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Abstract: The research work hereby presented, emerges from the urge to answer the well-known
question of how the uncertainty of intermittent renewable sources affects the performance of
a microgrid and how could we deal with it. More specifically, we want to evaluate what
could be the impact in performance of a microgrid that is intended to serve a smart-building
(powered by photovoltaic panels and with battery energy storage), when the uncertainty of
the photovoltaic-production forecasts is considered in the energy management process through
the use of quantile forecasts. For this, several objectives (or services) are targeted based in a
two-step (double-objective) energy management framework, which combines optimization-based
and rule-based algorithms. The performance is evaluated based on some particular services, namely:
energy cost, carbon footprint, grid peak power, and grid commitment; with the latter being a novel
service proposed in the domain of microgrids. Simulations are performed whlie using data of a
study-case microgrid (Drahi-Xnovation center, Ecole Polytechnique, France). The use of quantile
forecasts (obtained with an analog-ensemble method) is tested as a mean to deal with (i.e., decrease)
the uncertainty of the solar PV production. The proposed energy management framework is
compared with basic reference strategies and the results show the superior performance of the former
in almost all of the proposed services and forecasting scenarios. The fact of how optimizing for some
services during the scheduling (i.e., grid commitment) can be highly detrimental for the performance
of the non-targeted services, is an interesting finding of this work. The differences regarding the
optimal forecasting eccentricity (i.e., the forecasting quantile) required when optimizing for the
different services and seasons of the year is also considered an important conclusion of the study.
This fact highlights the usefulness of the quantile forecasting approach in an energy management
system, as a tool to deal with the intrinsic uncertainty of PV power production.
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1. Introduction

1.1. Energy Management of Microgrids

When talking about low-power distributed generation with intermittent renewable energy sources
(IRES), the concept of microgrids (MGs) comes along as a system that is intended to integrate this
type of energy sources into the utility electrical networks. MGs can have different configurations
and, according to the classification presented by Zia et al. [1], the system proposed in our work is a
DC, centralized, grid-connected, commercial MG.

The energy management (EM) of MGs is still an open research topic, and the variety of approaches
is extensive [1,2]. It relates to the strategy used to schedule the resources of the MG (also called
distributed energy resources or DERs), which normally respond to specific objectives. At the utility
scale, this action is called unit commitment (UC).

The techniques that are commonly used to perform EM vary from case to case, and as mentioned
in [1], the supervisory control architecture of an energy management system (EMS) can be divided
into two types: centralized and decentralized. At the core of a centralized EMS (such as the one hereby
proposed) we find the working objective(s), which is related to a given service that the system is
required to deliver and/or optimize. Artificial intelligence (AI) techniques have been also recently
proposed to perform energy management of microgrids or battery energy storage system (BESS)
optimization. Unsupervised learning through Reinforcement Learning (RL) is a technique, where an
agent (the microgrid controller) learns by trial-and-error based on a reward function. This is one of
the state-of-the-art techniques that is under test to perform energy management. While very versatile,
as it can adapt to different microgrid configurations and operating conditions, it faces some challenges
regarding the learning time and the safety of the system during the learning process [3–5]. Supervised
learning techniques using Artificial Neural Networks (ANNs) is one of the most commonly-used
AI techniques that has been applied to perform energy management [2,6,7]. These techniques are
also very versatile as they can also be applied to a variety of scenarios; however, the learning time
and computational requirements might be big, as well as the training data set that sometimes is not
easily available. Neural networks can be used as the “brain” of the agent in a reinforcement learning
approach, which gets rid of the disadvantages of reinforcement learning mentioned above.

A service provided by a MG could be defined as any action performed by the system that will
improve to some extent the well-being of the users. An example of a typical service provided by a MG
would be the cost of the energy, understood as the ability of the MG to offer energy at a competitive
cost with respect to the utility grid. In order to achieve the working objective, two main EMS branches
can be identified: Optimization-Based (OB-EMS) and Rule-Based (RB-EMS) [8]. The latter can assure
attaining the working objective but cannot guarantee an optimal performance, whereas the former
can achieve optimal or quasi-optimal performance for a given service. An OB-EMS normally requires
a forecast (at least of production and consumption), to issue an optimal action to be followed in the
future, which is also called scheduling. The optimization horizon can vary from seconds or minutes
(intra-hour) to hours (inter-hour) or days (day-ahead). The optimization objectives can vary a lot, but,
as pointed out by [9], some of the most common are: carbon emissions, capital and operational costs,
energy storage cost, and load shedding costs, among others.

1.2. Resources Scheduling and Forecasts

The problem of scheduling resources in a microgrid for a given time window in the future,
also called unit commitment, accounting of the uncertainty that is related to IRES and its impact in the
distribution network has been recognized [10] and efforts are being done in order to deal with it.

A scheduling strategy requires forecasts as an input, and different forecasting methods have been
used in the field of energy management for MGs. Some studies directly consider solar generation
predictions without considering weather forecasts, while others also receive the information from
forecast services [11,12], or compute it from local power measurements by applying time-series
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forecasting techniques, such as auto-regressive [13], persistence [14] or ANN [11]. In all of these
cases, the weather conditions are implicit in the information, but no meteorological variable is directly
considered. In other cases, the forecasts of PV power output are directly obtained from weather
forecasts, by applying models to transform the meteorological data into output power estimations.
These models can be based on real PV panels [15] or theoretical equations of PV generation [16].
Overall, they assume that PV production is fundamentally dependent on irradiance and temperature.
Some approaches compute solar irradiance from other parameters, such as the clear sky index [17],
sky cover [18], or sky clearness [19], rather than forecasting it directly.

The scheduling horizons of the forecasts vary from 72 h to 15 min., depending on the EMS strategy
used, however the 24 h horizon is the most common. The time resolution of those forecasts vary from
3 h to 15 min, with one hour being the most common resolution [20].

Regarding the uncertainty, normal distribution is the most frequent option for describing these
errors. Some adjustments thta are based on the expectation and the standard deviation are commonly
referenced, but they lack numerical values (e.g., [17]). Other studies assume that forecast errors
are well described by a uniform distribution. A thorough summary of the different forecasting
techniques used for energy management of MGs can be found in Table 1 of the review performed
by A. Aguera-Perez et al. [20]. As distributed generation becomes more widespread, local energy
markets, where the exchange of electricity occurs in a peer-to-peer scheme, are something that might
reshape the objectives of an energy management system in the near future [21,22]. New technologies,
such as blockchain, have been proposed as solutions to ensure security and trazability of the energy
exchange in this type of markets [23]. This also remarks the importance of local-scale forecasting as the
core a distributed energy-exchange scheme as well as for the resource-scheduling performed by an
optimization-based energy management system.

1.3. Services in Smart Buildings

In this work, we propose some basic services for our study-case smart-building (SB), based on
the added value that they provide to its users and other actors. We tackle the problem of proposing
some EMS strategies targeted to provide those services. The services proposed are: grid-commitment,
grid-peak-power, energy-cost, and carbon-footprint. The definition of these services is explained in
detail in Section 2.4.

In the domain of MGs, services, like grid-commitment or grid-peak-power (introduced in the
current work), are not common. This is mostly due to the scale and current penetration of MGs,
which is not significant respect to utility grids. However, if we imagine a penetration scenario of IRES,
which, for 2050, could achieve more than 60% according to some studies [24,25] (being distributed
generation a non-negligible percentage of it), the capacity to deliver those services could have an
important added value, in terms of operational, economic and environmental benefits [26,27]. This is
one of the driving motivations of the present work.

However, as the EM strategy usually targets a particular service, a MG can under-perform
regarding the non-targeted services, which is one of the main conclusions of this work.
Quantile forecasting proved to be an interesting solution not only to customize and optimize
performance when targeting a particular service during the EM, but also as a mean to deal with
the uncertainty of IRES by providing some degree of certainty regarding the bias of the forecasts.
This proved to be beneficial when targeting some services during the EM that are also dependant on
different seasonal conditions.

The main contributions of this work can be summarized, as follows:

1. Proposing a service (i.e., grid-commitment), intended to decrease (and serve as a measure of)
the degree of uncertainty posed by a microgrid using IRES to the utility grid, regarding its daily
power requirements.

2. Acknowledging that some services (e.g., grid-commitment) are more favored by eccentric
(i.e., pessimistic) forecasts rather than unbiased forecasts.
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3. The use of quantiles as eccentric (deterministic) forecasts, obtained from an analogs ensembles
method, with low computational burdens/time and good performance with respect to benchmark
probabilistic forecasting methods.

4. Proposing an energy management framework for microgrids, which allow the maximization
of the grid-commitment service by means of an underlying rule-based layer, preceded by
a day-ahead scheduling optimization-based layer, where another service (i.e., energy cost,
carbon footprint, or grid peak power) can be also favored. In this way, the interests of both,
microgrid users and distribution system operator, are taken into account during the energy
management process.

5. Acknowledging that also some external (seasonal) conditions change the forecasting requirements
when optimizing for a given service, which again highlights the usefulness of quantile forecasts
for customizing optimization/energy management strategies.

In Section 2, a description of the study-case microgrid, the data used and the definition of the
services proposed as performance indicators are presented. The Analogs Ensembles method (where the
quantile forecasts are obtained) is explained here, which constitutes one of the main contributions of
this work regarding the uncertainty challenge. The energy management system framework proposed
as well as the reference strategies used to benchmark the performance are also presented in this section.
In Section 3, the main results and analysis are presented and discussed, while, in Section 4, the main
conclusions of the work are pointed out.

2. Materials and Methods

This study is performed around a real study-case, the MG of the Drahi-Xnovation center,
a tertiary-oriented building located on the campus of the École Polytechnique (Palaiseau, France),
which is currently being deployed. All of the data that have been used in the simulations has been
compiled from/for this study-case. The results obtained are also meant to be taken into account for
the future implementation of an EMS in this study-case MG. This building is being equipped with PV
panels, battery energy storage and some control capabilities that will allow the implementation and
test of different EMS strategies, as depicted in Figure 1.

Figure 1. Schematic illustration of the Drahi-X study case microgrid.

2.1. The Analogs Ensembles Method

Numerical weather prediction (NWP) forecasts from MeteoFrance (ARPEGE) are used in this work
as the reference deterministic forecasting method. Forecasts for relative humidity (RH), air temperature
measured at 2 m above ground level (T2) and global solar horizontal irradiance (GHI) are used as the
base to generate probabilistic forecasts while using the Analogs Ensembles (AnEn) method [28,29].
The clear sky index (CSI) is also required for the AnEn, and it is computed as a ratio between the
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current GHI (forecasted or measured) and the clear-sky GHI value. Clear-sky GHI estimations are
computed while using the empirical model that was proposed by [30].

Figure 2 shows the workflow principle of the AnEn, and it is based on the availability of two
data-sets with historical data of ground measurements and forecasts. When a new forecast is available
for day D + 1, it is compared with the forecasts in the database and a certain number of past “similar”
forecasts are chosen. The similarity criteria to establish a similarity score between the current forecast
(day D + 1) and the forecasts in the database is obtained while using Equation (1).

‖Ft, At′‖ =
Nv

∑
i=1

Wi
σf i

√√√√ t+w

∑
j=t−w

(Fi,t+j − Ai,t′+j)2 (1)

where ‖Ft, At′‖ is the error between the forecast for time t and the analog forecast at time t’ in the
database (similarity score), Wi is the weight of the ith variable, Nv is the number of variables, σfi

is
the standard deviation of the time series of past forecasts of a given variable i, Fi,t+j is the forecast of
the ith variable at time t + j, Ai,t′+j is an analog forecast sample of the ith variable at time t’ + j and w
is the number of hours before and after the target hour that conform the time window, which has a
length of 2w + 1.

The corresponding ground measurements to the “similar” forecasts chosen are used in order to
build the ensembles. The AnEn works under the premise that past predictions that are very similar to
a given forecast (in terms of meteorological conditions), might present similar errors. This allows for
making the pertinent corrections to the current forecast (day D + 1), based on the past errors found in the
database. An advantage of this method is its short computation time (<30 s with a two-year database),
when compared to the several-hours required by commercial probabilistic forecasting methods, such as
the one produced by the European centre for medium range weather forecasts (ECMWF).

Figure 2. Diagram that sketches the working principle of the AnEn (taken from [28]).

From the above-mentioned ensembles, different quantiles are obtained with probability levels
that range from 10% to 90% (AnEnτ=0.1 to AnEnτ=0.9), which are used as deterministic forecasts.
The notation AnEnτ refers to a quantile with the probability level τ obtained from an ensemble
produced with the Analogs Ensembles method.

This forecasting approach is called quantile forecasting (QF), and it is used as a novel forecasting
method in the domain of MG scheduling. Even when each independent quantile forecast is considered
to be deterministic, the quantile forecasting approach is considered a probabilistic forecasting method,
as different quantiles (with different probability levels) can be obtained. The base for this forecasting
strategy is the ensembles of analogs (obtained with the above-mentioned AnEn method) from where
the quantiles are obtained.
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The idea of using this forecasting approach is to decrease the uncertainty of a deterministic
forecast by “forcing” the forecasting errors to happen in a known “direction”. The hypothesis is
that, under certain circumstances (i.e., a particular season and/or service), it could be more beneficial
to use over-estimative forecasts, while in other circumstances it might be more beneficial to use
under-estimative forecasts. This is a novel way to deal with the intrinsic uncertainty of the PV
production without the heavy computational burdens of commonly-used probabilistic optimization
methods, such as stochastic programming, which has been used to deal with uncertainty in an EMS
of a MG [11], but it is usually demanding in terms of computational resources and time. The QF
approach gives the EMS an interesting capability of adaptation to different conditions as well as
target services, in order to obtain the best performance possible in every situation, with very light
computational requirements.

All of the data have a time resolution of one hour. The aforementioned forecasts are retrieved for
the site of Ecole Polytechnique (Palaiseau, France), while ground measurements for the same site are
obtained from the SIRTA atmospheric observatory [31] for the years 2016 to 2018, with the same time
resolution. For this work, we considered the forecasts released every 24 h, at midnight, whose target
day is the same day D. The database is split in two periods: the data from the 8th of october 2015
to the 7th october 2017, is used as the historical database required by the AnEn to find the analogs;
and the period from the 8th of October 2017 to the 18th October 2018 is used as the test period over
which all of the performance indicators are computed.

The expected PV output power of the Drahi-X building is obtained while using the GHI
forecasts/measurements obtained for the study-case site. With these data, a factor is applied that
matches the expected peak-power of the PV-array with the standard solar irradiance conditions
(i.e., 1000 W/m2). This factor does not take into account temperature, shading or tilting effects.
Even when this is not a realistic assumption, it was decided to do such simplification as in this work,
one of the main objectives is to study the effects of the uncertainty of the solar resource over a MG.
Hence, for consistency, GHI is considered to be the only stochastic variable and the main source of
uncertainty of the PV power output. In this way, the effects of the solar resource uncertainty are
isolated, without interference from other sources of uncertainty, such as temperature effects, shading,
and tilting effects, or conversion efficiencies of the power converters, which are out of the scope of the
present work.

The prices of the electricity are assumed those of EDF (Electricité de France) for the Tempo
tariff [32]. The prices vary according to three different types of days: blue, white, and red. For each
type of day there are two different prices: peak-hour (HP), that goes from 06h00 to 22h00; and non-peak
hour (HC), that covers from 22h00 to 06h00. There is also a contracted power monthly fee that has to
be paid according to the peak power required from the grid. This contract is annual, which means
that once a given peak power has been contracted, the corresponding monthly fee will be the same
throughout the year.

The data of the CO2 content of the electricity from the utility grid are taken from the transmission
system operator in France, RTE (Réseau de Transport d’Électricité) [33]. They supply real-time and
historical data of the energy generation mix and CO2 footprint of the electricity being produced at every
moment of the year. The data has 30 min. time steps and were also averaged out to 1 h time resolution.

It is important to mention that, in this work (as implemented by authors, like Ferruzzi et al. [34]),
the forecasts of electric consumption, prices, and carbon footprint of the electricity from utility grid,
are always assumed perfect. This is done with the purpose of isolating the effects of the PV power
production, and being able to evaluate “independently” its impact upon the EMS strategies. This allows
for us to study in depth and draw conclusions regarding the effects of its uncertainty in the performance
of the SB services, by eliminating the possible interference from the uncertainty brought by other
stochastic variables. Even when this is not a realistic scenario, by understanding the effects of one
stochastic variable (i.e., PV power production), we could comprehend some general mechanisms with
which an EMS must deal with, and how it affects the performance of a MG or SB. This knowledge
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could be applied when integrating other stochastic variables into the game, such as the electrical
consumption or the electricity prices.

2.2. Benchmark Forecasting Methods

Persistence (PE) is used as a naive benchmark forecasting method. The forecast is obtained whlie
assuming that the hourly PV power profile for day D + 1 is the same as the one of the previous day D.

Perfect forecasts (PF) are also considered as benchmark forecasting method, and as its name
suggests, it consists on assuming that the forecast of a given variable is actually the real (measured)
value of that variable. This is used for PV power output, as the best possible (reference) forecast to
compare against the other forecasting methods.

The metrics utilized to measure the forecasting errors are the relative mean-bias error (rMBE),
relative mean-absolute error (rMAE), and the relative root-mean-square error (rRMSE), computed as
in Equations (2)–(4).

rMAE =

1
H ∑H

h=1

∥∥∥Fcasth −Meash
∥∥∥

1
H ∑H

h=1 Meash
(2)

rMBE =
1
H ∑H

h=1(Fcasth −Meash)
1
H ∑H

h=1 Meash
(3)

rRMSE =

√
1
H ∑H

h=1(Fcasth −Meash)2

1
H ∑H

h=1 Meash
(4)

In this study, a generator convention has been used; hence, for any DER, positive values of power
mean power being delivered by it, while negative values mean power being being consumed by
the DER.

2.3. Services and Performance Indicators

Four services have been proposed in order to evaluate the performance of the strategies proposed.
A service can be defined as the objective-oriented “actions” that a smart-building can perform
(autonomously or semi-autonomously), with the help of a central control system or EMS. The reduction
in the cost of the energy that is consumed by the users of the MG/SB (EC), as well as its carbon footprint
(CO2), are two of the services chosen, which are well known and commonly used as optimization
objectives for EMS strategies, as shown in Tables 3–5 of the comprehensive review performed by
ahmad et al. [9]. The other two services that we propose are not common for low-power MGs
(they are not even mentioned in the cited review), which are: the day-ahead power commitment
with the utility grid or grid-commitment (GC) and the reduction of the grid contracted power or
grid-peak-power (GPP).

2.3.1. Service 1: Reduction in Energy Costs (EC)

The first service is defined as the ability of the SB to provide electricity to its users at a
competitive cost with respect to the utility grid. It is always at the top of the list when talking
about optimization objectives for EMS in MGs. The associated indicator that allows for quantifying this
service (its performance indicator) would be the average cost of electricity. This indicator is computed,
as shown in Equation (5), its units are AC /kWh and will be hereafter represented by the symbol EC.

EC =
1

ET
load
·

H

∑
h=1

(
Eh

grid · C
h
grid + Eh

batt · C
h
batt + Eh

pv · Ch
pv

)
(5)

where ET
load represents the total energy consumed by the load during the test period, Eh

grid is the energy

bought from the utility grid, Eh
batt is the energy that is delivered by the battery (battery discharging),
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Eh
pv stands for the PV output energy, while Ch

X represents the cost of the energy of the DER X, at the
hour h. The cost of the energy coming from the grid Cgrid is considered to be known beforehand for
every hour of the test period.

The calculations of the nominal and adjusted costs (accounting for the battery cycling-life
reduction and PV curtailment) of the energy coming from the battery and PV panels are presented in
Appendix A.1.

2.3.2. Service 2: Reduction in Electricity Carbon-Footprint (CO2)

The CO2 content of the electricity being consumed by the users of the SB is also a common
optimization objective searched when performing EM in MGs. Its added value can be understood as
the ability of the SB to provide electricity with less CO2 content than the electricity coming from the
utility grid. The seemingly obvious indicator, which is used to quantify this service, is the equivalent
amount of grams of CO2 per unit of energy consumed in the MG. This performance indicator can
be computed in a similar way, as was presented at Equation (5) for the EC indicator. Its units are
gCO2e/kWh and will be designated hereafter as CO2. The equivalent mathematical expression to
compute its value is presented in Equation (6).

CO2 =
1

ET
load
·

H

∑
h=1

(
Eh

grid ·CO2
h
grid + Eh

batt ·CO2
h
batt + Eh

pv ·CO2
h
pv

)
(6)

where ET
load represents the total energy consumed by the load during the test period, Eh

grid is the

energy bought from the utility grid, Eh
batt is the energy delivered by the battery (battery discharging),

while CO2
h
X represents the CO2 content, in gCO2e/kWh, of the energy coming from the corresponding

DER X. It can be either the nominal value (see Equation (A7) for battery and Equation (A8) for PV),
or the corrected value (see Equation (A9) for battery and Equation (A10) for PV). The carbon footprint
of the utility-grid energy (CO2

h
grid) is considered known beforehand [33].

The calculations of the nominal and adjusted values of CO2 (accounting for the battery cycling-life
reduction and PV curtailment) of the energy coming from the battery and PV panels are presented in
Appendix A.2.

2.3.3. Service 3: Day-Ahead Power-Commitment with the Utility Grid (GC)

This service can be thought as the ability of the SB to issue -beforehand-, an hourly-averaged
power profile for the upcoming day. The added value of this service lies on the capacity of the MG +
EMS of dealing internally with the uncertainty, which is associated with the renewable production and
consumption, by using the energy storage and the curtailment of excess PV energy. The associated
performance indicator used to quantify this grid-commitment (GC) service is computed as the absolute
difference between the hourly scheduled and real grid energy profiles. This indicator is normalized
with respect to the total-absolute amount of energy scheduled to be exchanged with the grid during the
test period. GC is expressed as a percentage, where 100% means a perfect match between scheduled and
forecasted energy and 0% represents a deviation equivalent to the scheduled energy to be exchanged
with the grid during the test period. This can be more clearly observed in Equation (7).

GC = 100 ·

1− 1

∑H
h=1

∥∥∥∆t · Pschh
grid

∥∥∥
H

∑
h=1

∆t ·
∥∥∥Prealh

grid − Pschh
grid

∥∥∥
 (7)

where Prealh
grid and Prealh

grid are the average-hourly real and scheduled power values exchanged with the
grid. Both sums are performed over the total number of hours H of the test period.
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2.3.4. Service 4: Reduction of Grid Contracted-Power (GPP)

If the SB-MG surpasses a certain power threshold Ppeak
grid , the utility grid must be ready to deliver

that power, even if it is only required few hours of the year. This forces the Transmission System
Operator to have expensive fast-responding generation units idling, that will be required a very small
percentage of time. Having these idling plants ready to respond to high power peaks, can increase
significantly the cost of the electricity. Hence, the service hereby proposed is meant to decrease this
peak power requirements from the MG, an its general added value, if thought in a high penetration
scenario, is the reduction of the required installed capacity in the utility grid, which, in turn, implies
a reduction in the cost of the electricity. The performance indicator chosen to quantify this service
corresponds to required contracted power according to the EDF-Tempo tariff (see Figure 3 [32]),
which allow for contract ingeither 9 kW, 12 kW, 15 kW, 18 kW, 30 kW, or 36 kW. This is directly
conditioned by the maximum (peak) power in which a given EMS strategy incurs during the test
period, hence its designation as the grid-peak-power (GPP). The lower the GPP, the lower the required
contracted power; hence, the lower the annual fee to be paid by the SB users. This is translated in a
decrease on the final cost of the electricity consumed by the users of the MG. Countries or electricity
markets where the contracted power is charged while using a similar fee schedule as the one that is
presented in Figure 3, could benefit from this service.

Figure 3. Electricité de France (EDF) tempo tariff fee schedule according to contracted power.

2.4. Two-Step Proposed EMS

Performing energy management consists, in simple words, on actively deciding what resources
of a MG are dispatched at every moment and with what level of power, in order to assure the proper
functioning of the MG (the balance between production and consumption) and, in some cases, to favor
a secondary objective(s). In order to do that, a system that makes decisions is required, as well as a
hardware that allow the execution of those instructions. This process has to be performed at every
moment (i.e., in real-time), otherwise the system risks suffering a blackout. However, sometimes it
might be required to plan this real-time resources-dispatching in advance, and for a given window of
time (e.g., in day-ahead energy markets). There also services that can only be offered if time-ahead
scheduling is performed, as is the case of the grid-commitment service that is explained in Section 2.3.3.
For the above reason, we decided to propose, in this work, a two-stage EMS strategy, where we
separate the day-ahead scheduling from the real-time power balancing. This allows to favor two
different objectives (services), one favored by the scheduling module (SCH) and the other favored by
the real-time balancing module (BAL), as depicted in Figure 4.
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Figure 4. Two-stage energy management system (EMS) proposal.

In more detail, in a first stage of the EMS, an optimal scheduling is performed, where three
different target objectives (TOs) are possible: energy cost, CO2 emissions or grid peak-power.
During the scheduling stage, only one TO is targeted (i.e., set as optimization objective), depending on
the strategy chosen. By definition, all of the other services that are not being targeted are called
Non-Target Objectives (NTOs). During this first scheduling stage, the grid-commitment service
cannot be targeted. Table 1 presents a summary of the scheduling strategies along with their
objective functions.

Table 1. Proposed EMS strategies.

EMS Strategy Type Algorithm Target Objective Objective
Function/Rules Possible Forecasts

Scheduling
(SCH)

ECmin
Optimization

based Genetic

Minimize

See Equation (A11)

PF (Perfect Forecast)

Energy Cost
PE (Persistence)

NWP (Numerical

CO2min
Optimization

based Genetic

Minimize

See Equation (A12)

Weather Prediction)

CO2 content AnEnτ=0.1−AnEnτ=0.9

GPPmin
Optimization

based

Quadratic Minimize

See Equation (A13)

(Analogs-Ensembles

Programming Grid Peak Power
quantile forecasts)

Balancing
(BAL) GCmax Rule based Rules

Maximize Grid
commitment See Figure 5 No forecasts used

In the second stage of the EMS, once the scheduling module has generated a given grid and battery
profiles (i.e., scheduled profiles) -while favoring one of the possible target objectives-, it broadcasts
the scheduled grid profile to a second module called: the balancing module (BAL). This module only
targets one objective: the grid-commitment. This module runs in real-time and, therefore, is in charge
of compensating the forecasting errors of the PV production, by following the rules described in Table 1.
These rules are explicitly meant to favor the grid-commitment. This means that the BAL module will
modify the scheduled battery profile or perform PV curtailment, in order to preserve the scheduled
grid profile untouched, as long as physical constraints allow it (i.e., available capacity on the battery).

This proposal is different to common multi-objective optimization EMS approaches, where the
optimal compromise between the different objectives is simultaneously searched during the
optimization execution [7,35]. In contrast, our proposal targets a different objective (i.e., service) in each
one of the two stages, (in a “cascade” approach), and using different methods (optimization-based,
rule-based). That makes the optimization problem easier to formulate and solve, as compared
to a multi-objective one. But the main reason why this approach was chosen, is because the
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grid-commitment, by its nature, cannot be favored in a first EMS stage, as it requires a previously
scheduled profile to be followed.

2.4.1. EMS Scheduling Module

The scheduling module (SCH) of the EMS performs a day-ahead (D-1) scheduling of the grid
average-hourly power requirements for the next day (D). The result of the scheduling is a 24 h grid
power profile. Three different services are proposed as optimization objectives in this stage: the cost
of the electricity, the CO2 content and the grid peak-power. For the first two services, the scheduling
module make use of a genetic algorithm (GA) to perform the optimization, whereas for the grid
peak-power a quadratic programming (QP) approach is used. Each method presents characteristics
that make them more suitable for different optimization objectives. The computation time of the
GA (10–15 min) is a disadvantage when compared to the fast convergence of the QP (less than
one minute). Besides, the set up time of the hyper-parameters of the GA is another disadvantage,
as it requires an iterative process until achieving a proper performance. However, GA allows for
the implementation of non-linear problems, which, in this case, was the reason for its utilization
(i.e., the cost of battery and grid energy depends on the sense of flow).

The formulation of the optimization problems for the different -scheduling- target objectives (TOs)
is presented in Appendix B.

2.4.2. EMS Balancing Module

Because the scheduling is performed using day-ahead PV output power forecasts, it is expected
to have errors on the forecasted PV power output. The battery is an element that allows to compensate
those forecasting errors to some extent, but due to its limited capacity, it could eventually happen
that the scheduled grid profiles cannot be followed as expected. In this situation, modifications to the
power profiles must be done in order to assure the balance between production and consumption.
The balancing module (BAL) is based on rules that are meant to favor the grid commitment, as long as
the physical constraints allow it. This means that, any unexpected PV surplus will be stored in the
battery, or any lack of PV power required to supply the load, will be supplied by the battery, as long as
possible. The BAL module, being a rule-based method, requires very few time (<10 s) to find a solution.
A flow diagram of the working principle of the BAL module explained above is presented in Figure 5.

Figure 5. Working principle of the balancing strategy GCmax. The output of the scheduling module
(Pscheduled

grid ), the consumption (Pload) and the real PV output (Pmppt
pv ) are the inputs of this module.
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As it is noted in the rules that are described above, this module favors the GC service,
always assuring the proper balance between production and consumption. In this way, after applying
the two-staged EMS, we will have favored two different objectives: GC during the BAL stage and
a second objective (i.e., EC, CO2 or GPP) assured during the SCH stage. It must be reminded that,
during the scheduling stage (SCH), PV curtailment is not possible while it is possible during the
balancing stage (BAL).

Table 1 presents a summary of the EMS strategies proposed in this work, including the
nomenclature, services favored, working/optimization objectives, as well as the possible forecasts to
be used.

2.4.3. Reference Strategies

The first EMS strategy that is envisaged to be implemented in the Drahi-X smart-building is a
basic rule-based balancing-strategy, designated as PVBmax. This strategy privileges the use of all the
available PV potential (self-consumption) and the battery. Similar variations of this strategy are also
commonly used in low-power commercial PV charge controllers, which adds to the interest of using it
as a reference strategy. However, the main interest of using this strategy as a benchmark is to observe
whether the proposed EMS strategies could bring an improvement in performance regarding the
services being evaluated. This strategy, even when conceived as a balancing strategy, can also perform
scheduling if a forecast of the PV production is given. Therefore, we use this as a reference strategy for
both balancing only (PVBmax) and scheduling (PVBmax − NWP). Figure 6 presents a flow diagram
representing the working principle of the strategy.

Figure 6. Flow diagram of the reference PVBmax strategy. It works as a balancing strategy if
real PV-production (Pmppt

pv ) is given, while it performs scheduling if the PV forecasts are provided

instead (P f orecast
pv ).

3. Results

3.1. Performance of the Proposed Scheduling Strategies

Scheduling can be defined as the planning of the use of resources in a MG, for a given window of
time in the future. Therefore, derived from this statement, the first advantage of performing scheduling
is the ability to offer some services (such as the grid-commitment that is introduced in this work),
which, due to its intrinsic nature, can only be offered if scheduling is performed.

Table 2 summarizes the results in performance of three reference strategies and the three proposed
EMS scheduling strategies, regarding the four services under study, denoted by their performance
indicators: EC, CO2, GPP, and GC. The values in bold represent the best performance that was
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obtained for each indicator. In this table, a quantile forecast expressed, like: AnEnτ=x1:x2 means that
any probability level (i.e., quantile) between x1 and x2 produces the same-optimal-performance with
the strategy being used.

This cross-comparison against reference strategies is important, as some studies in the field only
focus on developing new functionalities or proposing new EMS strategies, without benchmarking
against basic reference cases. This is valuable when justifying the necessity or showing the added
value of having a MG and/or implementing a novel EMS strategy. The first reference case is when
we assume that there is no MG deployed (NO MG in Table 2); therefore, all of the consumption
is supplied by the utility grid. The second and third strategies used as reference are the PVBmax

balancing strategy and the PVBmax scheduling strategy, that are presented in detail in Section 2.4.2.
A summary of the proposed strategies (scheduling and balancing), including the type of algorithm
used, the target objective, as well as the reference to the objective function equations (when applicable),
is presented in Table 1.

Table 2. Performance of the optimization-based scheduling strategies with respect to the reference
cases. The best-suited forecasting method for each strategy is used.

Proposed Strategy Reference Strategy Performance

NO MG PVBmax PVBmax– Indicator

ECmin-AnEnτ=0.5 −14.5% −10.3% −8.8% (AnEnτ=0.1:0.2) EC (AC /kWh)
CO2min-AnEnτ=0.3 +3.3% −6.0% −1.6% (AnEnτ=0.1) CO2 (gCO2/kWh)
GPPmin-AnEnτ=0.4 −36.5% −9.0% −36.5% (AnEnτ=0.1:0.9) GPP (AC )

In Table 2, we observe that, with the exception of the CO2min strategy, all of the proposed
scheduling strategies outperform all the reference strategies in the services they target. The exception
with the CO2 content is comprehensible, as the embedded CO2 emissions (due to the manufacturing
process) of the battery and PV panels are high, when compared with the carbon footprint of the energy
coming from the French national grid.

This result shows the importance of developing an EMS strategy that targets the specific service
that we want to optimize, as it will most likely obtain a better performance than a strategmey that is
not ant to optimize the same service.

In this particular case, the scheduling method proposed proves to bring an added value to the MG
in terms of performance, with respect to the strategy that is envisaged to be deployed in the Drahi-X
building, as long as the proper forecasting method is chosen. This conclusion brings out a question:
what does it mean “a proper forecasting method”? What characteristics define it? The answer to this
question is addressed in the following section.

3.2. Optimistic and Pessimistic Forecasts: The Versatility of Quantile Forecasting

At the heart of a scheduling strategy, there is always a PV production forecast. An EMS that
performs scheduling of distributed energy resources, for a given window of time in the future, requires
forecasts as inputs. But forecasts are never 100% accurate, then, their intrinsic uncertainty becomes
an important subject to be studied as presumably, this will have an effect on the final performance
obtained from a given scheduling strategy.

Recalling the statistical definition of quantile, what the deterministic quantile forecasts say is: if a
given quantile τ with probability level x is used as a prediction (i.e., x f cast = τx), then there will be
x% of probability that the bias (i.e., the forecasting error) is positive, being the bias computed as the
difference between the forecast value and observation (i.e., B = x f cast − xobs). This is an interesting
characteristic of the quantile forecasting method, as it allows for the decomposition of the bias or
forecasting error E f cast in two components, namely: the -absolute- magnitude and a the sense or
direction. Quantile forecasting allows us to choose (to some extent) between the absolute magnitude
and the sense or direction of the forecasting error, which can be beneficial in an application where
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having a bias in a given direction is more beneficial than having it in the other direction (or not having
it at all).

The results are obtained for the entire test period and they are summarized in Table 3. In this table,
the GC indicator is also included, as grid-commitment is a common service to all of the scheduling
strategies (ECmin, CO2min and GPPmin), assured by the balancing module (BAL). Here, we show the
results of using a very pessimistic forecast (AnEnτ=0.1; rMBE =−0.354, rMAE = 0.384), a very optimistic
forecast (AnEnτ=0.9; rMBE = 0.316, rMAE = 0.329), a quasi-unbiased forecast (PE; rMBE = −0.001,
rMAE = 0.372), a low-bias high-accuracy forecast (NWP; rMBE = −0.002, rMAE = 0.219), and a perfect
forecast (PF; rMBE = rMAE = 0).

Table 3. Impact in performance of different types of forecasts.

Scheduling Performance AnEnτ=0.1 AnEnτ=0.9 PE NWP PF

Strategy Indicator (Pesimistic
Forecast) (Optimistic Forecast) (Unbiased Forecast 1) (Reference

Forecast)
(Most Accurate

Forecast)

ECmin
EC (AC /kWh) 0.297 0.217 0.176 0.169 0.154

GC (%) 99.9 92.1 96.2 99.1 100

CO2min
CO2 (gCO2/kWh) 73 89 65 64 63

GC (%) 99.9 88.1 94.3 98.5 100

GPPmin
GPP (kW) 15 18 15 18 15

GC (%) 99.7 90.8 95.3 99.1 100
1 Aside from the perfect forecast (PF).

The best results (bold values) for all indicators are obtained with the perfect forecast (PF), with a
100% of GC for the three scheduling strategies as well as the smallest values for EC, CO2, and GPP,
as stated in Table 3. This is consequent, as the optimal strategies found during scheduling are being
strictly followed when a perfect forecast is used (the most accurate forecast possible), hence the optimal
performance is achieved. However, this scenario is unrealistic, as having a perfect PV-power forecast
is most likely unachievable.

Regarding the ECmin strategy, we observe some correlation with the bias of the forecasting error,
as EC presents its highest (worst) value with the most pessimistic forecast (AnEnτ=0.1), followed by
the most optimistic forecast (AnEnτ=0.9) and the persistence forecast (PE), which has low-bias and
high-absolute-error. This suggests that this service requires low-bias and low-absolute-error forecasts
to yield the best performance, as is the case when using the NWP and PF. The difference between
the best and the worst strategies (ECmin-PF and ECmin-AnEnτ=0.1 respectively) are as high as 92.8%,
which represent an increase in the price of the electricity of 0.14AC /kWh. However, it must be remarked
that the smallest cost obtained (using ECmin-PF) is approximately 0.154 AC /kWh, which is competitive
with the tempo tariff only in the peak hours of the white and red days, where the electricity price is
higher than this value. This remarks the importance of optimally deciding when to store/use energy
from the battery, and when is better to buy the energy directly from the utility grid, in order to optimize
this service.

Regarding the CO2 indicator, the highest value is obtained with the most optimistic forecast
(AnEnτ=0.9) forecast, which is 41.2% higher than the reference PF case, followed by the AnEnτ=0.1

approach (+15.9%), the persistence approach (+3.2%) closing with the NWP forecasting method that
only presents an increase of +1.6% with respect to the reference PF approach. There is a clear difference
here between the results of the quantile forecasts (AnEnτ=0.1, AnEnτ=0.9) and the other two forecasting
methods (PE, NWP), which suggests that this service is favored by low-bias forecasts.

The carbon footprint when using the CO2min-PF strategy is 63 gCO2/kWh, which is higher than
the mean and mode of the carbon footprint that is associated to the electricity coming from the utility
grid. This fact helps to explain the results that were obtained in Table 2, that show that the average
CO2 content is higher when a MG is deployed, due to the high embedded CO2 emissions of the battery
and the solar panels.
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Regarding the GPPmin strategy, the behaviour is a little bit different. In this case, the smallest
contracted power (i.e., the best performance) is obtained with the most pessimistic (AnEnτ=0.1),
most unbiased (PE), and most accurate (PF) forecasts, at the same time. From this fact, it could be
concluded that optimistic forecasts such as AnEnτ=0.9, are not favorable for the grid-peak-power
service. The reason behind is the fact that, under-estimative (or unbiased) forecasts, are more likely to
have errors that result in battery getting fully charged, hence promoting the PV curtailment. When this
happens, the scheduled—smooth—grid profile produced by the GPPmin strategy remains less modified.
A similar situation happens when the PF is used, as it does not produce changes to the scheduled grid
profile. This is not the case when using the NWP forecasts, as it has a more over-estimative tendency
when compared to PE or AnEnτ=0.1. For this indicator, the use of the AnEnτ=0.9 and NWP forecasts,
leads to an increase of 9.8% in the annual fee.

A similar phenomena occur with the grid-commitment for the three scheduling strategies, where
the AnEnτ=0.1 forecast, being the most pessimistic, presents the best results. This aligns with the
fact that under-estimative (i.e., pessimistic) PV power forecasts, favor the grid-commitment service.
The latter throws an interesting conclusion regarding the effect of forecasts accuracy: highly optimistic
or pessimistic forecasts (such as AnEnτ=0.9 or AnEnτ=0.1), do affect negatively the performance in some
services like EC or CO2 content, that seem to be rather favored by low-bias forecasts (e.g., PE or NWP).
On the other hand, a service, like grid-commitment, is favored by pessimistic forecasts, while the grid
contracted power, while not presenting a clearly defined behaviour, is less affected when pessimistic
forecasts are used.

With the previous results in mind, an EMS is able to favor some services by using different
forecasting approaches with errors ranging from under-estimative to over-estimative. This suggests
that it does not exist an unique proper forecasting method as such, as it is dependent on the service
being targeted. Therefore, if the most suitable forecasts are used for each service, how well can the
EMS perform? To what extent can we improve performance in the services proposed? We try to find
the answer to this question in the next section

The results shown so far suggest that there are services that benefit from over or under estimative
forecasts. Therefore, at the view of this results and acknowledging the fact that a forecasting error will
be always present, a proper forecasting method could be defined as such that, due to its persistent
under or over estimative nature, allows for the EMS to produce optimal performance in a particular
service by providing certainty on the sign of the imbalance between production and consumption.

In the following section, we search for the optimal quantile forecast that must be used in order to
optimize the different services.

3.3. Optimizing the Services: Finding the Best-Suited Quantile Forecasts

It must be recalled that an optimization-based EMS, such as the ones that are proposed in this
work, require deterministic forecasts of PV production. Therefore, quantile forecasts are a way to
provide the EMS with a deterministic forecast that has intrinsic probabilistic information embedded.
More specifically, the most valuable information that we can extract from a quantile forecast is
the probability of the error being either over or under estimative. By knowing this information in
advance, we can deliberately use the forecasts that are best suited for the service being targeted during
the scheduling.

The results that are presented in Figure 7 include the PV costs, reduction in the expected
Through-Output-Energy (TOE) of the PV array due to curtailment, as well as the correction in battery
cycling life. The TOE is the total energy that is expected to be delivered by an element (i.e., PV panels,
battery) throughout its working lifetime in an specific place. In other words, the electricity cost and
CO2 content for the battery and PV energy is affected by the profile of use, following Equations (A3),
(A6), (A9), and (A10).
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Figure 7. Impact of probabilistic forecasts in: (a) the energy cost (EC) using the ECmin scheduling
strategy; (b) the carbon footprint (CO2) using the CO2min scheduling strategy; (c) the grid peak-power
(GPP) using the GPPmin strategy and (d) the grid-commitment (GC) and self-consumption rate (SC)
using the CO2min scheduling strategy. The results include correction for projected battery cycling life
reduction (relative to nominal) and PV curtailment.

The results that are shown in Figure 7a are obtained with the ECmin scheduling strategy, while
the ones of Figure 7b are obtained with the CO2min scheduling strategy. In both plots, the battery life is
presented as a gray curve that represents the battery cycling life as a percentage of the nominal cycling
life (i.e., the maximum possible cycling life).

In both cases, the reduction in battery life plays a major role in the behaviour of both EC and
CO2 indicators, as they find its minimum value, where the battery life is maximum. In both cases,
the quantile forecasts permit obtaining a better performance (however marginal) than NWP, being
EC and CO2 2.4% and 0.7% less than the values that were obtained using NWP, respectively. It is
important to remark than the best performance for the EC is obtained while using the AnEnτ=0.5

forecast, while the lowest carbon footprint is found using the AnEnτ=0.3 quantile forecast. This is
important because it remarks the fact that the most accurate forecast (i.e., the one presenting the
smallest rMAE or rRMSE) does not always yield the best performance in every service.

Regarding the minimization of the contracted power that was observed in Figure 7c, quantiles
forecasts below AnEnτ=0.4 allow for a reduction of 16.6% with respect to the NWP forecasts.
Above AnEnτ=0.5, the performance is the same for both quantile forecasts and NWP, which allow a
contracted power of 18 kW, according to the tempo tariff. This fact can be explained as for higher
quantiles there is over-estimation of the PV production, which would lead to a situation where the
system will empty the battery and make use of the grid in order to compensate for the over-estimations
of PV production.

If we look at the grid-commitment in Figure 7d (GC-orange curve), it presents a pseudo-parabolic
decrease with the increase of the quantile. In contrast, we observe that the self-consumption (SC-gray
curve) increases, also following a pseudo-parabolic pattern. This can be simply explained, as follows:
over-estimative forecasts (i.e., high quantiles) provoke errors that have to be counteracted by the grid,
as it foresees more PV production than the actual. Therefore, all of the PV power available is used
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(SC = 100%), but the grid deviates from its scheduled profile in order to compensate the errors (which
implies lower GC). On the other hand, for under-estimative forecasts (i.e., low quantile forecasts),
there will be excess of PV power that is counteracted by means of PV power curtailment (i.e., lower
SC), when the battery gets full. In the latter case, the MG is able to closely follow the scheduled grid
power profile, yielding the highest values of GC. The highest performance (GC = 100%) is obtained
with the AnEnτ=0.1 quantile forecast (that is, at the same time, the least accurate), and it outperforms
NWP by 1.5%.

In this section, we realized the advantage of the quantile forecasts, which give us the flexibility
to “choose”, to some extent, the desired direction of the bias (or forecasting error), in order to
favor a given service. Using these results, we managed to improve the performance of the services
(independently) to a certain extent, and we found the best combinations of scheduling-strategy +
forecasting-method for each service (graphically seen in Figure 7). However, given that the best
combination of scheduling-strategy + forecasting-method is different for each service, when we chose
to optimize one service, what is the impact over the other services? Can we find a strategy that
produces a good performance for all services? This question is tackled in the following section.

3.4. Impact in Performance of Targeting One Service over the Non-Target Services

This section explores how performing optimal scheduling targeting a particular service, affect the
performance of the non-targeted services. If so, it would be of interest to know in which way and to
what extend those other services are affected. In order to answer this question, the best combination
of scheduling strategy+forecast, for each one of the services, is run for the test period. As usual,
the output of the scheduling module passes through the balancing module before outputing the final
power profiles. In this way, the performance of each scheduling strategy regarding its target and
not-target services can be cross-compared, in order to see the impact among the different strategies.

All of these results are summarized in Table 4, where the numbers in bold represent the best
values that were obtained for each service, and the positive/negative bias represents a relative
increase/decrease of the corresponding performance indicator with respect to the best performance
obtained for that service. In this table, the percentage with respect to the best result of the GPP
indicator represents the percentage-difference in terms of the annual fee that must be paid, depending
on the contracted power required, as it was considered to be more meaningful for the purposes of the
comparison of this indicator.

There are two main results to take away from this table, with the first one being the fact that
the best performance in each service, is obtained when using the scheduling-strategy-plus-forecast
that targets that service. This validates the usefulness of the proposed scheduling strategies, as they
allow for producing improvements in performance in every service studied. The second interesting
fact, and related to the previous one, is that a scheduling strategy always under-performs for those
services it does not target. For instance, in the case of EC, the best performance (0.165 AC /kWh) is
obtained with the ECmin-AnEnτ=0.5 scheduling strategy. Its performance in the other services is always
sub-optimal. Regarding CO2, the best performance is obtained with the CO2min-AnEnτ=0.3 strategy
(63 gCO2/kWh), and the GPPmin-AnEnτ=0.4 yields the best performance in GPP (15 kW). Regarding
the grid-commitment, it is not favored by any scheduling module, but by the balancing module, that is
present for all of the scheduling strategies. However, based on the results obtained for the test period,
it was found that the ECmin-AnEnτ=0.1 combination, produced the best annual performance for this
service, among the different strategies.

Another important fact that comes back again in this result is that, in order to obtain the best
performance in each service, different (quantile) forecasts must be used (that are not always the ones
presenting the smallest absolute errors rMAE, rRMSE). That highlights the importance of the versatility
that is provided by use of the quantile forecasts obtained with the AnEn method, which outperform
the results obtained with the reference NWP forecasts. Now, it is reasonable to wonder if it is possible
to find a strategy that produces a good compromise, in terms of performance, among all services. It is
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true that, sometimes, the price to pay in order to achieve the best performance in one-target-service
is big (regarding the remaining services), and the superiority in the target service can be marginal,
with respect to the other strategies. For instance, if we take the ECmin-AnEnτ=0.1 strategy, it yields the
best performance for the grid-commitment service, with a value of 99.9%. However, the advantage
in the performance of this indicator with respect to the other strategies is not huge, as the worst
performer in this indicator is the ECmin-AnEnτ=0.5 strategy, which under-performs by only 1.2%. At the
same time, the “price” in terms of performance of the not-targeted services that we have to pay if we
want to obtain the best GC performance, is very big (with values up to +66.5% in carbon footprint,
+80% regarding EC or −57.4% in GPP). At the view of the above, it might not be worth it to use the
ECmin-AnEnτ=0.1 strategy, and rather it would be more beneficial to choose another one that produces
a better compromise among all of the services. If we observe the strategy that presents the smallest
under-performance values of all, is the GPPmin-AnEnτ=0.4. Accordingly, we could say that this strategy
presents the best compromise for all the services, followed by the ECmin-AnEnτ=0.5 strategy.

Table 4. Impact of targeting one service during the scheduling over the non-targeted services. Quantile
forecasts used.

EMS ECmin-AnEnτ=0.5 CO2min-AnEnτ=0.3 GPPmin-AnEnτ=0.4 ECmin-AnEnτ=0.1

Intended to:
Minimize EC Minimize CO2 Minimize GPP Minimize EC

favor GC favor GC favor GC favor GC

Performance indicator
% respect % respect % respect % respect

to the best: to the best: to the best: to the best:

EC (AC /kWh) 0.165 0.0 0.173 +4.8 0.177 +7.3 0.297 +80.0
CO2(gCO2/kWh) 65 +3.3 63 0.0 64 +1.9 105 +66.5

GPP (kW) 30 +57.4 30 +57.4 15 0.0 30 +57.4
GC(%) 98.7 −1.2 99.4 −0.5 99.3 −0.6 99.9 0.0

From this section, we conclude that targeting one service (with its best scheduling-strategy +
forecasting-method) affects negatively the performance on the other services (i.e., the best performance
of each service is only achieved when the best combination of scheduling-strategy + forecasting-method
for that particular service is used). However, a good compromise can be found with some
combinations that yield satisfactory performance for all services. At the view of the above we wonder:
can these results be affected by different seasonal conditions? How can these best combinations of
“scheduling-strategy + forecasting-method” be adapted for each season? Could we further improve
the performance by applying seasonal EMS strategies rather than annual strategies? The answers to
these queries are tackled in the following section.

3.5. Seasonal Performance Optimization and Analyses

Because every building is exposed to different conditions that have a seasonal behaviour
(i.e., different degrees of accuracy of the PV forecasts, different PV production and consumption
patterns, different prices of electricity and CO2 content), the last question that arises regarding this
analysis is: how much these seasonal effects can affect either positively or negatively the performance
of a SB?

In order to answer this question, we take the best EMS strategy (i.e., best combination of
scheduling strategy and quantile forecast) based on their performance for each service and for each
season of the year. Table 5 presents the summary of these strategies. In this table, when a quantile
forecast has two quantiles (e.g., AnEnτ=10:90), it means that any quantile from AnEnτ=0.1 to AnEnτ=0.9

yields the same (optimal) results for that strategy. It is already very interesting to note how, for a given
scheduling strategy, the forecasts that produce the best results can be so different between seasons.
For instance, if we use the CO2min scheduling strategy, we require the AnEnτ=0.1 forecast in autumn
to obtain the best results, whereas, in summer or spring, is the AnEnτ=0.4 forecast the one that yields
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the best performance. In contrast, when using the GPPmin strategy, any quantile forecast will produce
the optimal performance in autumn, while is the AnEnτ=0.2 only in winter, which produces the best
results. The versatility of using quantile forecasts for energy management is again highlighted here,
as it permits customizing an EMS according to a particular service and season of the year, in order
to obtain optimal performance. The strategies described in Table 5 are run for each season, and the
results are summarized in Table 6. The values in parenthesis represent the percentage difference with
respect to case when the same scheduling strategies are run while using the-reference-NWP forecasts.

We observe in these results that most of the scheduling strategies that use quantile forecasts
achieved a better performance than the same scheduling strategies using NWP forecasts. The exception
is the GPP during spring, summer and autumn, where there is no improvement, and the carbon
footprint in summer that presented a marginal increase when using quantile forecasts. Even when
some of the improvements are marginal, there are some others that are significant, such as the carbon
footprint in autumn, which decreased 24.1% or the GPP in winter that decreased 16.7% when using
quantile forecasts instead of NWP. This supports the added value of using quantile forecasts in energy
management to obtain better performance by customizing the EMS strategy to different operating
conditions and requirements.

Regarding the seasonality differences, we see clearly that, with the exception of grid-commitment
(that achieved a 100% in all seasons), for the rest of services (i.e., EC, CO2 and GPP), the performance is
always better in summer and spring and the worst during winter and autumn. It must be recalled that
several factors play a role in the differences in performance for the different services. Common to all of
them, there is the annual variations in the consumption patterns. There is also the annual variability in
PV output power (i.e., PV power availability), where the intensity in the PV power available as well as
the longer duration of the night during winter months, is a factor that clearly impacts the performance
of a system powered by photovoltaic panels.

As mentioned previously, the accuracy of the forecasts also changes throughout the year.
Besides the above mentioned aspects (common to all scheduling strategies), ECmin and CO2min are
affected by the variations of the prices and CO2 content of the electricity coming from the grid. The sum
of the effects of all these aspects conditions the response of the different scheduling strategies that try
to find a way to achieve their goals under these constraints.

Table 5. Best combinations of scheduling strategy and forecasting method for the different seasons
and services.

Performance Indicator Best Winter EMS Best Spring EMS Best Summer EMS Best Autumn EMS

EC (AC /kWh) ECmin-AnEnτ=0.6 ECmin-AnEnτ=0.5 ECmin-AnEnτ=40:50 ECmin-AnEnτ=50:60
CO2 (gCO2/kWh) CO2min-AnEnτ=0.3 CO2min-AnEnτ=0.4 CO2min-AnEnτ=0.4 CO2min-AnEnτ=0.1
GPP (kW) GPPmin-AnEnτ=0.2 GPPmin-AnEnτ=0.2:0.3 GPPmin-AnEnτ=0.1:0.8 GPPmin-AnEnτ=0.1:0.9
GC (%) ECmin-AnEnτ=0.2 ECmin-AnEnτ=0.1:0.2 ECmin-AnEnτ=0.1 ECmin-AnEnτ=0.1

Table 6. Seasonal performance using the strategies of Table 5. Values in parenthesis respresent
performance with respect to the performance obtained when using numerical weather prediction
forecasts (NWP).

Performance Indicator Winter Spring Summer Autumn

EC (AC /kWh) 0.236 (−1.7%) 0.114 (−2.6%) 0.091 (−5.2%) 0.173 (−2.2%)
CO2 (gCO2/kWh) 58 (−2.1%) 53 (−0.6%) 56 (+1.1%) 89 (−24.1%)
GPP (kW) 15 (−16.7%) 12 (0%) 9 (0%) 15 (0%)
GC (%) 100 (+0.4%) 100 (+1.8%) 100 (+1.6%) 100 (+0.1%)
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A third question that arises after the results presented so far in this section is whether adopting a
seasonal EMS strategy (i.e., using the strategies of Table 5 during the corresponding season) produces
better results, by the end of the test period, than using a unique EMS strategy for each service (i.e., EMS
strategies of Table 4) during the entire test period. The values in parenthesis of the seasonal strategies
represent their percentage performance with respect to the case when the best annual-strategy for each
service is used.

The results are summarized in Table 7, where we can observe that, for the grid-commitment,
the seasonal strategy presents only a marginal improvement of 0.1% over the annual strategy.
Similarly, for the grid-peak-power there is no difference between both approaches. On the other
hand, we have a marginal decrease of 0.5% in the CO2 content for the seasonal strategy respect to
the annual strategy, whereas the energy-cost experience a more significant reduction of 9.1% if the
seasonal strategy is used. We can conclude then that the seasonal strategy presents an overall better
performance with respect to the annual strategy. At the view of the results that are presented in Table 5,
where it is clearly stated that, for the different seasons of the year, different forecasting methods should
be used in order to obtain the optimal performance. Therefore, an annual strategy, that makes use of a
single forecast throughout the test period, is expected to under-perform a seasonal strategy.

Table 7. Performance obtained while using a seasonal and an annual energy management strategy.

Performance Indicator
EMS Strategy

Seasonal Annual

EC (AC /kWh) 0.150 (−9.1%) 0.165
CO2 (gCO2/kWh) 62.8 (−0.5%) 63.1
GPP (kW) 15 (0%) 15
GC (%) 100 (+0.1%) 99.9

We can then conclude that seasonal effects, such as: prices of electricity, carbon footprint, accuracy
of forecasts, consumption, and production patterns, do affect the performance in the services under
study. There are seasons that present conditions that allow better performance (summer, spring)
than others (winter, autumn). Best seasonal strategies are different than annual strategies and we
proved that using seasonal strategies yield better performance than using annual strategies in some
services such as the energy-cost, while, for other services, it is indifferent (e.g., GPP). A flow diagram
that depicts the logic followed in this section in order to tackle the different research questions that
wanted to be explored along with references to the figures or tables where the answers are found,
is presented in Figure 8.
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Figure 8. Flow planning that depicts the main research questions and answers addressed in Section 3.

4. Conclusions

A new framework methodology for energy management in smart-buildings that are equipped
with a photovoltaic plant and a battery storage system has been presented.

Four services that are related with economical and environmental aspects are used to evaluate
performance that target not only the microgrid users, but also the distribution system operator.

A novel service in the domain of microgrids, the grid commitment. Its purpose is to turn a
microgrid into a deterministic prosumption (i.e., production-consumption) unit, to the view of the
distribution system operator.

The results show that an EMS with optimization-based scheduling strategies, as the ones hereby
proposed, is able to outperform the different reference strategies in every service, with improvements
of up to 50% in some cases, with the exception of the carbon footprint, where having no microgrid
(MG) produces, on average, 4.9% less carbon emissions.

More accurate forecasts (e.g., numerical weather prediction forecasts compared to eccentric
quantiles from the analog ensemble method) are seen to result in a better performance, particularly
for EC and CO2 indicators. However, for some services, in particular the grid-commitment and
grid-peak-power, and for some optimisation periods, this is not the case. This is particularly palpable
in the seasonal analysis, where scheduling strategies using eccentric quantile forecasts outperform
numerical weather prediction forecasts (NWP). Improvements in performance of 16.7% for GPP during
winter or 24.1% for CO2 emissions during autumn can be obtained.

In an annual-based analysis, quantile forecasts permit obtaining better performance in EC, CO2,
and GC, in comparison with the deterministic NWP forecasts. However, the improvement is mostly
marginal. At the same time, in a seasonal-based analysis, the advantages of using quantile forecasts
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can be more significant, achieving improvements in performance of 16.7% for GPP during winter or
24.1% for CO2 emissions during autumn, with respect to the base-case NWP forecasts.

The results confirm that the best service indicator is found when the scheduling optimization is
oriented for that service, while under-performing in the non-targeted services.

Targeting the grid-commitment is the most expensive decision, as it is the one that affects more
negatively the other services. This is due to the massive PV curtailment that is provoked by the use of a
very pessimistic forecast (AnEnτ=0.1). Therefore, a good compromise to obtain fairly good performance
in all services, is found with the GPPmin-AnEnτ=0.4 strategy, followed by the ECmin-AnEnτ=0.5 strategy.

The seasonal analyses show that the best accuracy of forecasts and performance of EC, CO2 and
GPP is obtained in summer and spring,while the worst performance is obtained in winter and autumn.
Winter is particularly the season when the price of the electricity is the highest and solar resource is at
its lowest, while autumn is the period when the energy is more loaded with CO2.

As quantile forecasts allow for customising the scheduling optimization for each season of the
year, the implementation of a seasonally-adapted EMS strategy might be plausible. However, the
results for this study-case demonstrated that a seasonal EMS strategy is only beneficial regarding the
energy-cost, where a decrease of up to 9.1% can be achieved.
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Appendix A. Nominal and Adjusted Values for Battery and PV Energy

Appendix A.1. Energy Cost Calculations

In this section, the calculations to compute the nominal and adjusted costs of the energy coming
from the battery and the PV panels are presented.

The nominal cost for the use of the battery is computed using Equation (A1).

Cnom
batt =

CAPEXbatt
TOEmin

(A1)

where CAPEXbatt stands for the capital expenditure (the cost) of the battery, while the TOEmin stands
for the minimum through output energy of the battery or the minimum energy that the manufacturer
guarantees that the battery will deliver during its lifetime (see Table A1). The TOEmin is computed for
specific test conditions set by the manufacturer of the battery.

In our case, we assume that TOEmin is computed for the nominal battery cycling life CLmax.
Therefore, when CL decreases, that causes TOE to decrease accordingly, increasing the cost of the
energy delivered by the battery in the same proportion. The correction factor for the reduction in the
battery cycling life BLR, is presented in Equation (A2).

The nominal cost of the energy delivered by the battery Ch
batt, computed in Equation (A1),

is adjusted the equivalent cycling life (CL) of the battery [36], as presented in Equation (A2).

BLR =
CL

CLmax
(A2)
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where CL is the equivalent battery cycling life while CLmax is the maximum (theoretical) battery cycling
life according to the model proposed by Muenzen et al. [36].

Then, the factor BLR is used to adjust the nominal cost of the battery presented in Equation (A1)
to obtain the corrected battery cost. This is expressed in Equation (A3).

Ccorr
batt =

Cnom
batt

BLR
(A3)

Then, for a given EMS strategy, the equivalent BLR can be computed in order to obtain the
corrected battery cost Ccorr

batt . This cost is considered constant for the entire test period. For the sake
of simplicity, we consider that these average use conditions of the battery are kept throughout all its
lifetime, so that the reduction of its cycling life is consistent with the calculations.

An analogous approach as the one presented in Equations (A1)–(A3) can be followed to obtain
the average cost of PV energy, Cpv.

The nominal cost of the energy delivered by the PV panels Cnom
pv , can be obtained

with the Equation (A4).

Cnom
pv =

CAPEXpv

TOEexp
(A4)

where CAPEXpv stands for the capital expenditure (the cost) of the PV array (without taking into
account the balance-of-system costs), while TOEexp represents the expected through-output-energy,
which is computed based on the historical PV output power measurements of the study-case site and
the warranted life and output-power of the PV panels given by the manufacturer (see Table A1).

In the meantime, an equivalent to the BLR can be found for the PV power production, that is
related to the reduction in the through output energy due to curtailment. This is called PV curtailment
factor (PVCF) and is expressed in Equation (A5).

PVCF =
Epotential

pv − Ecurtailed
pv

Epotential
pv

=
Ereal

pv

Epotential
pv

(A5)

where Epotential
pv is the potential output energy of the PV installation during the test period for the given

GHI conditions, while the Ecurtailed
pv represent the total curtailed energy during the test period.

In this case, for a particular EMS strategy, the results of Equation (A5) are extrapolated as if the
curtailment policy were to repeat for the entire life of the PV installation. Under this assumption,
Equation (A3) can be rewritten to compute the corrected cost of the energy delivered by the PV panels,
as in Equation (A6).

Ccorr
pv =

Cnom
pv

PVCF
(A6)

Appendix A.2. Energy CO2 Content Calculations

Following a similar method as the one presented in Section Appendix A.1, in this section the
nominal values for the CO2 content of the energy delivered by the battery and PV, based on their
embedded carbon emissions (see Table A1) are computed.

The nominal values for the CO2 content of the battery and PV panels are computed as follow:

CO2
nom
batt =

ECO2batt

TOEmin
(A7)

CO2
nom
pv =

ECO2 pv

TOEexp
(A8)

where ECO2X stands for the embedded CO2 emissions expelled to the atmosphere during the
manufacturing process of the DER X (see Table A1).
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The corresponding corrected values for the CO2 content of battery CO2
h
batt and PV energy CO2

h
pv,

are computed by changing the capital cost CAPEXx in Equations (A3) and (A6), and replacing it
with the embedded CO2 emissions during manufacturing. In these way, we obtain the relations
to compute the corrected values for the CO2 content of battery and PV energy, as presented
in Equations (A9) and (A10).

CO2batt
corr =

ECO2batt

TOEmin · CL
CLmax

=
CO2batt

nom

BLR
(A9)

CO2 pv
corr =

ECO2 pv

TOEexp ·
Epotential

pv −Ecurtailed
pv

Epotential
pv

=
CO2 pv

nom

PVCF
(A10)

The coefficients BLR and PVCF are the same as for the calculations of EC (see Equations (A2) and (A5)),
as well as the TOEmin and TOEexp (see Table A1).

A summary of the CAPEX and embedded CO2 emissions of the battery and PV panels,
as well as their nominal energy cost, is presented in Table A1. The costs do not include
balance-of-system expenses.

In order to compute the through-Output-Energy (TOE), the expected annual PV production is
obtained for the study-case site. This calculation is based upon historical GHI measurements during
the test period (≈1 year). This annual energy output is then extrapolated for the number of years
that PV panels are expected to last, according to the manufacturer (30 years with a 0.26% annual
degradation). In this way, the -average- total energy that the PV array is expected to deliver throughout
its lifetime (TOE) is obtained.

Regarding the TOE value for the battery, it is the minimum—warranted—energy that the battery
will deliver during its lifetime, regardless of its profile of use, according to the manufacturer.

The CAPEX costs are based on—average—market prices in Europe for PV panels and Lithium-ion
batteries, for the capacity requirements of the Drahi-X MG.

Regarding the embedded CO2 emissions (greenhouse gases emitted through the manufacturing
process, including extraction of raw materials), several studies were consulted and the values were
taken from the ones that seemed more adapted to the European case, and to the manufacturing sites of
the type of PV panels and batteries expected to be used in the Drahi-X MG. The references used to
obtain the TOE, CAPEX and embedded CO2 emissions (ECO2 ) are presented in Table A1.

With the aforementioned values, Table A1 is completed using Equations (A7) and (A8) to obtain
the nominal values of CO2 content per kWh of energy delivered by the battery and PV panels,
respectively. In a similar manner, Equations (A1) and (A4) are used to obtain the nominal cost per kWh
delivered by the battery and PV panels, respectively.

Table A1. Nominal cost and CO2 per kW/h of energy delivered by the battery and PV panels.

TOE (kWh) CAPEX (AC ) ECO2 (kgCO2eq) COnom
2 (CO2eq/kWh) Cnom (AC /kWh)

PV (16 kWp) 581,000 [31] 9265 [37] 19,520 [38] 33 0.016
Battery (32 kWh) 98,100 [39] 20,208 [39] 2300 [40] 23 0.210

Appendix B. Optimization Algorithms

In this section a description of the optimization algorithms used for the scheduling stage of the
EMS as well as the formulation of the objective functions are presented. A genetic algorithm is used to
optimize the energy cost (EC) and the CO2 content (CO2). The flow diagram that describes its working
principle is shown in Figure A1 and the hyper-parameters obtained after tuning the algorithm are
presented in Table A2.
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Figure A1. Flow diagram of the genetic algorithm method.

Table A2. Summary of the penalization weights and hyper-parameters chosen for the Genetic
Algorithm formulation.

Penalization Weights

K 1 × 106

L 5
M 1 × 10−5

Hyper-Parameters

# of Iterations 300
Population size 1000

Mutation probability 100%
# of mutating chromosomes 1

Mating pool size (# of parents) 100

Appendix B.1. Energy Cost Minimization

The energy cost EC, is the first service minimized using the genetic the GA. The costs of the
battery and PV energy, included in the objective function (see Equation (A11)), correspond to the
constant non-corrected nominal values Cnom, presented in Table A1. The correction due to battery-life
reduction and PV curtailment, expressed in Equations (A3) and (A6), is computed once the grid power
profile for the entire test period has been generated. This has to be this way since, as expressed in
Equations (A2) and (A5), a prior grid profile is required to compute the correction factors BLR and
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PVCF. The optimization problem, including the objective function and its constraints, is expressed in
the set of Equations (A11).

Min
Pbatt

∑24
h=1 ∆t · (Ph

grid · C
h
grid + Ph

batt · C
h
batt + Ph

pv · Ch
pv + M · Ph

grid) + L · SoCdev + K · SoCout

where :


Ch

batt = 0 if Ph
batt < 0

Ch
grid = 0 if Ph

grid < 0

M = 0 if Ph
grid > 0

s.t.
Ph

grid + Ph
batt + Ph

pv + Ph
load = 0

∆t ·∑24
h=1 Ph

batt = 0 (SoCh=24 = SoCh=1)

Ph
pv = Ph mppt

pv

0% ≤ SoCh
batt ≤ 100%

0 kW ≤ Ph
batt ≤ 27kW

(A11)

where Ph mppt
pv is the maximum possible PV power output of hour h (i.e., the power delivered by

the maximum power point tracker -mppt- controller). The energy delivered by the PV panels is the
product of its average-hourly power and the time resolution (Eh

pv=Ph
pv∆t). The factors M, L and K

represent respectively the penalizing weights of: the energy sent to the grid (Ph
grid < 0), the deviation

from the desired SoC at the end of the day (SoCdev) and SoC values that go out-of-bounds (SoCout),
for a given battery profile, as previously explained in this section.

It can be observed that the costs of grid and battery energy are zero when these resources consume
energy. This is done this way because, in the case of the battery, the TOEmin given by the manufacturer
refers to delivered energy, while in the case of the grid energy, our study-case SB is not paid if energy
is sent back to the grid. The optimization is supposed to be performed once a day (at midnight) when
the PV output power forecasts for the next day become available. The SoC of the battery is constrained
to be left, by the end of each day, at the same value as it was at the beginning of it, which in this study
is set to 50%.

Appendix B.2. CO2 Content Minimization

The second service that can be optimized during the scheduling is the CO2 content of the energy
consumed in the MG. This variable is also minimized using the GA approach, as for the EC. Therefore,
the CO2 content of the energy coming from the grid is considered known beforehand for every hour of
the test period. The formulation of the problem is analogous to the one presented in Equation (A11).
The complete formulation of the problem is presented in Equation (A12).

Min
Pbatt

∆t ·∑24
h=1(Ph

grid ·CO2grid
h + Ph

batt ·CO2batt
h + Ph

pv ·CO2 pv
h + M · Ph

grid) + L · SoCdev + K · SoCout

where :


CO2batt

h = 0 if Ph
batt < 0

CO2grid
h = 0 if Ph

grid < 0

M = 0 if Ph
grid > 0

s.t.

Ph
grid + Ph

batt + Ph
pv + Ph

load = 0

∆t ·∑24
h=1 Ph

batt = 0 (SoCh=24 = SoCh=1)

Ph
pv = Ph mppt

pv

0% ≤ SoCh
batt ≤ 100%

0 kW ≤ Ph
batt ≤ 27kW

(A12)
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where CO2 content of the battery and PV energy included in the objective function, correspond to the
constant non-corrected nominal values COnom

2 , presented in Table A1. The correction due to battery-life
reduction and PV curtailment, expressed in Equations (A9) and (A10), is computed once the grid
power profile for the entire test period has been generated, for the same reasons exposed for the EC
minimization. The factors M, L and K represent respectively the penalizing weights of: the energy sent
to the grid (Ph

grid < 0), the deviation from the desired SoC at the end of the day (SoCdev) and SoC values
that go out-of-bounds (SoCout), for a given battery profile, as previously explained in this section.

Appendix B.3. Grid Peak-Power Minimization

The third service that was envisaged to be optimized by the scheduling module was the
required contracted power or grid-peak-power (GPP). Due to the nature of its objective function,
a typical quadratic programming formulation sufficed to solve the optimization problem. The simple
formulation, convergence speed, as well as its ability to find true optimal solutions, made us prefer this
method over the GA to optimize this service. The minimization of the GPP hereby proposed, falls into
the category of quadratic programming problems. Quadratic programming is the process of solving a
linearly constrained, quadratic optimization problem, that is, the problem of optimizing (minimizing
or maximizing) a quadratic function of several variables subject to linear constraints on these variables.
Quadratic programming is a particular type of non-linear programming [41]. The formulation of the
optimization problem is presented in Equation (A13). We observe that the same physical constraints as
for the GA formulation are present in this problem (see Equations (A11) and (A12)).

Minimize
Pgrid ,Pbatt

∑24
h=1(Ph

grid
2 + Ph

batt
2)

s.t.

Ph
grid + Ph

batt + Ph
pv + Ph

load = 0

∆t ·∑24
h=1 Ph

batt = 0 (SoCh=24 = SoCh=1)

Ph
pv = Ph mppt

pv

0% ≤ SoCh
batt ≤ 100%

0 kW ≤ Ph
grid ≤ 36kW

0 kW ≤ Ph
batt ≤ 27kW

(A13)

We can note that here there are no costs associated to the power values, as the algorithm is only
meant to minimize the peaks of power themselves, trying to make the profile as smooth as possible.

As deduced from its objective function, the method minimizes the power peaks of the grid
and the battery simultaneously, reducing not only the required contracted power, but also the
depth-of-discharge of the battery, that can lead to extended battery life. There is no associated
costs to the grid or battery power, as the power profile itself suffices for the optimizer to obtain the
required results. As for the EC and CO2, once the algorithm generates the resulting grid and battery
profiles for the entire test period, all the performance indicators can be computed and the grid profile
is used as the input for the balancing module.

Contrary to heuristic methods such as the GA, quadratic programming methods do not required
the tuning of hyper-parameters, which diminish the setting-up time and the uncertainty of obtaining
sub-optimal solutions.
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