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Abstract
This article presents a compile-time analysis for tracking
the size of data-structures in a statically typed and strict
functional language. This information is valuable for static
checking and code generation. Rather than relying on depen-
dent types, we propose a type-system close to that of ML:
polymorphism is used to define functions that are generic in
types and sizes; both can be inferred. This approach is con-
venient, in particular for a language used to program critical
embedded systems, where sizes are indeed known at compile-
time. By using sizes that are multivariate polynomials, we
obtain a good compromise between the expressiveness of
the size language and its properties (verification, inference).
The article defines a minimal functional language that is

sufficient to capture size constraints in types. It presents its
dynamic semantics, the type system and inference algorithm.
Last, we sketch some practical extensions that matter for a
more realistic language.
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tional languages; Polymorphism; Recursion; Semantics;
Automated static analysis; Embedded software; Software safety;
Software usability.
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1 Introduction
We are interested here in the programming, with a high-level
language, of certified real-time embedded software submit-
ted to strong safety requirements, such as those found in
avionics, railway and automotive (eg, flight control, braking,
electrical engine). In this field, the domain-specific program-
ming language Scade [Colaço et al. 2017], is used for more
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than twenty years. It inherits the principles and style of the
synchronous language Lustre [Halbwachs et al. 1991]. The
specific features of these languages are essentially orthogo-
nal to our discussion, which focuses on arrays. However, the
constraints imposed by the targeted applications are such
that:

(i) Resources must be statically bounded, both in term
of memory and execution time. This ensures that a
system can for an arbitrarily long time and meet its
deadlines.

(ii) Programs must be certified by independent authori-
ties. This requires a reference specification, extensive
testing, and property checking. both for programs and
the tools used to generate code.

To this end, the size any data-structure in Scade must
be known statically. While some functions may depend on
size parameters, these sizes get ultimately instantiated at
compile-time with a concrete value (e.g., an integer). More-
over, the language and its compiler comply with the highest
certification standards for critical software (e.g., DO178C,
level A of avionics): the generated code can be used without
any further validation that the semantics is preserved.
Modern real-time applications combine complex control

code (e.g., hierarchical automata) and intensive computation
using arrays (e.g., Kalman filters, neural networks, optimiza-
tion algorithms). Arrays introduce dynamic accesses to mem-
ory that must respect array bounds; otherwise, the risk is, at
best a stop of the execution, at worst a silent corruption of
the memory. Ensuring access correctness ranges from pro-
grammer’s responsibility (e.g., in C) to programmer’s proof
obligations (e.g., in Spark [Barnes 2003]), and include skep-
tical compilers that generate defensive code in various ways:
by throwing exceptions (e.g., OCaml, Ada), by saturating
the index value [Gérard et al. 2012] or by adding a default
value [Colaço et al. 2017] — two solutions followed in several
synchronous compilers (e.g., Heptagon 1, Lustre V6 2 and
Scade 3). This results in less efficient generated code and the
potential introduction of dead code.4

1 https://gitlab.inria.fr/synchrone/heptagon
2 https://www-verimag.imag.fr/DIST-TOOLS/SYNCHRONE/reactive-toolbox/
3 https://www.ansys.com/products/embedded-software/ansys-scade-suite
4 This last point is not without importance: coverage analysis, an activity
required for the certification of critical applications, needs justifications for
the code that cannot be covered by a test case.
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Functional languages have popularized intensional array
operations (e.g., map, fold, transpose) [Bird andWadler 1988]
which provide predefined access schemes and thus avoid the
explicit manipulation of indexes. Their safety only needs size
equalities to be solved instead of inequalities (e.g., bound
checking), with algorithms that are simpler and more effi-
cient. data-flow style of Scade favors this kind of intensional
definitions. E.g., the scalar product is written in Scade:

function dot «n» (u, v: int32ˆn) returns (d: int32)
d = (fold $+$ «n») (0, (map $*$ «n») (u, v));

However, writing complex array operations as the ones
found in signal or image processing or AI is rapidly tedious
in Scade for multiple reasons:

(i) The language is explicitly typed. This leads to long and
redundant annotations when size expressions grow or
multiple size variables are used. In the above example,
the size 𝑛 appears four times.

(ii) Current primitives (map, fold, concat, ...) offer a lim-
ited expressiveness: only linear relations between sizes
are possible. Sampling or filtering are hardly expressed
and inefficiently programmed.

(iii) The Scade compiler checks sizes at program elabora-
tion (i.e. instantiation), where sizes get constant values.
Error detection is thus late and non-modular.

(iv) All dynamic array accesses are guarded, leading to
codewith unnecessary conditionals and dead branches.

Contribution. Webelieve that the possible improvements
for the above remarks share a common seed: a type-like
knowledge of sizes, available during the whole compilation
process, not only after elaboration„ would give new perspec-
tives for verification and compilation. In short, the proposed
solution is based on the following elements:

(i) A language of sizes made of multivariate polynomials.
It provides a practical compromise between formal
manipulations and expressiveness.

(ii) An ML-like type system that extends polymorphism
to sizes. Sizes are generalized at declarations and in-
stantiated as in ML. This allows to handle sizes and
types in the unified manner.

(iii) An inference algorithm. Although incomplete, it al-
lows most sizes to be omitted. Size constraints, that
are vanishing polynomials 𝑃 [𝑋 ] = 0, could be solved
with an external solver. However, we propose here a
dedicated procedure because using black-box tools is
unpractical for certified software.

Although being modest, this extension of the type system
deeply affects language properties. First, principal typing (as
for dependent types), is lost: some terms may receive multi-
ple (incomparable) types. Second, sizes have a computational
content, i.e. the language semantics is not type erasable. Both
points are challenges for the inference algorithm: it should

not only produce a well-typed term but it must also ensure
that the semantics is independent from inference choices.
This presentation is purposely conducted on a toy func-

tional language that contains the minimal constructs to high-
light the main issues. The article is organized as follows:
section 2 gives a general overview of the proposed contribu-
tion. The language and its semantics and typing discipline
are defined in section 3. Then, section 4 details type and size
inference and establishes their meta-theoretical properties.
Practical extensions are sketched in section 5. We briefly
present the use of static sizes for both verification and com-
pilation in section 6. We discuss related works in section 7
and conclude in section 8.
An extended version of this type system is implemented

in a prototype of compiler for a synchronous language with
arrays. A type checker for a simpler, ML-like language with
the proposed syntax is available alongside the submission. 5

2 Overview
For brevity, we introduce a core language L[ that contains
theminimal constructs required to introduce a notion of sizes
into types. In particular, it has no primitive notion of arrays:
they are considered as functions on a bounded domain. This
section gives an informal insight of L[ , its type system and
type inference through simple examples.

L[ is equipped with a separate language for sizes, namely
sizes and expressions are distinct syntactical objects. This
size language is made of multivariate polynomials. Sizes
(ranged over by [, . . .) and their variables (ranged over by
], ^, 𝛿, . . .) are handled in a similar way to types (𝜏, . . .) and
type variables (𝛼, 𝛽,𝛾, . . .).

Intensional arrays and size consistency. In numerous
programming languages intended for scientific computations
such as Sisal [Feo et al. 1990], explicit index manipulations
are replaced by operators acting on arrays called combina-
tors [Jay and Sekanina 1997; ?]. This style benefits especially
to functional and data-flow programming languages by al-
lowing to write array definitions with single expressions.
Array combinators provide predefined access patterns that
are always correct, avoiding at the same time the need for
runtime checks. However, some of these primitives still re-
quire array sizes to coincide. To enforce such properties by
type checking, sizes need to be expressed in types. The point-
wise function application (map), its binary variant (map2) and
the array reduction (fold), three operators that are avail-
able in Scade, are given the following type schemes in the
proposed language L[ :

val map : ∀] ·𝛼 ·𝛽. (𝛼 � 𝛽) � <]> � []]𝛼 � []]𝛽
val fold : ∀] ·𝛼 ·𝛽. (𝛼 � 𝛽 � 𝛼) � <]> � 𝛼 � []]𝛽 � 𝛼

val map2 : ∀] ·𝛼 ·𝛽 ·𝛾 . (𝛼 � 𝛽 � 𝛾) � <]> � []]𝛼 � []]𝛽 � []]𝛾

5https://gitlab.inria.fr/bpauget/array-2023

https://gitlab.inria.fr/bpauget/array-2023
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Given a polynomial size [, the type <[> (read value of
size [) denotes a refinement of the integer base type: {𝑥 :
int | 𝑥 = [}. Actually, this is a singleton type. Here, the
second argument of each function thus allows to constraint
the value of the size variable ]. [[]𝜏 is the type of arrays with
length [ and elements of type 𝜏 . Used as an expression, the
syntax <[> also designates the only value of type <[>, thus
the partial application —map 𝑓 <9>— can only be given an
array of length 9. These signatures highlight polymorphism
that act both on type variables (𝛼 ,𝛽 ,𝛾 ) and size variables (]).
Using them, the scalar product is expressed as:

let dot = _𝑢. _𝑣 . fold (+) <_> 0 (map2 (*) <_> 𝑢 𝑣)
[ ∀]. []]int � []]int � int ]

In the definition of dot, the size values —<_>— are omitted
for both iterators: they are inferred. The above type scheme,
built by the inference, forces the length of input arrays to
coincide. The size variable ] cannot be directly constrained:
no argument have type <]>. Thus, ] will be deduced from
arrays’ size. Lets assume the definition of a primitive window
defining a sliding window of size ^ with step 1:

val window : ∀] ·^ ·𝛼. <^> � [] + ^ − 1]𝛼 � []][^]𝛼

This function builds a matrix whose rows are slices of
length ^ of the input array, starting at the element given by
the row index. For example —window <3> [0, 1, 2, 3, 4]— pro-
duces thematrix [[0, 1, 2], [1, 2, 3], [2, 3, 4]]. The size ] + ^ − 1
encodes the relation between input and output array sizes
so that the former is fully read. Filtering data with a kernel
𝐾 of size ^ is a common signal processing operation. It is ex-
pressed with a discrete convolution: (𝐾 ∗ 𝐼 )𝑖 =

∑^−1
𝑗=0 𝐾 𝑗 · 𝐼𝑖+𝑗 .

This uni-dimensional filter may be defined as:

let convolution = _𝑘. _𝑖. map (dot 𝑘) <_> (window <_> 𝑖)
[ ∀] ·^. [^]int � [] + ^ − 1]int � []]int ]

Here as well, the inference is able to determine the miss-
ing sizes (and types), making the kernel size coincide with
slices length. Inference derives the above type scheme for
this declaration. Note that, by a change of variables, it is
equivalent to ∀] ·^. [^]int � []]int � [] − ^ + 1]int.

Extensional arrays and bounds propagation. Arrays
are not primitive constructs: the type [[]𝜏 is a shortcut for
[[] � 𝜏 where [[] (read index of size [) is a second refine-
ment of type int denoting positive integers strictly smaller
than [: {𝑥 : int | 0 ≤ 𝑥 < [}. Although not realistic for
compilation, such simplification limits language complexity.
Using this refinement, the map2 iterator is expressible in L[ :

let map2 = _𝑓 . _𝑛 :<‘]>. _𝑢. _𝑣 . _𝑖 :[‘]]. 𝑓 (𝑢 𝑖) (𝑣 𝑖)
[ ∀] ·𝛼 ·𝛽 ·𝛾 . (𝛼 � 𝛽 � 𝛾) � <]> � []]𝛼 � []]𝛽 � []]𝛾 ]

It defines an ’array’, i.e. a function with a bounded domain,
whose content is obtained by applying 𝑓 to 𝑢 and 𝑣 elements.
Their accesses are denoted by the applications —(𝑢 𝑖) ; (𝑣 𝑖)—

that respect bounds by construction. The second argument
—𝑛— of map2 is unused, but the types annotations <‘]> and
[‘]], where ‘] is an anonymous size variable alike OCaml’s
ones, forces 𝑛 to be the size of index 𝑖 .
The index type only allows to propagate known bounds.

Notably, no arithmetic operations are defined for indexes.
Values of type [[] are obtained by calling functions with a
bounded codomain, e.g., the modulo, whose type scheme is
∀]. int � <]> � []]. Although elementary, this refined type
allows to separate bound checking from array accesses.

The ghost size issue. In the previous examples, all un-
specified sizes were deducible from the types. However, this
is not always so simple. The cst function below defines a
constant array with an arbitrary size, thanks to the type
annotation [_].

let cst = _𝑐. _𝑖 :[_]. 𝑐 [ ∀] ·𝛼. 𝛼 � []]𝛼 ]
let even = fold (+) <_> 0 (cst 2) (Error: Unconstrained size)

In even declaration, summing the element of cst 2 with-
out specifying fold’s size leads to an undefined value since
this size could be chosen arbitrarily. This must be rejected.

Contrary to types in ML like languages, sizes have a com-
putational content: they may determine the semantics of
expressions. Inference must thus ensure that the semantics
of the reconstructed term was already specified in the source.
We formalize this property in subsection 4.5: when type in-
ference succeeds, all well typed annotated versions of the
source program evaluate to the same result. Our even exam-
ple becomes unambiguous by adding an argument:

let even = _𝑛. fold (+) 𝑛 0 (cst 2) [ ∀]. <]> � int ]

3 A typed core functional language with
size polymorphism

This section focuses on the type system. It aims at expressing
as many relations between sizes as possible while remaining
decidable and largely implicit. It is a combination of two
widely studied type systems traits: (i) a restricted form of
refinement types, as defined in Xi and Pfenning [1999], and (ii)
the ubiquitous let-polymorphism of Milner [1978] extended
to sizes.
Such an expressive type system may lead to undecidable

type checking and incomplete type inference. Nonetheless,
the context of Scade ensures that all sizes get ultimately
known statically: once elaboration is done, size checking
becomes trivial but late and non modular. We would like to
check most size constraints earlier, during static typing and
per declaration, relying on the specialization as a fallback
mechanism for the properties that remain unproved. This ex-
plains also why the size language is purposely not restricted
to decidable (e.g., linear) arithmetic expressions.
For clarity, the tightest possible language L[ is used: a

core ML (_-calculus with let bindings) augmented with a few
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constructs. We propose some extensions that are useful for
a realistic language in section 5.

3.1 Syntax and semantics
The syntax of L[ is summed-up in Figure 1. It is explicitly
typed i.e. type annotations are part of expressions. In the
subsequent, 𝑛 denotes an integer. To emphasize on their
similarities, sizes, types and their variables are designated
by Greek letters whereas the Latin ones will be dedicated to
terms and program variables.

Name-spaces, free variables. Because they are syntacti-
cally separated, sizes, types and expressions use variables in
distinct name-spaces, respectively denotedV[ ,V𝜏 andV𝑒 ,
allowing for name reuse without masking. However, these
sets will be considered disjointed in the formalization. Given
a syntactical object 𝑜 , the set 𝐹𝑉 (𝑜) ∈ V[ ∪V𝜏 ∪V𝑒 of free
variables is defined by the set of variables that are not bound
by one of the following rules: (i) abstraction —_𝑥 :𝜏 . 𝑒— binds
𝑥 in 𝑒 ; (ii) local binding —let 𝑥𝑽 :𝜏 = 𝑒 in 𝑒′— binds 𝑥 in 𝑒′
and size and type variables 𝑽 in both 𝜏 and 𝑒 . Closed objects
are the ones with no free variables.

Sizes and types. The size language is made of multivari-
ate polynomials with integer coefficients: Z[V[]. The main
benefit of this restricted class of arithmetic expressions lies in
the existence of a normal form: a weighted sum of products
of variables. This allows for symbolic comparison of sizes
that are structurally different (e.g., (] − 1)2 − 1 = ] ∗ (] − 2)).
Besides functions, the type language contains a single

constructor int, along with two refinements, as defined by
Xi and Pfenning [1999]: (i) the type <[> (read value of size
[) denotes the singleton {[} and (ii) [[] (read index of size
[) represents the interval J0, [ − 1K, where [ is the value
of [, depending on size variables valuation. In the syntax
refinement types, they are respectively expressed as {𝑥 :
int | 𝑥 = [} and {𝑥 : int | 0 ≤ 𝑥 < [}

Polymorphism. Types, including polymorphism, are ex-
plicit in L[ : variables —𝑺𝑥— are instantiated with a list 𝑺 of
sizes and types while local bindings —let 𝑥𝑽 :𝜏 = 𝑒 in 𝑒′—
declare the list6 𝑽 of size and type variables that are gener-
alized. We shift away from the standard notation —let 𝑥 :
∀𝑺. 𝜏 = 𝑒 in 𝑒— to emphasize on generalized variables’
scope: their are bound in both type 𝜏 and expression 𝑒 .

Expressions. Integers occur in two ways: —𝑛— denotes
general integer while —<[>— stands for the only value of
type <[>. At this point, no constructs may be given an index
type ([[]).
Last, the coercion —𝑒 ⊲ 𝜏— represents an explicit type

constraint. Because of refined types, it plays a central role in
the definition of the semantics (see subsection 3.2).

6 The use of lists simplifies the association of generalized variables with
their instantiations

Arrays. L[ has no support for array manipulation, nei-
ther in types nor in expressions. For typing purposes, arrays
are essentially functions on a bounded domain: that is the
role of the index refinement. To make examples more in-
tuitive, we will use the notation of Futhark [[]𝜏 [?] as a
shorthand for the type [[] � 𝜏 . Allowing sub-typing from
functions to arrays seems irrelevant, both for clarity and com-
pilation perspectives. However, the typing issues that arises
from refinement types would still occur with a dedicated
language support for arrays.

3.2 Semantics
The big-step semantics of L[ —𝑒 { 𝑣— associates to some
closed expressions a value. As defined in Figure 1, values
are either integers or abstractions. The deduction rules are
detailed in Figure 2. They are syntax-directed, thus L[ se-
mantics is deterministic.

Substitutions. Substitutions (ranged over by 𝜌 , . . .) are
defined for each syntactical class and variable/element pairs.
Their application is written 𝑒{𝜌}. Explicit ones are uniformly
denoted ·/·. Thus, 𝑒{[/]} is the substitution in expression 𝑒 of
the occurrences of the size variable ] by the size [, including
in sizes and types contained in 𝑒 . This notation is naturally
extended to generalization and instantiation lists, assuming
they are compatible, i.e. that each size variable is substituted
with a size and likewise for types.

When evaluating let bindings (rule E-Let), each occur-
rence of the defined variable —𝑺𝑥— get substituted with its
coerced definition in which generalized size and type vari-
ables have been instantiated — (𝑒 ⊲ 𝜏){𝑺/𝑽 }.

Refinements and coercions. The semantics of L[ is not
type-erasable. This obviously transpires in the rule E-Size
that extracts a value from a size. Moreover, refinements dis-
criminate between values of the same shape (or base type)
and they must be checked in several places. For instance,
the term —(_𝑥 : [4]. 𝑒) 8— should not be reduced further
since the argument —8— is not a value of the expected type:
[4]. More generally, for any substitution of a term variable,
the substituting value must fulfill the substituted variable
refinement. Therefore, the E-App and E-Let rules insert co-
ercions; hence the need of an explicit coercion construction
in expressions.
For integer refinements, coercions check that the refine-

ment is fulfilled (rules C-Int, C-Size and C-Index). Similarly
to _𝐻 [Flanagan 2006], function coercions reduce into de-
layed coercions on argument and result values (rule C-Fun),
that will be evaluated upon application. The coercion on
argument is actually inserted by the evaluation of the intro-
duced application — 𝑣 𝑥 .

Type independence. Although L[ semantics is not type-
erasable, only sizes have computational content i.e. the ob-
servational semantics of an expression does not depend on
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[ ::= Sizes

| ], ^, 𝛿 variable
| 𝑛 constant
| [ + [ sum
| [ * [ product

𝜏 ::= Types

| 𝛼, 𝛽, 𝛾 variable
| 𝜏 � 𝜏 function
| int integer
| <[> singleton
| [[] interval

𝑽 ::= Y | ] ·𝑽 | 𝛼 ·𝑽 Generalization

𝑺 ::= Y | [ · 𝑺 | 𝜏 · 𝑺 Instantiation

𝑒 ::= Expressions

| 𝑺𝑥 variable
| 𝑒 𝑒 application
| _𝑥 :𝜏 . 𝑒 abstraction*
| let 𝑑 in 𝑒 local binding
| 𝑒 ⊲ 𝜏 coercion
| <[> size value
| 𝑛 integer*

𝑑 ::= 𝑥𝑽 :𝜏 = 𝑒 Declarations

Figure 1. Syntax of L[ . Note that the syntax <[> is overloaded: it denotes both the singleton type and its unique value. The
values used in the semantics are marked with *.
Semantics of closed Expressions 𝑒 { 𝑣

E-Size
<𝑛> { 𝑛

E-App
𝑒1 { _𝑥 :𝜏 . 𝑒 𝑒2 ⊲ 𝜏 { 𝑣 𝑒 {𝑣/Y𝑥 } { 𝑣′

𝑒1 𝑒2 { 𝑣′

E-Coerce
𝑒 { 𝑣 𝑣 ⊲ 𝜏 { 𝑣′

𝑒 ⊲ 𝜏 { 𝑣′
E-Let

𝑒′ { (𝑒 ⊲ 𝜏 ) {𝑺/𝑽 }/𝑺𝑥 } { 𝑣

let 𝑥𝑽 :𝜏 = 𝑒 in 𝑒′ { 𝑣

Semantics of Coercions 𝑣 ⊲ 𝜏 { 𝑣′

C-Size
𝑛′ = 𝑛

𝑛′ ⊲ <𝑛> { 𝑛′ C-Index
𝑛′ ∈ J0, 𝑛 − 1K
𝑛′ ⊲ [𝑛] { 𝑛′

C-Int
𝑛 ⊲ int { 𝑛

C-Fun
𝑣 = _𝑥 :𝜏 . 𝑒

𝑣 ⊲ 𝜏1 � 𝜏2 { _𝑥 :𝜏1 . 𝑣 𝑥 ⊲ 𝜏2

Figure 2. Semantics of L[ .

the valuation of its type variables. Changing types (hence
possible refinements) only restrict semantics domain.

Definition 3.1 (Observational equivalence). Two closed ex-
pressions 𝑒1 and 𝑒2, are observationally equivalent —𝑒1 ≡ 𝑒2—
if and only if, for any closed expressions 𝑎1, . . . , 𝑎𝑘 and inte-
gers 𝑛1, 𝑛2: {

𝑒1 𝑎1 . . . 𝑎𝑘 { 𝑛1
𝑒2 𝑎1 . . . 𝑎𝑘 { 𝑛2

=⇒ 𝑛1 = 𝑛2

Expressions for which no such common evaluation envi-
ronment exist are considered equivalent. Used along with
typing assumptions to rule out silly cases, it allows to com-
pare functions on their common domain.

Definition 3.2 (Equality modulo types). Two expressions
𝑒1 and 𝑒2 are equal modulo types —𝑒1 ≈𝜏 𝑒2— if and only if it
exists an expression 𝑒 , free type variables 𝛼 of 𝑒 and types
𝜏1, 𝜏2 such that:

𝑒1 = 𝑒{𝜏1/𝛼} ∧ 𝑒2 = 𝑒{𝜏2/𝛼}

Equivalence module type is preserved by the semantics:

Theorem 3.3 (Type independence). Given two closed terms
𝑒1, 𝑒2 such that 𝑒1 ≈𝜏 𝑒2, then

∀ 𝑣1 𝑣2,
{
𝑒1 { 𝑣1
𝑒2 { 𝑣2

=⇒ 𝑣1 ≈𝜏 𝑣2

Proof. The above invariant holds across semantics rules thanks
to the following observations (detailed in Appendix A):

• Size substitutions cannot capture types. E-Size instances
are thus equals and yield the same integer.

• Selecting between C-Fun and other coercion’s rules
depends only on value shape. □

Corollary 3.4 (Type observable independence). Expressions
that are equal modulo types are observationally equivalent:

∀ 𝑒1 𝑒2, 𝑒1 ≈𝜏 𝑒2 =⇒ 𝑒1 ≡ 𝑒2
Proof. Given 𝑒1, 𝑒2 such that 𝑒1 ≈𝜏 𝑒2, and closed expressions
𝑎1, . . . , 𝑎𝑘 , we immediately have 𝑒1 𝑎1 . . . 𝑎𝑘 ≈𝜏 𝑒2 𝑎1 . . . 𝑎𝑘 .
Observational equivalence follows because equality modulo
types for integers implies equality. □

3.3 Typing
A type discipline, based on the one of Hindley and Mil-
ner [Hindley 1969], filters the terms for whom a semantics
exists, i.e. expressions that may be reduced to a value.

Environment. Expressions are typed in an environment
Γ defined as a pair (Γ𝑣, Γ𝑒 ) where Γ𝑣 ⊂ V[ ∪ V𝜏 is the set
of bound size and type variables and Γ𝑒 is a partial map
from term variables to type schemes —𝜎 := ∀𝑽 . 𝜏—. In the
following, terms are supposed to be named so that no clashes
occur. The environment is thus unordered: —Γ, 𝑥 :∀𝑽 . 𝜏—
defines variable 𝑥 , assuming it was not in Γ, and —Γ, 𝑽—
registers 𝑽 size and type variables into Γ𝑣 , assuming they are
unbound too.

Judgments. The typing judgment —Γ ⊢ 𝑒 : 𝜏— reads ‘in
the environment Γ, the expression 𝑒 has type 𝜏 ’. This relation
implicitly assumes that 𝜏 and 𝑒 are well-formed, i.e. that their
free variables are bound in Γ. It is defined alongside the
sub-typing relation —𝜏1 <: 𝜏2— in Figure 3.
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Expressions Typing Γ ⊢ 𝑒 : 𝜏

T-Var
Γ (𝑥 ) = ∀𝑽 . 𝜏

Γ ⊢ 𝑺𝑥 : 𝜏 {𝑺/𝑽 }
T-Size

Γ ⊢ <[> : <[> T-Int
Γ ⊢ 𝑛 : int

T-Abs
Γ, 𝑥 :∀Y. 𝜏 ⊢ 𝑒 : 𝜏 ′

Γ ⊢ _𝑥 :𝜏 . 𝑒 : 𝜏 � 𝜏 ′
T-App

Γ ⊢ 𝑒1 : 𝜏 ′ � 𝜏 Γ ⊢ 𝑒2 : 𝜏 ′
Γ ⊢ 𝑒1 𝑒2 : 𝜏

Sub-typing 𝜏1 <: 𝜏2

S-Size
<[> <: int S-Index

[[] <: int

S-Refl
𝜏 <: 𝜏 S-Fun

𝜏2 <: 𝜏1 𝜏 ′1 <: 𝜏
′
2

𝜏1 � 𝜏 ′1 <: 𝜏2 � 𝜏 ′2

T-SubType
Γ ⊢ 𝑒 : 𝜏 𝜏 <: 𝜏 ′

Γ ⊢ 𝑒 : 𝜏 ′
T-Coerce

Γ ⊢ 𝑒 : 𝜏

Γ ⊢ 𝑒 ⊲ 𝜏 : 𝜏
T-Let

Γ, 𝑽 ⊢ 𝑒 : 𝜏 Γ, 𝑥 :∀𝑽 . 𝜏 ⊢ 𝑒′ : 𝜏 ′

Γ ⊢ let 𝑥𝑽 :𝜏 = 𝑒 in 𝑒′ : 𝜏 ′

Figure 3. Type system for L[ , non syntax directed

It is worth mentioning that type equality, used in S-Refl
rule among others, requires a formal identity between the
sizes appearing in refinements. For instance, types []] and
[2 − ]] are considered different even though they yields
equal types when instantiated with ] = 1.

Refinements and sub-typing. General dependent type
systems such as DML [Xi and Pfenning 1999] provide rich
sub-typing relations based on refinement implication, at the
cost of static checking undecidability. For that reason as well
as inference perspectives, sub-typing is restricted to inserting
or dropping refinements (with respect to the variance). Thus,
the relations [[] <: int and int � 𝛼 <: [[]𝛼 are valid,
whereas the semantically correct relation []] <: [] + 1] is
invalid. This flat order between refined types, illustrated
bellow, is the key restriction to keep type checking decidable:
correction only relies on size equalities, instead of general
inequalities on polynomials.

int

<[> <[′> . . . [[][[′]

Preservation and soundness. This type system enjoys
both preservation and soundness: types are preserved by
reduction and well-typed terms have a semantics. Formally:

Theorem 3.5 (Preservation).
Given 𝑒 an expression, 𝜏 a type and 𝑣 a value.
If ⊢ 𝑒 : 𝜏 and 𝑒 { 𝑣 then ⊢ 𝑣 : 𝜏 .

Theorem 3.6 (Soundness).
Given 𝑒 an expression, type 𝜏 such that ⊢ 𝑒 : 𝜏
then there exists a value 𝑣 such that 𝑒 { 𝑣 .

Proof. The generic construction for big step semantics set
up by Dagnino et al. [2020] allows to establish these results
from three local properties on the type system and the seman-
tics (see Appendix B): local preservation, ∃-progress and ∀-
progress. A key simplification lies in the normalization of typ-
ing derivations since our type system is not syntax-directed:
the T-SubType rule may be instantiated anywhere. □

4 Inference
Although type annotations might be helpful for documen-
tation purposes (e.g., in interfaces), they tend to obfuscate

programs as size expressions get larger. They should be in-
ferred. However, pursuing a full and complete type inference
as the HM type discipline enjoys [Hindley 1969] is vain: the
size language, that allows non-linear arithmetic expressions,
will surely cause unsolvable constraints. Despite this, the
size relations that occurs in data-intensive applications are
often simple, giving the opportunity to omit most of them.
Figure 4 gives implicitly typed definitions of simple linear
algebra operation and their inferred type.

One point must be carefully handled: L[ semantic is spec-
ified over closed typed terms. Inference must ensure that the
semantics of reconstructed terms is fully defined by implic-
itly typed ones. The ghost size issue sketched in section 2
is crucial here: unconstrained size variables should not get
defined during reconstruction. As a result, inference must
ensure that no unnecessary size relations are introduced.

4.1 Implicitly typed L[

As an implicitly typed language, a slight variation of L[ is
used: generalization and instantiation places, i.e. 𝑽 and 𝑺
in L[ syntax, are omitted. Contrary to polymorphism, type
annotations are still present in implicitly typed terms, but
they might contain size and type variables that are unbound.
The inference process builds definitions for polymorphism
places, i.e. a list of size and type variables that are generalized
or used for instantiation, alongside a substitution of unbound
size and type variables. In examples, place-holders (_) stand
for fresh size or type variables.

4.2 Algorithm
Size equality constraints amount to vanishing polynomi-
als. Unlike types, whose unification is structural, these con-
straints cannot be solved easily. For that reason, instead
of building a substitution on the fly as done by Algorithm
W [Milner 1978], sub-typing constraints and unbound size
and type variables are collected by a term traversal and the
resulting system is solved at generalization places (i.e. let),
in the hope of using the simplest constraints to simplify
the most complex ones. In the context of sub-typing, simi-
lar algorithms were proposed, e.g., by Aiken and Wimmers
[1993], where constraints are simplified at generalization
points. The constraint collecting algorithm is explained in
details in Appendix C.
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let dot = _𝑢. _𝑣 . fold (+) <_> 0 (map2 (*) <_> 𝑢 𝑣) [ ∀]. []]int � []]int � int ]
let mat_vec = _𝑎. _𝑣 . map (vec_vec 𝑢) <_> (transpose 𝑎) [ ∀] ·^. []][^]int � []]int � [^]int ]
let mat_mat = _𝑎. _𝑏. map (mat_vec 𝑏) <_> 𝑎 [ ∀] ·^ ·𝛿. []][^]int � [^][𝛿]int � []][𝛿]int ]

Figure 4. Usual linear algebra primitives defined with iterators

Let bindings introduce generalization: once the definition
has been traversed, sub-typing constraints are solved. As for
simple ML, the remaining type and size variables that do not
appear in the environment are generalized. Moreover, two
extra checks are performed on the generalized variables:

1. They should not appear in remaining constraints.
2. They must appear in declaration’s type.

The former allows to keep simple polymorphism, while
the latter detects unconstrained variables. This last check is
crucial since term’s semantics depend on sizes: the section 2
gives an example of such ambiguous term:

let even = fold (+) <_> 0 (cst 2) (Error: Unconstrained size)

4.3 Principal typing
Before presenting the constraint resolution strategy, let us
focus on a thorn in our side: this type system does not enjoy
principal types, i.e. some declarations do not have a most
general type scheme. Comparison of type schemes is defined
by the subsumption relation presented by Jones et al. [2007].
Informally 𝜎1 ≼ 𝜎2 if and only if any instance of 𝜎2 may be
obtained by instantiating 𝜎1 and using sub-typing. 𝜎1 is then
more general than 𝜎2. It naturally defines a notion of equiva-
lence, that amounts for simple ML types (without sizes), to
a renaming of type variables. Because size equality is not
structural, this relation widens here: the uni-dimensional
convolution defined in section 2 may be given the following
type schemes:

val convolution : ∀] ·^. [^]int � []]int � [] − ^ + 1]int
val convolution : ∀] ·^. [^]int � [] + ^ − 1]int � []]int

Any instance of the first is an instance of the second, and
reciprocally. More importantly, some terms may be given
multiple type schemes that have no common generalization;
this must be carefully handled by the inference. There are
two reasons for this:

1. Polynomial sizes. Allowing more than linear expres-
sions for sizes surely causes constraints with multiple so-
lutions. Given a function split, declared below, that trans-
forms a 1-dimensional array into a 2-dimensional one, its
application to an ‘array’ of size 4 raises several possible types,
corresponding to different semantics:

val split : ∀] ·^ ·𝛼. [] ∗ ^]𝛼 � []][^]𝛼

let mat = split (_𝑖 :[4]. 0)


[1][4]int
[2][2]int
[4][1]int

In such a situation, the underlying constraint (] ∗ ^ − 4 = 0)
will not be solved (see section 4.4), and inference will fail,
asking for more annotations.

2. Sub-typing and simple polymorphism. Unconstrained
polymorphism forces refinements to be selected for all occur-
rences of integer types. The slope function below computes
the ratio of images’ difference over arguments’ difference,
assuming suitable arithmetic operators defined over integers.

let slope = _𝑓 . _𝑖 . _ 𝑗 . (𝑓 𝑖 - 𝑓 𝑗) / (𝑖 - 𝑗)

The subtlety comes from the simultaneous applications of
𝑓 to 𝑖 and 𝑗 : should 𝑓 ’s domain and both argument share the
same refinement ? Indeed, possible type schemes include:

∀]. (< ] > � int) � < ] > � < ] > � int (𝜎𝑠𝑠 )
∀] ·^. (int � int) � < ] > � <^> � int (𝜎𝑏𝑠 )

(int � int) � int � int � int (𝜎𝑏
𝑏
)

∀] ·^. (int � int) � [ ] ] � [^] � int (𝜎𝑏𝑖 )
∀]. ([ ] ] � int) � [ ] ] � [ ] ] � int (𝜎𝑖𝑖 )

Among them, 𝜎𝑏
𝑏
≼ 𝜎𝑠

𝑏
and 𝜎𝑏

𝑏
≼ 𝜎𝑖

𝑏
. Others are incompati-

ble pair-wise (denoted 0) for multiple reasons: refinements...
1. are incompatible: 𝜎𝑠𝑠 0 𝜎

𝑖
𝑖 ; 𝜎

𝑏
𝑠 0𝜎

𝑏
𝑖 ; 𝜎

𝑏
𝑠 0 𝜎

𝑖
𝑖 ; 𝜎

𝑠
𝑠 0𝜎

𝑏
𝑖

2. appear covariant and contravariant: 𝜎𝑠𝑠 0𝜎𝑏𝑏 ; 𝜎
𝑖
𝑖 0𝜎

𝑏
𝑏

3. impose extra size constraints: 𝜎𝑠𝑠 0𝜎
𝑏
𝑠 ; 𝜎𝑖𝑖 0𝜎

𝑏
𝑖 .

Constrained polymorphism. Using simple polymorphism
with sub-typing is unusual. The general theory proposed
by Aiken and Wimmers [1993] provides constrained types
schemes. Shrinking the constraint set at generalization point
is then the key to avoid an exponential blow-up of con-
straints [Pottier 2001]. Such systems enjoy the principal
types property. In this context, the function slope would be
given the type scheme:

∀𝛼 ·𝛽 ·𝛾 | 𝛼 <: int ∧ 𝛽 <: 𝛼 ∧ 𝛾 <: 𝛼.
(𝛼 � int) � 𝛽 � 𝛾 � int

However, modularity would be sacrificed here, by deferring
size constraints resolution to monomorphic instantiations.
Coupled with the loss of readability of such types, this is the
main reason for keeping simple polymorphism.

Inference and semantics. This issue about principal type
is all the more crucial because our semantics is not type
erasable. Sizes have computational contents in our language.
For that reason, inference should ensure that no sizes have
been arbitrarily defined. We formalize this in subsection 4.5.
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let slope = _𝑓 :[_] � _. _𝑖 : _ . _ 𝑗 : _ . (𝑓 𝑖 - 𝑓 𝑗) / (𝑖 - 𝑗) [ ∀ ] . ([ ] ] � int) � [ ] ] � [ ] ] � int ]
let slope = _𝑓 : _ � _. _𝑖 :[ ] ]. _ 𝑗 :[ ] ]. (𝑓 𝑖 - 𝑓 𝑗) / (𝑖 - 𝑗) [ ∀ ] . ([ ] ] � int) � [ ] ] � [ ] ] � int ]
let slope = _𝑓 : _ � _. _𝑖 :[_]. _ 𝑗 :[_]. (𝑓 𝑖 - 𝑓 𝑗) / (𝑖 - 𝑗) [ ∀ ] ·^. (int � int) � [ ] ] � [^] � int ]

Figure 5. Different type annotations in the slope example lead to different type schemes.

4.4 Constraint solving
Solving the constraint system aims at extracting from the
set of sub-typing constraints a most general unifier, i.e. a
necessary substitution of the free variables. This is achieved
gradually: (i) types (without refinements) are inferred using
structural unification; (ii) necessary refinements of type int
are selected; (iii) sizes constraints are solved; (iv) refinements
are propagated. Similar stratification has been previously
used for inference in extended type systems [Knowles and
Flanagan 2007; Rondon et al. 2008; Xi and Pfenning 1998].
However these steps are utterly entangled in our proposal:
instead of separating phases across multiple passes, types,
refinements and sizes get partially defined at each solving
point (let), allowing an easier handling of polymorphism
than it would be possible with disconnected inference passes.
To illustrate our overview of the solving process, three

slightly modified version of the slope example used previ-
ously are defined in Figure 5: some annotations are added,
constraining the refinements at different places.

(i) Types. To begin with, refinements are ignored to build
simple types that will be made precise in the subsequent
phases. By replacing every refinements with int, sub-typing
relations are turned into equalities. They are solved using
structural unification, failing in the usual modalities (e.g., top-
level type constructor inequality, cyclic types). It generates a
most general unifier [Milner 1978]. At that point, Each decla-
ration of slope get type (int � int) � int � int � int.

(ii) Refinements. The integer types previously derived
may now be refined: each occurrence of int in the sub-
stitution are replaced by fresh type variables. Sub-typing
constraints are distributed with the S-Fun rule (the usual
variance rule), leading to simple constraints containing vari-
ables and refined types. The ones of the form 𝛼 <: [_],
𝛼 <: <_> and int <: 𝛼 define variable 𝛼 ’s refinement while
the unsolvable constraints such as int <: [_] lead to errors
that are reported to the programmer. Refinements are not
propagated further: this is postponed after size resolution,
since adding refinements may introduce constraints between
sizes that would otherwise be unrelated. Unconstrained vari-
ables get thus substituted with int.
In our example, the first definition of the slope function

get type ([_] � int) � [_] � [_] � int while two others
get (int � int) � [_] � [_] � int.

(iii) Sizes. Then, sub-typing constraints are distributed
again, extracting size equalities, i.e. vanishing polynomials
[1 − [2 = 0 for the constraints of the form <[1> <: <[2> or

[[1] <: [[2]. The resulting polynomial system 𝐶[ is solved,
by deriving a most general substitution:

Definition 4.1 (Most general substitution). Given a con-
straint set 𝐶 , a substitution 𝜌 is most general if and only if
for any substitution 𝜌 ′, such that ⊢ 𝐶{𝜌 ′}, then there exists
a substitution 𝜌 ′′ such that 𝜌 ′ = 𝜌 ◦ 𝜌 ′′.
For now, we have implemented a simple resolution strat-

egy that eliminates isolated variables, i.e. substituting [ for
] when a constraint ] − [ = 0 exists. The resulting substitu-
tion is immediately a most general one. This task could be
delegated to an external solver, but this is unpractical in the
context of safety-critical sofware for certification purposes7.
Moreover, this elementary strategy works for most of the
size constraints we encountered. Adding some annotations
helps for the remaining cases.

Our three versions of slope get respectively types:
1. ([ ] ] � int) � [ ] ] � [ ] ] � int
2. (int � int) � [ ] ] � [ ] ] � int
3. (int � int) � [ ] ] � [^] � int
In particular, ] and ^ sizes are not unified in the last decla-

ration, because sub-typing is at each application.

(iv) Propagation. Last, refinements are propagated. This
aims at making types more accurate. Among the type vari-
ables introduced during refinement inference, the oneswhose
lower bound only contains a unique type []] or <]>, are de-
fined accordingly.

In the third definition, 𝑖 and 𝑗 refinements differ: 𝑓 domain
cannot be refined. Conversely, refinements turns out to be
equal in the second version: they are propagated.

4.5 Inference properties
The expressiveness of L[ size language allows no hope for a
complete inference. Nevertheless, it is sound and we expect
inference to be non-specializing, i.e. that it rejects any terms
with ambiguous semantics.

Theorem 4.2 (Inference soundness). Given an implicitly
typed expression, if inference succeeds, the reconstructed term
is well-typed.

Proof sketch. The detailed proof is available in Appendix C,
alongside a formalization of the inference algorithm. It es-
tablished the following invariant: for each sub-term and a
substitution that solves the constraints gathered by the algo-
rithm, it exists a type derivation for the substituted term, in
the same environment. □
7 Even though the compiler is not embedded, it must fulfill the highest
certification level, hence the need of a certified solver...
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Conjecture 4.3 (Inference non-specialization). Given an
expression 𝑒 , if inference succeeds and produces a closed term
𝑒′, then for any reconstructed term 𝑒′′, 𝑒′ ≡ 𝑒′′.

This proof has not been fully conducted yet. The main dif-
ficulty lies in the handling of let bindings: the constraints set
induced by variable instantiation differ. It remains to show
that these constraints are stronger in an arbitrary reconstruc-
tion that in the inferred one, so that the latter is the most
general.

5 Toward a realistic array language
Our simplistic language L[ provides the basis for an ML-
like language where sizes are handled in a same way than
types, i.e. with polymorphism. This section gives an insight
of some extensions that are necessary for a more realistic
array language.

5.1 Locally abstract sizes
OCaml proposed locally abstract types that allow to declare
types within a scope. These types may not escape their scope,
i.e. no substitution of an no outer free type variable may cap-
ture them. They serve advanced purposes (first-class mod-
ules, GADTs, ...) by introducing type variables that can be
generalized.
Providing a similar mechanism, for both sizes and types,

has a simpler use in our context: local existential quantifi-
cation — let size ] = 𝑒 in 𝑒′. It defines an abstract size
] in 𝑒′, using the value of an arbitrary expression 𝑒 . Such a
mechanism is useful to overcome size language limits.

5.2 Polymorphic recursion
Recursive algorithms on array such as the Fast Fourier Trans-
form calls themselves on sub-arrays whose sizes vary at
each call. Because sizes are part of types, polymorphic re-
cursion is needed. This extension has been extensively stud-
ied [Meertens 1983; Mycroft 1984].

Semantics. While adding recursive declarations requires
few changes on the implementation, it impacts deeply the
formalization: diverging terms now exist, theymust be distin-
guished from blocked ones in L[ big-step semantics. Hope-
fully, the Dagnino et al. [2020] formalizationwas designed for
non-deterministic semantics. By giving a non-deterministic
evaluation of fixpoint (either stopping with an error value
or reducing further), the preservation and soundness results
(subsection 3.3) may be extended.

Inference. As Henglein [1993] showed, polymorphic re-
cursion turns inference into an undecidable problem. We fol-
low the classical approach, by considering fix-pointsmonomor-
phic unless explicitly generalized at declarations.
An extra check is required to ensure that the actual type

of the declaration is indeed as polymorphic as the specified
one, as defined in the subsumption relation in subsection 4.3.

This validates a posteriori that the recursive occurrences of
the introduced variable have been correctly instantiated.

5.3 Explicit coercions
The size language might get too limited, especially when
local existential sizes are used.We provide an explicit coercion
—𝑒 ▶ 𝜏— to spot some size properties that cannot be check
by the type system: expression’s type and 𝜏 ’s sizes must only
have the same structure, allowing for size mismatches.

As mentioned by Jay and Sekanina [1997], coercions may
be checked in various ways: at run-time, with defensive code
or using alternative formal verification tools. In the context
of static sizes, Nielson and Nielson [1988] proposed binding
times, to ensure that coercions (and local existential sizes)
are computable at compiler time.

5.4 Language support for arrays
Arrays deserve special language constructs, both for readabil-
ity and compilation purposes. Besides distinguishing their
types from function’s one, L[ should be extended with ded-
icated syntax for accesses —𝑒[𝑒′]— and array definition —
[𝑒, . . . , 𝑒]—. As far as typing is concerned, these constructs
amount for type constraint insertions, i.e. 𝑒[𝑒′] requires
sub-expressions to have type []]𝛼 and []].
To avoid operator overloading, index manipulations are

provided as a set of first order combinators that transform
arrays’ shape. They provide a safe way to introduce cor-
rect index computation. In addition to the usual transpose,
reverse and concat linear primitives8, the following ones
are added. They are illustrated bellow.

val window : ∀] ·^ ·𝛼. <^> � [] + ^ − 1]𝛼 � []][^]𝛼
val sample : ∀] ·^ ·𝛼. <^> � [] ∗ ^ − ^ + 1]𝛼 � []]𝛼
val splitxx : ∀] ·^ ·𝛼. <^> � [] ∗ ^]𝛼 � []][^]𝛼
val flatten : ∀] ·^ ·𝛼. <^> � []][^]𝛼 � [] ∗ ^]𝛼

let pack = _𝑠. _𝑥 . sample 𝑠 (window <_> 𝑥)
[ ∀] ·^ ·𝛿 ·𝛼. <𝛿> � [] ∗ 𝛿 − 𝛿 + ^]𝛼 � []][^]𝛼 ]

0 1 2 3 4 5 6 7 8 9 10 11

0 1 2 3
1 2 3 4

2 3 4 5
3 4 5 6

4 5 6 7
5 6 7 8

6 7 8 9
7 8 9 10

8 9 10 11

window

pack

window

0 1 2 3

4 5 6 7

8 9 10 11

0 1 2 3
4 5 6 7
8 9 10 11sample

split

flatten

The window function (see section 2) builds a matrix whose
rows are slices of the input array. The sample function ex-
tracts one element out of every ^ , selecting both ends of the
8 With the iterators, these are the available array functions in Scade.
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array. The size of the input array must thus by a multiple of ^
plus 1. Composing these functions defines a general sampling
operator pack. It selects ] slices of size ^ that are uniformly
distributed and cover both ends of the input array, whose
size is obtained by considering a sampling step 𝛿 . Note that
the size argument of sample and pack are necessary since
the associated variable might not be deduced from array size
(because of non linear sizes). Although redundant, the split
primitive carries a extra information: it defines a bijection
between arrays. Defining filters or convolutions requires
such building blocks (see section 2). Here is an example of
pack application:

pack <2> (_𝑖 :[7]. 𝑖) ⊲ [3][3]int {
[

0 1 2
2 3 4
4 5 6

]

5.5 Implicit size parameters
Our proposal allows to infer any size. However, functions’
arguments of type <[> might not be syntactically omitted:
an explicit size value expression with an unspecified size
—<_>— must at least be provided.

To make these arguments fully implicit, some syntactical
restrictions are needed, so as to determine the places where
such unspecified size values should be inserted. For instance,
providing n-ary size abstraction —_<]1, . . ., ]𝑛>. 𝑒— and appli-
cation —𝑒 <]1, . . ., ]𝑛>— without curryfication makes possible
to infer missing applications from simple type skeletons.

6 Purposes of sized types
The size information has several usages, both for program
verification and compilation. Carrying it through types re-
veals practical in our ongoing experimentation.

6.1 Verification
As mentioned in section 2, array combinators turn bound
checking into size consistency (e.g., map2 arguments must
have the same size). Our type system precisely ensures this
property. For decidability purposes, the type system only
handles size equalities. In particular, it does not ensure that
size are positive. In this context, array safety is based on the
emptiness of type [[] when [ is negative or null: none of
the language’s primitives deliver indexes of negative size.
Thinking of array combinators as pure index computa-

tions, as we breifly discuss about below, linear array primi-
tives (concat, reverse, window, ...) as well as index produc-
ers (mapi, the modulo), are indeed safe, but Pandora’s box
opens when providing non-linear primitives: the use of a
negative step ^ in sample would allow to build an array of
positive (thus nonempty) size from a negatively sized one,
hence introducing faulty accesses.

To rule out these hazardous uses, constraints must be
added to type schemes. The split primitive is restricted to
strictly positive steps9 with the type:

val sample : ∀] ·^ ·𝛼. <^> � [] ∗ ^ − ^ + 1]𝛼 � []]𝛼 where ^ >0

These constraints are ignored by the inference. They are
checked either symbolically or at final instantiation, where
they become trivial relations on integer values. 10

6.2 Compilation
Conveying sizes into types is useful for compilation pur-
poses. In particular, the declarative style favors definitions
of complex data by pieces that are aggregated (e.g., using
array concatenation). To avoid extra memory consumption
and data moves, the placement of each part must be care-
fully chosen. This is for example the role of the built-in-place
optimization designed by Gaudiot et al. [1997] for Sisal. For
arrays, it strongly relies on size information.

Iterator fusion. Complex transformations are expressed
by composing extensional primitives that produce intermedi-
ate arrays. Fusing these atomic operations is an indispensable
compilation pass for functional array languages that target
efficient software. In some of them [Steuwer et al. 2015; ?],
this is achieved by using a set of rewrite rules with the draw-
back of requiring new rules for additional primitives or some
fallback mechanism.

Other proposals such asObsidian [Claessen et al. 2012] or
Dex [Paszke et al. 2021] rely on the array-function analogy
to provide forms that compose arbitrarily. We experiment a
similar approach, restricted to array combinators by repre-
senting them in a uniform way: functions that map indexes.
For instance, reversing an array of size [ is described by the
function 𝑥 ∈ [[] ↦→ <[ − 1> - 𝑥 ∈ [[], which captures the
size. During code generation, these index functions induce
computed array accesses that are correct by construction.

Unchecked accesses. Currently in Scade [Colaço et al.
2017], every dynamic array accesses are guarded, by provid-
ing a default value in the event that the index is out of bound.
For accesses where bounds are actually met, such as the iter-
ator mapi (point wise application with index), this generates
dead code and an extra branching. The index refinement
allows to decouple array access from bound verification: a
value of type [[] may be used in several places without any
dynamic check that it is indeed within bounds.

7 Discussion and Related works
The definition of a typed functional language with array op-
erations offers several design choices that must be assessed.
9 A zero step could make sense here, by accessing the single value of an
array (of size 1), but this stricter version enjoys an extra property: it is
injective, which gives additional compilation perspectives.
10Similar constraints on type variables are already used in Scade, as shown
in the linear algebra examples of section 7
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How expressive are the language and its type system; how
difficult and modular are type checking and type reconstruc-
tion; what about the verbosity of the code; what is diagnosis
like in case of errors?
The motivation of the present work is the extension of

the domain-specific functional and synchronous language
Scade [Colaço et al. 2017] that is used for implementing
real-time embedded software. Scade stand out from general
purpose functional language by being first-order with a pre-
defined set of higher-order operators on arrays, extending
a proposal for Lustre Maraninchi and Morel [2004]). The
expressiveness of the language is purposely limited in order
to ensure safety properties (e.g., memory and execution time
are bounded and known statically). Moreover, applications
in Scade are almost exclusively developed graphically by
connecting blocks in diagrams so that annotating elements
(wires and blocks) with explicit types is rapidly cumbersome,
in particular when size expressions get larger. Neither type
nor size inference are currently available in Scade.
Hence, we aim at relaxing some constraints of Scade

for writing array operations while keeping the same safety
guarantees. The current version of the language limits the
manipulation of array through a set of array iterators (e.g.,
map, fold, and a few others. Scade does not provide any size
or type inference, nor extensional definitions as proposed in
the present paper. For example, the matrix product given in
Figure 4 is written in Scade in the following way.

-- Scalar product of two vectors: u(n) · v(n)
function dot «n» (u, v: ’Tˆn)
returns (w:’T) where ’T numeric

w = (fold $+$ «n») (0, (map $*$ «n») (u, v));

-- Product of a matrix by a vector: A(m,n) * u(n)
function mat_vec «m, n» (A : ’Tˆmˆn; u : ’Tˆn)
returns (w: ’Tˆm) where ’T numeric

w = (map (dot «n») «m») (transpose (A; 1; 2), uˆm);

-- Matrix product: A(m,n) * B(n,p)
function mat_mat <<m, n, p>> (A : ’Tˆmˆn; B : ’Tˆnˆp)
returns (C:’Tˆmˆp) where ’T numeric

C = (map (mat_vec «m, n») «p») (Aˆp, B);

Here, sizes need to be expressed both in types and in-
stantiations of array iterators and functions. The proposi-
tion presented in the paper increases significantly what it is
possible to express with the current version of Scade with
lighter-weight notations for both definitions and interfaces.

We hope this proposition to be applicable in a wider con-
text than the one of Scade. Actually, this polymorphism
approach deals with features that are not available with
Scade such as higher-order and recursion.

Modularity. Circuit design languages such as Lava [Bjesse
et al. 1998] and Wired [Axelsson et al. 2005] extensively

use arrays. Because of their target, programs are fully ex-
panded before size checking. This allows using arbitrary
(static) expressions in sizes that are evaluated at compile
time to ensure correct array use. The same approach is used
for Halide [Ragan-Kelley et al. 2013], that produces GPU
kernels: functions are compiled and optimized once sizes
have been given concrete values.
For safety critical embedded software, sizes are also stat-

ically fixed, but both checking and compilation gain from
modularity, e.g., by allowing easier definition of libraries, or
in a view to produce modular code. For error tracking, this
type system allows to spot defects of polymorphic definitions
before their use in a monomorphic context.

However, since sizes are static, we do not restrict our lan-
guage to the formally type-provable programs. We provide
coercions as a fallback mechanism for remaining checks to
be performed after specialization.

A rudimentary system of refined types. Our proposal
uses a very restricted form of refinement types, by providing
only singleton (<[>) and interval ([[]) refinements, with-
out sub-typing between them. This is a key for both type
checking and inference.

The general theory of dependent types worked out by Xi
and Pfenning [1999] allows to express arbitrary predicates in
type systems. However, this has a cost: type checking is un-
decidable in general, mainly because sub-typing amounts to
proof obligations of predicate implication. These authors also
delineated in [Xi and Pfenning 1998] some restrictions for
arrays size checking. Trojahner and Grelck [2009] extended a
similar type system to provide dependently typed rank poly-
morphism. Both works extract sets of arithmetic constraints
that are resolved with an external procedure (SMT solvers).
Besides requiring heavy machinery for type checking at the
risk of opaque errors, size relations are mainly limited to lin-
ear expressions, for the constraint system to be solvable. To
lift this reductions, _𝐻 proposes hybrid type checking [Flana-
gan 2006], a system of refinement types that allows deferring
unprovable implications to run time. Our proposal resembles,
using static evaluation to eliminate remaining checks.
Inference in extended type systems has been studied in

the context of _𝐻 [Knowles and Flanagan 2007] and Liqid
Types [Rondon et al. 2008]. Both approaches are similar to
ours: after collecting the set of sub-typing constraints, a most
general solution is extracted (using external tools such as
SMT solvers).

Explicit proof obligations (coercions). Unless limiting
type refinements to simple expressions (linear), some escape
mechanism is needed for the terms that cannot be checked
by the type systems. In _𝐻 [Flanagan 2006] and SaC [Tang
and Grelck 2012] such coercions are ubiquitous, although
implicit: they are systematically inserted at function applica-
tions, generating checks that are eliminated at compile time
if possible.
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In the restricted context of arrays, far less coercions are
needed that in the general setting. Thus, we follow the
approach of Futhark [Henriksen and Elsman 2021] and
Dex [Paszke et al. 2021] (coercions occur at fromOrdinal
calls): every possibly failing coercion is explicit. This strength-
ens the guarantees provided by typing: coercion errors may
occur only at explicitly marked points of the program.
Jay and Sekanina [1997] mention several ways to check

shape constraints, that apply for our coercions: defensive
run-time code generation, static checking with advanced
formal methods or partial evaluation at compile time.

A separated size language. Our sizes are syntactically
distinguished from general expressions. This matters for
cross-compilation (which is common for embedded applica-
tions), because sizes are symbolicallymanipulated at compile-
time i.e. on the development host, whereas integer values
must be represented on the targeted device with machine
(finite) integers that are submitted to overflows. Converting
sizes into machine integer is thus non-trivial: then compiler
must ensures size’s value is actually representable within
the concrete type.
A similar size language was proposed by Hughes et al.

[1996], so as to bound the size of recursive data-types. Thanks
to a distinct language, unbounded integers are extended with
their limit 𝜔 , to represent data of arbitrary size.
The Vec language of Jay and Sekanina [1997] follows a

different path, by enforcing size expressions (a subset of ex-
pressions of the language) to be independent of data that
come with dedicated typing rules. This results in an analo-
gous restrictions: sizes are static.

Comparison to Futhark and Dex. The Futhark [Els-
man et al. 2019] andDex [Paszke et al. 2021] languages shares
strong similarities with this work. The founding principle
seems similar: most array sizes should be controlled in some
inexpensive ways, without trying to fully check arrays, at the
risk of limiting language expressiveness. Instead of proving
predicates, these type systems keep track of values’ proper-
ties (bounds), allowing to decouple their verification, either
static (argument assumptions) or dynamic (coercions) and
their uses (array accesses). This finer control also benefits
the compilation by helping to rule out redundant checks.
The main difference between these works lies in the size

language. Rather than limiting size to constants or variables,
polynomial sizes extend type system expressiveness: neither
concat nor reshapemay be given a satisfactory type inDex
or Futhark. Despite the lose of completeness for inference,
we think this extension of the size language useful because
it stays easily checkable.

Polymorphism or dependent types? Separating the size
language has a direct consequence: notions of scopes, ab-
stractions and applications are needed to express terms that
are generic in sizes. Because they are not terms, dependent

types are inadequate here. Following Hughes et al. [1996], we
handle similarly sizes and types (let generalization), which
is consistent, at least in the context of static sizes.

The dimension type system proposed by Kennedy [1994]
also resembles ours: polymorphism over dimensions is con-
sidered. Its inference enjoys principal types, since the di-
mension language is simpler: it is equipped with a single
operation, the product, that is both associative and commu-
tative. However, some difficulties still echo to ours: most
general types are not unique and polymorphic recursion
seems rapidly necessary.

Even Futhark, whose type system uses dependent types,
shares strong similarities: its normalized form [Henriksen
and Elsman 2021] is obtained by adding let bindings so as to
name and scope existentially quantified size variables.
Moreover, size polymorphism may express dynamically

sized data-structure. First class polymorphism, as presented
by Jones [1997]; Jones et al. [2007], allows data with quan-
tified types (either in size or type, existentially or univer-
sally). It relies heavily on the local quantification sketched
in section 5. Dynamic arrays could be encoded as a pair
DynArr:∃]. <]> ∗ []]𝛼 � 𝛼 dArray where ] is existentially
quantified, while still locally relying on inference to complete
redundant sizes.

8 Conclusion and Perspectives
This article have presented an ML-like type system which
adds a size information into types: genericity on sizes is
expressed through polymorphism. The size language, made
of multivariate polynomials, allows to express a large class
of array manipulations, while being easily checked.

Our proposal is not restricted to safety critical languages
like Scade: it may provide the key elements to track array
sizes in a functional language, and to highlight the parts that
cannot be checked with a simple ML-like type system. This
information is valuable for both checking and compilation
steps, in particular to reduce the need for defensive code.
Besides assessing the compatibility of this type system

with temporal constructs of synchronous languages, the effi-
cient compilation of the proposed array manipulations (array
iterators, recursion on size) in the context of safety critical
software will be studied next. In particular, targeting de-
vices that are used for intensive computation such as GPUs
remains an open question for such applications.
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A Type independence for the semantics
We recall here the formalization given in subsection 3.2.

Definition 3.1 (Observational equivalence). Two closed expressions 𝑒1 and 𝑒2, are observationally equivalent —𝑒1 ≡ 𝑒2— if and
only if, for any closed expressions 𝑎1, . . . , 𝑎𝑘 and integers 𝑛1, 𝑛2:{

𝑒1 𝑎1 . . . 𝑎𝑘 { 𝑛1
𝑒2 𝑎1 . . . 𝑎𝑘 { 𝑛2

=⇒ 𝑛1 = 𝑛2

Definition 3.2 (Equality modulo types). Two expressions 𝑒1 and 𝑒2 are equal modulo types —𝑒1 ≈𝜏 𝑒2— if and only if it exists
an expression 𝑒 , free type variables 𝛼 of 𝑒 and types 𝜏1, 𝜏2 such that:

𝑒1 = 𝑒{𝜏1/𝛼} ∧ 𝑒2 = 𝑒{𝜏2/𝛼}

Lemma A.1. Preservation by substitution Given expressions 𝑒1, 𝑒2, term variable 𝑥 and expressions 𝑒′1, 𝑒
′
2, then{

𝑒1 ≈𝜏 𝑒2
𝑒′1 ≈𝜏 𝑒

′
2

=⇒ 𝑒1{𝑒′1/𝑥} ≈𝜏 𝑒2{𝑒′2/𝑥}

Theorem 3.3 (Type independence). Given two closed terms 𝑒1, 𝑒2 such that 𝑒1 ≈𝜏 𝑒2, then

∀ 𝑣1 𝑣2,
{
𝑒1 { 𝑣1
𝑒2 { 𝑣2

=⇒ 𝑣1 ≈𝜏 𝑣2

Proof. Let 𝑒1, 𝑒2 and 𝑣1, 𝑣2 such that 𝑒1 ≈𝜏 𝑒2, 𝑒1 { 𝑣1 and 𝑒2 { 𝑣2 Let examine the rules of expression semantics to check that
the above invariant holds.

E-Size Since types only may differ, 𝑒1 ≈𝜏 𝑒2 =⇒ 𝑒1 = <𝑛> = 𝑒2 =⇒ 𝑣1 = 𝑛 = 𝑣2 =⇒ 𝑣1 ≈𝜏 𝑣2
E-App Applying induction hypothesis on the two first premises, and the substitution lemma for the last one gives the

equality modulo type of resulting values.
E-Coerce idem

E-Let We have: 𝑒1 = let 𝑥𝑽 1 : 𝜏1 = 𝑒1 in 𝑒′1 and 𝑒2 = let 𝑥𝑽 2 : 𝜏2 = 𝑒2 in 𝑒′2. It follows that 𝑒
′
1 ≈𝜏 𝑒′2 and

𝑒1 ⊲ 𝜏1 ≈𝜏 𝑒2 ⊲ 𝜏2. By the substitution lemma, the premise yields equal modulo type values.
It remains to prove that coercions of equal modulo types values and possibly different types yields equal modulo types values.
This is established by examining value’s shape:

𝑛 For both coercions, one of C-Size, C-Index or C-Int applies. Each of them produces the same result: the original
value. Thus results are equal modulo types.

_𝑥 :𝜏 . 𝑒 Coercions are reduced with C-Fun rule, thus both types have the form · � ·. The produced abstractions are
immediately equal modulo types. □

Remark. This result could be extended to expressions whose type polymorphism differ, i.e. in which generalization lists 𝑽 do
not contains the same type variables.

B Properties of type system
In presence of recursion, the correction proof of a type system toward a big step semantics cannot be derived from usual
progress and type preservation properties of the reduction, as done for small step semantics, because blocked and diverging
terms are undistinguishable. However, a general analysis of big step semantics for soundness conditions [Dagnino et al. 2020]
provides a few similar properties to check in order to verify soundness. Because of non-deterministic semantics, two kinds of
corrections are distinguished:

• Soundness-must: None of possible reduction is blocked
• Soundness-may: At least one of possible reduction is not blocked

A mechanized derivation of these global properties (soundness-must in out setting) from local ones was proposed by
Dagnino et al. [2020]. They follow from usual properties on the type system that we detail first.

B.1 Normalization and preliminary lemmas
Definition B.1 (Normalized typing derivation). A typing derivation Γ ⊢ 𝑒 : 𝜏 is normalized if the instances of rule T-SubType
appear in one of the following position:
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Bottom most rule First premise of applications

T-SubType
𝑇 𝑆

Γ ⊢ 𝑒 : 𝜏
T-App

T-SubType
𝑇1 𝑆

Γ ⊢ 𝑒1 : 𝜏 ′2 � 𝜏 ′
𝑇2

Γ ⊢ 𝑒2 : 𝜏 ′′

Γ ⊢ 𝑒1 𝑒2 : 𝜏 ′
Coercions First premise of declarations

T-Coerce
T-SubType

𝑇 𝑆

Γ ⊢ 𝑒 : 𝜏 ′

Γ ⊢ 𝑒 ⊲ 𝜏 ′ : 𝜏
T-Let

T-SubType
𝑇 𝑆

Γ, 𝑽 ⊢ 𝑒 : 𝜏
𝑇2

Γ, 𝑥 :∀𝑽 . 𝜏 ⊢ 𝑒′ : 𝜏 ′

Γ ⊢ let 𝑥𝑽 :𝜏 = 𝑒 in 𝑒′ : 𝜏 ′

Definition B.2. Given 𝜏, 𝜏1, 𝜏2 types and 𝑆1, 𝑆2 derivations of the sub-typing relations 𝜏1 <: 𝜏 and 𝜏 <: 𝜏2, 𝑆1 ⋉𝜏 𝑆2 is the
following sub-typing derivation of 𝜏1 <: 𝜏2, regarding 𝜏 shape:

• 𝜏 = int — Then 𝑆2 is Refl
int <: int

and 𝜏 = 𝜏2. The derivation 𝑆1 ⋉𝜏 𝑆2 is defined as 𝑆1.

• 𝜏 = <[> — Then 𝑆1 is Refl
<[> <: <[>

and 𝜏 = 𝜏1. The derivation 𝑆1 ⋉𝜏 𝑆2 is defined as 𝑆2.

• 𝜏 = [[] — Then 𝑆1 is Refl
[[] <: [[]

and 𝜏 = 𝜏1. The derivation 𝑆1 ⋉𝜏 𝑆2 is defined as 𝑆2.

• 𝜏 = 𝜏𝑑 � 𝜏𝑐 — Then 𝜏1 = 𝜏𝑑1 � 𝜏𝑐1 , 𝑆1 is Fun

𝑆𝑑1

𝜏𝑑 <: 𝜏𝑑1

𝑆𝑐1

𝜏𝑐1 <: 𝜏𝑐

𝜏𝑑1 � 𝜏𝑐1 <: 𝜏𝑑 � 𝜏𝑐
, 𝜏2 = 𝜏𝑑2 � 𝜏𝑐2 , 𝑆2 is Fun

𝑆𝑑2

𝜏𝑑2 <: 𝜏𝑑
𝑆𝑐2

𝜏𝑐 <: 𝜏𝑐2
𝜏𝑑 � 𝜏𝑐 <: 𝜏𝑑2 � 𝜏𝑐2

.

The derivation 𝑆1 ⋉𝜏 𝑆2 is defined as Fun

𝑆𝑑1 ⋉𝜏𝑑 𝑆
𝑑
2

𝜏𝑑2 <: 𝜏𝑑
𝑆𝑐1 ⋉𝜏𝑐 𝑆

𝑐
2

𝜏𝑐 <: 𝜏𝑐2
𝜏𝑑1 � 𝜏𝑐1 <: 𝜏𝑑2 � 𝜏𝑐2

.

Corollary B.3. The sub-typing relation <: is transitive.

Theorem B.4 (Normalization of typing derivation). If there exists typing derivation, there exists a normalized typing derivation.

Proof. Typing derivations are normalized using the following rewrite rules:

SubType

SubType

𝑃

Γ ⊢ 𝑒 : 𝜏2

𝑆2

𝜏2 <: 𝜏1
Γ ⊢ 𝑒 : 𝜏1

𝑆1

𝜏1 <: 𝜏

Γ ⊢ 𝑒 : 𝜏
T-SubType

App

𝑇1

Γ ⊢ 𝑒1 : 𝜏 ′2 � 𝜏 ′
T-SubType

𝑇2

Γ ⊢ 𝑒2 : 𝜏2

𝑆2

𝜏2 <: 𝜏 ′2
Γ ⊢ 𝑒2 : 𝜏 ′′

Γ ⊢ 𝑒1 𝑒2 : 𝜏 ′
𝑆1

𝜏 ′ <: 𝜏

Γ ⊢ 𝑒1 𝑒2 : 𝜏
↓ ↓

SubType

𝑃

Γ ⊢ 𝑒 : 𝜏2

𝑆1 ⋉𝜏1 𝑆2

𝜏2 <: 𝜏

Γ ⊢ 𝑒 : 𝜏
T-App

T-SubType

𝑇1

Γ ⊢ 𝑒1 : 𝜏 ′2 � 𝜏 ′
S-Fun

𝑆2

𝜏2 <: 𝜏 ′2

𝑆1

𝜏 ′ <: 𝜏

𝜏 ′2 � 𝜏 ′ <: 𝜏2 � 𝜏

Γ ⊢ 𝑒1 : 𝜏2 � 𝜏

𝑇2

Γ ⊢ 𝑒2 : 𝜏2
Γ ⊢ 𝑒1 𝑒2 : 𝜏

T-Abs

T-SubType

𝑇

Γ, 𝑥 :𝜏 ⊢ 𝑒 : 𝜏 ′1

𝑆

𝜏 ′1 <: 𝜏1
Γ, 𝑥 :𝜏 ⊢ 𝑒 : 𝜏1

Γ ⊢ _𝑥 :𝜏 . 𝑒 : 𝜏 � 𝜏1
T-Let

𝑇1

Γ, 𝑽 ⊢ 𝑒 : 𝜏
T-SubType

𝑇2

Γ, 𝑥 :∀𝑽 . 𝜏 ⊢ 𝑒′ : 𝜏 ′1

𝑆

𝜏 ′1 <: 𝜏1
Γ, 𝑥 :∀𝑽 . 𝜏 ⊢ 𝑒′ : 𝜏1

Γ ⊢ let 𝑥𝑽 :𝜏 = 𝑒 in 𝑒′ : 𝜏1
↓ ↓

T-SubType

T-Abs

𝑇

Γ, 𝑥 :𝜏 ⊢ 𝑒 : 𝜏 ′1
Γ ⊢ _𝑥 :𝜏 . 𝑒 : 𝜏 � 𝜏 ′1

S-Fun

S-Refl
𝜏 <: 𝜏

𝑆

𝜏 ′1 <: 𝜏1
𝜏 � 𝜏 ′1 <: 𝜏 � 𝜏1

Γ ⊢ _𝑥 :𝜏 . 𝑒 : 𝜏 � 𝜏1
T-SubType

T-Let

𝑇1

Γ, 𝑽 ⊢ 𝑒 : 𝜏

𝑇2

Γ, 𝑥 :∀𝑽 . 𝜏 ⊢ 𝑒′ : 𝜏 ′1
Γ ⊢ let 𝑥𝑽 :𝜏 = 𝑒 in 𝑒′ : 𝜏 ′1

𝑆

𝜏 ′1 <: 𝜏1
Γ ⊢ let 𝑥𝑽 :𝜏 = 𝑒 in 𝑒′ : 𝜏1
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This rewrite system terminates since instances of the rule T-SubType are either pushed downward or introduced in a normalized
position. Moreover, any non-normalized positions for T-SubType rule reduces with one of the above rewrite rules. □

Lemma B.5 (Inversion). Let Γ, 𝑒, 𝜏 such that Γ ⊢ 𝑒 : 𝜏
1. If 𝑒 = 𝑺𝑥 , then Γ(𝑥) = ∀𝑽 . 𝜏 ′ and 𝜏 ′{𝑺/𝑽 } <: 𝜏
2. If 𝑒 = 𝑒1 𝑒2, then there exists 𝜏 ′ such that Γ, 𝑥 :∀Y. 𝜏 ⊢ 𝑒2 : 𝜏 ′ � 𝜏 and Γ, 𝑥 :∀Y. 𝜏 ⊢ 𝑒1 : 𝜏 ′
3. If 𝑒 = _𝑥 :𝜏 . 𝑒′, then 𝜏 = 𝜏1 � 𝜏2 et Γ, 𝑥 :∀Y. 𝜏1 ⊢ 𝑒′ : 𝜏2
4. If 𝑒 = 𝑛, then 𝜏 = int
5. If 𝑒 = <[>, then <[> <: 𝜏
6. If 𝑒 = 𝑒 ⊲ 𝜏 ′, then 𝜏 ′ <: 𝜏 and Γ ⊢ 𝑒 : 𝜏 ′
7. If 𝑒 = let 𝑥𝑽 :𝜏 ′ = 𝑒1 in 𝑒2, then Γ, 𝑽 ⊢ 𝑒1 : 𝜏 ′ and Γ, 𝑥 :∀𝑽 . 𝜏 ′ ⊢ 𝑒2 : 𝜏

Proof. Case-based reasoning on expression shape and analysis of applicable rules. □

Lemma B.6 (Substitution). The type of an expression is preserved by well-typed substitution:

Γ, 𝑥 :∀𝑽 . 𝜏 ′ ⊢ 𝑒 : 𝜏
Γ, 𝑽 ⊢ 𝑒′ : 𝜏 ′′

𝜏 ′ <: 𝜏 ′′

 =⇒ Γ ⊢ 𝑒{𝑒′{𝑺/𝑽 }/𝑺𝑥} : 𝜏

Proof. A finite derivation tree of Γ ⊢ 𝑒{𝑒′/𝑥} : 𝜏 is obtained by substituting in a finite derivation of Γ, 𝑥 :∀𝑽 . 𝜏 ′ ⊢ 𝑒 : 𝜏 every
occurrence of rule Var (in finite number) by a derivation of Γ ⊢ 𝑒′ : 𝜏 ′′ (also finite) and an instance of SubType rule. Cares is
required with environment that are distinct for each occurrence (they might be extended). This lemma is valid because we
considered only name resolved terms such that no clashes occur. Thus, typing is preserved by extension of the environment
since added variables are fresh and may not mask existing ones. □

Lemma B.7 (Canonical form). Given a type 𝜏 , {|𝜏 |} denotes {𝑣 ∈ V| ⊢ 𝑣 : 𝜏}. Then,
{|int|} = {𝑛 | 𝑛 ∈ Z}
{|· � ·|} = {_· : ·. ·}

Proof. Case-based analysis on value’s shape. □

B.2 Soundness sufficient conditions
To prove soundness and preservation of a type system toward a big-step semantics, Dagnino et al. [2020] proposed a general
reduction to three local properties. These sufficient conditions only require rule examination, while the induction is conducted
by the generic construction. To help presenting them, we borrow the proposed syntax of inline format for instances of rules:

(𝑒1 { 𝑣1, . . . , 𝑒𝑛 { 𝑣𝑛, 𝑒𝑛+1 { 𝑣𝑛+1, 𝑒)
𝑑𝑒𝑓
=
𝑒1 { 𝑣1 . . . 𝑒𝑛 { 𝑣𝑛 𝑒𝑛+1 { 𝑣𝑛+1

𝑒 { 𝑣𝑛+1

The 𝑒1 { 𝑣1, . . . , 𝑒𝑛 { 𝑣𝑛 are rule’s premises and 𝑒𝑛+1 { 𝑣𝑛+1 is the continuation, that produces the result of rule instance. For
rules with no natural continuation, a trivial one is inserted: 𝑣𝑛+1 { 𝑣𝑛+1.

Lemma B.8 ((S1) Local Preservation). For any instance (𝑒1 { 𝑣1, . . . , 𝑒𝑛 { 𝑣𝑛, 𝑒𝑛+1 { 𝑣𝑛+1, 𝑒), such that ⊢ 𝑒 : 𝜏 , there exists
𝜏1, . . . , 𝜏𝑛+1 with 𝜏𝑛+1 = 𝜏 such that :

∀𝑘 ∈ [[1, 𝑛 + 1]], (∀ℎ ∈ [[1, 𝑘 − 1]], ⊢ 𝑣ℎ : 𝜏ℎ) =⇒ ⊢ 𝑒𝑘 : 𝜏𝑘

Proof. Case-base reasoning on instances de semantics rules, using extensively the inversion lemma:
E-Size 𝑒 = <𝑛> — There is only the continuation 𝑛 { 𝑛 that verifies ⊢ 𝑛 : int
E-App 𝑒 = 𝑒1 𝑒2 — Lets assumes there exists 𝜏 such that ⊢ 𝑒 : 𝜏 .

By inversion lemma (2), there exists 𝜏 ′ such that ⊢ 𝑒1 : 𝜏 � 𝜏 ′ and ⊢ 𝑒2 : 𝜏 Lets find the right type for each
premises:
– 𝑒1 { _𝑥 :𝜏 . 𝑒 — Immediately, ⊢ 𝑒1 : 𝜏 � 𝜏 ′

– 𝑒2 ⊲ 𝜏 { 𝑣 — Immediately, ⊢ 𝑒2 ⊲ 𝜏 : 𝜏
– 𝑒{𝑣/𝑥} { 𝑣 ′ — By hypothesis, ⊢ _𝑥 :𝜏 . 𝑒 : 𝜏 � 𝜏 ′. The inversion lemma (3) gives 𝑥 :∀Y. 𝜏 ⊢ 𝑒 : 𝜏 ′ allowing to
conclude with substitution lemma: ⊢ 𝑒{𝑣/𝑥} : 𝜏 ′

E-Coerce 𝑒 = 𝑒′ ⊲ 𝜏 ′ — By inversion lemma (7), there exists 𝜏 ′ such that ⊢ 𝑒 : 𝜏 ′′ and 𝜏 ′ <: 𝜏 .
– 𝑒 { 𝑣 — Immediately, ⊢ 𝑒 : 𝜏 ′′
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Expression Inference Γ ⊢ 𝑒 : 𝜏 ⊣ U

I-Var
Γ (𝑥 ) = ∀𝑽 . 𝜏 𝑺 = 𝐹𝑟𝑒𝑠ℎ (𝑽 ) Γ ⊢ 𝑺 ⊣ U

Γ ⊢ 𝑙𝑥 : 𝜏 {𝑺/𝑽 } ⊣ U · {𝑙 ↦→ 𝑺 }
I-Size

Γ ⊢ [ ⊣ U
Γ ⊢ <[> : <[> ⊣ U I-Int

Γ ⊢ 𝑛 : int ⊣ {} I-Coerce
Γ ⊢ (𝑒 : 𝜏 ) ⊣ U

Γ ⊢ 𝑒 ⊲ 𝜏 : 𝜏 ⊣ U ·U𝜏

I-Abs
Γ ⊢ 𝜏 ⊣ U𝜏 Γ, 𝑥 :∀Y. 𝜏 ⊢ 𝑒 : 𝜏 ′ ⊣ U

Γ ⊢ _𝑥 :𝜏 . 𝑒 : 𝜏 � 𝜏 ′ ⊣ U𝜏 ·U
I-App

Γ ⊢ 𝑒′ : 𝜏 ′ ⊣ U′ Γ ⊢ (𝑒 : 𝜏 ′ � 𝛼 ) ⊣ U
Γ ⊢ 𝑒 𝑒′ : 𝛼 ⊣ U ·U′ I-Let

Γ ⊢ 𝑑 ⇒ 𝑥 : 𝜎 ⊣ U Γ, 𝑥 :𝜎 ⊢ 𝑒′ : 𝜏 ′ ⊣ U′

Γ ⊢ let 𝑑 in 𝑒 : 𝜏 ′ ⊣ U ·U′

Declaration Inference Γ ⊢ 𝑑 ⇒ 𝑥 : 𝜎 ⊣ U

I-Decl
Γ ⊢ (𝑒 : 𝜏 ) ⊣ (𝑉 ,𝐶, 𝜋, 𝜌 ) 𝜌 ′ = 𝑆𝑜𝑙𝑣𝑒 (𝑉 ,𝐶 )

𝑉 ′ = 𝐺𝑒𝑛 (𝑉 ,𝐶, 𝜌 ′ )
Γ ⊢ 𝑥𝑙 :𝜏 = 𝑒 ⇒ 𝑥 : ∀𝑽 ′ . 𝜏 {𝜌 ′ } ⊣ (∅,𝐶 {𝜌 ′ }, 𝜋 · {𝑙 → 𝑉 ′ }, 𝜌 ◦ 𝜌 ′ )

Constraint Insertion Γ ⊢ (𝑒 : 𝜏 ) ⊣ U

I-Cstr
Γ ⊢ 𝑒 : 𝜏 ′ ⊣ U Γ ⊢ 𝜏 ⊣ U𝜏

Γ ⊢ (𝑒 : 𝜏 ) ⊣ U ·U𝜏 · {𝜏 ′ <: 𝜏 }

Figure 6. The inference algorithm. The function —Γ ⊢ 𝑺 ⊣ U— registers free size and type variables (the ones that are unbound
in Γ) of instantiation list 𝑺 . The function —Γ ⊢ (𝑒 : 𝜏) ⊣ U— where expression and type are bracketed combines expression
inference, type’s free variables registering and sub-typing constraint insertion.

– 𝑣 ⊲ 𝜏 ′ { 𝑣 ′ — Immediately, ⊢ 𝑣 ⊲ 𝜏 ′ : 𝜏 ′
E-Let 𝑒 = let 𝑥𝑽 :𝜏 ′ = 𝑒1 in 𝑒2 — Combined used of inversion lemma and substitution one.

□

Lemma B.9 ((S2) ∃-progress). For any 𝑒 ∉ V , if there exists 𝜏 such that ⊢ 𝑒 : 𝜏 , then there exists a rule instance of the form
( 𝑗1, . . . , 𝑗𝑛, 𝑗𝑛+1, 𝑒)

Proof. Trivial case-based reasoning on expression shape. □

Lemma B.10 ((S3) ∀-progress). For any rule instance (𝑒1 { 𝑣1, . . . , 𝑒𝑛 { 𝑣𝑛, 𝑒𝑛+1 { 𝑣𝑛+1, 𝑒), assuming there exists 𝜏 such that
⊢ 𝑒 : 𝜏 , then, for any 𝑘 ∈ [[1, 𝑛 + 1]],

assuming for any ℎ < 𝑘 , 𝑒ℎ { 𝑣ℎ and 𝑒𝑘 { 𝑣 ,
then there exists a rule instance ( 𝑗 ′1, . . . , 𝑗 ′𝑛′ , 𝑗𝑛′+1, 𝑒′) such that

∀ℎ < 𝑘, 𝑗 ′
ℎ
= 𝑗ℎ , 𝑒′ = 𝑒 , et 𝑗𝑘 = 𝑒′′ { 𝑣

Intuitively, it amounts to check that the evaluation of sub-expressions gives results that fulfill their use (the expected form
of value).

Proof. Case-based analysis on semantics rule instances.
• E-App — By typing, (rule T-App), ⊢ 𝑒1 : 𝜏1 � 𝜏2. Thus the canonical form lemma gives 𝑒1 { _𝑥 :𝜏 . 𝑒 The rule E-App can
be instantiated. The continuation may be freely instantiated.

• Other rules do not constrain the result of evaluation of their sub-expressions, thus fulfilling the property.
□

Theorem B.11. As proved in [Dagnino et al. 2020] the three properties allow to deduce Theorem 3.5 and Theorem 3.6:

(𝑆1) =⇒ (Type preservation)
(𝑆1) + (𝑆2) + (𝑆3) =⇒ (Type soundness)

C Inference properties
C.1 Algorithm
We formalize here the inference algorithm sketched in section 4.

Constraint collecting. Our algorithm builds a unifier U = (𝑉 ,𝐶, 𝜋, 𝜌) by traversing expressions bottom-up (from leaves
that are variable occurrences, size values and constants to the top-level declaration). It collects (i) 𝑉 ⊂ V[ ∪V𝜏 a set of free
size and type variables ; (ii) 𝐶 a set of sub-typing constraints ; (iii) 𝜋 the definition of encountered polymorphism labels and
(iv) 𝜌 the substitution of some size and type variables, supposed acyclic. Substitutions’ domains, free variables and variables
that appear in a generalization list are supposed disjoint.
The empty unifier is {}. The union of unifiers is denotedU1 · U2. It requires the substitutions’ domains and free variable

sets to be disjoint. This property holds during inference at the condition that size and type variables appear only in one place
in traversed term. Singleton unifiers are unambiguously denoted {𝛼} (a single free type variable), {𝜏 <: 𝜏 ′} (a single sub-typing
constraint), {𝑙 ↦→ 𝑽 } or {𝑙 ↦→ 𝑺} (a single polymorphism label definition). Last,U \ 𝑽 denotes the unifierU where the size
and type variables 𝑽 have been removed from its free variables.



Polymorphic Types with Polynomial Sizes Conference’17, July 2017, Washington, DC, USA

Inference is made of a few mutually recursive functions defined in Figure 6, that use environments as introduced in ??. To
present them, their outputs are underlined. The main expression inference function —Γ ⊢ 𝑒 : 𝜏 ⊣ U— collects the constraints
and builds expression’s type. It is accompanied with a registering function —Γ ⊢ 𝑺 ⊣ U— that returns a unifier containing
the size and type variables of 𝑺 that are unbounded in the environment11. For convenience, the constraint insertion function
—Γ ⊢ (𝑒 : 𝜏) ⊣ U—, with bracketed expression and type combines expression inference and sub-typing constraint insertion, thus
only producing a unifier. Last, the handling of declarations is set apart: the declaration inference function —Γ ⊢ 𝑑 ⇒ 𝑥 : 𝜎 ⊣ U—
builds the type scheme of introduced variables as well as declaration unifier.

Variables introduction. Variable are immediately instantiated with fresh sizes and types (rule Var and auxiliary function
𝐹𝑟𝑒𝑠ℎ). The definition of this instantiation label —𝑙— is registered in the unifier as well as the generated sizes and types.
When handling abstractions (rule Abs), the free variables of the type 𝜏 are registered and the environment is extended with
the monomorphic introduced variable. For applications (rule App), a fresh type variable 𝛼 is picked. It allows constructing
expression type without solving any type constraints, namely that the type of 𝑒 in rule App should by a function, which is
enforced by adding a constraint.

Polymorphism. Let bindings introduce generalization (rule I-Decl): once expression has been traversed, function 𝑆𝑜𝑙𝑣𝑒
turns as many unifier’s sub-typing constraints as possible into a substitution of its free variables (see subsection 4.4). Function
𝐺𝑒𝑛 extracts the free size and type variables, i.e. the ones that are not substituted, and checks that they do not appear in
any remaining constraints so that they might be generalized. The resulting unifier is built by composing substitutions and
registering generalization label’s definition.

Reconstruction. The reconstruction of top level terms —Γ ⊢ 𝑒 ↣ 𝑒′— is defined with the unique rule

I-Top
Γ ⊢ 𝑒 : 𝜏 ⊣ (∅, ∅, 𝜋, 𝜌)
Γ ⊢ 𝑒 ↣ 𝑒{𝜋}{𝜌}

It requires all constraints to be solved, and no free variables to remain.12 The resulting definition of polymorphism markers is
applied —{𝜋}—, then the substitution —{𝜌}—. Note that the variables used in 𝜋 for instantiation might get substituted, hence
the order.

Definition C.1 (Reconstruction). Given an environment Γ, expressions 𝑒 and 𝑒′, 𝑒′ is a reconstruction of 𝑒 , denoted Γ ⊢ 𝑒 ↢ 𝑒′

if and only if:

∃𝜋𝜌𝜏,
{
𝑒′ = 𝑒{𝜋}{𝜌}
Γ ⊢ 𝑒′ : 𝜏

Theorem C.2 (Inference soundness). Inference produces well-typed terms, i.e. given expressions 𝑒 and 𝑒′,

Γ ⊢ 𝑒 ↣ 𝑒′ =⇒ Γ ⊢ 𝑒 ↢ 𝑒′

Definition C.3. Relation & rule instance substitution Given a n-ary relation R(𝑥1, . . . , 𝑥𝑛) and a substitution 𝜌 , the substituted
relation is defined as:

R(𝑥1, . . . , 𝑥𝑛){𝜌}
𝑑𝑒𝑓
= R(𝑥1{𝜌}, . . . , 𝑥𝑛{𝜌})

Similarly, given we define substituted rule instances as:

Rule
𝑝1 . . . 𝑝𝑘

𝑐
{𝜌} 𝑑𝑒𝑓

= Rule
𝑝1{𝜌} . . . 𝑝𝑘 {𝜌}

𝑐{𝜌}

Proof. By construction, inference produces a type 𝜏 , polymorphism definitions 𝜋 and a substitution 𝜌 such that 𝑒′ = 𝑒{𝜋}{𝜌}.
It remains to show that Γ ⊢ 𝑒 : 𝜏 , by proving the following invariant: given an environment Γ an expression 𝑒 , a type 𝜏 , size
and type variables 𝑉 , constraints 𝐶 , polymorphism definitions 𝜋 and a substitution 𝜌 such that Γ ⊢ 𝑒 : 𝜏 ⊣ (𝑉 ,𝐶, 𝜋, 𝜌), then

∀𝜌 ′, Γ ⊢ 𝐶{𝜌 ′} =⇒ (Γ ⊢ 𝑒{𝜋}{𝜌} : 𝜏) {𝜌 ′}
Intuitively, this amounts to show that any substitution that solves the remaining constraints leads to a well-type term, i.e.
constraint collection captures all the necessary type relations.

Γ ⊢ 𝑒 : 𝜏 ⊣ (𝑽 ,𝐶, 𝜌, 𝜋)
⊢ 𝐶{𝜌 ′}.

}
=⇒ T

. . .

Γ ⊢ 𝑒{𝜋}{𝜌} : 𝜏
{𝜌 ′}

11 At this point, binding size or type variable is impossible in L[ , but extensions (polymorphic recursion) will allow it.
12 An extra declaration might be added to introduce a constraint solving point, i.e. let 𝑥 :_ = 𝑒 in 𝑥
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Because inference is syntax directed, we proceed by induction on expressions: given the resulting unifier and a substitution
that solves the remaining constraints, we build a correct typing derivation for 𝑒:

𝑛 — Inference has the following form:

I-Int
Γ ⊢ 𝑛 : int ⊣ (∅, ∅, Y, Y))

Given 𝜌 ′ a substitution that solves ∅, the following typing derivation is correct, since 𝑛{𝜋}{𝜌} = 𝑛:

T-Int
Γ ⊢ 𝑛 : int

{𝜌 ′}

𝑙𝑥 — Inference has the following form:

I-Var
Γ(𝑥) = ∀𝑽 . 𝜏 𝑺 = 𝐹𝑟𝑒𝑠ℎ(𝑽 )

Γ ⊢ 𝑙𝑥 : 𝜏{𝑺/𝑽 } ⊣ (𝑺, ∅, {𝑙 ↦→ 𝑺}, Y)

Given 𝜌 ′ a substitution that solves ∅, the following typing derivation is correct, since 𝑙𝑥{𝜋}{𝜌} = 𝑺𝑥 :

T-Var
Γ(𝑥) = ∀𝑽 . 𝜏

Γ ⊢ 𝑺𝑥 : 𝜏{𝑺/𝑽 }
{𝜌 ′}

<[> — idem
𝑒 ⊲ 𝜏 ′ — Inference has the following form:

I-Coerce
I-Cstr

I
. . .

Γ ⊢ 𝑒1 : 𝜏 ′ ⊣ (𝑉 ,𝐶, 𝜋, 𝜌) Γ ⊢ 𝜏 ′ ⊣ (𝑉𝜏 , ∅, Y, Y)
Γ ⊢ (𝑒 : 𝜏 ′) ⊣ (𝑉 ·V𝜏 ,𝐶 ·{𝜏 ′ <: 𝜏}, 𝜋, 𝜌)
Γ ⊢ 𝑒 ⊲ 𝜏 ′ : 𝜏 ⊣ (𝑉 ·V𝜏 ,𝐶 ·{𝜏 ′ <: 𝜏}, 𝜋, 𝜌)

Given 𝜌 ′ a substitution that solves 𝐶 ·{𝜏 ′ <: 𝜏} then ⊢ 𝐶{𝜌 ′}, the induction hypothesis allows to construct T a typing
derivation of 𝑒{𝜋}{𝜌}. Moreover, because 𝜏 ′{𝜌 ′} <: 𝜏{𝜌 ′}, it exists a sub-typing derivation S such that the following
derivation is valid:

T-SubType
T-Coerce

T
. . .

Γ ⊢ 𝑒{𝜋}{𝜌} : 𝜏 ′
{𝜌 ′}

Γ ⊢ 𝑒{𝜋}{𝜌} ⊲ 𝜏 ′ : 𝜏 ′
{𝜌 ′} S

. . .

𝜏 ′ <: 𝜏
{𝜌 ′}

Γ ⊢ 𝑒{𝜋}{𝜌} ⊲ 𝜏 ′ : 𝜏
{𝜌 ′}

𝑒1 𝑒2 — Inference has the following form:

I-App
I-2

. . .

Γ ⊢ 𝑒2 : 𝜏2 ⊣ (𝑉2,𝐶2, 𝜋2, 𝜌2)
I-Cstr

I-1
. . .

Γ ⊢ 𝑒1 : 𝜏1 ⊣ (𝑉1,𝐶1, 𝜋1, 𝜌1) Γ ⊢ 𝜏2 � 𝛼 ⊣ ({𝛼}, ∅, Y, Y)
Γ ⊢ (𝑒1 : 𝜏2 � 𝛼) ⊣ (𝑉1 ·{𝛼},𝐶1 ·{𝜏1 <: 𝜏2 � 𝛼}, 𝜋1, 𝜌1)

Γ ⊢ 𝑒1 𝑒2 : 𝛼 ⊣ (𝑉1 ·𝑉2 ·{𝛼},𝐶1 ·𝐶2 ·{𝜏1 <: 𝜏2 � 𝛼}, 𝜋1 ·𝜋2, 𝜌1 ·𝜌2)

Given 𝜌 ′ a substitution that solves 𝐶1, 𝐶2 and {𝜏1 <: 𝜏2 � 𝛼}, using induction hypothesis on I-1 and I-2 defining
T-1 and T-2 as above and a sub-typing derivation for {𝜏1 <: 𝜏2 � 𝛼}, the following typing derivation of 𝑒{𝜋}{𝜌 ′} =

𝑒1{𝜋1}{𝜌1} 𝑒2{𝜋2}{𝜌2} is correct:

T-App
T-SubType

T-1
. . .

Γ ⊢ 𝑒1{𝜋1}{𝜌1} : 𝜏1
{𝜌 ′} S

. . .

𝜏1 <: 𝜏2 � 𝛼
{𝜌 ′}

Γ ⊢ 𝑒1{𝜋1}{𝜌1} : 𝜏2 � 𝛼
{𝜌 ′} T-2

. . .

Γ ⊢ 𝑒2{𝜋2}{𝜌2} : 𝜏2
{𝜌 ′}

Γ ⊢ 𝑒1{𝜋1}{𝜌1} 𝑒2{𝜋2}{𝜌2} : 𝛼
{𝜌 ′}
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_𝑥 :𝜏 . 𝑒′ — Inference has the following form:

I-Abs
Γ ⊢ 𝜏 ⊣ (𝑉𝜏 , ∅, Y, Y)

I
. . .

Γ, 𝑥 :∀Y. 𝜏 ⊢ 𝑒′ : 𝜏 ′ ⊣ (𝑉 ,𝐶, 𝜋, 𝜌)
Γ ⊢ _𝑥 :𝜏 . 𝑒′ : 𝜏 � 𝜏 ′ ⊣ (𝑉𝜏 ·𝑉 ,𝐶, 𝜋, 𝜌)

Given 𝜌 ′ a substitution that solves 𝐶 , using induction hypothesis on I (defining T), the following typing derivation of
𝑒{𝜋}{𝜌} is correct since 𝜏 variables are registered in collected free variables, hence get defined by 𝜌 ′:

T-Abs
T

. . .

Γ, 𝑥 :∀Y. 𝜏 ⊢ 𝑒′{𝜋1}{𝜌1} : 𝜏 ′
{𝜌 ′}

Γ ⊢ _𝑥 :𝜏 . 𝑒{𝜋1}{𝜌1}′ : 𝜏 � 𝜏 ′
{𝜌 ′}

let 𝑥𝑽 :𝜏 ′ = 𝑒1 in 𝑒2 — Inference has the following form:

I-Let

I-Decl
I-Cstr

I-1
. . .

Γ ⊢ 𝑒1 : 𝜏 ⊣ (𝑉1,𝐶1, 𝜋1, 𝜌1 ) Γ ⊢ 𝜏1 ⊣ (𝑉𝜏 , ∅, Y, Y )
Γ ⊢ (𝑒1 : 𝜏1 ) ⊣ (𝑉1 ·𝑉𝜏 ,𝐶1 · {𝜏 <: 𝜏1 }, 𝜋1, 𝜌1 )

𝑉 , 𝜌 = 𝑆𝑜𝑙𝑣𝑒 (𝑉1 ·𝑉𝜏 ,𝐶1 · {𝜏 <: 𝜏1 })

Γ ⊢ 𝑥𝑙 :𝜏1 = 𝑒1 ⇒ 𝑥 : ∀𝑽 . 𝜏1 {𝜌 } ⊣ (∅,𝐶1 {𝜌 } · {𝜏 {𝜌 } <: 𝜏1 {𝜌 }}, 𝜋1 · {𝑙 → 𝑉 }, 𝜌1 ◦ 𝜌 )

I-2
. . .

Γ, 𝑥 :∀𝑽 . 𝜏1 {𝜌 } ⊢ 𝑒2 : 𝜏2 ⊣ (𝑉2,𝐶2, 𝜋2, 𝜌2 )
Γ ⊢ let 𝑥𝑙 :𝜏1 = 𝑒1 in 𝑒2 : 𝜏2 ⊣ (𝑉2,𝐶1 {𝜌 } · {𝜏 {𝜌 } <: 𝜏1 {𝜌 }} ·𝐶2, 𝜋1 · {𝑙 → 𝑉 } ·𝜋2, 𝜌1 ◦ 𝜌 ·𝜌2 )

Here, Solve combines the Solve and Gen function of the algorithms. It defines a substitution 𝜌 of variables 𝑉1 ·𝑉𝜏 \𝑉 .
The constraint set 𝐶1 is substituted and transmitted in the resulting unifier Thus, given 𝜌 ′ a substitution that solves
𝐶 , 𝜌 ◦ 𝜌 ′ solves the constraints 𝐶1 · {𝜏 <: 𝜏1}. The reconstructed term has the following shape: let 𝑥𝑉 :𝜏1{𝜌1 ◦ 𝜌} =
𝑒1{𝜋1}{𝜌1 ◦ 𝜌} in 𝑒2{𝜋2}{𝜌2}. Its type can be derived with:

T-Let

T-SubType
T-1

. . .

Γ, 𝑉 ⊢ 𝑒1 {𝜋1 }{𝜌1 } : 𝜏 {𝜌1 }
{𝜌 ◦ 𝜌 ′ } S

. . .

𝜏 {𝜌1 } <: 𝜏1 {𝜌1 }
{𝜌 ◦ 𝜌 ′ }

Γ, 𝑉 ⊢ 𝑒1 {𝜋1 }{𝜌1 } : 𝜏1 {𝜌1 }
{𝜌 ◦ 𝜌 ′ }

T-2
. . .

Γ, 𝑥 :∀𝑉 . 𝜏 ⊢ 𝑒2 {𝜋2 }{𝜌2 } : 𝜏2 {𝜌2 }
{𝜌 ′ }

Γ ⊢ let 𝑥𝑉 :𝜏1 {𝜌1 ◦ 𝜌 } = 𝑒1 {𝜋1 }{𝜌1 ◦ 𝜌 } in 𝑒2 {𝜋2 }{𝜌2 } : 𝜏2
{𝜌 ′}

Once established, this invariant allows an easy deriving of inference soundness: for top-level terms, the constraint set must be
empty, hence choosing the empty substitution yields a valid type derivation.

□

Conjecture C.4 (Inference non-specialization). Given an expression 𝑒 and two reconstructed terms 𝑒1, 𝑒2 where 𝑒1 is the result of
the inference, then they have equivalent observable semantics. Formally:{

Γ ⊢ 𝑒 ↣ 𝑒1
Γ ⊢ 𝑒 ↢ 𝑒2

=⇒ 𝑒1 ≡ 𝑒2

This property states that inference rejects any terms that might be given multiple semantics, hence that the implicitly typed
language is deterministic.

The proof has not been fully conducted yet. The main difficulty lies in the handling of diverging environments: let bindings
introduce variables that can be given multiple type schemes. At instantiation places, these variables induce different types
leading to different constraint sets. We must then prove that the size constraints extracted by the inference are indeed fulfilled
by the arbitrary reconstruction. This would allow to deduce that the substitution built by the inference is builds a most general
size unifier.

Let define a characterization of type schemes built by the inference.

Definition C.5 (Subsumption). Given two type schemes 𝜎1 := ∀𝑽 1. 𝜏1 and 𝜎2 := ∀𝑽 2. 𝜏2, the subsumption relation —𝜎1 ≼ 𝜎2—
holds if and only if any instance of the second is a sub-type of an instance of the first. Formally, one of the two equivalent
formulation must hold:

∀𝑺2, ∃𝑺1, 𝜏1{𝑺1/𝑽 1} <: 𝜏2{𝑺2/𝑽 2}
∃𝑺, 𝜏1{𝑺/𝑽 1} <: 𝜏2 (where 𝐹𝑉 (𝑺) ∈ 𝑽 2)
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Because our type systems does not have principal types, the types produced by the inference cannot be the most polymorphic
one, i.e. such that is subsume to any other valid type. This property must be refined for sizes:

Definition C.6 (Size subsumption). Given two type schemes 𝜎1 and 𝜎2, the size subsumption relation —𝜎1 ≼[ 𝜎2— holds if
and only if:

∃𝜎, 𝛼, 𝜏 .

𝜎1 ≼ 𝜎{int/𝛼}
𝜎{𝜏/𝛼} ≼ 𝜎2
𝜏 <: int

The intuition is: if 𝜎1 ≼[ 𝜎2, the second type scheme is obtained by adding some refinements (in both positive and negative
positions) in place of some int in 𝜎1. In a term, this would guarantee that the semantics is independent of those extra
refinements (since a semantics exists without). Thus showing that inference builds such minimal term for the size subsumption
relation would help establishing our conjecture.
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