
HAL Id: hal-04491540
https://hal.science/hal-04491540

Submitted on 6 Mar 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Extending LiteMat toward RDFS++
Olivier Curé, Weiqin Xu, Hubert Naacke, Philippe Calvez

To cite this version:
Olivier Curé, Weiqin Xu, Hubert Naacke, Philippe Calvez. Extending LiteMat toward RDFS++.
LASCAR @ Extended Semantic Web Conference (ESWC), Jun 2019, Portoroz, Slovenia. pp.54-64.
�hal-04491540�

https://hal.science/hal-04491540
https://hal.archives-ouvertes.fr


Extending LiteMat toward RDFS++
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Abstract. In this paper, we extend LiteMat, an encoding scheme for
RDF data that currently supports inferences based on RDFS and the
owl:sameAs property, which is used in a distributed knowledge graph
data management system. Our extensions enable to reach RDFS++ ex-
pressiveness by integrating owl:transitiveProperty and owl:inverseOf

properties. Considering the latter, owl:inverseOf property, we propose
a simple solution that involves a dictionary look-up at query run-time.
For the former, we present an e�cient approach to encode individuals
involved in chain and tree structures of a transitive property. We provide
details of a distributed implementation and highlight the e�ciency of our
encoding and query processing approaches over large synthetic datasets.

1 Introduction

Large scale RDF analytics requires a reliable, distributed knowledge graph data
management coupled with an e�cient processing of inferences based on expres-
sive ontologies. We consider that with today’s distributed computing frameworks
and cloud computing infrastructure, it is possible to achieve such a goal when a
large portion of the data and knowledge reside in main-memory. In [1] and [5],
we have followed this design principle by integrating a semantic-aware encoding
of ontology elements, i.e., concepts, properties and individuals, in an RDF store
and streaming system that are both based on Apache Spark.

More precisely, LiteMat[1] is an encoding scheme for RDF data that o↵ers a
trade-o↵ between materialization (of inferred triples) and query rewriting, in or-
der to obtain complete result sets from queries. It uses an integer interval based
encoding for the ontology elements that e�ciently and e↵ectively captures in a
compressed manner the ontology entity hierarchy. In [1], we are applying this en-
coding to the ⇢df[4] fragment of RDFS, i.e., supporting inferences associated to
rdfs:subClassOf, rdfs:subPropertyOf, rdfs:domain and rdfs:range prop-
erties. More recently, StriderR[5] extended LiteMat to support the owl:sameAs
property which is quite popular in the Linked Data community. Intuitively, a spe-
cial encoding was applied to all individuals present in owl:sameAs cliques and
a representative was selected among them. Like LiteMat, the work presented in
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[6] models the concept and property subsumption hierarchies with an intelligent
integer identification that is used to rewrite SQL queries in the ontology-based
data access Quest system. With the latest extension of LiteMat, we go fur-
ther with a smart identification solution for individuals involved in owl:sameAs
cliques and transitive structures taking the form of chains and trees.

The contributions presented in this paper permit to extend these two pre-
vious work toward RDFS++ expressiveness. These extensions concern both an
encoding scheme that results in a more compact knowledge graph representation
and an adapted query processing. We first address owl:inverseOf properties by
applying a simple transformation of the encoded ABox and a property dictionary
look-up at query processing-time. Our approach for transitive properties is more
involved and is based on (i) an encoding solution of the individuals involved in
chains and trees of these properties and (ii) a query processing strategy. Due
to a lack of an e�cient solution, directed acyclic graphs (DAG) of transitive
properties, which are relatively rare in practice, are currently being materialized
in the triples store.

The paper is organized as follows: in Section 2 we detail our solution toward
supporting owl:inverseOf and owl:transitiveProperty . In Section 3, we
present the principles of the query processing in the presence of transitive prop-
erties. Section 4 provides an evaluation on synthetic datasets over the memory
footprint, encoding duration and query processing dimensions. Finally, Section
5 concludes the paper and presents some future work.

2 RDFS++ extensions for LiteMat

2.1 Support for owl:inverseOf

Concerning owl:inverseOf properties, we propose the following simple ap-
proach. For each URI property and its inverse, denoted hp, p�i, we retain in
our ABox, only one of the two URIs which is therefore denoted as the property
representative, i.e., pr. For each pair hp, p�i in the ABox, a representative, pr,
is selected based on the largest number of occurrences over the pair hp, p�i.

In LiteMat’s locate property dictionary, i.e., URI to identifier key-value struc-
ture, both property URIs are associated to the same integer identifier: both pr

and p
� are associated to a unique pid value as computed in [1]. In the extract

property dictionary, i.e., id to URI key-value structure, only the representative
property is stored since answers to queries requiring an extract operation on the
property are expressed with pr.

During the ABox encoding, all triples already expressed with pr are normally
encoded using the individuals and properties dictionaries. Concerning all triples
expressed with p

�
r , e.g., i1 p

�
r i2, they are transformed as follows: the subject

and object of the original triples respectively become the object and subject of
a new triple and the property is switched to the representative.

Example: Let parentOf owl:inverseOf childOf be a TBox axiom and
parentOf is selected as the representative in this property pair. Table 1 displays
an original ABox and its resulting transformation.
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Original ABox Transformed ABox
dominique parentOf jean. dominique parentOf jean.
dominique parentOf pierre. dominique parentOf pierre.
marie childOf pierre. pierre parentOf marie.

Table 1: TBox encoding facts

A similar transformation is applied to graph patterns of a SPARQL query
whenever the inverse of a representative is identified in a Basic Graph Pattern
(BGP). That is the query SELECT ?x ?y WHERE {?x childOf ?y} would be
transformed into SELECT ?y ?x WHERE {?y parentOf ?x}. This would return
an answer with 3 tuples including the pair h pierre, marie i.

2.2 Support for owl:transitiveProperty

Let consider a function trans(G, p) = G
0, with G an RDF graph, p a transitive

property and G
0 a subgraph of G solely composed of triples with the p property.

Intuitively, G0 is composed of, not necessarily connected, chains, trees or DAGs
of individuals (see Figure 1 for examples of the first two structures).

In this section, we propose two encoding schemes, one for the chain and
another one for tree structures that are following the logical approach of LiteMat.
That is, it provides semantic-aware identifiers to ABox individuals encountered
in these structures. We leave the issue of encoding the DAG transitive structures
to a future work and will consider that in the current state of the LiteMat data
management system, the transitive closure of these structures is materialized.

The characteristics that we are aiming for in this encoding schemes are:

– compactness since no materialization is required for the chain and tree struc-
tures

– determinism since the identifier of each individual in a chain or tree is com-
puted deterministically.

– scalability since all encoding tasks are performed in a distributed manner on
a distributed engine, namely Apache Spark and its GraphX graph computing
component..

In both the chain and tree encoding, our processing starts with the com-
putation of trans(G, p) for all transitive properties of the associated ontology,
resulting in a set of subgraphs. Then, the system computes the connected com-
ponents for each of these subgraphs. Intuitively, the connected components op-
eration groups vertices into connected subgraphs. This can easily be performed
in a scalable manner with Spark’s GraphX component. Such a resulting con-
nected component is assigned a distinct identifier corresponding to the lowest
node identifier of the connected component. The encoding of individuals in these
graphs is made of a quadruple of integer values which correspond to: fid which
is 0 if the transitive structure is a chain or 1 if it is a tree, pid the identifier of
the transitive property, ccid the connected component identifier and lid a local
node identifier.
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The chain and tree structures are distinguished by the computation of their
local identifiers. Figure 1 presents in each node the label of the individuals (i.e.,
URIs) and below them their identifier. In the case of a chain structure, it is
su�cient to assign integer values that define a total order over the set of lid
of a given triple hfid, pid, ccidi. With such an approach, the computation of all
descendants (respectively ancestors) of a given individuals hfid, pid, ccid, lidii
will amount to retrieve individuals identified by hfid, pid, ccid, lidxi for all lidi
< lidx (respectively, lidi > lidx).

The encoding of tree structures is more involved. For instance, in Figure
1(b), individuals E,F and G do not belong in the transitive closure of B or D.
In this case, the incremental, naive assignment of local identifier is not su�cient
to e�ciently detect that a node is not in the transitive closure of another node
in this graph. We adopt a local node identifier approach that is inspired by
our LiteMat binary approach. Intuitively, the encoding algorithm is recursively
assigning binary identifiers in a top-down manner from the root of the tree. The
root node starts with a single bit set to 1. Then we identify all directly linked
individuals for a node. The size of this set of individuals justifies the length of
the binary encoding for each of these individuals. For instance, in Figure 1(b),
A has three directly connected individuals (namely B, C and D) so two bits are
necessary to encode them. The temporary local identifier at each level starts with
counter set to 1 and is incremented by 1, and each of these individuals is prefixed
with the identifier of their local root. Thus the identifier of B in Figure 1(b) is
101 (with the left most bit inherited from A and 01 computed at this level).
This computation is performed recursively until all nodes are assigned a value.
A final step consists in normalizing the temporary identifier: all identifiers have
to be encoding with the same binary length. In our example, F and G are the
identifiers with the longest binary encoding (i.e., 6 bits) so all nodes of the tree
are right-completed with bits set at 0 to reach the same length. The identifiers
for each node in Figure 1(b) are displayed in each box, the gray 0 of an identifier
are the results of the normalization while the local fragment is in black.

Given this local identifier strategy, we can easily find whether a given node
is in the transitive closure of another node of that same graph. This operation
is based on checking whether the subtraction of two identifiers is contained in a
given interval. Let consider the connected component graph of a transitive prop-
erty. Due to the normalization step, all identifiers of this connected component
are encoded using n bits. Moreover, we introduce a function, localLength, that
returns the non-normalized binary encoding length of a node. For instance, in
Figure 1(b), localLength of A,C and G are respectively 1, 3 and 6. For two nodes
of this graph, ↵ and �, � is in the transitive closure of ↵ if � � ↵ is included in
[0, 2n�localLength(↵)[.

Using this approach, we can e�ciently compute that G is in the transitive
closure of A, B and E but not of B, D and F.
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Fig. 1: A chain and a tree of a transitive property. Dotted red arrows correspond to
the transitive closure. In each node, a label and its local identifier (lid)

Since our owl:sameAs encoding scheme, i.e., a tuple hcliqueId, localIdi, does
not rely on a local identification total order, it is possible to compose owl:sameAs
identifiers with transitive ones. This means that individuals involved in a chain
or tree transitive structure can be involved in a owl:sameAs clique by reusing
their identifiers in the sameAs encoding scheme. In such a case, the localId

corresponds to the whole transitive identifier.

3 Query processing in the presence of transitive
properties

We present a sketch of query processing with a BGP involving a transitive prop-
erty. Due to space limitation, we consider a BGP containing a single triple
pattern asking for all subjects (respectively objects) related, via a transitive
property, to an object (respectively subject).

3.1 Query encoding

As with most RDF triples, the query needs to be translated to an identifier-
based form which requires look-ups to several LiteMat dictionaries. Using the
property dictionary, we obtain the identifier of the property and we will also get
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the information that this property is transitive. Then, we search for the identifier
of the object (respectively subject). In a full materialization case, this identifier
corresponds to a single identifier while in the case of LiteMat, it corresponds to
a 4-tuple identifier, i.e., hfid, pid, ccid, lidi.

3.2 Variable assignments

While the full materialization approach requires a complete scan over all triples
plus an extraction from the individuals dictionary, the same query can be an-
swered much more e�ciently with LiteMat. Intuitively, due to our semantic-
aware encoding of LiteMat, we can rely solely on some simple computation to
directly search for answers in the dictionary. In fact, we will search for all indi-
vidual dictionary entries where the key is of the form hfid, pid, ccid,Xi where
one of the following computations is performed:

– if fid corresponds to a chain, i.e., fid = 0, then the system retrieves all
values lower then lid.

– if fid is a tree, i.e., fid = 1, then the system retrieves all values comprised
between ]lid, ((lid >> lid encoding length)+1)<< lid encoding length)[

28

4 Evaluation

4.1 Experimental setting

The evaluation was conducted on a cluster composed of three DELL PowerEdge
R410 running a Debian GNU/Linux distribution with a 3.16.0-4-amd64 kernel
version. Each machine has 64GB of DDR3 RAM, a 900GB 7200rpm SATA disk
and two Intel Xeon E5645 processors. Each processor is constituted of 12 cores
running at 2.40GHz and allowing to run two threads in parallel (hyper thread-
ing). The machines are connected via a 1GB/s Ethernet network adapter. We
used Spark version 2.3.2 and implemented all experiments in Scala version 2.11.6.
More details on the scripts can be found here4. The Spark configuration of our
evaluation runs our prototype on a subset of the cluster corresponding to 36
cores and 24GB of RAM per machine.

4.2 Datasets and query workload

In this evaluation, we are aiming to test and stress our approaches with di↵erent
sizes of transitive chains and trees. We thus resort to a synthetic benchmark so-
lution, namely the Lehigh University BenchMark (LUBM)[2], a well-established
benchmark on the university domain that contains a transitive property, named
lubm:subOrganisationOf . Since both the rdfs:domain and rdfs:range of

4 https://github.com/xwq610728213/LitematPlusPlus
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this property are the Organization concept, we can use it to create long chain
and tree structures.

Table 2 presents the datasets that we are using throughout this experimenta-
tion. Intuitively, the name of each dataset describes the number of universities,
e.g., 5K or 10K for respectively 5.000 and 10.000 universities, a letter, i.e., either
’c’ or ’t’ which respectively stand for chain and tree structures and a number
that corresponds to the maximum depth of the structure. Note that the 5K2̧0
and 10 c20 correspond to large shallow trees which are supposed to mitigate the
advantages provided by LiteMat. In total, 10 datasets are evaluated, 4 chains
and 6 trees.

In this section, we are providing a preliminary evaluation of our query pro-
cessing solution. Due to space limitation, we are only considering answering
a single triple pattern that retrieves either all the ancestors or descendants
of a group in the transitive closure of the lubm:subOrganisationOf property.
These two queries have been executed over the some of the 10K datasets and re-
spectively correspond to SELECT ?X WHERE {?x lubm:subOrganisationOf C}
to compute ancestors and SELECT ?X WHERE {C lubm:subOrganisationOf ?x
} to retrieve descendants where C is an individual involved in the queried dataset,
e.g., <http://www.Department10.University1000.edu/ResearchGroup1>.

This limited evaluation already provides some valuable insight on the poten-
tial of LiteMat query processing with transitive properties.

Dataset Depth sizes #Branches #Triples Size (MB) #Triples Increase due to
name [min,max] [min,max] materialized materialization
5K c20 [10, 20] 1 1.689.907 318,4 23.579.485 x 14
5K c100 [20, 100] 1 6.752.637 1.280 230.004.339 x 34.1
5K t5 [10, 20] [1, 5] 5.062.616 957.9 39.362.874 x 7.8
5K t10 [20, 100] [5, 10] 12.624.667 2.400 109.223.271 x 8.7
5K t20 [2, 5] [10, 20] 5.898.803 1.120 14.064.044 x 2.4
10K c20 [10, 20] 1 3.376.055 636,8 48.712.856 x 14.4
10K c100 [20, 100] 1 13.522.653 2.560 461.042.361 x 34.1
10K t5 [10, 20] [1, 5] 10.119.755 1.920 71.304.115 x 7.0
10K t10 [20, 100] [5, 10] 25.260.771 4.800 216.690.752 x 8.6
10K t20 [2, 5] [10, 20] 11.804.988 2.240 28.155.826 x 2.4

Table 2: Characteristics of evaluated datasets

4.3 Compression and encoding performance

In this section, we are mainly interested in two performance dimensions: the
memory space reduction provided by LiteMat compared to a full materializa-
tion and the duration of LiteMat’s encoding against the full materialization
computation.
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Figure 2 presents comparisons of the memory space required by the LiteMat
approach against a full materialization. In the latter approach, both the set of
materialized triples as well as the dictionaries are required to answer inference-
enabled SPARQL queries while in the case of LiteMat, only the dictionaries
are necessary. The figure emphasizes that, for any datasets, both dictionaries
are about the same size, with the ones of FullMat being a little bit more com-
pact for trees due to the overhead LiteMat identifiers, i.e., a long value for the
materialization against a 4-tuple of long values and an integer for LiteMat.

Obviously, for long chains and large trees, the amount of materialized triples
can be quite important, i.e., for 5K c100 and 10K c100, the set of materialized
triples of 34 times larger than to their original triple sets (Figure tab:datasets
and the LiteMat approaches correspond to only 10% of their sizes. Considering
5K c20 and 10K c20, LiteMat’s approach is still around 70% of total materialized
approach.

Fig. 2: Memory space required by LiteMat vs a full materialization

Figure 3 provides some details on the duration of the di↵erent computation
steps involved in both the full materialization and LiteMat approaches. The
common steps of these two approaches are the loading of the dataset and the
computation of the connected components. We can see that the time taken by
the former is quite negligible compared to the other tasks. Unsurprisingly, the
computation of the connected components takes a lot of time on all experimen-
tation. The LiteMat encoding and full materialization share a common näıve
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encoding of individuals step (which is included in both times). Overall, we note
that for chains of a transitive property, the di↵erence between both approaches
is not significant, i.e., LiteMat is only between 2 and 3% faster than the full
materialization. This is not true for structures taking the form of a tree. In that
case, LiteMat’s encoding is 45 to 50% faster when the depths of structure is rel-
ative large for transitive properties, i.e., [10,20] and [20,100]. We consider that
this is mainly due to the recursive parsing of the tree to compute the transitive
closure. The duration di↵erence between the two approaches is less important,
i.e., around 11%, when the tree structure depths lies in the [2,5] range.

Fig. 3: Durations (in seconds) for the full materialization and LiteMat approaches

4.4 Query processing

Our preliminary evaluation of the query processing consists of a cold retrieval of
all descendants of a give individual and the average of five hot queries that
retrieve all descendants (i.e., hot1) and ancestors (i.e., hot2). Figure 4 pro-
vides measures conducted on the largest datasets of our experimentation, e.g.,
10K c100 and 10K t20 of respectively 9.8GB and 6GB for the materialized ap-
proaches. In order to provide a complete overview of the approaches, In this
figure, all measures (loading time, cold, hot1 and hot2) emphasize shorter exe-
cution times for LiteMat. Considering the loading times, LiteMat is between 6
to 10 times faster than the complete materialization. This is mainly due to the
fact that LiteMat solely relies on the dictionaries and not on the triples set. This
aspect impacts the cold runs where LiteMat is between 2 and 8 times faster then
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the full materialization. Finally, for hot runs, LiteMat is 2 to 3 times faster than
a complete materialization.

Fig. 4: Query processing on chains and trees with full materialization and liteMat
(times in seconds)

5 Conclusion

In this paper we have extended the expressiveness of LiteMat to reach the level
of RDFS++. This has been achieved by pushing the original logical approach
of LiteMat that consists in assigning meaningful identifiers to elements of the
TBox and the ABox. The evaluation of transitive structures taking the forms
of chains and and trees is quite convincing is terms of memory space econo-
mized, speed of encoding and e�ciency of query processing. Nevertheless, there
is room for improvement in directions such as a more e�cient support of graph
transitive structures and the fact that certain individuals can be contained in
structures of di↵erent transitive properties. On the implementation side, we are
considering using indexed Spark abstractions to speed up query processing and
are considering algorithms such those presented in [3] to compute connected
components.

References
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