Powerset-Like Monads Weakly Distribute over Themselves in Toposes and Compact Hausdorff Spaces - Archive ouverte HAL
Communication Dans Un Congrès Année : 2021

Powerset-Like Monads Weakly Distribute over Themselves in Toposes and Compact Hausdorff Spaces

Résumé

The powerset monad on the category of sets does not distribute over itself. Nevertheless a weaker form of distributive law of the powerset monad over itself exists and it essentially stems from the canonical Egli-Milner extension of the powerset to the category of relations. On the other hand, any regular category yields a category of relations, and some regular categories also possess a powerset-like monad, as is the Vietoris monad on compact Hausdorff spaces. We derive the Egli-Milner extension in three different frameworks : sets, toposes, and compact Hausdorff spaces. We prove that it corresponds to a monotone weak distributive law in each case by showing that the multiplication extends to relations but the unit does not. We provide an application to coalgebraic determinization of alternating automata.
Fichier principal
Vignette du fichier
LIPIcs.ICALP.2021.132_aiguier.pdf (970.82 Ko) Télécharger le fichier
Origine Fichiers éditeurs autorisés sur une archive ouverte

Dates et versions

hal-04491472 , version 1 (29-03-2024)

Identifiants

Citer

Alexandre Goy, Daniela Petrişan, Marc Aiguier. Powerset-Like Monads Weakly Distribute over Themselves in Toposes and Compact Hausdorff Spaces. 48th International Colloquium on Automata, Languages, and Programming (ICALP 2021), Jul 2022, Glasgow (SCOTLAND), France. ⟨10.4230/LIPIcs.ICALP.2021.132⟩. ⟨hal-04491472⟩
27 Consultations
17 Téléchargements

Altmetric

Partager

More