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Abstract

This work combines for the first time ab initio molecular dynamics (AIMD) within the Born-

Oppenheimer approximation, with a global natural orbital functional (GNOF), an approximate functional

of the one-particle reduced density matrix. The most prominent feature of GNOF-AIMD is the ability to

display the real-time evolution of natural orbitals, providing detailed information on the time-dependent

electronic structure of complex systems and processes, including reactive collisions. The quartet ground-

state reaction N(4S) + H2(1Σ) → NH(3Σ) + H(2S) is taken as validation test. Collision energy influences

on integral cross sections for different initial ro-vibrational states of H2 and rotational-state distributions of

NH product are discussed, showing a good agreement with previous high-quality theoretical results.

One-particle reduced density matrix (1RDM) functional theory[1–3] is an alternative formal-

ism to both density functional and wavefunction based methods. A pragmatic approach results

in approximate functionals of the 1RDM in its diagonal form, that is, the use of natural or-

bitals (NOs) and its occupation numbers (ONs) as the fundamental variables, which define a

natural orbital functional (NOF).[4] An important issue is that the approximate NOFs continue

to depend on the two-particle RDM (2RDM),[5] so it is necessary to consider their functional

N-representability.[6, 7] The NOF theory is currently an active research field,[8–31] which can

already be applied to large molecular systems of general chemical interest[32, 33] using open-

source software like DoNOF.[34, 35] Exhaustive reviews of NOF-based methods can be found

elsewhere.[36–38]

Knowledge of the analytical derivatives with respect to nuclear coordinates in NOF theory[39,

40] allows routine calculation of molecular structures and related properties. This ability to cal-

culate gradients analytically also makes NOF-based ab initio molecular dynamics (AIMD)[41]

simulations feasible. The basic idea is to calculate the forces acting on the nuclei from the calcu-

lations of the electronic structure as the molecular dynamics trajectory is generated. In this way

we avoid determining in advance the potentials of interatomic interactions that can have serious

drawbacks in chemically complex systems where the bond pattern changes qualitatively in the

course of dynamics.

In many cases, the electrons respond almost instantaneously to nuclear motion. In such situ-

ations, the Born-Oppenheimer (BO) approximation allows us to decouple the electronic and nu-
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clear problems, defining a potential energy surface (PES). In this work, we focus on the gas-phase

dynamics of molecules in their electronic ground state (GS), where the BO approximation is gen-

erally accurate. There are other problems, for example, when the dynamics starts in an excited

electronic state, where strong couplings between two or more PESs occur, requiring quantum

treatment of both nuclei and electrons. Non-adiabatic molecular dynamics[42, 43] is the method

of choice to model these processes, but that is outside the scope of this work.

Nowadays, the most reliable approaches to deal with electron correlation in AIMD are multiref-

erence methods, such as the complete active space self-consistent field (CASSCF)[44, 45] and its

combination with second-order perturbation theory (CASPT2).[46–49] Unfortunately, multirefer-

ence methods can suffer from high computational cost, sensitivity to active space selection, and

instabilities in calculations due to changes in active space orbitals that can lead to energy disconti-

nuities along the trajectory. Consequently, few simulations using CASPT2 nuclear gradients have

been reported to perform non-adiabatic AIMD for reduced molecular models [50, 51] and, so far,

there are no examples of convergent CASPT2-AIMD calculations in reactive collisions.

NOFs offer an intermediate cost between multireference methods and common density func-

tionals. In fact, approximate NOFs have been shown to be more accurate than their electron

density-dependent counterparts and to have better scaling with respect to the number of basic func-

tions than wavefunction-based methods for systems with a large amount of strong non-dynamic

correlation. Interestingly, NOFs further corroborate the motivation behind the floating occupa-

tion molecular orbital complete active space configuration interaction (FOMO-CASCI) method, a

promising alternative to CASSCF in dynamics simulations.[52, 53]

The aim of this article is to present for the first time a BO AIMD based on an approximate NOF,

that is, the nuclei will propagate according to the classical equations of motion, in an adiabatic PES

obtained by solving in each time step the quantum mechanical electronic structure problem using

a NOF. The price to pay is that the correlation lengths and relaxation times that are accessible are

smaller than those available through standard molecular dynamics, but we can handle chemically

complex systems, avoid the dimensionality bottleneck that arises when PESs are calculated in

advance,[41] and see the real-time evolution of NOs and their ONs during complex dynamics,

obtaining detailed information about the time-dependent electronic structure of such processes.

As a functional, we will use the recently proposed global NOF (GNOF)[54] for electronic

systems with any value of spin regardless of external potential. It has been demonstrated[55]

that GNOF provides a good balance between static and dynamic electronic correlations leading to
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accurate total energies while preserving spin, even for systems with a highly multi-configurational

character. In addition, GNOF has proven to be successful in dealing with aromaticity[56] and

charge delocalization error.[57] GNOF correlates all electrons into all available orbitals for a given

basis set; which today is not possible for large systems with current wavefunction-based methods.

Regarding the dynamics, the NOs vary along the trajectory, adapting at each time step to the

most favorable interactions of the corresponding nuclei configuration. In the following, we briefly

describe GNOF.

We consider a mixed quantum state (multiplet) of an N-electron molecule with NI spin-unpaired

electrons, NII = N−NI spin-paired, and total spin S. We focus on the state of highest multiplicity:

2S+1=NI+1.[58] For the whole ensemble, the expected value of Ŝz is zero; so the spin-restricted

theory is adopted, i.e., a single set of orbitals is used for α and β spins: ϕα
p (r) = ϕ

β
p (r) = ϕp (r).

Accordingly, all spatial orbitals are double occupied in the ensemble, so that occupancies for

particles with α and β spins are equal: nα
p = nβ

p = np.

The orbital space is divided in turn into two subspaces: Ω = ΩI ⊕ΩII. ΩII is composed of

NII/2 mutually disjoint subspaces Ωg, each of which contains one orbital |g⟩ with g ≤ NII/2, and

Ng orbitals |p⟩ with p > NII/2, namely,

Ωg =
{
|g⟩ , |p1⟩ , |p2⟩ , ...,

∣∣pNg

〉}
, Ωg ∈ ΩII. (1)

Taking into account the spin, the total occupancy for a given subspace Ωg is 2, which is reflected

in the following sum rule:

∑
p∈Ωg

np = ng +
Ng

∑
i=1

npi = 1, g = 1,2, ...,
NII

2
. (2)

In general, Ng can be different for each subspace as long as it describes the electron pair well. For

convenience, we usually take it the same for all subspaces Ωg ∈ ΩII. The maximum possible value

of Ng is determined by the number of basis functions (NB). From (2), it follows that

2 ∑
p∈ΩII

np = 2
NII/2

∑
g=1

(
ng +

Ng

∑
i=1

npi

)
= NII. (3)

On the other hand, ΩI is composed of NI mutually disjoint subspaces, each of which contains only

one orbital |g⟩. This spatial orbital is individually occupied, nα
g + nβ

g = 2ng = 1, but we do not

know whether the electron has α or β spin. This leads to

2 ∑
p∈ΩI

np = 2
NΩ

∑
g=NII/2+1

ng = NI. (4)
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In Eq. (4), NΩ = NII/2+NI denotes the total number of suspaces in Ω. Note that the orbitals are

arranged as follows: from 1 to NII/2, there are the strongly occupied orbitals belonging to ΩII,

followed by the single-occupied orbitals belonging to ΩI ranging from NII/2+1 to NΩ. After that,

there are the weakly occupied orbitals of each Ωg ∈ ΩII. Taking into account Eqs. (3) and (4), the

trace of the 1RDM is verified to be equal to the number of electrons:

2 ∑
p∈Ω

np = 2 ∑
p∈ΩII

np +2 ∑
p∈ΩI

np = NII +NI = N. (5)

It is essential to note that orbitals undergo changes throughout the optimization process to find the

most favorable orbital interactions. As a result, the orbitals are not static during the optimization

process; they adapt to the specific problem.

A reconstruction functional for the 2RDM in terms of the ONs leads to the following electronic

energy (GNOF):

Eel = E intra +E inter
HF +E inter

sta +E inter
dyn (6)

The intra-pair component is formed by summing the energies Eg of electron pairs with opposite

spins and the one-electron energies of unpaired electrons, specifically,

E intra =
NII/2

∑
g=1

Eg +
NΩ

∑
g=NII/2+1

Hgg (7)

Eg = 2 ∑
p∈Ωg

npHpp + ∑
q,p∈Ωg

Π(nq,np)Lpq (8)

where Hpp are the diagonal one-electron matrix elements of the kinetic energy and external poten-

tial operators, whereas Lpq = ⟨pp|qq⟩ are the exchange-time-inversion integrals.[59] The matrix

elements Π(nq,np) = c(nq)c(np), where c(np) is defined by the square root of the ONs according

to the following rule:

c(np) =


√np, p ≤ NII

2

−√np, p > NII
2

, p ∈ Ωg ∈ ΩII (9)

that is, the phase factor of cp is chosen to be +1 for the strongly occupied orbital of a given

subspace Ωg, and −1 otherwise. The inter-subspace HF term is

E inter
HF =

NB

∑
p,q=1

′ nqnp
(
2Jpq −Kpq

)
(10)
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where Jpq = ⟨pq|pq⟩ and Kpq = ⟨pq|qp⟩ are the Coulomb and exchange integrals, respectively.

The prime in the summation indicates that only the inter-subspace terms are taking into account.

The inter-subspace static component is written as

E inter
sta =−

(
NΩ

∑
p=1

NB

∑
q=NΩ+1

+
NB

∑
p=NΩ+1

NΩ

∑
q=1

+
NB

∑
p,q=NΩ+1

)′

ΦqΦpLpq

− 1
2

NII/2

∑
p=1

NΩ

∑
q=NII/2+1

+
NΩ

∑
p=NII/2+1

NII/2

∑
q=1

)′

ΦqΦpLpq −
1
4

NΩ

∑
p,q=NII/2+1

Kpq (11)

where Φp =
√

nphp with the hole hp = 1−np. Finally, the inter-subspace dynamic energy is

E inter
dyn =

NB

∑
p,q=1

′
[
nd

qnd
p + Π

(
nd

q,n
d
p

)](
1−δqΩb

II
δpΩb

II

)
Lpq (12)

In Eq. (12), Ωb
II denotes the subspace composed of orbitals below the level NII/2, and the

dynamic part of the ON np is defined as

nd
p = np · e

−

(hg

hc

)2

, p ∈ Ωg, g = 1,2, ...,
NII

2
(13)

with hc = 0.02
√

2. nd
p is in accordance with the Pulay’s criterion that establishes an occupancy

deviation of approximately 0.01 with respect to 1 or 0 for a NO to contribute to the dynamic

correlation.

In the BO approximation, the total energy of the molecule can be cast as E = Enuc +Eel with

Enuc = ∑A<B[ZAZB/RAB]. ZA represents the atomic number of nucleus A, and RAB is the distance

between nuclei A and B. Considering that all NOs φi are expanded in a fixed atomic basis set,

φi = ∑υ Cυ iζυ , the derivative of the total energy with respect to the coordinate x of nucleus A is

given by [40]

dE
dxA

=
∂Enuc

∂xA
+∑

µυ

Γµυ

∂Hµυ

∂xA
+ ∑

µηυδ

Dµηυδ

∂ ⟨µη |υδ ⟩
∂xA

−∑
µυ

λµυ

∂Sµυ

∂xA
. (14)

where Γµυ and Dµηυδ are the 1RDM and 2RDM, respectively, Sµυ = ⟨µ|υ⟩ is the overlap matrix,

and λµυ are the Lagrange multipliers obtained from RDMs, all in the atomic orbital representa-

tion. The first term of Eq. (14) is the derivative of the nuclear energy, the second represents the

negative Hellmann-Feynman force, while the third contains the explicit derivatives of two-electron

integrals. The last term, known as the density force, arises from the implicit dependence of Cυ i on
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FIG. 1. Energetic profiles of a reactive trajectory for a translational energy of 2.45 eV and initial ro-

vibrational state (ν = 0,J = 0) of H2.
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FIG. 2. Time evolution of the two strongly occupied natural orbitals involved in the bond pattern change

during the collision.

geometry. The implicit dependence of ONs on geometry does not contribute to analytic gradients

since Eel is stationary with respect to variations in all of the ONs.[39]

All derivatives in Eq. (14) have an explicit dependence on the nuclear coordinate xA, so the

force acting on each nucleus A (FA = −∇AE) can be obtained by a single static evaluation at

each time step for the fixed nuclear positions at that instant. Consequently, we can calculate the
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trajectories of the nuclei according to the classical equations of motion, but taking into account

the quantization of the reactants, a procedure known as quasiclassical trajectory (QCT) method.

It is worth noting that the QCT method does not take the tunneling effect into account, so it can

produce inaccurate results near the threshold energy.

NOF-based QCT calculations can be performed using the new molecular dynamics module im-

plemented in DoNOF,[34] which allows the calculation of nuclear trajectories by determining “on

the fly” the forces using NOF gradients (14). Beeman’s algorithm[60] is used to numerically inte-

grate Newton’s equations of motion, whereas the initial conditions are obtained using a standard

Monte Carlo sampling procedure.[61]

The N(4S) + H2(1Σ) → NH(3Σ) + H(2S) reaction using the cc-pVDZ basis set[62] has been

taken as a validation test for the GNOF-based BO AIMD. This reaction is important in the de-

composition of ingredients in solid propellants used for rockets,[63] so it has been the subject of

several high-quality theoretical studies[64–69] due to the experimental difficulty in preparing N

atoms. These studies have shown that the reaction occurs via an abstraction mechanism dominated

by the quartet GS, and presents a forward experimental barrier of 1.4 ± 0.3 eV.[70]

The initial separation between the nitrogen atom and the center-of-mass of H2 was set at 6 Å,

and each trajectory was integrated until the separation between the final fragments was greater

than 6 Å. A time step of 0.1 fs was used, which yields to a conservation of the total energy with an

average error of 0.004 eV. Typical profiles of the kinetic, potential and total energies for a reactive

trajectory with a translational energy ET = 2.45 eV and H2 at the GS can be seen in Fig. 1, while

in the supplementary material a movie of this trajectory can be found. From here we can conclude

that the collision occurs mainly in the time range from 20 fs to 40 fs.

In the N(4S) + H2(1Σ) reaction, six are the strongly occupied NOs, namely three with occupancy

close to 2 and three singly occupied responsible for the quartet state. During reactive dynamics,

the lowest energy orbitals correspond to the 1s and 2s atomic orbitals of N. These NOs start

from the isolated atom and remain in the NH radical without significant changes. Similarly, two

of the 2p atomic orbitals of N undergo small transformations during the collision and continue

to maintain their character in the final NH, occupying directions perpendicular to the bonding

direction. Consequently, two NOs are responsible for the change of the bond pattern during the

collision, whose temporal evolutions are represented in Fig. 2 by specific snapshots. Thus, we

have a first NO that begins as a σ “ss” bonding orbital of the H2 singlet with ON = 1.97 and

transforms into the σ “sp” bonding orbital of the NH triplet with ON = 1.96, while the other
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individually occupied NO transforms from a 2p atomic orbital of the N into the 1s atomic orbital

of the H.

Reaction probabilities and integral cross sections (ICSs) were calculated for translational ener-

gies up to 5.0 eV, and five different initial ro-vibrational states (ν ,J) of H2 molecule, namely the

GS (0,0), the first two excited vibrational states (1,0) and (2,0), and two excited rotational states

(0,10) and (0,15). Reduced batches of 1000 trajectories were run to determine a first estimate of

the maximum impact parameter values (bmax). Finally, 5000 trajectories were carried out using

appropriate value of bmax for each translational energy and ro-vibrational state (ν ,J) of the H2

diatom, which provided the ICS values through the following equation:

σ ∼= πb2
max

Nr

Nt
, (15)

where Nr is the number of reactive trajectories, Nt the total number of trajectories for which the

impact parameter satisfies b ≤ bmax, and Pr = Nr/Nt is the total reaction probability. The number

of propagated trajectories ensures a Monte Carlo statistical error of less than 5% for the ICS. Ad-

ditionally, the final energy distribution of the product was obtained after a standard semi-classical

determination of the vibrational, and rotational energies[71–73].

Fig. 3 presents bmax and σ as a function of ET for the five ro-vibrational states studied. For

comparison, values reported in Ref.[68] based on the highly accurate DMBE PES[66] calculated

at the MRCI-FVCAS/aug-cc-pVQZ level of theory are included. The bmax values were found to

vary from 0.42 Å to 1.74 Å on increasing the collision energy. For the H2 GS, the figure shows that

the ICS has a threshold energy of approximately 1.5 eV and gradually decreases with increasing

ν and J to 0.7 and 0.97 eV, respectively, in perfect agreement with the forward barrier observed

for the reaction. Above the threshold energy, the ICSs increase almost linearly up to around 4 eV,

where a much slower growth begins. For the ICSs corresponding to initial rotationally excited H2

(J = 10,15), we observe that a decay then begins. Notice that the initial rotational excitation of H2

molecule cause a more pronounced linear increase in ICSs at lower collision energies, and that the

increase is significant in reactivity with increasing reagent vibrational excitation, as expected in

this endoergic triatomic reaction with a late barrier. The shape of the ICS curves presented in Fig.

3 is similar to what was observed in previous studies, however our ICS values are lower. This ICS

underestimation is understandable considering the modest basis set used in this work that lead to

lower values of bmax.

Regarding the final ro-vibrational energy distribution of the product when the H2 molecule is
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FIG. 3. Maximum impact parameter (bmax) and integral cross section (σ ) as a function of translational

energy (ET) for different H2 ro-vibrational states (ν ,J). Dashed lines correspond to values reported in

Ref.[68]

0.0 1.0 2.0 3.0 4.0 5.0
E

T 
 (eV)

0.5

1.0

1.5

2.0

b m
ax

(Å
)

(2,0)
(0,15)
(1,0)
(0,10)
(0,0)

0.0

1.0

2.0

3.0

4.0
 σ

  (
Å

2 )

FIG. 4. Rotational-state distribution of product NH for the reaction N + H2(ν = 0,J = 0) → NH (ν ′,J′) +

H.

0 5 10 15 20 25 30 35
Product rotational quantum number (J’)

0.00

0.03

0.06

0.09

0.12

P
ro

b
ab

il
it

y
 (

0
,0

 -
  

ν
 ′
, 
J 

′)

E
 T 

 = 2.0 eV

E
 T 

 = 2.6 eV

E
T 

 = 3.0 eV

E
 T 

 = 3.5 eV

E
 T 

 = 4.0 eV

E
 T 

 = 5.0 eV

10



initially in its ground state (ν = 0,J= 0) our simulations show that below 3 eV, only the vibrational

ground state (v′ = 0) and the first vibrational level (v′ = 1) are accessible to the NH molecule after

its formation. At the highest collision energy studied in this work (5 eV), the highest vibrational

level populated was v′ = 5. These results indicate a poor transfer between the translational and vi-

brational energy modes during the collision. However, an efficient rotational excitation of the NH

molecule for the studied range of collision energies was observed. For a collision energy of 5 eV,

35 rotational levels are accessible, while for 1.5 eV, the six first rotational levels were populated.

We show in Fig. 4 the calculated rotational-state distributions of the product for the reaction N +

H2(ν = 0,J = 0) → NH(v′,J′) + H for six collision energies. The figure clearly indicates that the

rotational excitation increases with increasing ET. The higher the collision energy of the reactants,

the higher the rotational energies of the product obtained. This behaviour is in prefect agreement

with previous theoretical works[65, 67] on the studied reaction. The results presented in figures 3

and 4 emphasize the sensitivity of our method to qualitatively and quantitatively fully captures the

physics involve in the dynamics of complex reactions.

In summary, we have shown that GNOF-AIMD is a method of choice to investigate the evolu-

tion of complex electronic problems, particularly reactive collisions. According to the existence

theorems[1–3] of the 1RDM functional, there is a one-to-one mapping between the ground-state

1RDM and the ground-state N-particle density matrix, so by observing the real-time evolution of

the NOs along with their ONs, we are seeing in real time the evolution of the solution to the elec-

tronic problem dynamically. The unique NO representation is especially useful for viewing the

real-time evolution of changes in bond patterns. Indeed, NOs vary along trajectories calculated on

the fly, adapting at each time step to the most favorable interactions of the corresponding nuclei

configuration. GNOF-AIMD also allows to study dynamics with any transformation in the spins

and the number of electrons of the component subsystems, conserving the total spin of the entire

system. Therefore, GNOF-AIMD opens a promising field of research: AIMD based on natural

orbital functionals.

I. SUPPLEMENTARY MATERIAL

See the supplemental material for a movie of a reactive trajectory with translational energy ET

= 2.45 eV and H2 in the ground state.
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