inclusion, one

gets that

prγ̃x̃i

(
Si,kSi+1,±k

(
{f̃n(x̃i) | n ∈ Z}

))
⊂ [ti,k −R0, ti,k +R0]. (5.7)

Now, let k ≥ 2, and consider

x̃ ∈ Si,k
⋃
n∈Z

{
f̃n(x̃i+1), Si+1,kf̃

n(x̃i), Si+1,−kf̃
n(x̃i)

}
.

Then, by (5.6) and (5.7), we have that

prγ̃x̃i
(x̃) ∈ [ti,k −R0, ti,k +R0],

in particular, by (5.6) and condition b), x̃ belongs to the connected component of the
complement of Si,k−1β̃i+1 containing ω(γ̃x̃i) in its boundary. We have two cases:
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α̃
T2Ĩ

Z
F (x̃2)

Ĩ2 z̃

φ̃

Figure 5: Left: an example of construction of the path Ĩ2. Right: Illustration of
Lemma 5.15.

� Either the projection of x̃ on S belongs to U0. Then the transverse trajectory ĨF̃ (x̃)

does not meet Si,k−1β̃i+1 and hence stays in the connected component of the com-
plement of Si,k−1β̃i+1 containing ω(γ̃x̃i) in its boundary. In particular,

prγ̃i
(
ĨF̃ (x̃)

)
⊂ [ti,k−1 −R0,+∞);

� Or the projection of x̃ on S does not belong to U0. Then the diameter of the transverse
trajectory ĨF̃ (x̃) is smaller than C, and by hypothesis on the deck transformations
Si,k we have also

prγ̃i
(
ĨF̃ (x̃)

)
⊂ [ti,k−1 −R0,+∞).

The exact same reasoning holds for k ≤ −2. The conclusion of the lemma then follows
from the fact that ti,k ∼k→±∞ κk and condition a), by taking Ti = Si,−k and T ′i = Si,k.

For i = 1, 2 and t ∈ R, let φ̃ti be the leaf of F̃ passing by ĨtF̃ (x̃i). We denote by α(φ̃ti)

and ω(φ̃ti) its alpha and omega limits in the closed disk S̃ ' H2.

Lemma 5.13. There is an orientable and simple transverse trajectory Ĩ2 in S̃ that is made
of pieces of T2Ĩ

Z
F̃ (x̃2), such that limt→±∞ Ĩ2(t) = T2α(x̃2) and limt→∓∞ Ĩ2(t) = T2ω(x̃2).

Note that the lemma does not rule out the possibility that limt→+∞ Ĩ2(t) = T2α(x̃2)
and limt→−∞ Ĩ2(t) = T2ω(x̃2) (see Figure 5, left).

Proof. As the trajectory of T2x̃2 is proper in S̃, for any n ∈ N there exists Rn > 0 such

that if |t| ≥ Rn, then T2Ĩ
t
F̃ (x̃2) /∈ T2Ĩ

[−n,n]

F̃ (x̃2).
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Up to modifying the trajectory T2Ĩ
Z
F̃ (x̃2) to an F-equivalent one, one can suppose that

the self-intersections of T2Ĩ
Z
F̃ (x̃2) are discrete. Hence, the number of self-intersections of

T2Ĩ
[−Rn,Rn]

F̃ (x̃2) is finite.

Let us apply the following algorithm. Set Ĩ0
2 = T2Ĩ

Z
F̃ (x̃2), and define the paths Ĩn2

inductively. For any n ≥ 0, consider (if they exist, i.e. if Ĩn2 |[−Rn,Rn] is not simple) −Rn ≤
t < t′ ≤ Rn such that Ĩn2 (t) = Ĩn2 (t′) and that Ĩn2 |(t,t′) is simple. We then replace the

path Ĩn2 by the concatenation Ĩn2 |(−∞,t]Ĩn2 |[t′,+∞). This new path is oriented as the previous
one, and the number of self-intersections of its restriction to [−Rn, Rn] strictly decreased.
Hence, iterating this process, it terminates in finite time.

The obtained path Ĩn+1
2 is simple in restriction to4 [−Rn, Rn], and links a (Euclidean)

neighbourhood of α(x̃2) to a neighbourhood of ω(x̃2) (these neighbourhoods being arbi-
trarily small as n goes to infinity). Moreover, by definition of Rn, for any n ∈ N one has
Ĩn2 |[−n,n] = Ĩn+1

2 |[−n,n]. This implies that the paths Ĩn2 converge simply as n goes to infinity.

The limit path Ĩ2 satisfies the conclusion of the lemma.

Note that as the trajectory ĨZF̃ (x̃2) is proper and satisfies limt→−∞ Ĩ
t
F̃ (x̃2) = α(x̃2)

and limt→+∞ Ĩ
t
F̃ (x̃2) = ω(x̃2) 6= α(x̃2), one can define L(ĨZF̃ (x̃2)) and R(ĨZF̃ (x̃2)) as the

connected components of the complement of ĨZF̃ (x̃2) having for respective intersection with

∂H2 the intervals (ω(x̃2), α(x̃2)) and (α(x̃2), ω(x̃2)).
We split the rest of the proof depending whether the following condition is satisfied or

not (see Figure 6).

(C) There exists t0 ∈ R such that for any t < t0, the leaf φ̃t1 meets both L(T2Ĩ
Z
F̃ (x̃2)) and

R(T2Ĩ
Z
F̃ (x̃2)).

Lemma 5.14. If Condition (C) holds, then Ĩ
(−∞,t0]

F̃ (x̃1) is simple. Moreover, we have

limt→−∞ Ĩ2(t) = T2α(x̃2) and limt→+∞ Ĩ2(t) = T2ω(x̃2).

Note that the last conclusion of this lemma consists in ruling out the case where
limt→+∞ Ĩ2(t) = T2α(x̃2) and limt→−∞ Ĩ2(t) = T2ω(x̃2) left possible by Lemma 5.13.

During the proof we will need the following lemma of [GM22]. We will denote S̃ =
S̃ t ∂S̃.

Lemma 5.15 ([GM22], Lemma 10.10.2). Let α̃ ⊂ S̃ be a proper transverse trajectory,
and φ̃ a leaf of F̃ that contains some point z̃ of R(α̃). If the half-leaf φ̃+

z̃ meets α̃, then

4The careful reader will have noticed the abuse of notation here: the path Ĩn+1
2 is defined in a subset

of R that is made of a finite union of intervals; in the sequel we will sometimes identify this set with R in
a natural way.
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T2Ĩ
Z
F̃ (x̃2)

ĨZF̃ (x̃1)

T2Ĩ
Z
F̃ (x̃2)

ĨZF̃ (x̃1)

T2Ĩ
Z
F̃ (x̃2)

ĨZF̃ (x̃1)

s0

Figure 6: The three different cases in the proof of Theorem 5.8: Condition (C) holds and
s0 > −∞ (left), Condition (C) holds and s0 = −∞ (middle) and Condition (C) does not
hold (right). The leaves are in orange.

the ω-limit set of φ̃ in S̃ does not meet ∂S̃; moreover, φ̃+
z̃ does not meet L(α̃), and the

intersection φ̃+
z̃ ∩R(α̃) ⊂ S̃ is a segment of φ̃+

z̃ .

Note that the same lemma holds by replacing left with right and positive with negative.
See Figure 5 for an example of the configuration of Lemma 5.15.

Proof of Lemma 5.14. First, suppose that limt→+∞ Ĩ2(t) = α(x̃2) and limt→−∞ Ĩ2(t) =
ω(x̃2). This implies that L(T2Ĩ

Z
F̃ (x̃2)) ⊂ R(Ĩ2) and R(T2Ĩ

Z
F̃ (x̃2)) ⊂ L(Ĩ2). Applying

Lemma 5.15 to both T2Ĩ
Z
F̃ (x̃2) and Ĩ2 implies that picking one point of φ̃t1 insideR(T2Ĩ

Z
F̃ (x̃2)),

both half-leaves of φ̃t1 defined by this point of the leaf stay in the complement of L(T2Ĩ
Z
F̃ (x̃2)).

This contradicts Hypothesis (C).
Hence, limt→−∞ Ĩ2(t) = α(x̃2) and limt→+∞ Ĩ2(t) = ω(x̃2). The path Ĩ2 separates

L(T2Ĩ
Z
F̃ (x̃2)) from R(T2Ĩ

Z
F̃ (x̃2)). Hence, for t < t0, the leaf φ̃t1 meets the path Ĩ2. As this

path is simple and F̃-transverse, it can only meet it once. This allows us to define the
holonomy map ϕ : (−∞, t0]→ R by

Ĩ2(ϕ(t)) ∈ φ̃t1. (5.8)

This map ϕ is locally continuous and locally strictly monotonic (as a holonomy), hence it is

globally continuous and strictly monotonic. This strict monotonicity prevents Ĩ
(−∞,t0]

F̃ (x̃1)
from having self-intersections.

The last conclusion of Lemma 5.14 implies that the holonomy map ϕ defined by (5.8)
is increasing. Let

s0 = inf ϕ
(
(−∞, t0]

)
.
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ĨZF̃ (x̃2)

ĨZF̃ (x̃1)

IZF (x2)

IZF (x1)

B

φ̃0

Figure 7: Lellouch’s example [Lel23] on the genus-2 surface (left) and on the universal
cover S̃: the trajectories IZF̃ (x̃1) and IZF̃ (x̃2) have no F-transverse intersection, as IZF̃ (x̃1)

is equivalent to a subpath of IZF̃ (x̃2).

We now split the proof into two cases, depending whether s0 > −∞ or s0 = −∞ (see
Figure 6).

5.3.1 If (C) holds and s0 > −∞

If the infimum s0 is finite, then it is not attained (because ϕ is an open map). By mono-
tonicity, this implies that ĨZF̃ (x̃1) accumulates in Ĩ2 at the point Ĩ2(s0) (in the sense of the

definition page 35). As Ĩ2 is made of a locally finite number of pieces of T2Ĩ
Z
F̃ (x̃2), this

implies that ĨZF̃ (x̃1) accumulates in T2Ĩ
Z
F̃ (x̃2). An example of such configuration is depicted

in Figure 7.
By [GLCP23, Proposition 3.2 and Proposition 4.17], there exists a transverse simple

loop A∗ ⊂ S, with associated deck transformation T , with the following properties:

1. The set B of leaves met by A∗ is an open annulus of S.

2. The path IZF (x1) stays in B and is F-equivalent to the natural lift of A∗.

3. The path IZF (x2) is not included in B.

More precisely, denote B̃ the lift of B to S̃ containing ĨZF̃ (x̃1), and φ̃0 the limit leaf

of the accumulation. Then φ̃0 ⊂ ∂B̃R, and B̃ ⊂ L(φ̃) for every φ̃ ⊂ ∂B̃R.

These properties allow us to apply the arguments of [Lel23, Section 3.4]. Indeed, this
section treats a setting that is identical to ours, with the additional assumption that the
homological rotation vectors of the measures µ1 and µ2 have non-trivial intersection in
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homology. The only place this assumption is used is in the proof of [Lel23, Lemme 3.4.3],
that can be replaced here with point 3. of the above properties5. Hence, by [Lel23, Section
3.4], we get the existence of a topological horseshoe, and thus the positivity of topological
entropy.

Let us now explain how to get new rotation vectors in the sense of [GM22] (i.e. the
second point of the theorem).

By [Lel23, Lemme 2.2.13], there exists a bounded neighbourhood W̃ of x̃1, two increas-
ing sequences (rn)n∈Z, (sn)n∈Z of integers with r0 = s0 = 0, such that for any n ∈ Z, one
has f̃ rn(x̃1) ∈ T sn(W̃ ); moreover the sets T sn(W̃ ) go towards α(x̃1) with speed ϑµ1 when
n goes to −∞, and the sets T sn(W̃ ) go towards ω(x̃1) with speed ϑµ1 when n goes to +∞.
In particular, denoting α̃ a natural lift of A∗ to S̃ that is included in B̃, this implies that
α(α̃) = α(x̃1) and ω(α̃) = ω(x̃1).

Using the recurrence of the trajectory of x2, we know that there exists a sequence
(Sn)n∈Z of deck transformations and an increasing sequence (kn)n∈Z of integers with k1 > 0

and k−1 < 0 such that for any i < 0 and j > 0, the trajectory Ĩ
[ki,kj ]

F̃ (x̃2) crosses both

Siφ̃0 and Sjφ̃0. Moreover, using as before the local continuity of ỹ 7→ γ̃ỹ on a positive
measure subset by Lusin theorem and the fact that x̃2 tracks a geodesic (Theorem B), we
can suppose that for j → +∞, the sets Sjα̃ converge towards ω(x̃2) (for Hausdorff distance
in the Poincaré closed disk associated to the Euclidean distance), and the quantities

d̃ist
(

inf prγ̃x̃2
(Sjα̃), sup prγ̃x̃2

(Sjα̃)
)

and d̃ist
(

sup prγ̃x̃2
(Sjα̃), inf prγ̃x̃2

(Sjα̃)
)

(5.9)
are equivalent to kjϑµ2 (and a similar statements holds at −∞). By taking a subsequence
if necessary, we can suppose that the sets (SjB̃)j (that are pairwise equal or disjoint) cross
the geodesic γ̃x̃2 in an increasing way.

A slight modification of [Lel23, Lemme 3.4.9] (for taking into account negative times,
replacing the leaves φ̃ and Smφ̃ of [Lel23] by respectively S−iφ̃0 and Sjφ̃0) leads to the
following version of [Lel23, Lemme 3.4.9].

Lemma 5.16. There exists K > 0 and n0 > 0 such that for any i, j ∈ N and n ≥ n0, there

exists ỹi,j,n ∈ S̃ such that the transverse path α̃i,j,n := Ĩ
K+rn−k−i+kj
F̃ (ỹi,j,n) links S−iφ̃0 to

T sn−1Sjφ̃0.

In particular, the transverse path Ĩ
K+rn−k−i+k1
F̃ (ỹi,1,n) links S−iφ̃0 to T sn−1S1φ̃0.

All this construction is equivariant, in particular by the deck transformation T : the

transverse path T−sn+1Ĩ
K+rn−k−1+kj

F̃ (ỹ1,j,n) links T−sn+1S−1φ̃0 to Sjφ̃0.

5Equivalently, one could use [GLCP23, Proposition 4.17] to get in the setting of [Lel23, Section 3.4], but
it would somehow use Lellouch’s arguments twice.
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Suppose first that ϑµ1 ≥ ϑµ2 , and let {x̃0} = γ̃x̃1 ∩ γ̃x̃2 . Then, for any i ≥ 1, consider
some integer ni ≥ n0 such that

Sniϑµ1 ≥ i(−k−i)ϑµ2 , (5.10)

and set ỹi := ỹi,1,ni so that Ĩ
[0,K+rni−k−i+k1]

F̃ (ỹi) starts on S−iφ̃0 and ends at T sni−1S1φ̃0.

In particular, ỹi /∈ R(S−iB̃) and f̃K+rni−k−i+k1(ỹi) /∈ L(T sni−1S1B̃). This implies, us-
ing (5.9), that

lim
i→+∞

ỹi = α(x̃2) and lim
i→+∞

f̃K+rni−k−i+k1(ỹi) = ω(x̃1).

Moreover, we have

d̃ist
(
x̃0, f̃

K+rni−k−i+k1(ỹi)
)
≥ d̃ist

(
x̃0, T

sni−1(B̃)
)
∼

i→+∞
rniϑµ1 ,

with, by (5.10)
rniϑµ1

K + rni − k−i + k1
−→
i→+∞

ϑµ1 .

Using elementary hyperbolic geometry in S̃ (e.g. [GM22, Claim 4.4]), we can translate
these estimates from the geodesic arcs from α(γ̃x̃2) to x̃0 and x̃0 to ω(x̃1), to the geodesic
from α(x̃2) to ω(x̃1). We get that there exists some ϑ ≥ ϑµ1 such that (α(x̃2), ω(x̃1), ϑ)
is a rotation vector in the sense of [GM22], hence, using [GM22, Theorem A], we get that
(α(x̃2), ω(x̃1), ϑµ1) is a rotation vector in the sense of [GM22].

Similarly, for any j ∈ N, consider n′j ≥ n0 such that

jSnjϑµ1 ≤ −k−jϑµ2 ,

and ỹ′j = T
sn′
j
−1
ỹ1,j,n′j

so that Ĩ
[0,K+rn′

j
−k−1+kj ]

F̃ (ỹ′j) starts on T
−sn′

j
+1
S−1φ̃0 and finishes on

Sjφ̃0. In particular, ỹi /∈ R(S−1B̃) and f̃
K+rn′

j
−k−1+kj

(ỹ′j) /∈ L(T rni−1SjB̃). This implies,
using (5.9), that

lim
j→+∞

ỹ′j = α(x̃1) and lim
j→+∞

f̃
K+rn′

j
−k−1+kj

(ỹ′j) = ω(x̃2).

Like before, we moreover deduce the speed of the rotation vector: (α(x̃1), β(x̃2), ϑµ1) is a
rotation vector in the sense of [GM22].

A similar reasoning shows that if ϑµ1 ≤ ϑµ2 , then both triples (α(x̃1), ω(x̃2), ϑµ2) and
(α(x̃2), ω(x̃1), ϑµ2) are rotation vectors in the sense of [GM22].

Finally, we prove the third point of the theorem. By [Lel23, Proposition 3.4.13.]6, we get
that any point in the triangle spanned by 0, ρH1(µ1), ρH1(µ2) is accumulated by homological

6Or, again, one could use [GLCP23, Proposition 4.17] to get in the setting of [Lel23, Section 3.4].
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rotation vectors periodic orbits of f . In particular, for t ∈ (0, 1) and ε ∈ (0,min(t, 1− t)),
there exists a periodic point z for f such that ρH1(z) ∈ B(tρH1(µ1) + (1 − t)ρH1(µ2), ε),
which moreover satisfies ρH1(z)∧ ρH1(µi) 6= 0 for i = 1, 2. By Proposition 4.7, this implies
that for i = 1, 2, there is a lift z̃ of z and a lift x̃i of a typical point xi for µi such that
the geodesics γ̃z̃ and γ̃x̃i intersect. To get the fact that the tracking geodesic of z̃ can be
supposed to be as close as we want to the tracking geodesic of x̃1 or to the one of x̃2, one
can reason as in the end of the proof in the case of Paragraph 5.3.2 (this case of the end of
Paragraph 5.3.2 is similar although a bit more difficult because the deck transformations
associated to the trajectory of x1 are not multiples of a single deck transformation T ).

One can apply the same reasoning for the behaviour of the leaves φ̃t1 for t in a neigh-
bourhood of +∞, and the behaviour of the leaves φ̃t2 for t in a neighbourhood of ±∞.
If in one of these cases Condition (C) holds and |s0| < +∞, then the theorem is proved.
Otherwise, one has that in all cases, either Condition (C) does not hold, or |s0| = +∞.
We treat this case in the following paragraph.

5.3.2 The other cases

We now treat the remaining cases, i.e. for all four intersections

ĨZF̃ (x̃1) ∩ T ′2ĨZF̃ (x̃2), ĨZF̃ (x̃1) ∩ T2Ĩ
Z
F̃ (x̃2),

ĨZF̃ (x̃2) ∩ T1Ĩ
Z
F̃ (x̃1), ĨZF̃ (x̃2) ∩ T ′1ĨZF̃ (x̃1),

(5.11)

either Condition (C) does not hold, or Condition (C) holds and |s0| = +∞ (see Figure 8).
Consider the first of these intersections. If Condition (C) holds and |s0| = +∞, then

for any t small enough the leaf φ̃t1 meets T2T1Ĩ
Z
F̃ (x̃1) before it meets T2Ĩ

Z
F̃ (x̃2). Applying

again Lemma 5.15, we deduce that the leaf φ̃t1 is disjoint from the connected component of
the complement of T2T1Ĩ

Z
F̃ (x̃1) ∪ T2Ĩ

Z
F̃ (x̃2) containing ω(x̃1). The same conclusion is true

if Condition (C) does not hold.
Similar conclusions hold for all of the four intersections of (5.11). This allows to ap-

ply [GM22, Lemma 10.7.3] to conclude that the paths ĨZF̃ (x̃1) and ĨZF̃ (x̃2) intersect F-

transversally at some point Ĩt1F̃ (x̃1) = Ĩt2F̃ (x̃2). In particular, we get two recurrent transverse
trajectories which intersect F-transversally; this implies [LCT18, LCT22] the existence of
a topological horseshoe for f (this proves the first point of Theorem 5.8).

Let us get more precise implications of this property, about the new rotation vectors
that are created.

Let us set notations for the transverse intersection we just obtained. Let n1 ≤ t1 ≤ n′1,
n2 ≤ t2 ≤ n′2, with n1, n

′
1, n2, n

′
2 ∈ Z, be such that:

� Ĩ
n′1−n1

F̃ (f̃n1(x̃1)) and Ĩ
n′2−n2

F̃ (f̃n2(x̃2)) intersect F̃-transversally at Ĩt1F̃ (x̃1) = Ĩt2F̃ (x̃2);
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T2Ĩ
Z
F̃ (x̃2)

ĨZF̃ (x̃1)

ĨZF̃ (x̃2)

T2T1Ĩ
Z
F̃ (x̃1) T2Ĩ

Z
F̃ (x̃2)

ĨZF (x̃1)

ĨZF (x̃2)

T2T1Ĩ
Z
F̃ (x̃1)

Figure 8: In both cases of Paragraph 5.3.2, for t small enough the leaves φ̃t1 stay in the (light

green) region that is the complement of the connected component of T2

(
ĨZF̃ (x̃2)∪T1Ĩ

Z
F̃ (x̃1)

){
containing ω(x̃1). Left: Condition (C) holds and s0 = −∞. Right: Condition (C) does not
hold.

� for i = 1, 2, the whole leaf φ̃f̃ni (x̃i) is disjoint from the connected component of the

complement of Ti+1

(
ĨZF̃ (x̃i+1)∪TiĨZF̃ (x̃i)

)
containing ω(x̃i) (the indices are computed

modulo 2);

� for i = 1, 2, the whole leaf φ̃
f̃n
′
i (x̃i)

is disjoint from the connected component of the

complement of T ′i+1

(
ĨZF̃ (x̃i+1) ∪ T ′i ĨZF̃ (x̃i)

)
containing α(x̃i).

For i = 1, 2, let Ũi be a neighbourhood of f̃ni(x̃i) such that for any ỹ ∈ Ũi, the path

Ĩ
n′i−ni
F̃ (x̃i) is equivalent to a subpath of Ĩ

n′i−ni+2

F̃ (f̃−1(ỹ)) (e.g. [LCT18, Lemma 17]).

As xi is typical, by Lusin theorem, there is a subset Ãi of Ũi of µi-positive measure on
which the (tracking geodesic) map ỹ 7→ γ̃ỹ is continuous.

By typicality of the point x̃1, the fact that it is tracked by γ̃x̃1 , and that it has ho-
mological rotation vector ρH1(µ1), Birkhoff theorem implies that there exists a sequence
(S1,j)j∈N of deck transformations, as well as a sequence of times (m1,j)j∈N, with S1,0 = Id
and m1,0 = 0, and η > 0, such that:

(a1) m1,j ∼
j→+∞

−jη;

(b1) f̃m1,j (x̃1) ∈ S1,j(Ã1);

(c1)
[S1,j ]H1
m1,j

= ρH1(µ1);
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(d1)

lim
j→+∞

inf
prγ̃x̃1

(S1,jÃ1)

m1,j
= lim

j→+∞
sup

prγ̃x̃1
(S1,jÃ1)

m1,j
= ϑµ1 ;

(e1) L
(
S1,j+1T

′
2I

Z
F̃ (x̃2)

)
⊂ L

(
S1,jT2I

Z
F̃ (x̃2)

)
(this is a consequence of the above property

about the angles between tracking geodesics being bigger than θ0, and Lemma 5.12);

(f1) R
(
S−1

1,j T2I
Z
F̃ (x̃2)

)
⊂ R

(
T ′2I

Z
F̃ (x̃2)

)
(this is obtained by using the fact that the axis of

S−1
1,j is close to γ̃x̃2 , by reasoning as in the proof of Lemma 5.10, and the fact that

the translation length of S1,j is arbitrarily long).

Similarly, by typicality of the point x̃2, the fact that it is tracked by γ̃x̃2 , and that it has
homological rotation vector ρH1(µ2), Birkhoff theorem implies that there exists a sequence
(S2,j′)j′∈N of deck transformations, as well as a sequence of times (m2,j′)j′∈N, with S2,0 = Id
and m2,0 = 0, and η > 0, such that:

(a2) m2,j′ ∼
j′→+∞

jη;

(b2) f̃m2,j′ (x̃2) ∈ S2,j′(Ã2);

(c2)
[S2,j′ ]H1
m2,j′

= ρH1(µ2);

(d2)

lim
j′→+∞

inf
prγ̃x̃2

(S2,j′Ã2)

m2,j′
= lim

j′→+∞
sup

prγ̃x̃2
(S2,j′Ã2)

m2,j′
= ϑµ2 ;

(e2) L
(
S2,j′+1T1Ĩ

Z
F̃ (x̃1)

)
⊂ L

(
S2,j′T

′
1Ĩ

Z
F̃ (x̃1)

)
;

(f2) R
(
S−1

2,j T
′
1I

Z
F̃ (x̃1)

)
⊂ R

(
T1I

Z
F̃ (x̃1)

)
.

By the fundamental proposition [LCT18, Proposition 20] of the forcing theory, for
j, j′ ∈ N∗, there exists ỹj,j′ ∈ S̃ such that the transverse path (see Figure 9, left)

α̃j,j′ := Ĩ
−m1,j+m2,j′+n

′
1−n1+n′2−n2+2

F̃ (ỹj,j′)

is F̃-equivalent to the path ĨZF̃ (x̃1)|[m1,j−1,t1]I
Z
F̃ (x̃2)|[t2,m2,j′+1].

These paths satisfy:

1) For any neighbourhoods O1, O2 of respectively α(x̃1), ω(x̃2), there exists J0 ∈ N such
that if j, j′ ≥ J0, then ỹj,j′ ∈ O1 and f̃−m1,j+m2,j′+n

′
1−n1+n′2−n2+2(ỹj,j′) ∈ O2 (by b)

and d));

2) If j′ is fixed, then prγ̃x̃1
(ỹj,j′) ∼

j→+∞
m1,jϑµ1 (by (b1), (b2), (d1) and (d2));
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ĨZF̃ (x̃2)

ĨZF̃ (x̃1)

ĨZF̃ (z̃)

T2Ĩ
Z
F̃ (x̃2)

S1,j Ĩ
Z
F̃ (x̃2)

T ′1Ĩ
Z
F (x̃1)

S2,j′ Ĩ
Z
F̃ (x̃1)

ĨZF̃ (x̃2)

ĨZF̃ (x̃1)

S1,j Ĩ
Z
F̃ (x̃2)

S2,j′ Ĩ
Z
F̃ (x̃1)

α̃j,j′

S2,j′S
−1
1,j α̃j,j′

S1,jS
−1
2,j′α̃j,j′

Figure 9: The path α̃j,j′ and its translates S2,j′S
−1
1,j α̃j,j′ and S1,jS

−1
2,j′α̃j,j′ with whom it has

transverse intersections (left), and the trajectory of the point z̃ for the end of the proof of
the theorem (right).

3) If j is fixed, then prγ̃x̃2
(f̃−m1,j+m2,j′+n

′
1−n1+n′2−n2(ỹj,j′)) ∼

j′→+∞
m2,j′ϑµ2 (by (b1),

(b2), (d1) and (d2));

4) The paths α̃j,j′ and S2,j′S
−1
1,j α̃j,j′ intersect F-transversally. This comes from the facts

that the path S1,j Ĩ
n′1−n1

F̃ (x̃1) is equivalent to a subpath of Ĩ
n′1−n1+2

F̃ (ỹj,j′), and the

path S2,j′ Ĩ
n′2−n2

F̃ (x̃2) is equivalent to a subpath of Ĩ
n′2−n2+2

F̃ (f̃−m1,j+m2,j′+n
′
1−n1(ỹj,j′)).

The first three properties show that the rotation vector (α(x̃1), ω(x̃2),max(ϑµ1 , ϑµ2))
is a rotation vector of f in the sense of [GM22] (see [GM22, Claim 4.4]). Symmetrical
arguments show that (α(x̃2), ω(x̃1),max(ϑµ1 , ϑµ2)) is also a rotation vector of f in the
sense of [GM22]. This proves the second point of the theorem.

By [LCT22, Theorem M], property 4) implies the existence of a topological rotational
horseshoe relative to the deck transformation S2,j′S

−1
1,j . More precisely, for any rational

number p/q ∈ (0, 1] written in a irreducible way, there exists a point z̃ ∈ S̃ such that
f̃ q(−m1,j+m2,j′+n

′
1−n1+n′2−n2+2)(z̃) = (S2,j′S

−1
1,j )p(z̃) (see Figure 9, right). In particular, the

homological rotation vector of z̃ is equal to

p

q

[S2,j′ ]H1(S) − [S1,j ]H1(S)

−m1,j +m2,j′ + n′1 − n1 + n′2 − n2 + 2
∼

j,j′→+∞

p

q

[S2,j′ ]H1 − [S1,j ]H1

−m1,j +m2,j′
.

Let λ ∈ R∗+, and pick j = n, j′ = bλnc, we get that these rotation vectors are equivalent
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to (recall that −m1,j ∼ ηj ∼ m2,j , and use properties (c1) and (c2))

p

q

(
[S2,j′ ]H1

(1 + λ−1)m2,j
+
−[S1,j ]H1

−(1 + λ)m1,j

)
∼

j,j′→+∞

p

q

(
λ

1 + λ
ρH1(µ1) +

1

1 + λ
ρH1(µ2)

)
,

which implies that the whole triangle spanned by 0, ρH1(µ1), ρH1(µ2) is accumulated by
rotation vectors of periodic orbits.

Finally, let us locate the endpoints in the boundary at infinity of the trajectory of z̃.
Equivalently, we want to locate the endpoints of the axis of S2,j′S

−1
1,j . For this we consider

j, j′ ≥ 2.
Let us first show that for any k ≥ 0, we have(

S2,j′S
−1
i,j

)k (
L(S2,1γ̃x̃1)

)
⊂ L(S2,1γ̃x̃1), (5.12)

In other words that L(S2,1γ̃x̃1) is stable under S2,j′S
−1
i,j . Note that, using (e1)

L(S2,1γ̃x̃1) ⊂ L(T ′1γ̃x̃1) ⊂ R(T2γ̃x̃2) ⊂ R(S1,jT
′
2γ̃x̃2) ⊂ L(S1,jT1γ̃x̃1)

so
S−1

1,jL(S2,1γ̃x̃1) ⊂ L(T1γ̃x̃1).

Moreover (because j′ ≥ 2, and by (e2)),

S2,j′(L(T1γ̃x̃1)) ⊂ S2,1(L(T ′1γ̃x̃1)).

Therefore,
S2,j′S

−1
1,j (L(S2,2γ̃x̃1)) ⊂ S2,2(L(T ′1γ̃x̃1)).

Similarly, one can show that for any k ≥ 0, we have(
S2,j′S

−1
i,j

)−k (
L(S1,2γ̃x̃2)

)
⊂ L(S1,2γ̃x̃2).

Combined with (5.12), this shows that α(z̃) ⊂ L(S−1
1,2 γ̃x̃2) and ω(z̃) ⊂ L(S2,2γ̃x̃1). Hence,

α(S−1
1,1 z̃) ⊂ L(S−1

1,1S1,2γ̃x̃2) ⊂ L(T2γ̃x̃2) (by (e1)) and ω(S−1
1,1 z̃) ⊂ L(S−1

1,1S2,2γ̃x̃1) ⊂ R(T ′2γ̃x̃2)
(by (f1) and (e2)). As the number R in Lemma 5.12 is arbitrary, this proves that the
tracking geodesic of S−1

1,1 z̃ can be chosen arbitrarily close to γ̃x̃1 . Similarly, one can show
that the tracking geodesic of S2,1z̃ can be chosen arbitrarily close to γ̃x̃2 . This ends the
proof of the theorem.
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6 The shape of rotation sets — proof of Theorems A, F and
Corollary G

Let us recall the statement of Theorem F.

Theorem 6.1. Let f ∈ Homeo0(S). Then there exists a decomposition

Merg
ϑ>0(f) =

⊔
i∈I
Ni =

⊔
i∈I1
Ni t

⊔
i∈I+
Ni

of the set of ergodic measures with positive rotation speed into equivalence classes such that,
denoting for i ∈ I (see Theorem C for the set Λµ),

ρi =
{
ρH1(µ) | µ ∈ Ni

}
, Vi = Span(ρi), Λi =

⋃
µ∈Ni

Λµ,

we have:

1. For every i ∈ I1,

� Λi is a minimal geodesic lamination (hence contains all the tracking geodesics
associated to any of the ergodic measures of Ni).

� ρI1 =
⋃
i∈I1

ρi is included in a union of at most 3g − 3 lines of H1(S,R).

2. If I+ 6= ∅, then f has a topological horseshoe (and in particular, positive topological
entropy), and for every i ∈ I+,

� The linear subspace Vi has a basis formed by elements of H1(S,Z);

� The set ρi is a convex set containing 0;

� We have intVi(ρi) = intVi(ρi) (in other words, ρi is convex up to the fact that
elements of ∂Vi(ρi) \ extrem(ρi) can be in the complement of ρi);

� Every element of intVi(ρi) ∩H1(S,Q) is the rotation vector of some f -periodic
orbit (because Vi has a rational basis, such elements are dense in intVi(ρi)).

3. For i, j ∈ I, i 6= j, for vi ∈ Vi and vj ∈ Vj, we have vi ∧ vj = 0. Thus, span(ρI1) is a
totally isotropic subspace of H1(S,R). Moreover, if i, j ∈ I1, then Λi ∩ Λj = ∅.

4. Card I1 ≤ 3g − 3 and Card I+ ≤ 3g − 3.

Note that this theorem implies that ρerg
H1

(f) =
⋃
i∈I ρi (see Definition 1.3), so ρerg

H1
(f) is

a finite union of convex sets containing 0, together with a set contained in a g-dimensional
subspace and included in a finite number of one-dimensional subspaces of H1(S,R).
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Note also that the periodic orbits that we get in order to prove that a dense subset of
ρi (i ∈ I+) is realised by periodic orbits are stable, in other words the rotation vectors of
these periodic orbits persist under small perturbations of f .

Recall that for any finite set F ⊂ intVi(ρi), denoting R = conv({0}, F ), there exists a
constant M > 0 such that for any p/q ∈ R∩H1(S,Q), with p ∈ H1(S,Z) and q ∈ N∗, there
exists a periodic point of period dividing Mq and with rotation vector p/q. We cannot
hope having a universal bound on the constant M , as shown by the exemple of Figure 14.

As depicted in Figure 15, it is possible that for i, j ∈ I+, i 6= j, we have Vi = Vj and
ρi 6= ρj . In this specific example, the intersection ρerg

H1
(f)∩ Vi is made of 4 pieces, two that

are convex sets of dimension 2 and two included in segments.

The fact that Theorem 6.1 implies Theorem A and Corollary G is trivial.

6.1 Preliminary tools of Nielsen-Thurston Theory

Let us first recall some definitions of Nielsen-Thurston theory.
Assume that h ∈ Homeo(Σ) is a homeomorphism of a compact surface Σ, possibly

with boundary or punctures. We call h periodic if there exists n > 0 such that hn = IdΣ.
We call h pseudo-Anosov if there exist h-invariant measurable foliations with associated
uniformly expanding transverse measures (see [Thu88] for details). These two types of
homeomorphism are distinct, and in particular periodic homeomorphisms have zero topo-
logical entropy while pseudo-Anosov homeomorphisms have nonzero topological entropy.
Given a finite h-invariant set F (in other words, F is a finite union of h-periodic orbits),
we call h pseudo-Anosov relative to F if h|Σ\F is pseudo-Anosov.

The key theorem of Nielsen-Thurston theory is the following (e.g. [Tra79]):

Theorem 6.2 (Nielsen-Thurston classification). Every homeomorphism f ∈ Homeo(Σ) is
isotopic to a homeomorphism h ∈ Homeo(Σ) such that:

(i) h leaves invariant a finite family (possibly empty) of disjoint simple closed curves
C1, . . . , Cn on Σ;

(ii) No curve Ci is homotopic to a boundary curve of S;

(iii) We can decompose Σ =
⋃d
j=1 Σj, where Σ1, . . . ,Σd are closed surfaces with disjoint

interiors obtained by cutting the surface S along the curves {C1, . . . , Cn};

(iv) For each 1 ≤ j ≤ d, the homeomorphism h|Σj is either periodic or pseudo-Anosov.

In [LM91], Llibre and MacKay prove that if S = T2 and if f ∈ Homeo0(S) has a
rotation set with nonempty interior, then f is isotopic to a pseudo-Anosov relative to a
finite set. This result was later generalized to other contexts, with the same proof strategy,
in [Pol92, Hay95, Mat97, Boy94]. Let us state the first of these results.
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Theorem 6.3 ([Pol92], Theorem 2). Let S be a compact closed surface of genus g ≥ 2,
and f ∈ Homeo0(S). Assume that there exist 2g + 1 periodic points x1, . . . , x2g+1 whose
rotation vectors ρ1, . . . , ρ2g+1 ∈ H1(S,R) do not lie on a hyperplane, then f is isotopic to
some h ∈ Homeo0(S) having an invariant set S1 ⊂ S that is a closed surface with boundary,
such that h|S1 is pseudo-Anosov relative to a finite set.

We will adapt these proofs in order to deal with second item of the proof of Theorem 6.1.

6.2 The proof

Recall that the partition ofMerg
ϑ>0(f) into equivalence classes Ni was defined at the begin-

ning of Section 1.5.

Proof of Theorem 6.1. Let us study the classes Ni. We start by defining the two comple-
mentary sets

I1 =
{
i ∈ I | ∀µ1, µ2 ∈ Ni, Λµ1 = Λµ2

}
,

I+ =
{
i ∈ I | ∃µ1, µ2 ∈ Ni that are dynamically transverse

}
.

Fix i ∈ I. Let us now deal with each of the four items of the statement.

Item 1. Suppose that i ∈ I1 and let us prove the two required properties.

— Λi is a minimal geodesic lamination. By Theorem 5.8, all geodesics of Λi are simple.
Indeed, if they are not, then Theorem 5.8 produces a periodic orbit whose tracking geodesic
intersects one tracking geodesic of µ. Hence, the uniform measure on this periodic orbit
belongs to Ni, and hence Λi is reduced to a single closed geodesic. By hypothesis, this
geodesic is not simple. But by [GM22, Theorem E], this geodesic crosses the tracking
geodesic of another f -periodic point, which is a contradiction. Incidentally, the same
reasoning also proves that I1 ∩ I+ = ∅.

By Theorem D, the set Λi is a minimal geodesic lamination and

γx(R) = Λi

for any µ ∈ Ni and µ-a.e. x ∈ S.

— ρI1 is included in a union of at most 3g − 3 lines. Note that the union of the minimal
laminations {Λi}i∈I1 is itself a (possibly non-minimal) lamination Λ1. By Proposition 4.6,
it is enough to bound the amount of homological rotation vectors associated to geodesics in
this lamination. By Birkhoff’s ergodic theorem, this is equivalent to bounding the amount
of ergodic transverse measures for the lamination. By [McM13], this number is bounded
by 3g − 3.

Item 2. Suppose that there exist two measures of Ni that are dynamically transverse.

— If I+ 6= ∅, then f has a topological horseshoe.

57



This is a direct consequence of Theorem 5.8.

— ρi is a convex subset of Vi with nonempty interior, containing 0.

Consider µ1, µ2 ∈ Ni and suppose that Λµ1 6= Λµ2 . Then there exist τ1, . . . , τm ∈
Merg

ϑ>0(f) such that τ1 = µ1, τm = µ2 and for all 1 ≤ i < m, the measures τi and τi+1 are
dynamically transverse.

Let λ1, λ2 ∈ [0, 1] such that λ1 + λ2 ≤ 1, and ε > 0. We want to show that the ball of
center λ1ρH1(µ1)+λ2ρH1(µ2) and radius ε intersects ρi = {ρ(µ) | µ ∈ Ni}. By Theorem 5.8,
for τ2-almost any x2, there exists an f -periodic point z2, such that ρH1(z2) ∈ B(ρH1(τ1), ε)
and that one lift of the tracking geodesic for z2 is close to some tracking geodesic γ̃x̃2 . As
by hypothesis τ3-almost any x3 has a lift such that γ̃x̃2 ∩ γ̃x̃3 6= ∅, the tracking geodesic
for z2 intersects the tracking geodesic γ̃x̃3 .

Applying now Theorem 5.8 to the uniform measure on the periodic orbit of z2 and the
measure τ3, for τ3-almost any x3, one obtains an f -periodic point z3 such that ρH1(z3) ∈
B(ρH1(τ1), 2ε) and that the tracking geodesic for z3 is close to some tracking geodesic γ̃x̃3 .

Iterating this process, for τm−1-almost any xm−1, one obtains an f -periodic point zm−1

such that ρH1(zm−1) ∈ B(ρH1(τ1), (m− 1)ε) and that the tracking geodesic for zm−1 is
close to some tracking geodesic γ̃x̃m−1

.
Finally, applying Theorem 5.8 to the uniform measure on the periodic orbit of zm−1

and the measure τm, one obtains a periodic point zm for f , such that

ρH1(zm) ∈ B
(
λ1ρH1(τ1) + λ2ρH1(µ2),mε

)
and such that the tracking geodesic for zm is close to some tracking geodesic γ̃x̃m (and in
particular the uniform measure on the orbit of zm belongs to Ni). Hence, any point of
the convex hull of 0, ρµ1 , ρµ2 is accumulated by rotation vectors of periodic measures that
belong to Ni. Note that this convex hull can be trivial: we can very well have ρH1(µ) = 0
for every µ ∈ Ni. See e.g. Figure 13.

This shows that the set ρi is convex, contains 0 and spans a linear vector space having
a basis made of elements of H1(S,Z). In particular, ρi has nonempty interior in the vector
space it spans.

— There is a dense subset of ρi made of rotation vectors of periodic orbits belonging to Ni
(and hence Vi is a rational subspace of H1(S,R)), and intVi(ρi) ⊂ ρi.

Let us show that intVi ρi is contained in ρi. By the fact that ρi is dense in conv(ρi)
(this is the above fact about the denseness of rational elements in conv(ρi)) this amounts
to show that intVi conv(ρi) ⊂ ρi. We do this by means of arguments due to Llibre and
MacKay [LM91]. These arguments are now considered as folklore results (for instance,
Boyland attributes them to a conversation with Franks [Boy94, Theorem 11.9]).

We start by adapting the proof of [Pol92, Theorem 2] to get the following:

Claim 6.4. Suppose that F is a finite f q-invariant subset of S, made of fixed points of f q

belonging to a single class Ni, with CardF ≥ 2. Suppose also that for x, y ∈ F , x 6= y,
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the geodesics γx and γy are distinct and intersect transversally. Then, f q|S\F is isotopic to
a homeomorphism having a pseudo-Anosov component on some sub-surface Σj0 such that
F ⊂ Σj0.

Proof. Set Σ = S \ F and apply Nielsen-Thurston classification (Theorem 6.2) to f q|Σ to
get h ∈ Homeo(Σ). Consider one simple closed curve C appearing in the decomposition
(i) of Theorem 6.2. In the proof of [Pol92, Theorem 2], Pollicott shows that C cannot be
contractible in S. Indeed if it were, then it would bound a disk in S. This disk cannot be
contractible in Σ nor contain a single point of F by point (ii) of Theorem 6.2. It cannot
contain two different points of F either, as these points have different tracking geodesics
and hence the lifts of their orbits do not stay at finite distance under the action of f q on
pair of points.

Let Σj0 be one component of the decomposition of Theorem 6.2 such that there exists
x ∈ F ∩ Σj0 . The homeomorphism h extends naturally to a homeomorphism of S homo-
topic to the identity, having the points of F as fixed points and with the same rotational
behaviour as under f . The set Σj0 lifts to some set Σ̃j0 of S̃, whose boundary is made of
lifts of F together with lifts C̃i of some of the curves Ci. Each curve C̃i stays at a finite
distance from some geodesic of S̃. The (extension to S of the) homeomorphism h lifts
canonically to a homeomorphism h̃ of S̃; h̃ leaves invariant each of the C̃i, the set Σ̃j0 and

hence each of the connected components of S̃ \ Σ̃j0 . Recall that x ∈ F ∩ Σj0 and suppose

that there exists y ∈ F \ Σj0 . Let us take x̃ ∈ Σ̃j0 a lift of x and ỹ a lift of y such that
γ̃ỹ and γ̃x̃ intersect transversally (this exists by hypothesis). Both γ̃ỹ and γ̃x̃ cannot cross

any of the geodesics that stay at a finite distance of some of the C̃i because Σ̃j0 and the

connected components of the complement of Σ̃j0 are h̃-invariant. In other words, both

endpoints of γ̃x̃ are points of Σ̃j0 ∩∂S̃, and both endpoints of γ̃ỹ are points of S̃ \ Σ̃j0 ∩∂S̃.
This contradicts the fact that γ̃ỹ and γ̃x̃ intersect transversally. This implies that F ⊂ Σi.

Finally, note that h|Σi cannot be periodic, as Σi contains two different points with
different rotational behaviour. This shows, by Theorem 6.2, that h|Σi is pseudo-Anosov.

It then suffices to apply the arguments of [MZ91] in the higher genus case. These argu-
ments are based on Nielsen-Thurston theory, and in particular Handel’s semi-conjugation
result [Han85] for pseudo-Anosov maps, that can be replaced here by Boyland’s result
[Boy99] for pseudo-Anosov components7.

We then get the following.

7Alternatively, Militon signalled to us that it is possible to consider the cover of the surface S whose π1

is the subgroup of π1(S) generated by the closed geodesics associated to the periodic orbits of F . In this
cover, the lift of S \ F is endowed with the lift of f |S\F which is homotopic to a pseudo-Anosov map, and
one can apply Handel’s result on this surface.
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Lemma 6.5. If f ∈ Homeo0(S) has a pseudo-Anosov component relative to a finite subset
F of S, then any element of int(conv(ρ(f |F ))) is realized as the rotation vector of an
f -ergodic measure.

With a similar proof, one gets the following consequence: for any finite set F ⊂ intVi(ρi),
denoting R = conv({0}, F ), there exists a constant M > 0 such that for any p/q ∈
R ∩ H1(S,Q), with p ∈ H1(S,Z) and q ∈ N∗, there exists a periodic point of period
dividing Mq and with rotation vector p/q (see also [Mat97, Theorem 4]).

Let us now finish the analysis for Item 2. Consider one class Ni with i ∈ I+, and
r ∈ intVi conv(ρi). We have already proved that this implies that r ∈ intVi conv(r1, . . . , rk),
with each rj ∈ ρi that is realised by some f -periodic orbit belonging to Ni. By repeated use
of Theorem 5.8 as in the above discussion, we can approximate each rj by some r′j ∈ ρi that
is realised by some f -periodic point xj belonging to Ni, and with the additional property
that for any j 6= j′ one has that γxj and γxj′ intersect transversally. If the r′j approximate
well enough the rj , then one still has r ∈ intVi conv(r′1, . . . , r

′
k).

Take q the lcm of the periods of the xj ; then F = {x1, . . . , xk} is a set of fixed points
for f q, such that the tracking geodesics of two of these points intersect transversally. It
allows to apply Claim 6.4: f q|S\F has a pseudo-Anosov component on some sub-surface

Σj0 such that F ⊂ Σj0 . Then, Lemma 6.5 implies that r is realised as the rotation vector
of an f -ergodic measure.

Item 3. Given Vi = span(ρi), Vj = span(ρj), it suffices to prove that for every µi ∈
Ni, µj ∈ Nj and defining vi = ρH1(µi), vj = ρH1(µj), we have that vi ∧ vj = 0. Assume
that vi ∧ vj 6= 0. By Proposition 4.7 we obtain that typical tracking geodesics of µi and
µj intersect transversally, which by Theorem C implies that µi and µj are dynamically
transverse, which then yields that they belong to the same equivalence class.

Now, let us restrict to the case i, j ∈ I1. Recall that by Theorem C, we have that
Λµi ,Λµj are minimal geodesic laminations. Therefore, whenever Λµi ∩Λµj 6= ∅, we obtain
that Λµi = Λµj , which then implies that i = j. This finishes the study of item 3.

Item 4. Card I1 ≤ 3g − 3, Card I+ ≤ 3g − 3.

Let us first bound the number of classes bearing only simple tracking geodesics, i.e.
those from I1.

Consider n pairwise disjoint geodesic laminations Λ1, . . . ,Λn on S. Each of these lami-
nations contains a minimal geodesic lamination, so one can suppose that each Λi is minimal.
As these laminations are pairwise disjoint and compact, they are all at positive distance
one to the other; let us call d the minimum of these distances.

For each i, consider a geodesic γi ⊂ Λi. As γi is recurrent, there exists times tk → +∞
such that limk→+∞ dist(γi(0), γi(tk)) = 0. By the periodic shadowing lemma, this implies
that there exists a closed geodesic αi staying in the d/3-neighbourhood of γi. Hence, we
obtain a collection of n pairwise disjoint closed geodesics on S: this is a classical result
that this implies n ≤ 3g − 3.
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Now, let us bound the number of classes in I+. Fix i ∈ I+. We have two possibilities.
Either there exists a periodic measure (i.e. an ergodic measure supported on a periodic

orbit) in the class whose associated tracking geodesic is simple, or there is not. For the
latter, the above proof shows that there exists a periodic measure in the class, so the
associated tracking geodesic γz is closed but not simple.

Let γ̃z̃ be a lift of this geodesic to S̃, denote by T1 one deck transformation such that
γ̃z̃ ∩ T1γ̃z̃ 6= ∅, and by T2 the deck transformation such that T = T1T2 is one primitive
deck transformation preserving γ̃z̃ (i.e. associated to the closed geodesic). One can choose
T1 such that it is associated to an element of π1(S) having one simple representative. By
[GM22, Theorem E], for any n > 0, there exists a periodic orbit zn for f , whose associated
deck transformation is Tn1 T2, there also exists a periodic orbit z0 for f , whose associated
deck transformation is T1.

By hypothesis on the class, as the tracking geodesic γz0 is simple, the periodic measure
associated to z0 does not belong to Ni. Note that given a lift z̃0 of z0, there exists some
lifts z̃n of zn such that the tracking geodesics γ̃z̃n accumulate on γ̃z̃0 when n goes to infinity.
Moreover, for any n, the tracking geodesic γ̃z̃n intersects the tracking geodesic γ̃z̃ of the
initial periodic point; in other words the periodic orbits associated to the points zn all
belong to Ni. This implies that the tracking geodesic of z0 does not intersect transversally
any other tracking geodesic; otherwise this crossing tracking geodesic would also cross the
tracking geodesics γzn eventually, which would mean that the periodic measure associated
to z0 belongs to Ni, a contradiction with the initial hypothesis.

Note that the same construction can be applied to the deck transformation T2. In-
deed, either it is associated to a simple geodesic and then there exists a periodic point z′0
having the same properties as z0 (as described above), but whose tracking geodesic is not
homotopic to the one tracking z0 (equivalently, not equal to). Or T2 is not associated to
a simple geodesic; in this case by [GM22, Theorem E], there exists a periodic point z′ for
f whose associated deck transformation is T2. The measure associated to z′ belongs to
Ni because its tracking geodesic intersects the one of z (because T2 is not associated to
a closed geodesic). If T2 can be written T2 = T3T4, with T3 6= T1 associated to a simple
geodesic, then we repeat the above arguments to get a periodic point z′0 having the same
properties as z0 (as described above), but whose tracking geodesic is not homotopic to the
one tracking z0. If not, then T2 = T1T4 and we can iterate the process to eventually get
such a point z′0.

We now prove that a tracking geodesic cannot be accumulated by more than 2 classes.
Let us be more precise. Let γ0 be a simple closed geodesic of S that is accumulated by
closed geodesics γn disjoint from γ0, meaning that: the ending points of some lifts γ̃n of γn
tend to those of some lift γ̃0 of γ0. Suppose, without loss of generality, that these closed
geodesics accumulate on γ0 by the left. Let ε > 0 and consider an ε neighbourhood of γ0

in S. If ε is small enough, then this neighbourhood is homeomorphic to an annulus, and
γ0 separates this annulus into two different annuli A1 on its left and A2 on its right.

On A1 there are natural coordinates (p, r) ∈ γ0×R+ given by the orthogonal projection
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on γ0 and the distance to γ0. Elementary hyperbolic geometry ensures that {t ∈ R | γn(t) ∈
A1} is an interval of R; as γn is not homotopic to γ0 this interval has to be bounded. As the
closed geodesics γn accumulate on γ0, for n large enough, the restriction of the projection
to the p coordinate to the geodesic γ0 has to be surjective. Hence, there is one interval
[a, b] ⊂ R such that γn(a) = γn(b), γn|(a,b) is simple and γn([a, b]) ⊂ A1. The two paths
γ0 and γn|[a,b] define another annular neighbourhood A′1 on the left of γ0. Applying again
the above arguments with A′1 instead of A1, we deduce that another sequence of closed
geodesics accumulationg on γ0 by the left has to intersect γn eventually. We have proved
that if two classes Ni and Nj contain periodic orbits whose associated goedesics accumulate
on some closed geodesic γ0, then the geodesics of one of the classes must accumulate on γ0

by the left, and the geodesics of the other class must accumulate on γ0 by the right.

Recall that I = I1 t I+. In summary, we have proved that the set of classes can be
partitioned as I = Is t Im t In, with

� Is the set of classes containing a simple closed geodesic,

� Im is the set of classes associated to a minimal geodesic lamination that is not a
simple closed geodesic,

� In is the set of classes containing no simple closed geodesic, but accumulating on at
least two different classes associated to simple closed geodesics.

We then have that I1∩In = ∅, I+∩Im = ∅. Note that the geodesics associated toNi for
i ∈ IstIm are pairwise disjoint. The proof of Item 4 then implies that Card(IstIm) ≤ 3g−3,
which implies that Card(I1) ≤ 3g − 3. Moreover, each class from I+ ∩ Is contains a
simple closed geodesic, and each class of I+∩In accumulates on two different simple closed
geodesics. We know that no class Ni, with i ∈ I+, can accumulate on a simple closed
geodesic γ belonging to another class Nj with j ∈ I+, as they would be the same class in
that case. This, together with the fact that a single closed geodesic can be accumulated by
at most two different classes, shows that Card(I+) ≤ 2 Card(Is)/2 ≤ 3g − 3. Finally, one
gets Card(I) ≤ 6g − 6.

7 Examples and proof of Proposition H

Throughout this section we will explain various examples and in particular we will prove
Proposition H.

Let us summarize the various examples we will meet in this section.

� In Figure 10 we give an example of a homeomorphism f of a genus 2 surface having
a single class Ni in I+ (and at least two classes in I1), but such that both Ni and
ρerg
H1

(f) generate the same 2-dimensional totally isotropic subspace of H1(S,R).
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a c

Figure 10: In this example, the homeomorphism f is the time one of a time dependent
vector field which is identically zero outside the grey neighbourhood of the red curve. The
red curve represents a periodic orbit of f . One easily sees that the homological rotation
set of f must be included in 〈[a]H1 , [c]H1〉, which is a totally isotropic subspace of H1(S,R)

for ∧. However, by [GM22, Theorem E], the closure ρerg
H1

(f) of the ergodic rotation set has
nonempty interior.

� In Figure 11 we give an example of a homeomorphism f of a genus 3 surface having
4 classes in I+ and 6 classes in I1. This example can be easily generalized to a
homeomorphism of a closed surface of genus g, having at least 2g − 2 classes in I+

and 3g − 3 classes in I1.

� In Figure 12 we give an example, due to Matsumoto, of a homeomorphism f of
a genus 2 surface having 2 classes in I+ and 1 class in I1. The ergodic rotation
set is made of two pieces that are 2-dimensional “almost convex” sets containing 0,
spanning two 2-dimensional vector subspaces of H1(S,R) that are orthogonal for ∧
and in direct sum.

� In Figure 13 we give an example of a homeomorphism f of a genus 3 surface having
a single class Ni belonging to I+ (and two classes in I1, but each one having rotation
set {0}), but such that ρerg

H1
(f) = {0}.

� In Figure 14 we give an example of a homeomorphism f of a genus 2 surface for which
Franks’ “exactness” property for the periods of the periodic points does not hold.

� In Figure 15 we give an example of a homeomorphism f of a genus 2 surface whose
ergodic rotation set is included in a plane, but is not convex: it is made of the union
of two 2-dimensional sets together with two sets included in lines. In particular, it
shows that one cannot hope to have a decomposition of H1(S,R) in a direct sum of
vector subspaces such that the rotation set is included in the union of these vector
subspaces, and the intersection of the rotation set with each of these subspaces is “al-
most convex”. The precise construction of this homeomorphism, adapting arguments
of Kwapisz in a pair of pants, is made in Figure 16.
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Figure 11: In this example, the homeomorphism f is supported on sufficiently small neigh-
bourhoods of the ten depicted closed curves, and is built as a time dependent vector field
which is identically zero outside these neighbourhoods, as in Figure 10. We then obtain
ten classes for Merg

ϑ>0(f), the blue curves representing the rotation of measures in I1, and
the red ones representing the rotation of measures in I+.

� In Paragraph 7.1, and in particular Proposition 7.1, building on arguments of Oxtoby
and Stepanov, we get an example of smooth diffeomorphism having an invariant
measure for which there are uncountably many tracking geodesics.

� In Paragraph 7.2, and in particular Proposition 7.6, using a sketch of Handel, we
give an example of a topological flow for which there exists a minimal filling geodesic
lamination Λ, such that the tracking geodesic of every orbit (except for a finite number
of them) equidistributes to a measure supported in Λ.

Note also the example of [GM23, Figure 1] showing that there are homeomorphisms of
a closed surface S of genus 2 with rotation set ρH1(f) having nonempty interior but with
ρerg
H1

(f) included in the union of two planes of H1(S,R).

7.1 Oxtoby Automorphism: uncountably many tracking geodesics

We will prove the following.

Proposition 7.1. Let Sg be a closed hyperbolic surface. There exists a C∞-diffeomorphism
of Sg, homotopic to the identity, and having uncountably many tracking geodesics belonging
to at most two minimal geodesic laminations.

The example we will build is based on the idea of Stepanov flows in T2, which are
introduced in [Ste36]. A C0 version of this example can be found in [GM22, Section 7.1].

Stepanov Flows

Definition 7.2 (Stepanov flow). A flow φt in T2 is a Stepanov flow if there exists an
irrational number α such that
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Figure 12: As in the previous examples of the section, the homeomorphism f is built as
the product of point-push homeomorphisms, three for this case. We have two classes in
Merg

ϑ>0(f) which belong to I+, and one class which belongs to I1. Moreover, the closure
of the set ρerg

H1
(f) is the union of two two-dimensional convex sets, each of them generated

by a horseshoe represented with the red pairs of transversally intersecting curves. This
example is due to Matsumoto [Mat97, Proposition 3.2].

� Every orbit belongs to a line y = αx+ k;

� There exists exactly one fixed point p0 of φt.

Fixing t0 6= 0, we will say that φt0 is a Stepanov diffeomorphism.

Theorem 7.3 ([Oxt53]). Let f be a Stepanov diffeomorphism in T2. Then, exactly one of
the following is true:

1. The only f -invariant probability is δp0,

2. There exists exactly one f -ergodic Borel probability µ with µ(p0) = 0.

In particular, if we take the constant vector field V = (α1, α2), where α1, α2 are ratio-
nally independent irrational numbers with quotient α, and then puncture the flow scaling
by a non-negative function κ : T2 → R which vanishes at a single point p0, then the flow
φ induced by κV preserves the measure

µ(E) =

∫∫
E

dLeb

κ(x, y)
(7.1)

We will be in case 2. of Theorem 7.3 if and only if this measure is finite. Name f = φ1,
and note that if F denotes a lift of f to R2, the rotation set ρ(F ) (defined in [MZ90]) is a
segment with irrational slope α, containing 0, the other endpoint being

v = (v1, v2) = ρµ(f) :=

∫
T2

F (z)− z dµ (7.2)
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Figure 13: The red curve is homologically trivial, as it is the concatenation of two bound-
aries of subsurfaces. As in Figure 10, the homeomorphism f is built time as a time depen-
dent vector field supported in a small neighbourhood of the red curve, which yields on its
turn a periodic orbit of f whose trajectory by the isotopy is said red curve. This is called
a point-push. For this example, the set ρerg

H1
(f) is trivial.

By the ergodic theorem, for Lebesgue almost every point z = T2\{p0}, we have that

lim
n→+∞

Fn(z)− z
n

= ρµ(f) (7.3)

Oxtoby also built the following example in [Oxt53]:

Theorem 7.4 (Oxtoby analytic example). There exists an analytic, Lebesgue ergodic flow
in T2 with exactly one fixed point.

Sketch of the proof. Let α ∈ [0, 1] be an irrational number. Take the vector field V =
(X,Y ) in T2 defined as follows:{

X(x, y) = α(1− cos(2π(x− y))) + (1− α)(1− cos(2πy))
Y (x, y) = α(1− cos(2π(x− y)))

The flow φ induced by V preserves the Lebesgue measure because Xx + Yy = 0. More-
over, the flow φ is topologically conjugate to a Stepanov flow by the homeomorphism h
given by

h(x, y) =

(
x, y +

α sin(2π(x− y))

2π
+

(1− α)(sin(2πy))

2π

)
.

Let f = φ1. By Theorem 7.3, we conclude that the Lebesgue measure is f -ergodic.

Because of this result and (7.2), we obtain that any Oxtoby example f has ρLeb(f) =
v 6= 0, and its rotation set ρ(f) is a segment of vertices 0 and v.

Proof or Proposition 7.1. Let us start with an Oxtoby automorphism f of the torus T2,
from Theorem 7.4.
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RL RR

γL γRa
c

f(RL)
f(RR)

Figure 14: The images of the two rectangles RL and RR are depicted with thick lines, all
the intersections between rectangles are markovian. The black dots are contractible fixed
points of f . One can build the homeomorphism f such that the intersections fn(γL)∩γR are
empty for any |n| ≤ n0 (on this example, n0 = 5). Hence, any periodic point realizing any
nonzero homology vector collinear to [ac]H1 must have period bigger than 2n0. However,
one can see by studying the discrete dynamics associated to the Markovian intersections
that for any rational number p/q ∈ [0, 1), the homology vector p/q [ac]H1 is realized by
some periodic orbit. In particular, 1/2 [ac]H1 is realized by some periodic orbit but by
no periodic orbit of period 2: Franks’ “exactness” property for periods in the torus case
[Fra89] does not hold on higher genus.

Step 1. Blowing it up and gluing together

The idea is now to explode the fixed point into a circle of directions. By Stark’s result in
[Sta99, Theorem 6.1] we know that if we start with a C∞ diffeomorphism f of R2, with 0
as a fixed point, we obtain another C∞ diffeomorphism f̂ of R2\{B(0, 1)}, by conjugating
outside the closed ball, and extending to the boundary ∂B(0, 1) as

f̂(p) =
Df |0(p)

‖Df |0(p).‖

This technique induces a blow up f̂ of the Oxtoby example, which is a C∞ diffeo-
morphism of Σ̂, a punctured torus with boundary. Using Seeley’s version of the Whitney
extension theorem (see [See64], and Whitney’s result in [Whi34]) in local coordinates, we
may extend f̂ to a C∞ diffeorphism with the same name, of the surface obtained by gluing
a closed annulus A ' S1× [0, 1] to Σ, through one of its boundaries S1×{0}. Using a bump
function κ′ we may modify f̂ inside the interior of A, such that f̂ is the identity map in a
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α
β

R1

R2 f(R2)

f(R1)

[α] [2α]

[β]

[2β]
H1(S,R)

γ

[2γ]

Figure 15: The right figure represents the ergodic rotation set of f ∈ Homeo0(S) repre-
sented on the left. The images of the two rectangles R1 and R2 are depicted with thick
lines, all the intersections are markovian. The homeomorphism f also has periodic orbits
rotating like [2α], [2β] and [2γ], and his support is included in a small neighbourhood of
α ∪ β ∪ γ ∪ R1 ∪ R2 ∪ f(R1) ∪ f(R2). The two black dots are contractible fixed points of
f . The precise construction of the Markovian intersections (using arguments of Kwapisz
[Kwa92]) is depicted in Figure 16.

neighbourhood of ∂1A = S1 × {1}. We may then glue another (g − 1)-torus minus a disk
through ∂1A, and extend f̂ as the identity, to obtain a C∞ automorphism of Sg, which we

will still call f̂ .

Step 2. Describing the tracking geodesics

Let us understand the rotation of f̂ . Recall that f̂ is the identity outside the gluing of a
punctured torus with an annulus (this last one being homologically trivial in our surface
Sg).

Let us take {a1, b1, . . . , ag, bg} the canonical generator of the fundamental group of
S = Sg. For the sake of simplicity let us call a = a1, b = b1.

Restrict f to Σ = T2\{0} ⊂ S, and note that it is uniquely ergodic. Let us check that
the ergodic measure µ has positive rotation speed when seen in S (we already know that
to be true we looking at the torus). More precisely, taking S̃ the universal covering of S
and f̃ the respective lift of f̂ |Σ which commutes with the covering transformations, we will
prove that

Claim 7.5. For µ-a.e. z̃ ∈ S̃ we have that
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RL RM RR
0

0

0

0

[a]
[a] [b]
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0
0

0

0 0

RL RM RR
0

0

0

0

[a]

[a]

[b]
[b]

0[ab]

[ab]

0 0

Figure 16: The adaptation of the arguments of [Kwa92] for building two homeomorphisms
of a pair of pants, the first one (left) having (ergodic) rotation set equal to conv(0, [a], [b])
and the second one (right) having (ergodic) rotation set equal to conv(0, [ab], [b]). The union
of the light-coloured sets is a pair of pants that is mapped to the union dark-coloured sets,
hence strictly into itself. These can be used to build the example of Figure 15. All the
intersections between rectangles RL, RM and RR and their images are Markovian. The
bottom diagrams represent the transition diagrams of the discrete dynamics associated
to the different Markovian intersections. Adapting the arguments of [Kwa92], one can
ensure that the rotation set of the resulting homeomorphisms are reduced to the one of the
restriction to the maximal invariant set spanned by the rectangles.

lim
n→±∞

1

n
d̃ist(f̃n(z̃), z̃)) = ϑ > 0. (7.4)

Proof. Note that the fundamental group π1(Σ) is free, and generated by the canonical
generator set {[a], [b]} of π1(T2) given by the vectors a = (1, 0), b = (0, 1), which also
generates π1(Σ). Now, we have that there exist ϑ1, ϑ2 > 0 such that for µ-a.e. z ∈ Σ
(precisely for every z outside the two rays respectively coming from and going to 0 by the
dynamics), we have that
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lim
n→∞

φt(z)|t∈[0,n] ∧ [a]

n
= v1 > 0, lim

n→∞

φt(z)|t∈[0,n] ∧ [b]

n
= v2 > 0, (7.5)

and similarly for the past orbits, where ∧ denotes the intersection number between
curves. Note that the quotient ϑ1/ϑ2 equals the slope of the original flow in the torus.

Fix a fundamental domain D ∈ S̃. Given f̃ commutes with the covering transformations
which are isometries of S̃, it is enough to check Equation 7.4 for points z̃ in D.

By the limits in Equation 7.5, we have that up to a sublinear quantity, f̃n(z̃) belongs to
T (D) where the covering transformation T is written as a word of length (ϑ1 + ϑ2)n when
using the generator {(a, b)} (in other words this word has positive linear length growth
rate). The Švarc-Milnor Lemma then states that the desired linear rate from Equation 7.4
is, up to a positive constant, the same as the one for the word, which concludes the proof.

Given that these generic points z̃ go to the boundary of Σ̃ at a positive linear rate and
because f̂ is uniformly continuous, we may apply Proposition 7 in [Les11], and obtain that
any of these generic points z has a tracking geodesic γz. Given that any two nearby flow
lines go through different sides of a lift of the singularity, and by Švarc-Milnor Lemma, we
obtain that if we take two points z, z′ in different flow lines, then the tracking geodesics
separate at a linear rate.

Moreover, note that we may describe the tracking geodesic of a point using the inersec-
tions with the already taken canonical π1 generator curves in the torus, a = (1, 0), b = (0, 1).
Given an orbit by the flow with tracking geodesic γz, me may associate to it a Sturmian
sequence ξz ∈ {a, b}Z by counting the intersection with the chosen curves a, b (it is best to
look at this in the universal covering of the torus, without any puncture). We obtain what
is usually called a cutting sequence with the square grid, given by lines of slope α.

The resulting sequences are equivalent to the set of Sturmian sequences with density
of b’s equal to 1

α+1 , which may be coded by the rotation R 1
α+1

of angle 1
α+1 in S1. Note

that this map is almost surjective, the only sequence not having a preimage being the one
corresponding to the orbit of R 1

α+1
(0). Given that the tracking geodesics of two points in

the same flow line are mapped to the same sequence (up to a shift), we obtain that f has
uncountably many tracking geodesics, which by Corollary G belong to a minimal geodesic
lamination Λ.

We have then proved that the tracking geodesics of f̂ are the elements of Λ, and
potentially the π1 generator for the annulus we used in the construction during Step 1,
which yields its own minimal lamination. Thus, f̂ is the desired C∞ automorphism.

7.2 Handel’s flow: filling lamination containing all the rotation

Proposition 7.6. For every closed hyperbolic surface Sg, there exists a topological flow φ
with φ1 = f , and a minimal filling geodesic lamination Λ, such that the tracking geodesic
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of every orbit (up to finitely many), equidistributes to a measure supported in Λ. Moreover,
every tracking geodesic for f has the same rotation speed.

Let us before give some tools for building orientable minimal filling geodesic laminations,
which we need for the construction.

Pseudo-Anosov examples with orientable stable foliations

By Thurston classification theorem, we know that if f is a pseudo-Anosov homeomorphism,
then there exists a pair of singular foliations Fs,Fu (respectively, the stable and unstable
foliations of f), with respective transverse measures µs, µu, and some λ > 1 such that

f · (Fs, µs) = (Fs, λ−1µs), f · (Fu, µu) = (Fu, λµu). (7.6)

We will build a family of examples on closed surfaces, for which the stable foliations are
minimal and orientable. A brief explanation can be found at [FM12, Section 14.1].

Start with any closed surface Sg, and note that there exists an orientation preserving
branched covering π̂ : Sg → T2 with exactly 2g−2 singularities, each of them having degree
2. Take for example the quotient by an orientation preserving involution (see Figure 17).

Take a linear Anosov diffeomorphism A of T2 (it suffices to take any integer matrix
of determinant equal to 1 and trace greater than 2), and note that it will have a stable
foliation Fs consisting of parallel lines to the projection of the subspace generated by the
eigenvector associated to the smaller eigenvalue λ−, which is less than 1. Note that this
foliation is minimal because these lines have irrational slope.

Recall that every rational point is periodic for A. Take φ conjugate and isotopic to
a power of A, such that it fixes the projection of the critical points. Take φ̂ a lift of φ
to Sg, and note that it preserves a stable singular foliation F̂s (resp. unstable singular

foliation F̂u), whose singularities are the critical points of π̂, each of them having four
prongs (see Figure 18). Moreover, the orientability of Fs and the fact that our branched
covering preserves orientation, together imply that F̂s is also orientable (resp. F̂u). Note
that we obtain natural foliations F̂s, F̂u in the lift, with respective transverse measures
µ̂s, µ̂u, such that they altogether hold an analogous of Equation 7.6, we then get the lifted
dynamics f̂ is a pseudo-Anosov map in the covering space Sg.

In a similar fashion we can take branched coverings from closed hyperbolic surfaces to
other closed hyperbolic surfaces, and lift the dynamics of pseudo-Anosov maps to obtain
new pseudo-Anosov maps in these surfaces, which do not belong to the family we just built,
but also have minimal orientable stable foliations.

Laminations obtained by foliation straightening

Definition 7.7 (Curve straightening). Let a S be a closed hyperbolic surface, and let
η ⊂ S be a curve whose lift η̃ to H2 is proper and lands in the boundary at αη̃ and ωη̃.
The straightening of η is the projection γ of the geodesic γ̃ having the same endpoints as η̃
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π̂

Figure 17: An example of the torus branched covering for g = 7. Each red endpoint of
each blue seam is a critical value of π̂.

The proof of the following statement can be found at [Cal07, Theorem 1.47]).

Theorem 7.8. Given f be a pseudo-Anosov homeomorphism of a closed surface S, there
exists a filling minimal lamination Λ, such that the straightening of f(Λ) is Λ

Sketch of the proof. Choose a non-periodic closed curve homotopy class [γ]. Fixing a length
L > 0, the amount of classes that have a representative of length smaller than L is finite,
by the Švarc-Milnor Lemma. This implies that the length of γn = fn(γ) grows to infinity
with n.

The lamination Λ appears as a minimal sublamination of the limit of a subsequence
{γnk} in the Hausdorff topology, which will not be a simple closed curve since f is not
reducible. The fact that the obtained lamination is filling is a little bit tricky, the key idea
being that otherwise there would exist a power of f fixing a subsurface with non trivial
fundamental group, which would imply that some boundary homotopy class is invariant
for a -maybe greater- power of f , which on its turn contradicts the fact of f being pseudo-
Anosov.
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π̂

Fs

F̂s

Figure 18: For the bitorus case, there are exactly two points where the stable foliation is
singular.

Further details on the following statement can be found at [Cal07, Sections 1.7 to 1.9].

Remark 7.9. The lamination from Theorem 7.8 appears as the straightening of the stable
or unstable singular foliations given by f .

Given that the examples of pseudo-Anosov homeomorphisms we built have orientable
stable foliations, we obtain that their straghtenings are filling minimal laminations which
are also orientable, thus setting the conditions for the examples we will now build, where
we roughly follow the lamination.

Proof of Proposition 7.6. The idea for this example comes from a brief mention in a Han-
del’s preprint [Han86].

Start with an oriented minimal filling geodesic lamination Λ. Note that each component
of Λ{ is an ideal geodesic polygon P with an even number of sides s, because the lamination
is oriented. Moreover, by Gauss-Bonnet’s Theorem any ideal triangle has area π, and every
ideal polygon has s − 2 disjoint ideal triangles inside; we then know that we have finitely
many components Pn in the complement of Λ, each of them having finitely many sn sides.

Take a vector field V in Λ, of unit tangent vectors respecting the lamination’s orienta-
tion. Note that this induces a flow in Λ. We will now extend this flow to the rest of the
surface S.

For each of the ideal polygons, choose a point zn in its interior to be an sn-pronged
singularity, with each prong going to one different ideal vertex of the polygon. Orient the
flow in the prongs such that it is compatible with the flow orientation on the sides of the
polygon (that is, alternating the orientation for the flow when changing prongs). Each Pn
is now divided into sn ideal bigons with one geodesic side (the other one has the singularity
in the middle, see Figure 19). Take a filling set of parallel lines to that side, and extend
the flow with unit tangent vectors. To make it continuous at the singularity, simple take
a non-negative bump function κn which only vanishes at zn and is equal to 1 outside a
sufficiently small neighbourhood Un of zn, to scale the vector field which defines the flow.

Note that every orbit η except for the singularities and their prongs, stays outside the
neighbourhoods Un except for at most a finite amount of time. Therefore, any of these
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zn

Pn

Figure 19: Sketch of the flow lines inside an ideal polygon Pn with four sides, the sides of
this polygon are geodesics in Λ. Every point in the interior of this polygon, except for zn,
is wandering by the time-one flow map.

orbits is tracked by the geodesic side γ of the ideal bigon it belongs to. Given that the
distance in the universal covering to that geodesic side is decreasing and tends to 0, we
conclude that the rotation speed holds ϑ(η) = 1 for each of these orbits.

We naturally have an ergodic measure δzn for every fixed point zn. Every other point
z ∈ Λ{ is wandering, and therefore every other ergodic measure µ is supported in Λ, having
every point with a tracking geodesic equidisitributing to a measure supported in the same
lamination Λ, and having speed equal to 1.

Note that we have proven that, given a orientable minimal filling geodesic lamina-
tion Λ in Sg, there exists a homeomorphism of Sg for which Λ encodes all the rotational
information of the homeomorphism (even for the wandering points).

Remark 7.10. By building a rotational horsehoe in an invariant annulus, it is easy to
get examples of smooth diffeomorphisms with invariant ergodic measures having positive
metric entropy and belonging to Ni, with i ∈ I1 (from Theorem F).

By Denjoy-Rees technique, for any closed hyperbolic surface S, one can build a homeo-
morphism of S without topological horseshoe but having an ergodic measure with positive
metric entropy and with nonzero rotation vector belonging to an irrational direction. In
particular, at least in low regularity, there exist examples of homeomorphisms without
topological horseshoes and having measures of Ni, with i ∈ I1 (from Theorem F), with
positive metric entropy and whose tracking geodesics are not closed (or also, with rotation
vector not belonging to RH1(S,Z)).

Indeed, consider an ergodic measure µ of the homeomorphism f of Proposition 7.6
supported in the minimal geodesic lamination associated to f , and an f -invariant set A of
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total µ-measure and null ν-measure for any other f -ergodic invariant measure ν (this set A
is given by the ergodic decomposition theorem). The example is then obtained by applying
[BCLR07, Theorem 1.3] to the product map h : A × C → A × C; (x, c) 7→ (f(x), h0(c)),
where C is a Cantor set and h0 is a homeomorphism of C with positive topological entropy.
To our knowledge, it is an open question if this kind of examples can exist in C2 regularity,
or (for example) if mechanisms “à la Katok” [Kat80] prevent the existence of measures
of positive entropy belonging to a class associated to a minimal lamination that is not a
closed geodesic.

A Proof of Proposition 5.7

Let us recall Proposition 5.7.

Proposition (5.7). Let Σ be a surface, F a singular foliation on Σ and f ∈ Homeo0(Σ).
We denote by SingF the set of singularities of F . Suppose that for any x ∈ Σ \ SingF we
are given an F-transverse trajectory IF (x) linking x to f(x) and homotopic relative to fixed
points to a fixed isotopy I from the identity to f . Then, for any neighbourhood V0 ⊂ Σ of
SingF , there exists a neighbourhood U0 ⊂ V0 of SingF such that for any x ∈ U0 \ SingF ,
there exists an F-transverse trajectory I ′F (x) linking x to f(x), homotopic to IF (x) (in
domF) and included in V0.

Proof of Proposition 5.7. First, notice that it is sufficient to prove the proposition in the
case where Σ\SingF is connected. Indeed, otherwise, consider each connected component
of Σ\SingF ; the transverse trajectories IF (x) stay in each of these connected components.
By replacing Σ by the compactification of Σ \ SingF corresponding to the collapsing of
each connected component of SingF , we can suppose that SingF is inessential and that
each of its connected components is reduced to a singleton.

Suppose that Σ is the sphere and that SingF is a single point of Σ. In other words,
Σ\SingF is a plane that is foliated by the foliation F̂ := F|Σ\SingF which has no singularity.

Hence, f̂ := f |Σ\SingF is a Brouwer homeomorphism, and V0 projects to a neighbourhood

of infinity in this plane. It is not very difficult to perturb the homeomorphism f̂ in a
compact set K̂ ⊂ Σ \ SingF ' R2 such that the obtained homeomorphism ĝ has a single
fixed point x̂0 ∈ K̂, and such that every leaf of F̂ is mapped by ĝ to the closure of its left.
More precisely, the foliation F̂ |R2\{x̂0} is transverse for the homeomorphism ĝ|R2\{x̂0}, and

for any x̂ ∈ R2 \ {x̂0} there is an F̂-transverse trajectory I ĝ
F̂

linking x̂ to ĝ(x̂), that can be

supposed to coincide with IF if x /∈ K̂. Hence, one can apply [LC08, Proposition 3.4] to
this homeomorphism and the neighbourhood V0\K̂; it gives a neighbourhood U0 of infinity

in R2 \{x̂0}: for any x̂ ∈ U0, the transverse trajectory I ĝ
F̂

(x) for g stays in V0 \ K̂. But this
transverse trajectory has been supposed to coincide with IF̂ ; this proves the proposition
for f in this case.
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As remarked before, [LC08, Proposition 3.4] proves directly the proposition when SingF
is a single point of Σ in the case Σ is not the sphere.

It remains to treat the case where SingF is not a single point of Σ. Treating separately
each connected component of V0, we can suppose V0 is connected, contains at least one
singularity and does not contain any singularity in its boundary. By taking a smaller V0 if
necessary, one can suppose that it does not contain genus (recall that SingF was supposed
to be totally disconnected) and it is relatively compact. If Σ \V0 is not connected, one can
replace V0 by some smaller neighbourhood of SingF whose complement is connected.

Hence, we are reduced to the case where SingF is not a single point of Σ and is totally
disconnected, and V0 is a topological disk of Σ containing at least one singularity of SingF .
Finally, we can suppose that the boundary of V0 is an embedded circle.

From now on, we follow and adapt the proof of [LC08, Proposition 3.4] that treats the
case where V0 contains a single singularity of SingF .

Let us set, for i ∈ N, Vi =
⋂
|n|≤i f

n(V0). These sets are neighbourhoods of V0 ∩ SingF
and are not necessarily connected, but each of their connected components are topological

disks. Let d̂omF be the universal cover of Σ\SingF . The foliation F , the homeomorphism

f , the isotopy I and the sets Vi lift naturally to d̂omF to respectively F̂ , f̂ , Î and V̂i. By
the above remark, the connected components of the sets V̂i are simply connected.

We prove the proposition by contradiction and suppose its conclusion is false. This
means that there exists a sequence (zn)n of points of V0\SingF with limn→+∞ d(zn, SingF) =
0 and such that for any n, there is no transverse path from zn to f(zn) that is homotopic
to I(z) and included in V0. Up to taking a subsequence, one can suppose that the zn tend
to a single point z∞ ∈ SingF , and that all the zn belong to the connected component V 0

1

of V1 containing z∞. We denote by ẑn the lifts of the zn belonging to V̂0.

Note that given ẑ ∈ d̂omF , the set Ŵẑ of points ẑ′ ∈ d̂omF that can be linked from

ẑ by a positively transverse arc is an open subset of d̂omF whose boundary is a family

(φ̂α)α of leaves such that ẑ ∈ L(φ̂α) for any α.
Let us denote φ̌ the leaves of the topological plane V̂0; such leaves are connected com-

ponents of the intersection of some leaf φ̂ of F̂ with V̂0. Hence, given ẑ ∈ V̂0, the set W̌ẑ of
points ẑ′ ∈ V̂0 that can be linked from ẑ by a positively transverse arc included in V̂0 is an

open subset of V̂0 whose boundary is a family (φ̌α)α of leaves such that ẑ ∈ L(φ̌α) for any

α. Hence, for any n ∈ N, we have f̂(ẑn) ∈ Ŵẑn \ W̌ẑn . By the above characterization of

W̌ẑ, this implies that there exists a leaf φ̌n of V̂0 such that ẑn ∈ L(φ̌n) and f̂(ẑn) /∈ L(φ̌n).

Because f̂(ẑn) ∈ Ŵẑ for any n, any leaf φ̌n comes from a leaf φ̂n that meets d̂omF \ V̂0.

Let φ̂ be any leaf of F̂ such that ω(φ̂) ⊂ V̂1, and denote φ̌ the connected component of
φ̂ ∩ V̂0 containing a neighbourhood of +∞ for φ̂. Let φ be the projection of φ̂ to Σ.
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Claim A.1. There is a neighbourhood U of SingF ∩ V1 such that if z ∈ U , if ẑ is a lift of

z belonging to V̂1 and if ẑ ∈ L(φ̌), then f̂(ẑ) ∈ L(φ̌).

Proof. Note that by the Poincaré-Bendixson Theorem (and as SingF is totally discon-
nected), the set ω(φ) is either a single singularity of SingF together with leaves that are
homoclinic to it, or a single closed leaf of F , or the union of a set homeomorphic to a circle
that is a union of leaves of F together with their α and ω limits that are singularities, with
possibly some leaves that are homoclinic to these singularities.

Let x̂0 ∈ φ̌ such that φ̌+
x̂0
⊂ V̂1. Because φ̂ is a Brouwer line, the sets f̂(φ̌+

x̂0
) and

f̂−1(φ̌+
x̂0

) are disjoint from φ̌. More precisely, let us prove that (in the plane V̂0)

f̂(φ̌+
x̂0

) ⊂ L(φ̌) and f̂−1(φ̌+
x̂0

) ⊂ R(φ̌). (A.1)

We treat the first inclusion, the second being identical. If this first inclusion was false, then
there would exist ỹ0 ∈ ∂V̂0 ∩ φ̂ such that

f̂(φ̌+
x̂0

) ⊂ L(φ̌−ŷ0) ⊂ R(φ̌). (A.2)

We have two cases.

� Either ω(φ) = ω(f(φ)) is reduced to a single point y (which is a singularity of F) and
then (A.2) implies that α(φ) is reduced to {y} and it is easy to get a contradiction
(one of the projections of L(φ̂) or R(φ̂) on Σ is a topological disk mapped into itself
by f or f−1).

� Or ω(φ) has at least two points and φ spirals around it in a neighbourhood of +∞;
then (A.2) implies that α(φ) = ω(φ), which is impossible for reasons of orientation
of the foliation around this limit set.

Let U0 be a neighbourhood of SingF ∩ V1 included in V1 (denote Û0 the lift of U0

included in V̂1) such that

φ̌−x̂0 ⊂ V̂0 \ Û0 and f̂−1(φ̌−x̂0) ⊂ V̂0 \ Û0. (A.3)

Let z ∈ V1 such that the trajectory (It(z))t∈[0,1] of z under the isotopy I stays in U0 ∩
f−1(U0). By (uniform) continuity of I, the set of such z is a neighbourhood U of SingF∩V1.

Suppose by contradiction that some lift ẑ of z belonging to V̂1 satisfies ẑ ∈ L(φ̌) and

f̂(ẑ) /∈ L(φ̌). In this case, both ẑ and f̂(ẑ) belong to the set Û of points of V̂1 projecting
in U ; moreover these points are separated by φ̌, so φ̌ meets Û . As (It(ẑ))t∈[0,1] links ẑ to

f̂(ẑ), there exists γ̂ a subpath of (It(ẑ))t∈[0,1] (hence included in Û) linking ẑ to ẑ′ ∈ φ̌ and

not meeting φ̌ in its interior. It is included in L(φ̌) and so (by (A.1)) it is disjoint from
f̂−1(φ̌+

x̂0
). It is also included in Û and so (by (A.3)) it is disjoint from f̂−1(φ̌−x̂0). Hence,

f̂(γ̂) is disjoint from φ̌; moreover (because of (A.1)) it contains f̂(ẑ′) ∈ L(φ̌). We deduce

that f̂(γ̂) is included in L(φ̌) and this shows that f̂(ẑ) ∈ L(φ̌).
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ẑn

×f̂(ẑn)×

γ̂+

D̂

φ̌1
φ̌′

V̂0

φ̌n

Figure 20: The domain D̂ of case 1. in the proof of Proposition 5.7.

Because the leaves φ̂n separate the points ẑn and f̂(ẑn), and because these points
belong to V1 eventually, the leaves φn meet V1 eventually. Moreover, recall that φn meets
domF \ V0. Hence, up to taking a subsequence,

1. either all the leaves φ̌n are incoming V̂0 with limit in V1, meaning that there exists
ŷ+
n ∈ ∂V̂0 such that φ̌n = (φ̂n)+

ŷ+n
with ω(φn) ⊂ V1;

2. or all the leaves φ̌n are outgoing V̂0 with limit in V1, meaning that there exists
ŷ−n ∈ ∂V̂0 such that φ̌n = (φ̂n)−

ŷ−n
with α(φn) ⊂ V1;

3. or for any n, there is a connected component of φn ∩ V1 joining y+
n ∈ ∂V1 ∩ φn to

y−n ∈ ∂V1 ∩ φn: we have (φ̂n)−
ŷ−n
∩ (φ̂n)+

ŷ+n
6= ∅.

Let us begin with case 1. By taking a subsequence if necessary, we can suppose that
the sets φ̌n ∪ {y−n } ∪ ω(φn) converge for Hausdorff topology to some set K ⊂ V0. This
set contains one incoming leaf φ′. By the Poincaré-Bendixson Theorem, and because the
singularity set is totally disconnected, the limit ω(φ′) is either a single singularity, or a
limit cycle (implying in prticular that any leaf coming close enough to this set stays forever
close to this set). In both of these cases the set ω(φ′) is included in V1.

Let γ be an arc included in V0, transverse to F and intersecting φ′ in its interior and
once. By changing the lifts of the φn if necessary, we can suppose that this arc lifts to an

arc γ̂ of d̂omF intersecting a lift φ̂′ of φ′ in a point ŷ0, such that ŷ0 is the limit of points
of φ̂n. Considering a subsequence if necessary, we can suppose that either the sequence
(L(φ̂n))n is increasing and that L(φ̂n) ⊂ L(φ̂′), or that the sequence (L(φ̂n))n is decreasing
and that L(φ̂′) ⊂ L(φ̂n). Let us treat the first case, the second one being similar.

Claim A.1 gives us a neighbourhood U ⊂ V1 of SingF ∩ V0 such that if z ∈ U , then

any lift ẑ of z belonging to L(φ̌1) is such that f̂(ẑ) ∈ L(φ̌1), and any lift ẑ of z belonging

to L(φ̌′) is such that f̂(ẑ) ∈ L(φ̌′). Because zn tend to z∞ ∈ SingF ∩ V0, the points zn
belong to U eventually: by taking a subsequence we can suppose that they all belong to

U . Recall that we have supposed by contradiction that ẑn ∈ L(φ̌n) and f̂(ẑn) /∈ L(φ̌n).

78



� If ẑn /∈ L(φ̌1) and f̂(ẑn) ∈ L(φ̌′), then both ẑn and f̂(ẑn) belong to R(φ̌1)∩L(φ̌′) ⊂ V̂0;
more precisely for n large enough they both belong to the unbounded connected
component D̂ (see Figure 20) of

(
R(φ̌1) ∩ L(φ̌′)

)
\ γ̂. The boundary of this set is

made of pieces of two leaves, together with the transverse arc γ̂. The orientation of
these pieces prevents φ̂n \ φ̌n from intersecting D̂, and contradicts the existence of an
F̂-transverse path joining ẑ to f̂(ẑ).

� If ẑn ∈ L(φ̌1), then by Claim A.1 we have f̂(ẑn) ∈ L(φ̌1). On the other hand,
f̂(ẑn) ∈ R(φ̌n) ⊂ R(φ̌1). This is a contradiction.

� If f̂(ẑn) /∈ L(φ̌′), then by Claim A.1 we have ẑn /∈ L(φ̌′). On the other hand,

ẑn ∈ L(φ̌n) ⊂ L(φ̌1). This is also a contradiction.

The case where all the leaves φ̌n are outgoing (case 2) is identical to the incoming case.

It remains to treat case 3, i.e. the case where for any n ∈ N, we have φ̌n := (φ̂n)−
ŷ−n
∩

(φ̂n)+

ŷ+n
with ŷ+

n , ŷ
−
n ∈ ∂V̂1 (we now denote φ̌ the intersections of a leaf φ̂ with V̂1). By

taking a subsequence if necessary, we can suppose that the sets φ̌n ∪ {y−n , y+
n } converge for

Hausdorff topology to some set K ⊂ V0. This set contains one incomming leaf φ+ and an
outgoing leaf φ−. By the Poincaré-Bendixson Theorem, and because the singularity set is
totally disconnected, the limit sets ω(φ+) and ω(φ−) are either a single singularity, or a
limit cycle (implying in prticular that any leaf coming close enough to this set stays forever
close to this set in the future or the past). The fact that the leaves φn go in and out of V0

rules out the second possibility. Hence, the sets ω(φ+) and α(φ−) are both reduced to a
single singularity; in particular these sets are included in V2.

Let γ+ (resp. γ−) be a simple arc included in V1, transverse to F and intersecting

φ+ (resp. φ−) in its interior and once. Because the leaves prΣ(φ̌n) meet ∂V1, Poincaré-
Bendixson theory implies that for any n ∈ N, the pieces of leaves prΣ(φ̌n) intersect both
transversals γ+ and γ− once. Let {x+

n } = prΣ(φ̌n) ∩ γ+ and {x−n } = prΣ(φ̌n) ∩ γ−. As
before, up to taking a subsequence, we can suppose that either both sequences x+

n and x−n
are increasing (for some order on γ+ and γ−) and tend to respectively x+ and x−, or both
sequences x+

n and x−n are decreasing and tend to respectively x+ and x−. We treat only
the second case, the first one being similar.

Fix n ∈ N, n ≥ 2, and let γ̂+ and γ̂− be the lifts of the arcs γ+ and γ− to V̂1 intersecting
φ̌n. We denote x̂+

1 and x̂−1 the lifts of x+
1 and x−1 belonging to respectively γ̂+ and γ̂−, and

x̂+ and x̂− the lifts of x+ and x− belonging to respectively γ̂+ and γ̂−. Let φ̂+
1 , φ̂−1 , φ̂+,

φ̂− the lifts of respectively φ1, φ1, φ+ and φ− meeting respectively x̂+
1 , x̂−1 , x̂+, x̂−. Note

that all these lifts do depend on n.
As zn tends to z∞ ∈ SingF , for n large enough the trajectory (It(zn))t∈[0,1] does not

meet (φ1)−
x−1
∩ (φ1)+

x+1
nor γ+ ∪ γ−.
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×
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×
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γ+

γ−

φn

φ1

φ+

φ−

φ̂+
1 = φ̂−1

φ̂+
1 6= φ̂−1

ẑn

×

f̂(ẑn)
×

φ̂nφ̂+

φ̂−

φ̂+
1 = φ̂−1
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γ̂−

D̂

x̂− x̂−n x̂−1

x̂+
nx̂+ x̂+

1

ẑn × f̂(ẑn)
×

φ̂nφ̂+

φ̂− φ̂−1

γ̂+

γ̂−

D̂

x̂− x̂−n x̂−1

x̂+
nx̂+ x̂+

1

φ̂+
1
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Figure 21: The two cases of case 3. of the proof of Proposition 5.7, whether there is a
singularity of F such as the violet one (in the disk delimited by the leaves φ1 and φn, and
the transverse segments γ+ and γ−): if there does not exist some then φ̂+

1 = φ̂−1 , otherwise

φ̂+
1 6= φ̂−1 . The two other blue points are singularities.

Recall that we have supposed by contradiction that ẑn ∈ L(φ̌n) and f̂(ẑn) /∈ L(φ̌n). We
have three cases.

� Either f̂(ẑn) ∈ R(φ̌+). Recall that ẑn ∈ L(φ̌n) ⊂ L(φ̌+). One can apply Claim A.1
to get a contradiction for n large enough.

� Or f̂(ẑn) ∈ R(φ̌−). Recall that ẑn ∈ L(φ̌n) ⊂ L(φ̌−). Once again one can apply
Claim A.1 to get a contradiction for n large enough.

� Or f̂(ẑn) ∈ L(φ̌+) ∩ L(φ̌−). Let D̂ be the domain containing (φ̂n)+

x̂+n
∩ (φ̂n)−

x̂−n
and

bounded by (see Figure 21)(φ̂+)+
x̂+
, (φ̂−)−

x̂− , (φ̂
+
1 )+

x̂+1
∩ (φ̂−1 )−

x̂−1
, γ̂+|[x̂+1 ,x̂+] and γ̂−|[x̂−1 ,x̂−] if φ̂+

1 = φ̂−1

(φ̂+)+
x̂+
, (φ̂−)−

x̂− , (φ̂
+
1 )+

x̂+1
, (φ̂−1 )−

x̂−1
, γ̂+|[x̂+1 ,x̂+] and γ̂−|[x̂−1 ,x̂−] if φ̂+

1 6= φ̂−1 .
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Then both ẑn and f̂(ẑn) belong to D̂: because the trajectory (It(zn))t∈[0,1] does not

meet (φ1)−
y−1
∩ (φ1)+

y+1
nor γ+ ∪ γ−, we have ẑn, f̂(ẑn) ∈ R(φ̌+

1 )∩R(φ̌−1 ). On the other

hand, the half leaves (φ̂n)−
x̂+n

and (φ̂n)+

x̂−n
cannot meet the domain D̂ (for instance,

(φ̂n)−
x̂+n

is included in the domain bounded by8 (φ̂+)+
x̂+

, γ̂+|[x̂+1 ,x̂+] and (φ̂+
1 )−

x̂+1
). This

contradicts the existence of an F̂-transverse trajectory going from ẑn to f̂(ẑn).
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