
HAL Id: hal-04491447
https://hal.science/hal-04491447v1

Submitted on 19 Nov 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

The Kauzmann Transition to an Ideal Glass Phase
Chiara Cammarota, Misaki Ozawa, Gilles Tarjus

To cite this version:
Chiara Cammarota, Misaki Ozawa, Gilles Tarjus. The Kauzmann Transition to an Ideal Glass
Phase. Patrick Charbonneau; Enzo Marinari; Giorgio Parisi; Federico Ricci-Tersenghi; Gabriele
Sicuro; Francesco Zamponi; Marc Mezard. Spin Glass Theory and Far Beyond: Replica
Symmetry Breaking after 40 Years, World Scientific Pub, pp.203-218, 2023, 978-9811273919.
�10.1142/9789811273926_0011�. �hal-04491447�

https://hal.science/hal-04491447v1
https://hal.archives-ouvertes.fr


September 23, 2022 0:44 ws-rv10x7-10x7 Spin Glass Theory and Far Beyond: Replica Symmetry Breaking
after 40 Years

arxiv page 1

Chapter 11
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The idea that a thermodynamic glass transition of some sort underlies the observed
glass formation has been highly debated since Kauzmann first stressed the hypothet-
ical entropy crisis that could take place if one were able to equilibrate supercooled
liquids below the experimental glass transition temperature Tg. This a priori un-
reachable transition at some TK < Tg has since received a firm theoretical basis as a
key feature predicted by the mean-field theory of the glass transition. In this chapter,
we assess whether, and in which form, such a transition can survive in finite dimen-
sions, and we review some of the recent computer simulation work addressing the
issue in 2- and 3-dimensional glass-forming liquid models. We also discuss theoretical
reasons to focus on an apparently inaccessible singularity.

1. Introduction

The existence of a thermodynamic phase transition underlying the experimentally ob-

served glass transformation phenomenon has been a recurring theme in theoretical stud-

ies of glass formation. This transition would be between the liquid –most generally a

supercooled liquid phase which is metastable with respect to some stabler crystalline

phase– and an ideal glass phase. The issue may sound just as futile as arguing over

how many angels can dance on the head of a pin because the thermodynamic transition

is unreachable due to the very strong slowing down of relaxation that is precisely the

phenomenological fingerprint of glass formation. Yet, one can argue that there is some

merit to trying to address the problem. One first obvious reason is that despite being

unobservable, the putative thermodynamic transition may still control the physics of

the glassy slowdown and provide a framework and scaling laws to describe the empirical

data. Accordingly, more or less indirect signatures or vestiges of the thermodynamic

transition could be probed and would allow for distinguishing the theoretical approaches

that do and do not predict such features. This chapter is devoted to a discussion of this
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issue.

The story of an unreachable transition at some temperature TK lower than the

experimental glass transition (or transformation) temperature Tg begins with W. Kauz-

mann’s seminal paper in 1948.1 Addressing the nature of metastability and of the glass

transition, Kauzmann collected equilibrium entropy data from various glass-forming

materials and plotted the temperature dependence of the entropy difference between

the supercooled liquid and the crystal. He noted that this difference decreases sharply

with decreasing temperature, more so for molecular glass-forming liquids now known

as ”fragile”2 such as glucose or lactic acid for which the entropy difference drops by

a factor of 2 or 3 between the melting point and Tg. At Tg the entropy difference

essentially saturates because the liquid falls in a nonequilibrium glass state. However,

one may wonder what would happen if one were able to equilibrate the liquid to still

lower temperatures, a point that Kauzmann qualitatively illustrated by extrapolating

the experimental curve below Tg. He found that a simple extrapolation leads to an

apparent paradox: The entropy difference between the liquid and the crystal vanishes

at a nonzero temperature TK < Tg below which it becomes negative. This temperature

TK is now known as the Kauzmann temperature.

Although Kauzmann himself preferred an interpretation in terms of a pseudo-critical

point at (or above) TK marking the limit of stability of the supercooled liquid with re-

spect to crystal nucleation, TK has since been associated in many glass studies with

a thermodynamic (equilibrium) transition to an ideal glass phase. This view has been

pursued by J. H. Gibbs and his coworkers. Gibbs and DiMarzio found through a mean-

field quasi-lattice approach an equilibrium glass transition at which the ”configurational

entropy” of glass-forming polymers vanishes.3,4 Adam and Gibbs later proposed a mech-

anism to relate the slowdown of relaxation as one lowers the temperature to the dearth

of available configurations as quantified by the decrease of the configurational entropy.

This mechanism involves cooperatively rearranging regions whose size diverges at the

equilibrium glass transition temperature TK .5

What gave firmer ground to the notion of a thermodynamic glass transition at

some nonzero TK < Tg is the insight by T. R. Kirkpatrick, D. Thirumalai, and P. G.

Wolynes that such an entropy-vanishing transition is present in some mean-field spin-

glass models, such as Potts glasses and p-spin models.6,7 The transition, which in the

replica formalism corresponds to a 1-step replica symmetry breaking (RSB),8 has been

dubbed ”random first-order transition”, and its scaling extension to finite dimensions

has been developed in a series of papers starting with Ref.9 (see also Chapter by P.

G. Wolynes). In what follows we will often simply refer to the thermodynamic ideal

glass transition as the ”Kauzmann transition” to stress the fact that it corresponds

to a (configurational) entropy crisis, despite the caveat concerning Kauzmann’s own

interpretation.

The key step reinforcing the theoretical foundation was the full solution of glass

formation for liquids in infinite dimensions that was proven to be associated with the

very same 1-step replica symmetry breaking (RSB) phenomenology as the above-cited
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mean-field spin-glass models.10,11 The Kauzmann (random first-order) transition is thus

a direct prediction of the mean-field theory of glass-forming liquids as obtained in in-

finite dimensions. This recent result by itself forces one to seriously consider the issue

of an underlying thermodynamic glass transition in finite dimensions. In particular, as

in the conventional Landau-Ginzburg-Wilson theoretical approach of phase transitions

starting from a mean-field description,12 it opens a line of research concerning the role

of spatial fluctuations on the transition when moving away from infinite dimensions to

reach the physical world of 2 and 3 dimensions.

The goal of this chapter is to discuss the nature and the existence of a thermo-

dynamic transition between the liquid and an ideal glass phase in finite-dimensional

glass-forming liquids and, considering the fact that it is (at least currently) an essen-

tially inaccessible transition point, to assess the usefulness of the concept for describing

the actual glass formation process. In this respect it differs from previous literature

reviewing the Kauzmann transition and arguments about its achievability.13,14

2. Nature of the Kauzmann transition in mean-field and in finite di-

mensions

The core of the mean-field description of glass formation is the existence of a complex

free-energy landscape in which equivalent metastable states emerge in an exponen-

tially large (in system size) number below a first critical temperature Td > TK . Below

Td, which corresponds to a purely dynamical transition, ergodicity is broken and the

system stays trapped forever in one of the metastable states due to the presence of

infinite free-energy barriers. As the temperature is further decreased, the number of

metastable states decreases and the configurational entropy (more accurately the con-

figurational entropy per particle), which is defined as the logarithm of the number of

typical metastable states divided by the number of molecules, vanishes at the Kauz-

mann temperature TK . A bona fide thermodynamic transition to an ideal glass then

takes place. Energy, entropy, configurational entropy, and free energy are continuous

at the transition but the order parameter, which similarly to spin-glass models can be

best chosen as an overlap between configurations and will be discussed in more detail

below, has a discontinuity between a low value (characterizing the liquid formed by the

superposition of all typical metastable states) and a high value (characterizing the ideal

glass). As already mentioned, this phenomenon corresponds to a 1-step RSB transition

in the replica formalism (see also other chapters of this book).

This scenario is exactly realized in liquids in infinite dimensions and can be taken

as the Landau theory of the glass transition.10,11 However, at odds with the treatment

of more conventional phase transitions such as the liquid-gas one, extension of this

mean-field Landau theory to include spatial fluctuations that are generically present in

finite dimensions but absent in infinite dimensions is extremely delicate. One reason

is that the very notion of metastability is ill-defined in finite-dimensional statistical

mechanics because localized fluctuations destroy it, making the lifetime of metastable
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states finite in any finite dimension. Strictly speaking, the dynamical transition at

Td cannot persist and/or must be smeared out. On the one hand, the absence of

ergodicity breaking at Td is good news as the liquid is allowed to relax between Td and

TK through putative activated nucleation processes9 (see also Chapter P. G. Wolynes).

On the other hand, the whole theoretical construction, including the central notion of

configurational entropy, may completely lose its meaning. The effect of fluctuations,

which at this point we do not attempt to better characterize, may indeed be drastic and

completely wipe out the mean-field 1-RSB scenario. For instance, it is known to be the

case for some disordered spin models such as Potts glasses that show no glassiness at

all or a continuous (full-RSB) transition in 3 dimensions15–18 or for the random Lorentz

gas which displays a continuous localization phenomenon associated with a percolation

transition in 3 dimensions,19,20 both types of systems that nonetheless follow the 1-RSB

scenario in the fully connected (infinite-dimensional) limit.

What about finite-dimensional glass-forming liquids? In particular, is there an op-

erational way to define a configurational entropy? One line of research that started

with M. Goldstein,21 and was developed into a systematic framework by F. Stillinger

and coworkers,22,23 considers the potential energy landscape and its multiple minima,

also called inherent structures. Contrary to the multiplicity of metastable states in a

free-energy landscape at a nonzero temperature, the multiplicity of inherent structures

is rigorously defined even in finite dimensions and their number can be used to de-

fine a configurational entropy.24 Stillinger argued that due to the ubiquitous presence

of point defects, this configurational entropy cannot vanish at a nonzero TK , thereby

preventing the existence of an ideal glass transition.25 This argument, however, is not

conclusive26,27 as it only holds when counting potential-energy minima which are much

more numerous than metastable free-energy minima in the mean-field limit and are not

necessarily relevant for describing the glass transition. We will come back to numerical

implementations of this so-defined configurational entropy later on.

A substitute for metastable free-energy states based on collections of liquid config-

urations could be defined in finite dimensions with the help of the dynamics by setting

a threshold for the lifetime of these collections. After all, if the lifetime threshold is

large compared to the local equilibration time, the system can equilibrate within the

metastable state and metastability is thus observable in practice, as it is the case for

the supercooled liquid phase with respect to the crystalline phase. The case of glassy

metastable states is, however, more subtle because in the observable temperature range

all timescales (local equilibration time, lifetime, etc.) are expected to be comparable.

Moreover, while simple symmetry operations can be used to immediately tell apart,

e.g., supercooled liquid from crystalline phase, there are no such symmetry operations

allowing one to distinguish one metastable state from another, and the very concept of

metastable state lifetime is less sharply defined. Configurations can still in principle be

grouped into larger entities, on the basis of their relative distance or the height of the en-

ergy barriers separating them. Such entities are sometimes referred to as metabasins,23

but in spite of the pioneering work of A. Heuer and coworkers,28 the procedure is hard

to implement numerically and has not been used to discuss the Kauzmann transition.29

Another possibility is to restrict the spatial fluctuations so that a nonconvex free-
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energy landscape with multiple minima can still be defined. This is what happens when

considering small system sizes: Long wavelength fluctuations as well as rare localized

fluctuations are suppressed by the limited sample size, and some form of metastability

can then be studied. A specific protocol of this kind has actually been proposed and

implemented to measure a fundamental lengthscale associated with the putative ther-

modynamic glass transition.30,31 By freezing the liquid configuration outside a spherical

cavity of radius R and letting the system equilibrate inside the cavity in the presence

of the frozen boundary condition, one can extract a crossover length corresponding to

the cavity size beyond which the boundary condition no longer fixes the state of the

liquid inside. In a schematic adaptation of the mean-field theory to finite dimensions,

this length results from the competition between the interfacial cost due to the sur-

face tension between distinct metastable states and the configurational entropy gain

resulting from the multiplicity of available states. It diverges at the Kauzmann transi-

tion when the configurational entropy vanishes. Importantly, such a lengthscale, `PTS,

which is associated with a point-to-set spatial correlation,32 can be probed in finite-

dimensional liquids, even if the concept of metastable state is not properly defined in

the unconstrained (bulk) liquid: see also below.

An alternative approach is to introduce an appropriate order parameter and the

associated free energy that can play the role of the Landau effective potential in the

mean-field description while being generalizable to finite dimensions. A convenient

choice is the so-called Franz-Parisi potential.33,34 The first step is to introduce an overlap

order parameter Q which measures the similarity between two liquid configurations, or,

more properly, between the associated coarse-grained density profiles. Considering two

configurations of the liquid, rNα ≡ {r
(α)
i }i=1,...,N defined from the particle positions r

(α)
i

with α = 1, 2, the overlap function between the configurations can be defined as

Qa[rN1 , r
N
2 ] =

1

N

N∑
i,j=1

w(|r(1)i − r
(2)
j |/a), (1)

with w(x) ≈ 1 if x < 1 and ≈ 0 otherwise, a being a tolerance associated with the

typical amplitude of thermal vibrations in the liquid. As such the overlap function Qa
is small if the configurations are uncorrelated and large if they are strongly correlated,

and it can therefore be used to distinguish liquid (low overlap) and glass (high overlap)

phases.

The Franz-Parisi potential represents the average cost to maintain equilibrium liquid

configurations rN at a global overlap value Q with a reference liquid configuration

rN0 . When all configurations are sampled from the equilibrium measure at the same

temperature T , its expression reads

V (Q) = − T
N

∫
drN0

e−βH[rN0 ]

Z
ln

∫
drN

e−βH[rN ]

Z
δ(Q−Qa[rN , rN0 ]), (2)

where β = 1/(kBT ), Z ≡
∫
drN exp(−βH[rN ]) is a partition function, H[rN ] is the

liquid Hamiltonian, and δ(x) is the Dirac delta function.

The mean-field Franz-Parisi potential V (Q) loses convexity at some temperature Tc
and, below the dynamical transition temperature Td < Tc, a second minimum that is

metastable with respect to the stable liquid minimum appears at a high value of the
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overlap and corresponds to the glass phase. As T further decreases the second minimum

becomes deeper and at the Kauzmann temperature TK the two minima have the same

free-energy value: This corresponds to a discontinuous transition between the liquid

and the ideal glass. Between Td and TK the difference in free-energy between the two

minima is exactly the configurational entropy (times the temperature). Note also that

below Tc, tilting the potential by applying a source term linearly coupled to the overlap,

−εQ, induces for some ε∗(T ) > 0 a first-order transition between a low-overlap phase

and a high-overlap one.33,34

Fig. 1. Sketch of the Franz-Parisi potential V (Q) in the mean-field limit (left panels) and for a 3-

dimensional glass-former in the thermodynamic limit (right panels). In the top panels, the temperature

is slightly above the Kauzmann temperature TK . In the bottom panels the temperature is slightly below
Tc at which a singular point with V ′′(Q) = V ′′′(Q) = 0 exists. (Above Tc the potential is convex with

V ′′(Q) > 0 everywhere.) The figure is taken from Ref.35

The Franz-Parisi potential V (Q) is well-defined in finite dimensions too. It should

then be convex in the thermodynamic limit but can nonetheless be singular by displaying

at low enough temperature a linear segment over a range of Q, as illustrated in Fig. 1. If

so, a discontinuous transition (associated with a horizontal segment) can still take place

at some nonzero TK . The difference between the values of V (Q) at the high-overlap end

of the segment and at the stable liquid minimum corresponds also in finite dimensions to

the difference in free-energy of the two phases and operationally defines a configurational

entropy, as does in an essentially equivalent way the slope ε∗(T ) of the segment. With

such definitions, TK corresponds to a vanishing of the configurational entropy, although

the precise link between this configurational entropy and ”metastable states” is blurred

in finite dimensions. In any case, one expects that the hypothetical thermodynamic

transition in finite dimensions would still be associated with a divergence of the point-
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to-set correlation length `PTS, as the cavities of the point to set construction would then

end up having a vanishing free energy gain in changing state at TK . Although nothing

guarantees that the 1-RSB nature of the ideal glass phase persists (see Chapter by P.

G. Wolynes), the divergence of the point-to-set correlation length conveys the idea that

the glass phase would have an infinite coherence length. In other words, some form

of infinite-range ”amorphous order” is present36 despite the fact that ”by naked eye”

nothing in the structure seems to distinguish glass from liquid.

One issue that we will now discuss is whether one indeed finds in 3d and 2d glass-

forming liquids, either in finite-size samples or in the thermodynamic limit, an effective

potential that looks like the sketches displayed in Fig. 1 and whether the data is com-

patible with the presence of an equilibrium glass transition at a nonzero TK .

3. Does a thermodynamic glass transition exist in 2 and 3-dimensional

liquids?

3.1. The issue of timescale and system size

As already stressed, the Kauzmann thermodynamic glass transition is inaccessible by

simply cooling a liquid. This is the obvious consequence of the slowing down of relax-

ation that, in practice, prevents equilibration below some temperature Tg > TK . This

is true in experiments,37 and even alternative ways of generating ultrastable glasses by

physical vapor deposition,14,38,39 fall short of reaching the very near vicinity of the ex-

trapolated TK . The situation is even less favorable for computer simulations that span

a less extended timescale domain in equilibrium than experimental techniques. How-

ever, computer simulations allow one to access microscopic properties in great detail

and, more importantly, to implement protocols and compute quantities, such as the

point-to-set correlation length, the statistics of the overlap between configurations, the

Franz-Parisi potential, etc., that are hard or impossible to probe experimentally.

Furthermore, advanced simulation techniques such as parallel tempering40,41 and

swap Monte Carlo42 which use nonphysical particle moves have tremendously increased

the range of temperature over which equilibrium liquid configurations can be numeri-

cally prepared.43–45 In specifically tailored polydisperse glass-forming models, the swap

algorithm allows one to sample equilibrium configurations at temperatures below the

estimated calorimetric glass transition temperature Tg.
44,46–48 Yet, as in the case of

the experimentally generated ultrastable glasses, the close vicinity of the putative TK is

still not attainable (and studying the equilibrium dynamics via physical particle moves

remains, of course, limited). This implies that no direct evidence of a thermodynamic

glass transition at TK can be obtained from such numerical studies at present.

Another limitation of computer simulations of glass-forming liquids is the accessi-

ble range of system sizes. When dealing with the complex computation of quantities

associated with the thermodynamic fluctuations of the overlap between configurations

at the lowest temperatures at which equilibration is achievable, no more than a few

thousands of particles in 3 dimensions can be simulated with present-day computer ca-

pabilities.49,50 The thermodynamic limit can then only be inferred through finite-size

scaling analyses. On the other hand, and as already mentioned, the upside of studying
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systems of limited size is that metastability can be observed and that an estimate of

a (finite-size) configurational entropy can be extracted from the measured Franz-Parisi

potential. This is illustrated in Fig. 2 for a system of rather small size.51 From simple

renormalization-group arguments,52 one expects that such a finite-size configurational

entropy is meaningful in terms of metastable states up to sizes of the order of the point-

to-set correlation length. For larger system sizes, a configurational entropy can still be

operationally defined from the Franz-Parisi potential (even in the thermodynamic limit

where convexity is restored, see above and Fig. 1), but we stress again that it lacks a

direct interpretation in terms of metastable states.

Fig. 2. Evolution with the pressure of the Franz-Parisi potential V (Q) for a 3d polydisperse hard-

sphere glass-former with N = 111 atoms. For pressure P & 28, the potential is clearly nonconvex, and

∆V can be taken as an ersatz for a finite-size configurational entropy. The figure is taken from Ref.51

3.2. Configurational entropy and point-to-set correlation length

Keeping in mind that the putative Kauzmann transition cannot be directly observed

nor very closely approached when decreasing the temperature, it is nonetheless worth

checking if the behavior of glass-forming liquids is at least compatible with the scenario

of glass formation controlled by an underlying thermodynamic glass transition. The

two most obvious observables that are relevant for this purpose are the configurational

entropy, or rather its different substitutes and estimates, and the point-to-set correlation

length extracted from the cavity construction previously discussed.

The configurational entropy has been studied in 2- and 3-dimensional glass-forming

liquid models through both the Franz-Parisi potential and the number of inherent struc-

tures in the potential-energy landscape.43,46,50,53 For the latter, it is, of course, im-

possible to proceed by brute-force enumeration of the minima except for very small

systems.54,55 The ”configurational entropy” is instead approximated by the difference

between the full thermodynamic entropy and the vibrational entropy, whose calculation

is itself nontrivial due to anharmonicity effects and to the mixing entropy present in
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polydisperse systems.56–58

As anticipated, the configurational entropy associated with the potential energy

landscape is significantly larger than that estimated from the Franz-Parisi poten-

tial.43,46,59 In all studied cases, the configurational entropy, whatever its definition,

decreases with decreasing temperature,24,60,61 much like the experimentally determined

one62 and Kauzmann’s original plot.1 Different behaviors are found for 2- and 3-

dimensional glass-forming liquids, as shown in Fig. 3. For 3-dimensional liquids, ex-

Fig. 3. Left: Rescaled configurational entropy obtained through the potential-energy landscape and

the point-to-set correlation length (see main text), for a 2d polydisperse soft particles as a function
of temperature. The figure is taken from Ref.59 Right: Configurational entropy obtained through

the potential-energy landscape, the point-to-set correlation length, and the Franz-Parisi potential (see

main text) for a 3d polydisperse mixture of hard spheres as a function of inverse reduced pressure. The
figure is taken from Ref.46

trapolation of the temperature dependence is compatible with a nonzero Kauzmann

temperature46,61 whereas for 2-dimensional glass-forming liquids, TK = 0 appears to

best fit the data.59

The point-to-set correlation length `PTS has also been measured by several groups

and found to increase with decreasing temperature, by a modest factor of 2 − 3 in

3d31,46,63,64 and of 6 − 7 in 2d59 over the accessible temperature range. Again, the

numerical data do not approach the anticipated singularity at TK where `PTS should

diverge and therefore do not prove the existence of an underlying thermodynamic glass

transition, but they do show significant growth, much larger than that observed for any

simple (point-to-point) structural correlation length. Furthermore, `PTS(T ) behaves as

the inverse of the configurational entropy measured from the Franz-Parisi potential46,59

as predicted by the mean-field theory (assuming that the surface tension between glassy

states essentially does not vary with temperature in the relevant range).

3.3. A necessary condition for the existence of a Kauzmann transition

As already pointed out, despite the overall consistency between numerical results and

mean-field predictions, it is virtually impossible to provide a direct experimental or

numerical evidence for the existence of a Kauzmann transition. One may wonder if,

conversely, it could be possible to prove that it is absent in finite dimensions. We have
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already discussed in Sec. 2 that a priori no rigorous arguments seem to preclude the

presence of a random-first-order ideal glass transition at a nonzero temperature. An

indirect way of addressing the issue is to consider the Franz-Parisi effective potential

characterizing the fluctuations of the overlap with a reference liquid configuration and

the extended phase diagram obtained by applying a linear uniform source ε > 0 to the

overlap: see Sec. 2. In the ε - T phase diagram, the singular behavior of the effective

potential, if present, leads to a line of first-order transition ending in a critical point at

Tc (and a nonzero εc). This is sketched in Fig. 4(a).

Fig. 4. Schematic plot of the extended phase diagrams of glass-forming liquids obtained by applying a
uniform source ε biasing the value of the overlap Q (a) or by randomly pinning a fraction c of particles

(b), expected for 3-dimensional systems. The mean-field theory predicts a line of conventional first-

order transition (with latent heat associated with a discontinuous jump of entropy) emerging from the
Kauzmann transition in ε = 0 and ending at a critical point at (εc, Tc) in the former case (a) and a line

of Kauzmann transition (at which the configurational entropy vanishes and the point-to-set correlation

length diverges) also ending in a critical point at (cc, Tc) in the latter case (b).

The hypothetical TK is at the low-temperature limit of the line of first-order transi-

tion when ε = 0. Clearly, if the line does not exists, and in particular, if no critical point

exists at some Tc > 0, no Kauzmann transition can be present. Investigating the critical

point and the high-temperature part of the first-order line is numerically very demand-

ing but doable.43,65,66 Computing the Franz-Parisi potential requires sampling a range

of large overlap values that correspond to rare occurrences, but this can be achieved by

using the large-deviation framework and importance sampling techniques.67 Further-

more, when studying the existence and the nature of a critical point, one can optimize

the calculation by playing with the temperature T0 at which the reference configurations

are sampled.50 Although the accessible system sizes are limited (see above), a finite-size

scaling study has given strong support for the existence of a critical point at a nonzero

Tc in a 3-dimensional glass-forming liquid and the absence of such a nonzero Tc in a

2-dimensional one.50,68 As theoretically predicted from field-theoretical arguments,69–71

the results are compatible with the critical point (εc, Tc) being in the universality class

of the equilibrium random-field Ising model (RFIM) (see Ref.72 for an introduction to

the model). In particular, the lower critical dimension of the RFIM below which there
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is no phase transition is rigorously known to be d = 2. The finite-size scaling analysis

for the 3d case is reproduced in Fig. 5.

The above study concerning the extended ε − T phase diagram and the associated

critical point supports the conclusion that a Kauzmann-like glass transition is precluded

in 2-dimensional glass-formers while its existence is possible (but not guaranteed) in 3

dimensions where it may then depend on nonuniversal liquid properties producing the

strength of the emergent random field that appears in the effective description: see

Ref.71 and below.

Fig. 5. Finite-size scaling analysis of the susceptibilities close to the critical point of a 3-dimensional

glass-forming liquid in the ε − T phase diagram, varying the linear system size L ∝ N1/3 and the

reduced temperature t = T/Tc − 1. The so-called connected and disconnected susceptibilities, χ
(con)
ε∗

and χ
(dis)
ε∗ , are associated with the overlap fluctuations, and the scaling collapses are obtained with the

exponents, η, η̄, ν, characterizing the universality class of the RFIM. The figure is taken from Ref.50

3.4. A thermodynamic glass transition by random pinning

The Kauzmann transition is not the only inaccessible transition in statistical physics.

The equilibrium paramagnetic-to-ferromagnetic transition of the RFIM, which we have

already mentioned, is another example. The slowing down of relaxation when approach-
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ing the critical point is anomalously strong and has the very same activated character as

the glassy slowdown.73,74 As a result, it is not possible to reach the near vicinity of the

transition point by varying the temperature because the system falls off equilibrium at

some point where equilibration is no longer achievable in practice. In some experimental

realizations of the RFIM, it is nonetheless possible to approach close enough to observe a

critical scaling behavior.75 Furthermore, by making use of an additional control param-

eter, e.g., the concentration of impurities for the diluted anti-ferromagnet in a uniform

magnetic field that is supposed to be in the universality class of the RFIM,75 one can

access the ordered low-temperature phase. Hence, the transition can in principle be

studied by both cooling and heating the system.

A similar protocol for studying the Kauzmann transition was proposed for glass-

forming systems by G. Biroli and one of the authors.76,77 The idea is to choose at

random a fraction c of particles in an equilibrium liquid configuration and to freeze

them permanently while studying the further evolution of the remaining particles in

the presence of the pinned ones.78 This corresponds to a different boundary condition

than the cavity protocol used to access the point-to-set correlation length. The moving

particles now form a continuously connected 3-dimensional system (in a 3d sample,

provided that the concentration c of pinned particles is below the percolation threshold),

and phase transitions are therefore possible in the thermodynamic limit. The mean-field

theory76 predicts a line of thermodynamic glass transition emerging from the Kauzmann

temperature TK in c = 0 and ending in a critical point at some (cc > 0, Tc > TK), also

argued to be in the RFIM universality class.70,77 The extended phase diagram in the

c− T plane thus appears similar to that previously considered in the ε− T plane, with

one crucial difference: The thermodynamic transition all along the line, except at Tc,

now corresponds to a random first-order or Kauzmann-like glass transition, at which

the configurational entropy vanishes (yet without replica symmetry breaking). The two

extended phase diagrams are sketched in Fig. 4.

One advantage of the random pinning protocol or related ones is that it can be

realized in real experiments.79–81 A second advantage is that the ideal glass phase is

known: When working at constant temperature T by varying the concentration c, the

ideal glass phase in the presence of pinned particles corresponds to the initial equilibrium

configuration obtained before any particle pinning.82 Furthermore, it is in principle

accessible by following a path in the c − T plane that does not encounter any phase

transition.

Notwithstanding these favorable conditions, assessing the presence of a Kauzmann

transition with the pinning construction has proven hard numerically due to issues of

equilibration time (even in the ideal glass) and of a proper definition of a configurational

entropy.83 Evidence for a glass transition at some TK(c) has been obtained in rather

small systems and without a systematic finite-size scaling analysis.49,84 There have

been studies of the properties of the ideal glass (or a stable glass) in the presence of

pinning, giving a first description of its equilibrium fluctuations83 and its melting into

the liquid through nucleation of the latter phase when temperature is raised.85 Still,

the formation of a glass by nucleation, also predicted by the mean-field theory, has not

been observed due to the too large relaxation times involved (while remaining clear of
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the percolation threshold for the pinned system). Finally, although its properties should

be qualitatively similar to those of the (εc, Tc) critical point recently investigated (see

above), a systematic study of the critical endpoint (cc, Tc) has not been attempted yet.

It is anticipated to be very demanding numerically due to its location at the end of

a Kauzmann glass transition line, at which the relaxation time is expected to diverge

extremely strongly. On the other hand, establishing the presence of this critical point

would more directly confirm the existence of a Kauzmann glass transition.

4. Conclusion and perspective

To conclude this chapter, we would like to come back to the issue of why one should

bother about the existence of an inaccessible phase transition, which, after all, seems a

valid question. One lesson learned from studies on the RFIM in which the transition is

also not directly reachable by varying the temperature because of a strong activated-

like critical slowing down is that establishing the existence and the properties of the

transition via mathematically rigorous methods, the functional renormalization group,

or specific (unphysical) algorithms at zero temperature (see Ref.86 for a review), allows

one to rationalize the whole phenomenology observed experimentally and numerically,

to cook up adapted observables, and when possible to perform scaling collapses of data.

Reaching the same state-of-the-art would clearly be a major step forward for the study

of glass-forming liquids.

We have seen that as far as the statics is concerned, the observables devised within

the mean-field setting to reflect the properties of the underlying free-energy landscape

can be extended to finite dimensions and that they display an overall behavior that is

compatible with the existence of a thermodynamic glass transition in 3d,46,49,68 but not

in 2d.50,59 This, of course, does not prove the existence of a Kauzmann, or random first-

order, transition in 3-dimensional liquids, but it validates the mean-field scenario as a

reasonable starting point for theoretical developments. The concepts of metastable free-

energy states and configurational entropy should be bypassed or strongly modified when

dealing with finite dimensions. Yet, as discussed above, no fundamental arguments seem

to forbid the existence of a thermodynamic glass transition in 3-dimensions (whereas

there are such arguments against the existence of a nonzero TK in 2d). The existence or

not of a transition is therefore a nonuniversal feature that may depend on the specific

properties of the 3d glass-former. (Indeed, one can construct glass-forming models

without a Kauzmann transition.11,87–89) This also opens the possibility of finding glass-

formers with a narrowly avoided thermodynamic glass transition, which for all practical

purposes, would play the same role as a true transition. A path to address this issue

is via the development of an effective theory taking the overlap between configurations

as the fundamental field or variable. Work in this direction suggests that such an

effective theory involves quenched disorder in the form of a random field and a random

coupling90–92 and that the existence or not of a transition (or how narrowly it is avoided)

primarily depends on the relative strength of the random field. Extending the numerical

investigation of the global Franz-Parisi potential to that of a local version may then allow

one to determine the parameters entering in the effective theory.93 A similar endeavor
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could be pursued for the random pinning construction in which quenched disorder plays

an important role as well.

More difficult at present is establishing that the dynamical slowdown of relaxation

leading to glass transformation is indeed controlled by a thermodynamic glass transition

(even a narrowly avoided one). The glassy slowing down prevents an exploration of the

asymptotic regime in which scaling about TK is dominant so that exponents cannot

be reliably extracted. Note that this is also partly true in the case of the RFIM, for

which the range of dynamical data is not sufficient to accurately determine the exponent

characterizing the growth of the activation free-energy barriers when approaching the

critical point. However, what is more crucial for glass-forming liquids is that room is left

for important if not predominant contributions coming from other dynamical processes

unrelated to TK , such as dynamical facilitation,94 soft modes,95 elasticity,96 or the role

of liquid-specific locally preferred atomic arrangements.97,98 Establishing the causal

relationship between the putative thermodynamic glass transition at TK and the glassy

dynamics beyond the existing empirical but global correlations99 is therefore the most

wanted next stage.100
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