N

N

A Survey on Blockchain Scalability: From Hardware to
Layer-Two Protocols
Gabriel Antonio Fontes Rebello, Gustavo Franco Camilo, Lucas Airam Castro
de Souza, Maria Gradinariu Potop-Butucaru, Marcelo Dias de Amorim,

Miguel Elias Mitre Campista, Luis Henrique Maciel Kosmalski Costa,

» To cite this version:

Gabriel Antonio Fontes Rebello, Gustavo Franco Camilo, Lucas Airam Castro de Souza, Maria Grad-
inariu Potop-Butucaru, Marcelo Dias de Amorim, et al.. A Survey on Blockchain Scalability: From
Hardware to Layer-Two Protocols. Communications Surveys and Tutorials, IEEE Communications
Society, 2024, 26 (4), pp.2411-2458. 10.1109/COMST.2024.3376252 . hal-04491061

HAL Id: hal-04491061
https://hal.science/hal-04491061v1

Submitted on 12 Nov 2024

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://hal.science/hal-04491061v1
https://hal.archives-ouvertes.fr

A Survey on Blockchain Scalability: From
Hardware to Layer-Two Protocols

Gabriel Antonio F. Rebello!'?3, Gustavo F. Camilo!, Lucas Airam C. de Souzal!,

Maria Potop-Butucaru?, Marcelo Dias de Amorim?, Miguel Elias M. Campista!, and Luis Henrique M. K. Costa

1

'Universidade Federal do Rio de Janeiro (GTA/Poli/COPPE), Brazil
2Sorbonne Université, CNRS, LIP6, F-75005 Paris, France
3Instituto de Pesquisas Eldorado, Brazil

Abstract—Despite the great success of blockchain systems
in recent years, blockchains still struggle to provide the same
level of latency and throughput as centralized financial systems.
The core of this problem lies in the inefficiency of consensus
protocols. In this paper, we provide a survey on recent efforts
to improve the scalability of blockchains. We focus on layer-two
protocols, such as payment channel networks and transaction
rollups, which process computations off-chain and only use
consensus for dispute resolution. Layer-two protocols are ex-
pected to process microtransactions with sub-second latency and
reduced fees, allowing blockchains to scale. Much of this work
addresses the open challenges of payment channel networks,
such as payment routing, channel rebalancing, network design
strategies, security and privacy, payment scheduling, congestion
control, simulators, and support for light nodes. We also dedicate
a section to the existing implementations of smart-contract-based
transaction rollups. Our work systematizes the state-of-the-art
layer-two protocols, paving the way for future advances.

Index Terms—blockchain, payment channel networks, rollups.

I. INTRODUCTION

Cryptocurrencies, the most popular blockchain-based ap-
plication, allow users worldwide to transfer money securely
and distributedly without relying on centralized authorities
such as banks, agencies, or governments. In the recent past,
this technology quickly became successful, with Bitcoin alone
reaching over 100 million users in 2022 [1] and achieving a
market value higher than the gross domestic product of more
than 150 countries [2] when combined with Ethereum [3],
[4]. Now, both academia and industry are investigating the
adoption of blockchain in new research areas, including
the Internet of Things (IoT) [5], smart cities [6], federated
learning [7], [8], and even COVID-19 prevention [9], [10].
The success of blockchains is evident and unlikely to fade
in the future, as blockchains provide valuable properties for
computing systems: trust, transparency, privacy, automation,
security, and decentralization.

Nevertheless, the performance of consensus protocols hin-
ders the adoption of blockchain systems as a standard pay-
ment method for small and fast payments that occur in
everyday life. Publishing a transaction in Bitcoin takes ap-
proximately one hour, can incur over $20 fees, and spends

an amount of energy equivalent to the consumption of a US
average household over 50 days [1]. Moreover, Bitcoin’s and
Ethereums’ throughputs of approximately 7 tx/s and 15 tx/s,
respectively, are still orders of magnitude smaller than the
average of over 6,000 tx/s achieved by large credit card com-
panies [11]. Such performance challenges are known in the
literature as the blockchain scalability problem' and hinder
the adoption of crypto technology for everyday use, where it is
necessary to confirm a transaction within a few seconds with
low to zero fees. Hence, scaling blockchain systems poses a
significant research challenge that, if solved, has the potential
to enable the worldwide adoption of blockchain systems in
the life of ordinary citizens.

This paper provides an extensive survey of the recent efforts
to improve blockchain scalability. We analyze over 120 pa-
pers, from 2013 to 2023, considering a four-layer architecture
as reference [13]. Table I summarizes the papers and Figure 1
overviews the scalability solutions addressed in our work,
classified per layer’. We highlight, however, that the main
novelty of our work lies in the profound analysis of layer-
two protocols, which have not been extensively covered by
previous surveys. Layer-two protocols introduce an off-chain
way of transacting that accelerates payment confirmation and
minimizes the amount of transactions that need to appear in
the blockchain, effectively offloading consensus protocols.

A large portion of this work focuses on payment chan-
nel networks (PCN), a popular layer-two solution to scale
blockchain-based transfers. As of the writing of this work, the
largest known PCN, the Lightning Network (LN), has approx-
imately 100 million dollars allocated in over 80,000 channels
and 17,000 nodes [142]. We cover the main open challenges
of PCNs, such as payment routing, channel rebalancing,
security, and privacy, PCN attacks, payment concurrency,
payment scheduling, congestion control, PCN simulators, and
support for light nodes, many of which are not mentioned

!'Scalability here refers to Buterin’s concept of scalability, i.e., the ability
to process more transactions per second [12]. This concept contrasts with the
notion of scalability in distributed computing, which is the ability to maintain
performance when the number of nodes in the system increases. We discuss
such notions in Section III-B.

2See Section IV for a precise definition of each blockchain layer.

Scalability in
Blockchains
Lower layers Layer Two
N N

Hardware Layer ~ Layer Zero Layer One Payment Channel Rollups
(§1V-A) (SIV-B) (§1V-C) Networks (§V) (§VII)
1 1 1 |

H:PG A-basedH Block Size/interval f DAG-based N Lightning | [OpﬁmiStiC |

Approaches SegWit Taproot Consensus Network Rollups

TEE-based Block Compression Sharding Other PCNs 2€70"

approaches Network Modifications Cross-chain knowledge
Protocols and Rollups
Sidechains

Figure 1. Taxonomy of the scalability solutions discussed in this paper. We
adopt a layered architecture to classify protocols and dedicate Section IV to
lower-layer solutions. Section V introduces the layer-two solutions, which
are discussed in Sections VI and VIIL.

Payment Load Congestion Payment PCN Support for
Concurrency Balancing ~ Control Scheduling Simulation Light Nodes
(§VL-F) §VI-G) (§VI-G) $VI-G) (§VI-H) (§VI-D
PCN Challenges
(§VD

Payment Channel ~ Network Security and Attacks
Routing Rebalancing Design Privacy in PCNs
(§V3-A) (§\qI-B) (§Vf—C) (§Vf-D) (§\11-E)
[Routing Passive I Network HNOde f Wormhole Grieﬁng‘
Protocols Rebalancing Analysis ~ Anonymity Attacks Atttacks
Open Active Attachment Link Coin Theft Channel
Challenges Rebalancing Strategies ~ Privacy Flood and Jamming
Autopilots Payment Loot Balance
Privacy Route Discovery
Hijacking
Figure 2. Taxonomy of the PCN challenges addressed in this paper.

Section VI contains all the topics depicted in the figure.

Table 1
SYSTEMATIC MAPPING OF SCALABILITY SOLUTIONS ACROSS BLOCKCHAIN LAYERS BY YEAR OF PUBLICATION.

Layer 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023
HW . - - [14] [15] [16] [17] . (18] [19] -

L0 [20] - [21] [22] . [23] [24]-[26] [27] . [28] .

L1 - 9] - [301, [31] [321-[35] [36]-[38] [39]-[43] [44]-[48] [49]-[51] - -

L2 [52] - [53] [54], [55] [56]-[62] [631-[75] [76]-[86] [87]1-[110] [111]-[122] [123]-[139] [140], [141]
Total 2 1 2 6 12 18 20 30 16 19 2

in other surveys [109], [143]-[149]. We depict the discussed
PCN challenges in Figure 2.

The work also dedicates a section to transaction rollups,
a new off-chain technology that improves the throughput of
blockchain applications by aggregating transactions before
publishing them into the blockchain. Transaction rollups
have been increasingly adopted to perform generic off-chain
computations in blockchains that support smart contracts,
such as Ethereum [4] and Cartesi [74]. We present the
main existing types of rollups, such as optimistic and zero-
knowledge rollups, providing a detailed analysis of their main
features and drawbacks.

This article is organized as follows. Section II positions our
work concerning existing surveys on blockchain scalability
and payment channel networks. Section III explains the scal-
ability problems of current blockchain systems. Section IV
presents a layered architecture to classify proposals and
describes the leading solutions for the lower layers. Sec-
tion V introduces the definition of layer-two and announces
the known layer-two protocols. Furthermore, it presents the
theoretical background of payment channels, detailing the
implementation of a payment channel, the opening, and
closing of channels, the settling of conflicts, and how to route
payments through payment channels. Section VI addresses the
main open challenges and opportunities for research in PCNs.
Section VII presents transaction rollups, a novel off-chain
technology that aggregates payments to improve scalability.
Finally, Section VIII concludes the work.

II. RELATED WORK

Although the scalability of blockchain systems is a rela-
tively recent research topic, we find several surveys in the
literature that partially cover the solutions proposed in the
latest years. We observe that most efforts adopt different
layered architectures to categorize proposals and that, because
of continuous and rapid developments, the focus of surveys
has also evolved over the years. We separate them into
four categories: (i) papers that focus on classifying layer-one
proposals; (ii) papers that aim to systematize the knowledge
of layer-two solutions; (iii) papers that seek to systematize
the knowledge of blockchain scalability solutions regardless
of the layer; and (iv) papers that focus specifically on the
challenges of payment channel networks.

The first category groups consensus-modification propos-
als. Nguyen and Kim [150] provide the first large-scale
survey of alternative blockchain consensus protocols. The
work categorizes the existing proposals into proof-based
and voting-based protocols, demonstrating the tradeoffs of
each group. Xiao et al. [153] expand such classification
into more detailed groups and compare the protocols via
a five-component framework, which provides an efficient
way to compare them. Yu et al. [155] present the primary
implementation and challenges of blockchain sharding. Khan
et al. [157] explore layer-one solutions in general, including
alternative protocols and sharding, while briefly mentioning
payment channels. Although some overlap might occur, such
works are mostly orthogonal to ours since we focus on layer-

Table II
COMPARISON BETWEEN OUR WORK AND EXISTING SURVEYS ON BLOCKCHAIN SCALABILITY.

Reference Hardware Layer Layer 0 (Network) Layer 1 (Blockchain and Consensus) Layer 2 (Offchain Solutions)
TEE-based FPGA-based Transact?on/ ABIock Alternative Sharding DAGs Cross»f:hain Sidechains PCNs Optimistic ZK
aproaches approaches block size interval consensus solutions rollups rollups
Nguyen and Kim (2018) [150] O @] ° [] [] @] @] O O O O
Kim ef al. (2018) [151] O O ° O O ° O ° (] o O
Jourenko ef al. (2019) [143] [@) @] @) @) @) @) O O [) O O
Xie et al. (2019) [152] O @] ° [] [] ° @] O O © O O
Gudgeon et al. (2020) [13] o @) © @) © © @) O © o O O
Hafid ef al. (2020) [145] O @] ° [] [] ® (] O ® ® O O
Papadis and Tassiulas (2020) [109] O O O O O O O [O ° O O
Xiao et al. (2020) [153] [@) [) [[[] O O @] O O
Yang et al. (2020) [154] O O O O O (] (] o (] o O O
Yu et al. (2020) [155] O @) © @) @) ® © O O O O O
Zhou et al. (2020) [156] O @] ° [] [] ° (]) (] ° O O
Khan et al. (2021) [157] O O ° [] [] (] O O O © O O
Khojasteh and Tabatabaei (2021) [146] © @) © @) © © © O O [) O O
Zhao et al. (2021) [148] O O O O O O O O O o O O
Sanka and Cheung (2021) [158] O [[® ® [) [) [) [) [) O [)
Sguanci et al. (2021) [147] @] O () [O © O (@) ® [® [
Gangwal ef al. (2022) [149] o @) © @) o o ® [) ® o ® o
Nasir ef al. (2022) [159] ° @] ° [] ° ® @] O O [O O
Our work ® () ® ® ® ® ® [) () [) ® [)
Onot covered; Opa.rtially covered; @covered.
Table III
COMPARISON BETWEEN OUR WORK AND EXISTING SURVEYS ON PAYMENT CHANNEL NETWORKS.
Reference Payment Channel Network Security and Attacks Payment Payment Congestion PCN Support for
routing rebalancing Design privacy to PCNs Concurrency Scheduling Control simulation light devices
Jourenko et al. (2019) [143] (] (] © ()] [} O O © O O
Gudgeon et al. (2020) [13] o © O ® © © O O O O
Hafid et al. (2020) [145] O O O O O O O O O O
Papadis et al. (2020) [109] © [(] [) O o [) o O O
Khojasteh et al. (2021) [146]] © O] O [] O [] O O
Sguanci et al. (2021) [147] © (@) (@) o O (@) O O O O
Zhao et al. (2021) [148] (@) (@) o o © (@) O (@) O O
Gangwal et al. (2022) [149] © © (@) © o (@) O O O O
Our work (] [J] @ o o o o [)

O: not covered; [)} partially covered; ®: covered.

two solutions.

The second category of surveys includes works that classify
existing layer-two solutions. Gudgeon et al. [13] provide a
systematization of knowledge (SoK) of layer-two proposals
that includes payment channels and commit chains. The
authors also discuss the four-layer blockchain architecture
we adopt in our work. Sguanci et al. [147] compare layer-
two proposals. Their comparison is restricted to three popular
proposals, namely the Lightning Network [54], Ethereum
rollups [160], and Plasma [33]. Gangwal et al. [149] provide
a taxonomy of layer-two protocols while focusing on the
security of payment channels, rollups, and commit chains.
Unlike the above-cited papers, which solely address layer-two
solutions, our work discusses scalability proposals across all
blockchain layers.

The third category comprises papers that compare solutions
across multiple layers. Kim et al. [151], Xie et al. [152],
and Yang et al. [154] provide short reviews of scalability
solutions on layer one and layer two. The descriptions of the
analyzed proposals, however, are high-level and do not cover

other layers. Hafid et al. [145] present a comprehensive survey
that delves deeper into sharding, alternative consensus, and
directed acyclic graph-based (DAG) proposals. The work also
analyzes several payment channel network implementations,
such as Lightning [54] and Raiden [89]. Zhou et al. [156]
expand the range of analyzed solutions by including layer-
zero proposals. Nasir et al. [159] extensively study existing
efforts on blockchain scalability, categorize them as on-chain
or off-chain, and present applications. The above works,
however, either fail to cover proposals in the hardware layer
or recent layer-two proposals such as rollups. To the best of
our knowledge, Sanka and Cheung [158] provide the most
complete survey about blockchain scalability solutions across
all layers. Compared to theirs, the main improvement of our
work is a more significant focus on the main challenges
of payment channel networks, which is the most prominent
layer-two solution in the present day.

Lastly, we compare our work with surveys focusing on
payment channel networks. Jourenko et al. [143] address
the main challenges in PCNs, such as payment routing,

channel rebalancing, channel settlement, and user privacy
and anonymity. Khojasteh and Tabatabaei [146] present a
shorter survey on the same topics. Both works mention
multiple payment channel networks and recognize Bitcoin’s
Lightning Network as the most mature implementation to
extract knowledge from. Papadis and Tassiulas [109] expand
the previous works by discussing network load balancing and
congestion control. The work also addresses channel creation
and network design strategies, analyzes the topology of the
Lightning Network, and discusses the scarcity of available
open data to be used in scientific investigations. Zhao et
al. [148] provide a systematic overview of the Lightning
Network challenges and countermeasures, most of which are
general PCN challenges. The authors focus on the security of
users and the robustness of the network. Other works men-
tioned in the previous paragraphs, namely [13], [145], [147],
[149], also address PCN challenges to some extent despite
being categorized as general scalability surveys. However, no
single survey addresses all the known challenges for payment
channel networks, nor do they present new technologies such
as PCN simulation and support for light devices.

Contribution. To the best of our knowledge, our work is the
first to focus on the challenges of payment channel networks
while still covering solutions from other blockchain layers.
We provide a per-topic comparison between our work and
other works on blockchain scalability in Table II. We also
summarize the difference between our work and existing sur-
veys that delve specifically into payment channel networks in
Table III. We do our best to cover topics that previous works
do not address and to update the knowledge on challenges
that changed over the years. Besides, we dedicate special
attention to optimistic and zero-knowledge rollups since we
observe they are important layer-two solutions that only a few
surveys address in detail.

III. THE BLOCKCHAIN SCALABILITY PROBLEM

Despite providing disruptive and innovative features,
blockchains still present significant latency, power consump-
tion, and transaction throughput issues. The collection of
such issues is known as the “blockchain scalability problem”
in the literature and is today one of the most important
research topics on blockchain technology [149], [150], [158],
[159]. In this section, we introduce the proper background
needed to understand the problem and formalize it through
the enunciation of the blockchain scalability trilemma.

A. Blockchains and Consensus

A blockchain system is a distributed ledger technology
(DLT) that leverages independent validator nodes to record,
share, and synchronize transactions in a decentralized system
over a peer-to-peer network. Each node in the network
stores a local copy of the blockchain where it can verify
any transaction issued on the network since its creation.
The blockchain data structure is a chained list of signed
transactions batched into blocks. Each block contains a header

Block 0 (Genesis) Block 1 Block 2 Block N

[||« Hash(Block 0)| [« Hash(Block]| <

Transactions

Transactions Transactions Transactions

Figure 3. Data structure of a blockchain, in which each block is linked to
the previous block via a cryptographic hash function. The replication of such
structure in independent nodes provides immutability to transactions.

with the hash of the predecessor block and a content section
that stores transactions, as shown in Figure 3. A transaction
represents an atomic action that transfers assets between
a sender and a receiver. To transfer assets, a sender must
sign a transaction containing assets he/she owns along with
the receiver’s identifier and send it to a subset of nodes
called validators. The transaction is confirmed once it appears
in a block, meaning that it has been selected by a node
and confirmed by the others. The combination of signed
transactions, linked blocks, and replication of the complete
data structure provides immutability to any data stored in a
blockchain, creating an incorruptible log of transactions.

Consensus in blockchain systems is the process by which
the independent validators in the network decide, collectively,
whether to accept or refuse the addition of a new block
into the blockchain. A blockchain consensus protocol is a
distributed algorithm that ensures the system evolves cor-
rectly, adding one new block at a time. Figure 4 illustrates
how a generic blockchain consensus protocol works. Assume
every validator starts at a previously-validated state .S. In each
round, the consensus leader, i.e., the validator with the right
to propose a block, aggregates the received transactions into a
block and broadcasts it on the network to be validated locally
by the other validators. Upon receiving the proposed block,
each validator evaluates it independently and, if approved,
adds it to their blockchain, locally reaching the new S’
state. When enough validators reach the new state locally,
the protocol considers that there has been consensus and that
the system as a whole has validated the new block. Hence,
S’ becomes the current global state of the blockchain that all
nodes must synchronize with, regardless of their opinion on
previous rounds.

Proposing, broadcasting, and verifying the block consume
time and energy proportional to the number of validators. A
mechanism for defining the consensus leader on each round is
also needed. Such procedures and leader-election mechanisms
define how fast a block is considered valid, and consequently
impact the performance of the blockchain. As many works
have shown, the core of the blockchain scalability problem
lies in the efficiency of consensus protocols, which must
ensure that the system adds blocks to the ledger in a safe
manner [151], [152], [156].

B. The Blockchain Scalability Trilemma

The blockchain scalability problem is a generic um-
brella term that encompasses the challenges of improving

Node_ 3%3 Blockchain (S)
Node

_ , _ 1 .@

ggg % | 3%3

-

Blockchain (S) Blockchain (S)

2, | F
B

Blockchain (S) Node

B
Node Blockchain (S')

Blockchain (S)

Blockchain (S')

Blockchain (S')

Node

2 Blockchain (S')
i /

Node
P, > —>>
@5 @

853

Blockchain (S')

@-|

Node

Blockchain (S')

>

Time

Figure 4. The validation of a block using a generic consensus protocol. On each round, the consensus leader proposes a new block that changes its local
state from S to S’ and broadcasts it to the network. The other participants independently verify and add the proposed block to the blockchain, replicating the

state S’ consistently.

Security

Blockchain
Trilemma

Scalability Decentralization

Figure 5. Illustration of the trilemma observed in blockchain-based systems.
The trilemma states that no consensus protocol can simultaneously provide
security, scalability (measured in transaction throughput), and decentral-
ization (measured in the number of nodes that participate in consensus).
Graphically, all blockchains can be represented by a point inside the trilemma
triangle.

blockchain performance. For the purposes of this paper,
it helps to narrow down such concept to a more specific
definition based on the blockchain scalability trilemma’, a

term coined by Ethereum’s founder Vitalik Buterin [12]:

Concept definition 1. (The blockchain scalability trilemma).
Given the following properties of blockchains:

o Scalability: the capacity to process transactions at high
throughput;

o Decentralization: the capacity to process transactions
without relying on trusted parties or small groups;

o Security: the capacity to successfully resist collusion
attacks;

3Some authors refer to the blockchain scalability trilemma as simply
“the blockchain trilemma” or “the scalability trilemma” [145], [147], [149],
[157].

the blockchain scalability trilemma is a conjecture that states
that no blockchain system can provide all properties simulta-
neously. Consequently, every blockchain forfeits at least one
property at any given time.

We highlight that the trilemma refers to Vitalik Buterin’s
notion of scalability instead of the classical concept of scal-
ability in distributed computing. The latter concept, which
in blockchains corresponds to the ability of the consensus
protocol to maintain throughput even when the number of
validators significantly increases, is captured by the decentral-
ization property. Henceforth, we adopt the term “scalability”
to refer to Buterin’s concept and “decentralization” to refer
to the concept of distributed computing.

We illustrate the trilemma in Figure 5. The rationale
behind it stems from the observation that the validation
of transactions in a blockchain system occurs, by defini-
tion, through the agreement between the validators of the
system. On the one hand, the more nodes participate in
consensus decisions, i.e., the more decentralized the system
becomes, the more complex and time-consuming the decision-
making and broadcasting of messages in the network. On
the other hand, reducing the number of validators to improve
throughput concentrates the decision power on fewer agents,
reducing the level of decentralization and increasing the
financial monopoly of the network. Some protocols try to
provide high throughput with many validators by allowing
multiple blocks to be approved simultaneously, but this also
compromises security since conflicting transactions could be
considered valid [32], [46]. This event is known as a fork
in the blockchain. Most protocols eventually solve forks by
finalizing a block and discarding the others, but this process
also takes time. Besides, transactions in discarded blocks
are rolled back and become untraceable, meaning that the

security of a transaction is only guaranteed when its block is
finalized. Despite being a conjecture based on informal logic
and empirical observations, the trilemma consistently occurs
in all major known blockchain systems [13], [153], [161].

C. Modifying Consensus to Improve Scalability

As security is essential in blockchains, in practice, the
trilemma mentioned above becomes a dilemma for consensus
protocols: the protocol needs to choose between scalability,
measured in the number of transactions processed per second,
and decentralization, measured in the number of consensus
validators. The trade-off between the two properties can
be seen in the comparison between the leading blockchain
consensus protocols shown in Figure 6.

Proof-based protocols adopt decentralized mechanisms to
define who has the right to propose a block, allowing any
user to participate in the process. However, these protocols
achieve low transaction throughput because they need to intro-
duce spam control tools to mitigate forks in the blockchain
and solve forks that occur. Thus, proof-based protocols are
challenging to scale but very decentralized, making them
more suited to public systems with many users [153], [162],
[163]. The main systems that use this type of consensus
are cryptocurrencies, such as Bitcoin [3], Ethereum [4], or
I0TA [32].

Conversely, committee-based protocols elect a group of
special validators that propose blocks through direct commu-
nication [19], [164]-[170]. The choice of who participates
in the committee can be made in several ways, such as
random selection or an election based on the number of coins
each user invested. The selection of a committee sacrifices
decentralization as only some users participate in the decision
but increases the number of transactions processed per second
since decisions are independent of time-consuming com-
putational mechanisms and spam control. Committee-based
protocols are therefore adapted to systems that already expect
some level of centralization, such as consortia of companies,
banks, and governments. The prominent representatives of
this type of system are Hyperledger Fabric [171], Hyperledger
Sawtooth [172], and Ripple (RPCA) [173]. The design of
committee-based protocols must include security mechanisms
to avoid collusion and denial-of-service attacks.

Several consensus protocols try to solve scalability
through hybrid solutions combining the best proof-based
and committee-based consensus approaches [174]-[177]. The
main objective of such protocols is to provide each property
at a specific phase of consensus, leveraging extra-consensus
mechanisms to mitigate possible vulnerabilities. However, the
hybrid approach suffers from the same trade-off between

scalability and decentralization of other approaches, reaching
intermediate levels in both aspects for its prominent rep-
resentatives, EOS.IO [174] and Tendermint [175]. Despite
the efforts, no consensus protocol consistently provides a
throughput of thousands of transactions per second with
high decentralization. This desired “ideal zone” that would

[l Committee-based protocols Desired zone

Low (~10) High (~10%)
Decentralization (number of nodes in consensus)

=)

=]

§ A Proof-based protocols \

; M Hybrid protocols \ /
o Dumbo-NG
= pi— . /
2 10t isDumboj /
§ | [DPoS] Dumbol T /
g rpgF T HoneyBadgerBF T,
5 BT RICA N
SSERT: TN PoET, o endermINvveeeneneneenannnss N

= —

5 Poal Algorand

o oS goran

iHotStuff) 5757

§ 102} E EOS.IO] Bitcoin:NG
=

g Proof of stake

g 0 Proof of work (Ethereum)
;; Proof of work (Bitcoin)
Ei

A

Figure 6. Comparison between the main consensus protocols of blockchain-
based systems. The observed trade-off between performance and decentral-
ization makes it difficult to propose a scalable protocol that is tolerant of
collusion attacks.

allow scaling blockchain systems without compromising their
decentralization is shown in Figure 6.

IV. SCALABILITY IN LAYERS HW, LO, AND L1

In contrast with approaches that propose new consensus
protocols, recent works on blockchain scalability increasingly
focus on improving the efficiency of other blockchain compo-
nents [31], [32], [54], [127], [156], [178]. Like other works,
we classify such solutions using a layered architecture as
to provide a clear view of the entire blockchain environ-
ment [13], [109], [143], [149], [156]-[159]. Moreover, we
adopt a popular architecture [13] to easily compare our work
with the literature and provide a detailed context of each
proposal. The architecture, illustrated in Figure 7, separates
blockchain systems into four layers of increasing complexity:

o The hardware layer (HW), which consists of user de-
vices and low-level technologies. Proposals in this layer
focus mostly on improving the underlying hardware to
accelerate block proposal and retrieval.

« Layer 0 (L0), which comprises the network infrastruc-
ture and message exchanges. Proposals in this layer
attempt to either adjust block sizes to fit the capabilities
of the underlying network or to improve the network
itself.

e Layer 1 (L1), in which consensus protocols and
blockchains operate. Proposals in this layer modify
consensus or the blockchain structure itself to improve
transaction throughput.

o Layer 2 (L2), which encompasses technologies that
perform off-chain processing as much as possible, i.e.,
proposals that improve throughput by validating transac-
tions outside the blockchain.

Layer 2: @

Off-chain Payment channel networks
solutions Rollups

Layer 1: Consensus stack
Blockchain and @Z@;@Qf@f{ Blockchain data structure
Consensus

Layer 0:

Communication protocols

Network and
Network structure

message exchange

Hardware

layer

Figure 7. Layers of blockchain-based systems. Most of the proposals to
improve the scalability of these systems are layer one or layer two, as they
are the simplest to modify on a large-scale decentralized environment.

Trusted execution environment
Hardware acceleration

In the following sections, we present the existing proposals
to improve scalability on the hardware layer, layer zero,
and layer one while delegating layer-two proposals to their
dedicated sections, as they are the focus of our work. We
note, however, that the boundary between layer one and layer
two is still discussed in the literature. This paper considers
all solutions that rely on consensus protocols to validate
transactions, including sidechains, block sharding, DAGs, and
cross-chain proposals, to be layer-one proposals. We discuss
this decision and provide a proper definition of layer-two
protocols in Section V.

A. Hardware Layer (HW)

At the bottom layer of the architecture, most proposals seek
to increase the performance of blockchains through hardware-
based solutions, such as hardware acceleration and trusted
execution environments.

Among the acceleration proposals, Sakakibara et al. pro-
pose using Field Programmable Gate Array (FPGA) to imple-
ment a cache memory that stores the most popular blocks and
quickly transmits them to users who request them [16]. The
technique speeds up access to blocks by allowing devices to
obtain information directly from the FPGA, thereby reducing
user access time to transactions by up to seven times. Another
similar proposal leverages FPGA technology to make verifi-
cation and dissemination of blocks faster within a consensus
protocol round [18]. The results indicate that using FPGA to
accelerate consensus increases the total system throughput by
up to 12 times.

Besides FPGAs, Trusted Execution Environments (TEE),
such as Intel® Software Guard Extensions (SGX), can be
used as a hardware-based technology to prevent malicious
behavior by consensus participants. TEEs ensure participants
cannot perform specific actions, such as lying about a block,
which allows protocols in the upper layers to relax or elim-
inate time-consuming security mechanisms [14], [15], [77].

The TEE technology is the basis of some highly efficient
consensus protocols, such as the Hyperledger Sawtooth’s
Proof of Elapsed Time (PoET) [19]. The protocol employs
SGX to replace the decentralized computational challenge
with simple tamper-proof timers. Thus, to elect the leaders,
all participants generate a random value for a timer, and
when it expires, they propose blocks in an orderly manner.
This process reduces the time of a consensus round and
increases the protocol scalability to up to 2,300 transactions
per second [17]. The disadvantage is that all participants must
support SGX.

1) Discussion: The main limitation of new hardware so-
lutions is the heterogeneity of user equipment on a highly
decentralized network. Since blockchain systems have no
central authority, it is difficult to guarantee that all participants
support the hardware requirements needed to implement the
improvements. Consequently, hardware solutions prioritize
security and scalability regarding the blockchain trilemma,
but they often come at the cost of increased centralization.
Most proposals for highly decentralized environments with
many users focus on the upper layers of the architecture.
Thus, this approach is most effective in controlled, partially
centralized environments, which do not represent the majority
of blockchain applications [17], [153], [161].

B. Layer Zero (LO): Network and Message Exchange

Layer zero solutions aim to improve the efficiency of
information propagation in the underlying communication
network without modifying consensus protocols. The main
proposals to increase scalability in this layer try to reduce the
redundant data transmitted to the network, for example, by
optimizing the size of messages, by modifying block size and
interval, by compressing blocks, or by modifying the network.

1) Modifying Block Size and Interval: A naive solution
for improving transaction throughput is to produce larger
blocks in the same time interval*. Large blocks would mean
processing more transactions at each consensus round since
the extra block space fits transactions that would otherwise
stay in the mempool’.

Nevertheless, the capacity of the links in the underlying
communication network limits block sizes. For example,
Bitcoin produces a block of approximately /.1 MB every 10
minutes [179]. Each block contains around 2,000 transactions,
yielding a throughput of about 3.3 transactions per second.
Blocks should contain more than 14 million transactions, with
a total size of approximately 8 GB, to achieve the VISA’s
peak throughput of over 24,000 transactions per second with
the same block time [180]. Broadcasting and validating such
large blocks becomes a new bottleneck for the system since

4Some authors consider the modification of block sizes to be layer-
one proposals as they often require changes to consensus protocols [109],
[145], [156]. We argue that block sizes are mostly linked to the expected
transmission delays in the underlying P2P network even when this is true.

5The mempool is a familiar name for the set of unconfirmed transactions
in blockchains. Validators select transactions from the mempool to create a
new block.

only a few users can receive and process 8 GB of data in
10 minutes. This restriction also compromises security, as
most users would always see an outdated blockchain version.
Hence, blockchain-based systems must consider message
transmission delays as their key indicator for defining the
optimal block size.

An equivalent approach is to reduce the time needed to
validate blocks. For instance, Ethereum reduces the time
between blocks from 600 seconds to only 14 seconds when
compared with Bitcoin [3], [4]. Although this modification
can theoretically improve the latency of high-priority transac-
tions, it implies the need for reduced block sizes to maintain
the synchronization between blockchain replicas. Blocks in
Ethereum are around 64 kB and contain 350 transactions on
average. Reducing block intervals also increases the number
of forks in the blockchain since the probability of a fork
is a ratio of the time needed to propagate the block over
the block interval. The closer the propagation and block
interval are, the greater the probability of forks. Also, because
forks are more likely to exist, nodes typically wait for 250
blocks to determine that a transaction has finalized, compared
to 6 blocks in Bitcoin [181]. Therefore, in practice, the
average transaction latency and throughput on the Ethereum
blockchain remain in the same order of magnitude as of
Bitcoin, i.e., 58 minutes and 15 tx/s, respectively [153].

2) Segregated Witnesses (SegWit): Another approach to
increase transaction throughput is to reduce the size of
transactions so that more transactions fit into one block. This
idea stems from the observation that transaction sizes are
dominated by the cryptographic information needed to verify
its authenticity. In blockchains, digital signatures typically
represent 60 to 70 percent of the total transaction size [152].

One approach that simultaneously increases block size
and reduces the space occupied by signatures is Segregated
Witness (SegWit) [21]. SegWit is a modification to the Bitcoin
protocol proposed to prevent transaction malleability [182].
Malleability is a property of cryptographic algorithms: mal-
leable algorithms allow attackers to modify a cipher while
maintaining the same verification result. Before SegWit,
transaction malleability could occur when a valid transaction
(regarding its signature) was tampered before being confirmed
in the blockchain. The attacker would gather information from
the transaction in the mempool and slightly change one of
its fields so that the signature verification algorithm is still
valid. This vulnerability was feasible because the signature
algorithm did not cover all transaction data, and transaction
signatures were stored in one of the transaction fields. How-
ever, the transaction identifier would change since it is a hash
of the complete transaction. The proposed solution moves
transaction signatures to an external field, thus reducing the
transaction size [27].

SegWit blocks include a 3 MB extension over the original
1 MB block size to fit transaction signatures, which prevents
the signature from being part of the transaction identifier.
Consequently, both SegWit and legacy nodes consider only

4 Legacy Transaction N (SegWit Transaction
d Input) 4 Input)
Previous Tx ID: Previous Tx ID:
Index: 0 Index: 0
- =/ - =/
¢ Output h a Output h
Value: XXX Value: XXX
scriptPubKey: | Dest. PubKey scriptPubKey: | Dest. PubKey
. J . J
- N\ /
Witness

Figure 8. A legacy transaction versus a SegWit transaction. Legacy trans-
actions include the digital signature in the transaction itself, generating an
overhead on the final transaction size. SegWit transactions decouple the
sender’s signature from the transaction by creating an external witness field.

the transaction fields, allowing them to fit more transactions
into a block. SegWit nodes receive larger blocks, while legacy
clients visualize smaller transactions. Figure 8 illustrates the
difference between legacy and SegWit transactions. SegWit
transactions have two parts: the first contains the sender’s and
receiver’s wallet addresses, whereas the second part, called
witness data, contains the transaction signatures. Therefore,
removing transaction signatures to an external storage in
the witness field solves the transaction malleability problem
and increases throughput in the system. Nevertheless, the
throughput achieved, around 20tx/s, is still far from the
desired values to serve customers on a global scale [158].

3) Taproot: Taproot, a modification to the Bitcoin
blockchain built on top of SegWit, was proposed in the
Bitcoin Improvement Proposal (BIP) 341 and 342 to increase
user privacy and network scalability [183], [184]. The pro-
posal combines two technologies: Schnorr signatures [185]
and Merklized Alternative Script Trees (MAST) [186].

Schnorr signatures introduce a new form of creating multi-
signature schemes that consume less data than the previously-
used multi-signature protocol. For example, a pre-Schnorr
multi-signature address is implemented by creating a script
that hardcodes all the possible combinations of signatures
of users that can unlock funds. One can easily see that
this exponentially increases transaction sizes. Instead of this
cumbersome script, Schnorr signatures allow public keys to
be combined into a single key, K, which combines all the
public keys of parties that can spend the funds. Once the
authorized users want to spend the assets, they compute
partial signatures to form a single transaction signature. This
reduces the number of conditions in the script, thus reducing
the size of transactions published in the blockchain.

In addition, MAST reduces the information sent to the
blockchain and increases user privacy. Before MAST, users
who wanted to define a script to spend their coins needed to

publish all conditions inside the script, even though parties
will only trigger one condition. Thus, transactions that adopt
the pre-MAST form of writing scripts incur unnecessary
overhead in transaction size since a contract can be com-
posed of numerous conditions. MAST separates scripts into
Merkle trees which have script conditions as leaves. This new
transaction format only needs to include the condition used
to spend the funds and the hashes of the unused parts of
the tree to prove that the user knows how to build the root
of the Merkle tree. The new transaction structure increases
user privacy since it only reveals the necessary information to
spend the funds and significantly reduces the overhead caused
by scripts with many conditions.

4) Block Compression: Other proposals prefer to compress
blocks to minimize message sizes in the network [22], [24].
These algorithms accomplish compression by discarding in-
formation that is already stored in the mempool, reducing
redundant-data transmissions.

Matt Corallo proposed the compact block relay algorithm
for Bitcoin, an upgrade similar to SegWit, which reduces
the size of blocks while they are transmitted [22]. Compact
blocks contain only the block header and 32-byte transaction
identifiers. The author argues that this is enough to reconstruct
blocks since transaction data has been previously received and
stored in the receiver’s mempool. Consequently, nodes that
receive a compact block must use the transaction identifiers
to collect transaction data from the mempool. If some trans-
action data cannot be recovered, the receivers can request
the complete transaction from the sender. This eliminates
the need to send complete transactions in a block over the
network and dramatically reduces message size. Compact
block relays allow nodes to transmit 1 MB blocks with 15 kB
messages, reducing almost 10 times the amount of transmitted
data [158].

Txilm is another proposal that leverages compact block
relays to reduce the transmitted data [24]. Txilm replaces the
transaction identifiers in compact blocks with a short hash
of the transaction IDs to save space. Like compact block
relays, nodes that receive Txilm blocks can reconstruct the
original block by adding transaction data from their mempool.
In Txlim, however, the receivers must compute the hashes of
all mempool transaction IDs to match them with the hashes in
the compact block. This approach has been shown to reduce
the bandwidth by up to 80 times compared to the default
block transmission protocol [24], [156], [158].

5) Network Modifications: Relay networks are composed
of nodes that effectively relay and broadcast network mes-
sages. The approach increases the propagation speed of
updates, such as blocks and transactions, and its broadcasting
is faster than the main blockchain. Corallo [20] proposed a
centralized Bitcoin relay network to relay blocks globally.
The centralization, however, faces security challenges despite
its scalability benefits. FIBER (Fast Internet Bitcoin Relay
Engine) is a recent Bitcoin relay network that connects
nodes and broadcasts Bitcoin compact blocks for shorter

propagation delay [25]. FIBER sends and receives blocks
to miners connected through its six servers worldwide. Car-
dano blockchain platform adopts Recursive Inter-Network
Architecture (RINA), a new type of network technology,
to propagate transaction information [187]. RINA provides
a secure and programmable environment to propagate data
efficiently with a short delay.

Another protocol for high-performance computing network
architectures is Remote Direct Memory Access (RDMA).
RDMA is mainly applied for high throughput communica-
tions in data center environments. The protocol executes a
kernel-passing to directly transfer data from the Network
Interface Card (NIC) to the application’s memory, avoiding
time-consuming memory copies. Thus, this approach can be
attached to blockchain networks to increase the throughput
and decrease the latency. Rubin [23], BoR (Blockchain over
RDMA) [26], and CloudChain [28] are some examples of
proposals that improve consensus protocols with RDMA to
reduce the communication overhead.

6) Discussion: Modifications to layer zero aim to reduce
the propagation of redundant information or improve block
delivery by the underlying network. The most straightforward
solutions attempt to optimize block intervals and block sizes
to match the characteristics of the network [109], [145], [156].
SegWit and Taproot propose modifications to the Bitcoin
protocol that reduce transaction size, making it possible to
fit more transactions in each block [21], [183], [184]. Instead
of sending whole blocks, compression protocols send only
block hashes and transaction identifiers, which reduces block
propagation time [22], [24]. All these approaches provide
limited scalability gain, despite being widely adopted. More-
over, changing the block structure in public blockchains can
result in a fork if the network participants do not widely
accept the update. For example, Bitcoin Cash [188] was
created by a hard-fork® in Bitcoin as a response from some
users to the SegWit update [189]. Forks weaken the security
of blockchains as an attacker requires less computational
power to attack the consensus [190]. Other changes to the
network infrastructure, such as using relay networks and
high-performance computing network architectures, effec-
tively speed up the delivery of blocks but are also challenging
to implement in decentralized environments.

C. Layer One (LI): Improving Consensus

A rigorous comparison between existing consensus pro-
tocols is out of the scope of this paper as it has already
been extensively addressed in previous surveys [150], [152],
[153], [161], [191]. Proposing new consensus protocols is,
by far, the most explored strategy to improve scalability
in blockchains [150]-[153], [155], [191]. Nonetheless, there
are several interesting works that, instead of new protocols,

%Hard forks are backward-incompatible modifications to the blockchain
that force all nodes to update their software. Soft forks are forward-
compatible modifications that do not compromise the functionality of old
software versions.

propose structural changes to the consensus layer itself. In this
section, we address such proposals and place them into two
categories: solutions that propose changes to consensus in the
main blockchain and solutions that move consensus outside
the main blockchain. The first category includes directed
acyclic graphs (DAG) and sharding. The second category
includes sidechains supported by cross-chain technologies.

1) DAG-based Consensus: The distributed ledgers based
on directed acyclic graphs (DAG) potentially increase trans-
action throughput while ensuring properties similar to
blockchains [44]. While blockchains aggregate transactions
into logically chained blocks, each transaction is chained
independently in a DAG. Like blockchains, DAGs are im-
mutable path data structures linked by hashes. The main
difference between a blockchain and a DAG is that a new
transaction can refer to any predecessor transaction, not only
to the last one. Moreover, unlike blockchains, DAGs allow
users to validate and process transactions asynchronously
without relying on a round-based consensus protocol. DAGs
are an example of ledger technology that provides high
scalability and decentralization while sacrificing security as
it deliberately allows forks to exist in the system [39], [49].

IOTA is a DAG-based cryptocurrency built to meet the
machine-to-machine (M2M) micro-payments characteristic
of IoT environments [32]. Their payment mechanisms and
consensus protocol, formalized by Popov in 2016, use a new
data structure called the Tangle. The Tangle is a distributed
ledger structure that stores network transactions in a DAG
rather than in a blockchain. In addition, the Tangle eliminates
the distinction between clients and validators: system users
validate previous transactions to issue a new transaction. A
notable feature of IOTA compared to traditional blockchain
consensus is that different participants in the network may
have different views of the transactions. This contrasts sharply
with the unique global view needed for blockchains, in which
all participants have identical copies of the ledger.

Figure 9 shows an example of IOTA’s Tangle data structure.
Each graph vertex represents a transaction, and each edge
represents a transaction validation. The user must confirm at
least two unconfirmed transactions to add her/his transaction
to the Tangle. Uncommitted transactions are called “tips” of
the Tangle. To add a transaction to the network, the user adds
the hash of two chosen tips to her/his transaction, solves a
proof-of-work computational challenge, and broadcasts the
result to the network. Proof of work, in this case, has a lower
difficulty than Bitcoin and serves only as a mechanism to
prevent transaction spam. The transaction commit procedure
creates two new directed edges that confirm previous trans-
actions and represent a generalized version of the sequence
of hash functions of the blockchain.

Nevertheless, no consensus mechanism prevents the con-
firmation of conflicting transactions. The authors argue that
this is not an issue considering honest users are expected
to have more computational power than malicious nodes,
like in Bitcoin. However, to accomplish this, the current

version of IOTA centralizes transaction confirmation in a
trusted coordinator [192]. In “The Coordicide”, a published
paper which proposes to replace the coordinator with new
decentralized confirmation strategies [45]. However, many
security challenges still need to be addressed [193].

Other examples of systems that use DAGs are Byteball,
Hashgraph, and Avalanche [30], [46], [194], [195]. In Byte-
ball, graph transactions gradually converge on the main chain
using particular nodes, called witnesses, with reputation-based
validation power [30]. On the other hand, Hashgraph is
inspired by Byzantine Fault Tolerance (BFT) style consensus
protocols based on voting among witnesses [46]. Similarly,
Avalanche repeatedly queries a random subset of validators to
get their preference and to decide whether a transaction should
be accepted [194], [195]. Byteball, Hashgraph, and Avalanche
can only guarantee the order and security of transactions if
participants share the same global graph view.

2) Sharding: Sharding was first proposed for improving
throughput in distributed systems and databases [31], [156],
[196]. The core idea is to distribute parts of the data to
different processor groups called shards and aggregate the
processed data. In the context of blockchains, shards represent
groups of block validators that agree upon a transaction
subset. The approach parallelizes the processing of transac-
tions in each shard and consequently speeds up consensus.
The transaction throughput is expected to grow linearly with
the number of existing groups/shards. While some sharding
proposals address only financial applications, e.g., transferring
coins between two nodes, sharding techniques can handle
multiple generic computing tasks, which extends their appli-
cability to other cases that use smart contracts. We depict an
example of blockchain sharding in Figure 10.

The main challenge of sharding is to ensure the security
of transactions in the blockchain. Because shards process
different transactions concurrently, each shard has a different
views and must define a way to avoid double-spending. This
is typically done by having some overlapping information
between shards. Sharding also impacts efficiency if the trans-
action validation needs information from distinct shards [197].
When this is the case, the need for synchronizing information
between different shards produces communication overhead
and extra latency. The overhead is proportional to the number
of shards and the efficiency of the transaction allocation
procedure. For example, some works estimate that the number
of transactions shared between shards can exceed 90% of
the total transactions when the number of shards is greater
than 64, and nodes are randomly allocated to the shards [42],
[178]. Thus, similar to traditional big data techniques that
parallelize tasks in centralized clusters, sharding proposals
must allocate recurring tasks in the same shards to maximize
transaction throughput and avoid bottlenecks caused by inter-
shard communication. Nonetheless, the random choice of
nodes participating in each shard guarantees greater security.

Elastico is the first public shard-based blockchain sys-
tem [31]. Each shard in the network performs the validation of

T2 T4

IW: 1 IW: 1 T (tip)
CW: 11 CW: 6 fe—01 | IW:1]
/(1+3+1+1+3+1+1) (143+1+1), CW: 1
T1 1 15 \T7IW' 3 ¥ %, T (mew
W: 1 IW: 3 CW: 4 " fransaction)
— CW: 13 “ S}’;ﬁgn (3+1) IW: 3
(1+1+1+143+1+143+1) CW:3
1 4 X T6 T8 (tip) :
- IW: 1 IW: 1 IW: 1
CW: 10 <~— Ccw:2 = |
(]+3+]+3+l+]) (1+]) CW: 1
Time =t

T2 T4 9
W: 1 W: 1 TIW_ 1
CW: 14 CW:9 je— | ;
(143 +1+143+1+1+3), (143+1+143) CW: 4
/ '>((1+3)
T7
T1 l 15 W:3 ¥
W 1 IW: 3 CW: 7 T10 (tip)
— CW: 16 CW: 12 (3+1+3)
(T34 1+143+143) (B+14+3+1+1+3) IW:3
AN I ANE s cw:3
| IW: 1 IW: 1 IW: 1
CW: 13 [*— CW: 5 CW: 4
(143+14+3+1+1+43) (1+1+43) (1+3)
Time = t+1

Figure 9. Example of the IOTA Tangle data structure (extracted from [161]). Transactions constitute a directed acyclic graph. Each transaction has an
individual weight (IW) and a cumulative weight (CW), corresponding to the sum of the individual weights of all transactions approved directly or indirectly.
After selecting and validating two tips, the new transaction, T10, becomes a tip, and its weight propagates to the cumulative weights of previous transactions.
The cumulative weight of each transaction serves as a security metric that indicates how many transactions have approved it, similar to the number of block

confirmations in a blockchain.

Transactions Verification and Global Block Creation

-

Shard 1 Shard 2 Shard N

‘ BFT Consensus

Figure 10. Execution of a consensus round in a sharding-based system. Each
fragment generates a set of valid transactions through Byzantine agreement.
After this step, the transaction sets are combined to form the global block.

‘ BFT Consensus ‘

a subset of transactions through the Practical Byzantine Fault
Tolerance (PBFT) consensus protocol [164]. The participants
of each shard are chosen at each epoch through a proof-of-
work challenge to prevent an attacker from creating multiple
identities and from corrupting the result of a shard. After this
step, a particular shard, called the consensus committee, forms
the final block containing the set of all validated transactions
from all shards of the network. However, the system uses the
benefits of sharding for transaction processing only, while
storage and communication issues remain open challenges.
Also, the computational overhead to select the shard members
at each epoch limits the scalability gain of the proposal.

OmnilLedger appeared as an alternative to Elastico which
focuses on avoiding its main disadvantages [36]. Omniledger
combines the RandHound and Algorand consensus proto-
cols to provide a public collusion-resistant mechanism for
randomly choosing the participants of shards [162], [198].
OmniLedger introduces a two-phase lock-and-unlock protocol
called Atomix to ensure the atomicity of transactions between
distinct shards. Another advantage of Omniledger is that
validators save only a part of the transaction history, which
is enough to recreate the state of the shard and reduces
storage overhead. In addition, the authors propose replacing
the blockchain with a DAG to increase block processing
concurrency. However, the use of computationally expensive
operations and the need for an intense participation of network

nodes in transactions between shards prevents its adoption by
low processing power nodes.

Another sharding solution to increase the throughput of
blockchain systems is RapidChain [37]. The proposal has
greater resilience to Byzantine failures, tolerating up to 1/3 of
malicious participants like traditional deterministic Byzantine
agreements compared to 1/4 tolerated by Elastico and Om-
nilLedger [31], [36], [199]. The results show that the proposal
achieves approximately 4,000 transactions per second for
a network with 9 shards, a throughput that is 100 times
higher than Elastico and 8 times higher than OmniLedger.
Dang et al. [40] propose a shard-based blockchain system
using a Trusted Execution Environment (TEE) for shard
formation. Specifically, the TEE generates unbiased random
values to assign nodes to a shard securely. The authors
also leverage TEE to improve BFT consensus protocols by
removing equivocation in its failure model, achieving higher
fault tolerance than other implementations. The proposal
achieves a throughput of 3,000 transactions per second for
a network with 36 shards, each containing 4 nodes.

Pyramid [50] is a system that predicts the intersection
between distinct shards to reduce the communication over-
head of inter-shard transactions. In Pyramid, some shards
can store records of multiple other shards. Nodes that host
part of the shards referenced in a transaction are respon-
sible for verifying it. Therefore, Pyramid reduces both the
computational overhead of complex protocols to ensure the
synchronization of information between the shards and the
storage of global transactions by all network nodes, restrict-
ing the storage of transactions between the shards to the
edge nodes. In addition to the highlighted systems, other
proposals use sharding to increase transaction throughput,
such as Zilliga [38], MultiVAC [41], and Monoxide [42]. All
the sharding proposals still present a maximum throughput
considerably lower than traditional payment systems [180].
However, providing scalability, decentralization, and security
remains a challenge in research areas that combine blockchain
and shards.

3) Cross-chain Protocols and Sidechains: DAG and shard-
ing are proposals that change the blockchain structure or the
transaction validation process. Another strategy is to keep the
structure of the main blockchain and validate transactions via
secondary blockchains [29], [33], [47], [154].

Cross-chain protocols constitute an essential component
of sidechains, as they allow mapping the existing re-
sources of a large and slow blockchain into a smaller and
faster blockchain [154]. Despite initially being proposed
for blockchain interoperability, cross-chain protocols have
been used to increase blockchain scalability since they allow
assets to be processed in a secondary (and possibly more
efficient) blockchain. Cross-chain protocols allow interoper-
ability between blockchains. The objective is to map the
existing resources of a blockchain into another blockchain in
a coordinated manner that guarantees the uniqueness of assets
and avoids double-spend attacks in both blockchains. For
instance, we want Alice, who owns resources in blockchain
X, to send or receive assets from Bob, a user in blockchain
Y. A cross-chain protocol must guarantee the atomic transfer
of resources between the two users in the involved systems.
There are usually two steps for transferring assets: locking the
assets at the source and releasing resources at the destination.

Back et al. [29] introduce the concept of sidechains in the
Pegged Sidechain platform. The basic idea of sidechains is
to have a main blockchain that synchronizes users in other
blockchains (sidechains). Parallel to the main blockchain,
secondary blockchains execute consensus protocols that may
be completely uncorrelated to the consensus in the main
blockchain [47]. Due to the fewer participants, the secondary
blockchains usually achieve higher throughput than the main
blockchain. Users who need to perform recurrent generic
tasks can even create secondary blockchains on demand.

Another advantage of sidechains is that the data published
in the main blockchain is just a hash of the current state
of the secondary blockchain, saving disk space on the main
blockchain. Consequently, sidechains incur lower fees for
transactions and executing smart contracts [33]. Finally, when
the participants of the secondary chain decide to commit
the changes, they transfer the new states from the secondary
blockchain to the main blockchain using a cross-chain proto-
col.

Two-way pegs are a simple way to trade resources be-
tween blockchains. The two-way pegs can be implemented
by a trusted entity, such as a trusted broker of the parties
involved, or by a smart contract associated with the two
blockchains [48]. Figure 11 shows an example of an exchange
operation. A user of the main blockchain wants to transact on
the sidechain. Thus, the user executes a transaction that locks
the desired amount of resources with the help of the two-way
pegs. Once the two-way peg withholds the resources in the
main blockchain, it allows the release of the same amount
in the sidechain. After performing the desired transactions
on the sidechain, the user can follow the reverse path to
receive her/his assets back in the main blockchain. The system

Main blockchain

Releasing resources into
the main blockchain

Locking 2 coins into
the main blockchain

[Main blockchain locker]
Two-way Peg
[Sidechain locker]

Releasing 2 coins into the Locking resources into
sidechain the sidechain

A H A H

Sidechain

Figure 11. Illustration of a sidechain with a centralized two-way peg to
provide interoperability between the blockchains. A user of both blockchains
initially locks resources in the main blockchain and obtains them in the
sidechain. The two-way peg oversees the two blockchains and ensures the
correct transfer of assets. Finally, the user can follow the reverse path to
receive the resources in the main blockchain.

scalability has the potential to increase considerably with the
existence of sidechains, considering that hashes published in
the main blockchain are less frequent.

The main challenge of moving consensus outside the main
blockchain is to ensure security in the side blockchains. Creat-
ing smaller blockchains favors attackers, as their influence on
the consensus result is inversely proportional to the number
of participants or computational power. Thus, the participants
of the sidechains must be carefully selected through trust
and reputation or by establishing a reasonable number of
participants to minimize the risk of attacks. Among the main
sidechain implementations, we can highlight: Plasma [33],
satellite chains [34], Chainlink [35], and Cosmos [43].

Plasma is an alternative to reduce smart contract execution
rates on Ethereum [33]. Smart contracts execute outside
the blockchain and publish small results of all executions
as a final state in the main blockchain. Li et al. present
the concept of satellite chains [34]. The goal is to create
blockchains that run independently but can exchange data if
necessary. The practical application is an industrial setting.
Chainlink [35], [51] is a system that allows the exchange
of information between blockchains and external information
through smart contracts. Cosmos is a blockchain system that
uses a central Cosmos [43] hub and parallel blockchains. Each
blockchain runs a BFT protocol based on Tendermint [176]
for fast block validation. Furthermore, the authors propose a
new protocol for inter-blockchain communication to transfer
resources between secondary blockchains.

4) Discussion: Scalability proposals at layer one involve
mechanisms that improve consensus performance. DAG sys-
tems modify the blockchain structure to enable concurrent

Amoss suoyeam ureyoyo0[q urew ureyoyoo el “lev] Sureyo9pI
Ue UONRZI[RIUD SISBAIOUI [OIYM ‘SUIRYINI0[q FeURO0Iq Ut 4 U0 "1 [cel-[cg] BU4OdpLS
P T - : uo 9oeds 93eI10)S SAARS - A1epu0od9s 19)sej & 0) Jurssadoid uonoesuer) s9e39e(- pue ureyo-ssoi)
Arepuooas uo syuedronred snsudsuod soonpay - : : [62] :
Q3ueyoX9 UONBWIOJUT 5
SPIBYS-IQUI UI PBIYISAO UOTIBIIUNWIWOD SIONPONU] - worqoxd oYy Sumrds Surssaooxd uonoesuer) sazid[eIed - HNE\SE SuE
sureyoyoo[q o1qnd Sunsixo ur pIey st KQ SnSUQSUOD SAJRID[AIIY - SIOJepIfeA Jo sdnoid Suowre ejep uonoesuen saNqISI(- I [8¢] hGﬂ IpTeUs
yorgm ‘sjoo0joid snsuasuod ay) ur saSueyd sarmboyf - los] “Trel
SIOJEpI[BA PUE SJUSI[O US9M)Aq UOIOUNSIP SOJRUTWIH -
sureyoyoo[q o1 qnd Sunsixe ur piey st 050101d SNSUSSUOA DOSEA-DUNOL B 10 uoroesueI)
UOIYM ‘QInjonis ureyoyoo[q ay) ur saSueyd sarnboyf - 10901 paseq-p I 10s5909pa1d Aue 90UQIRJAI O} UONIBSURI) B SMO[[Y - 11 [og] ova
: : juowaInbar ay) sejeurwIy - ’ [ov] ‘[zg]
AIIND3S YIOMIQU) UINEIM UOIYM ‘SHIOJ SMO[[Y - ydeid
OI[0A9® PIJOIIP B JOJ AINONNS UTRYdYd0[q Y} sade[day -
. so1doo K1owaw SpIoAy - ! \A\CoEuE mw.:ommwm._m% > O JIN u:w [L81] “[82]
JUSWIUOIIAUS PAZITEI)USIAP UI 90I0JU 0} PIey SI woij ejep Jojsuen Apoaxrp o3 Surssed-[ouray B SINOAXH
Kepop uonededord 01 [92] ‘[sz] uomedyIpOW JIOMIIN
UOIYM ‘QINJonnseljur yiomjou ur sagueyd sanmnbay - HOTIOBSUEI DU 4501q SonDos - wn .
n } PUE A0Iq Pod uonededoxd 9onpar 0) axmjonIseIuI Iomlau soroxduy - [eel “loc]
[oodwow oy uo Apeaie
Amgepeos x08 o dn 4q uoneuLIojul 01 [vz] ‘[ze] uorssaxdwod yoorg
ur sureS S}WI| UOHBWIOJUI Uondesuer) paImbay - JuawaIbar YIpimpueq Y sAONpIY - Surpreosip £q oz1s oSessow yromjou A.oo:wom N '
Aumaereos Koeaud 1asn sororduy - . . | sa1] 1dHOS eIy
ur sureS S}WI] UONBWIOJUI uondesues) paImbay - 2010 © U1 SUOL oﬁcwH pazippo]N Sundope £q eyep 1diIos ureyo-uo seonpay - (o8 1] ooxde
S)I0J-pIey 03 ped] o ToquInu mem%% o ,mom.woa,o:. w sormeusis nouyog Sundope 01 [¥81] ! L
Aew yorym ‘9Imonns oo[q ur sagueyd saxmbay] - 30 14 w I Aq s[020jo1d 21njeuIIs-I[nW UO BIEP UIBYD-UO SONPIY - (€81l
Kypiqereos woqoxd
ur sureS S}WI| UOHBWIOJUI UonNdesuer) paImnbay - ANTIQeI[[eW UOTOBSURI) YY) SJUAAI] - PIeY [BUIXS UB 0} SAINJBUSIS UONOIBSUBI) SOAOIN - (2l Mo
SyI0J-prey 0) ped| Aew J00[q B UI suonoesuer) UONOBSUBI) JO 9ZIS 9Y) SONPIY - 01 Ic NMISS
UOIyM ‘9Injonmns uoroesuen} ur ogueyo soxnbay - Jo Joquinu 9FeIOAR Q) SOSeIou] -
Ayiqereds ur sured puooas 1od suoroesuen 2010 © IEDIEA 01 DODOSU SUII Sl SOONDON -
syt Ayoedeo yurp yromjou Jurkpopup) - passaoo0id Jo 1oquinu 9y} SISBAIOU] - I01q € SYEpHEA O3 pp mmbsh_ oov w) UuoNEBIYIPOW [BAIIUI
SYJIOJ-pIey 0} ped|)00[q B UI SUONoeSURI) [PAISNL 0019 9t 01 pue az1s yoo[g
Sururejurew [IYMm O0[q Y} JO AZIS AY) SASLAIOU] -
Kew yorym ‘ermonns yoo[q ur sagueyo sanmbay - Jo Joquinu 9FeIOAER JY) SOSeaIou] - R : :
oQOme %Wm wawmwwomw »MMBM_MMM stown) jooid-redwre) ordurrs yim aSusqeyd
SJUSWUOIIAUS PIZI[EIJUIIIP Ul 1090 i ' pPue p reuoneindwod pazifenuadep ay) doejdar 0} gL, s - 1]
a0 . ornbos - SNSUASUOD B JO QW) Y} SINPIY - qued g MH . 4L
JUS O} pIey ST plym “HH L, & SaImboy SwsIueY>AW SiuedIon.e [Le] [s1]
fyunoss Surunsuoo-ow mogr_E:m) wolj IoIAeYdq snororew juasaxd 01 gH T, s9s() -
SJUSWUOIIAUD PIZI[ENIUIOIP Ul X771 01 dn £q SnsSuasuod $9IeIA[AIDY - punOI SSUASOD © sjuaua|dury ow“ﬂﬂ&%ﬂ%& MH 1811 ‘(911 VOdd
90IOJUQ 0} pIrey SI Yomym ‘YD Ue saxnbay - X/ 0} dn s)00[q 0} $S900€ SAJRIS[IIIY - 21018 puE KIowaw oyoes & Juewa(dwr 01 YO $951) -
suone)UI Urejp SaIn)ed] urejy uondiLsaq Jafe| SHIOM uonnjos ANfIqe[eds

"HINLVIALIT HHL NI SNOLLNTOS ALITIGVIVOS dHL NHIMLIE NOSTIVAINOD

AI 3198L

and asynchronous transaction processing by any user. This
approach allows forks to occur, which makes it vulnerable
to double-spending attacks when users do not share the same
view of the blockchain. Sharding methods attempt to speed up
consensus performance by concurrently processing subsets of
transactions on different validator groups. This approach faces
challenges similar to big-data techniques, such as optimal
distribution of transactions and inter-shard communication.
Cross-chain protocols and sidechains, on the other hand,
move transaction validation to secondary blockchains that
are smaller and faster. This approach is primarily fit for
blockchain applications in a large blockchain system, such
as ERC-20 tokens on Ethereum [200].

D. Summary of Scalability in Layers HW, L0, and LI

Scalability proposals for layers HW, LO, and L1 usually
involve structural modifications that are difficult to imple-
ment. Table IV summarizes the surveyed proposals on the
hardware layer and layers 0 and 1. Changes to the hardware
layer imply extra costs to users and cannot be enforced in
decentralized environments. Overall, hardware layer solutions
prioritize scalability and security over decentralization in the
blockchain trilemma (described in Section III-B). Changes to
layer zero alter the format of messages, causing soft forks
or even hard forks in the blockchain. For an end user, this
can incur incompatibility issues with some nodes on the
network that prevent them from exchanging messages with
nodes running different blockchain versions. Furthermore,
changes on layer zero present limited scalability gain, given
that a transaction or signature cannot be reduced indefinitely
without a loss in security. Finally, improvements in layer
one often create new systems that modify consensus and
even the blockchain structure itself [32], [174], [176]. Conse-
quently, layer one solutions are hard to integrate into existing
blockchain systems.

V. SCALABILITY IN LAYER TwWO: PAYMENT CHANNEL
NETWORKS

Unlike proposals on layers HW, LO, and L1, layer-two
solutions do not modify blockchain systems at all since
they operate on top of the lower layers. They leverage
blockchain core functionalities, such as scripts and smart
contracts, to implement security mechanisms that validate off-
chain transactions. Such validation mechanisms are invisible
to the blockchain, which sees transactions from a layer-two
service as ordinary transactions. With this simple but powerful
characteristic, layer-two proposals have emerged in recent
years as solutions with great potential to scale blockchains
efficiently without causing a significant impact on end users.

Before presenting layer-two solutions, we note that the
definition of layer-two protocols is still under discussion.
For some authors, any mechanism that avoids publishing
transactions in the main blockchain is considered layer two, as
such solutions neither rely on the primary consensus protocol
to process transactions nor make all transaction data publicly

available [145], [147], [149], [154], [156], [158]. This per-
spective classifies proposals that validate transactions through
secondary blockchains, such as sidechains, as layer-two pro-
tocols. Conversely, other authors define layer-two protocols
as protocols that implement their own off-chain consensus-
free validation rules [13], [109], [143], [157]. Under this
definition, layer-two protocols only rely on consensus to settle
disputes that could not be solved via off-chain validation.

We adopt the latter concept as it enhances the innovation of
off-chain validation. Besides, associating consensus to layer
one provides a clearer separation between layers. In particular,
we adopt the definition of layer-two protocols as proposed by
Gudgeon et al. [13]:

Concept definition 2. (Layer-two protocols). A layer-two
protocol is a protocol that allows transactions between users
through the exchange of authenticated messages via a medium
that is outside of but linked to a layer-one blockchain.
Authenticated assertions are submitted to the main chain
only in cases of a dispute, with the main chain deciding the
outcome of the dispute. Security and non-custodial properties
of a layer-two protocol rely on the consensus protocol of the
main chain.

Hence, we classify proposals that modify consensus or use
consensus as the default validation mechanism as layer one,
including sidechains and cross-chain protocols. To the best of
our knowledge, payment channel networks, optimistic rollups,
and zero-knowledge rollups are the only currently known
layer-two protocols for blockchain scalability.

In the following sections, we dedicate a large portion of this
work to the presentation and discussion of the main challenges
of payment channel networks, the most popular layer-two
protocol for exchanging assets efficiently in traditional cryp-
tocurrencies such as Bitcoin. The PCN use case covers most
of the characteristics of layer-two protocols, so the reader
should have gathered enough understanding after Section VI.
Then, for completeness, we review the different types of
transaction rollups, an innovative mechanism for processing
generic off-chain computations in blockchain systems that
support smart contracts, such as Ethereum.

A. Overview of Payment Channels

Payment channels are a solution to the blockchain scal-
ability problem [201]. Unlike the solutions mentioned in
previous sections, this technology operates in layer two,
establishing off-chain communication channels in which users
can freely send payments without validating them through a
slow consensus protocol. This solution reduces the latency
of payments, which now depends mainly on communication
latency between users. Payment channels are a particular case
of state channels in which the traded assets are coins [202].

The main idea of payment channels is to publish transac-
tions in the blockchain only when needed. The blockchain
becomes a security service that provides the starting point
for payment channels and possibly is used to solve disputes

involving users. Figure 12 shows the three-phase operation
of a payment channel. In the channel creation phase, two
users, Alice and Bob, issue a funding transaction, agreeing
to transfer some of their coins to a common address coop-
eratively controlled by both. These coins remain unavailable
in the blockchain for the entire channel lifespan but can be
used to issue transactions in the channel. Bob and Alice also
agree on a timelock window W that either user must wait in
case he/she unilaterally closes the channel (we explain this
requirement in Section V-B3). Then, when the channel is
established, the users continuously update their balances in
the channel via private commitment transactions. Commit-
ment transactions are not published in the blockchain and,
consequently, produce low-latency payments. Either user can
trigger the channel closing phase at any time by publishing
the latest commitment transaction into the blockchain. Once
validated, this transaction creates an Unspent Transaction
Output (UTXO) that transfers the most recent balances to
their respective parties on-chain. Thus, the blockchain only
knows the channel-opening and channel-closing transactions,
which are seen as ordinary transactions in the system. Con-
sequently, these are the only transactions that go through
the consensus protocol and are subject to high latency and
transaction fees.

One of the main advantages of payment channels is easy
implementation. While some layer-one solutions like sharding
and more efficient consensus protocols require core changes
to the blockchain, payment channels do not require any
modification at all. In fact, unlike other layer-two solutions
such as transaction rollups (Section VII), payment channels
can be implemented in blockchain systems that do not support
Turing-complete smart contracts, such as Bitcoin. Another
key advantage of this technology is that it saves resources that
would be spent on transaction fees. In public blockchains, the
low transaction throughput causes users to pay high fees for a
transaction to be prioritized by validators. Payment channels
remove transaction fees, as transactions are sent directly to the
receiver. The only exceptions to this are the channel-opening
and channel-closing transactions.

B. Guaranteeing Security in Payment Channels

Payment channels, like blockchains, do not require mutual
trust in their security model. To accomplish this, the channel
establishment procedure works as follows. When establishing
a channel, the funding transaction implements a 2-of-2 multi-
signature payment policy, i.e., each new transaction that
spends the funds of the funding transaction must contain the
signature of both users. To issue a commitment transaction
within the channel, a user creates a transaction that spends
coins from the funding transaction, signs it, and transfers the
signed transaction to the other party. This signed transaction
serves as a payment guarantee to the other party, who can
sign and issue the transaction on the blockchain to redeem
his funds. Thus, it is not possible for one of the parties to

issue transactions to itself and steal coins from the channel
since an agreement between the two users is required.

Locking coins in a transaction that requires the signature
of both participants, however, introduces a vulnerability. As-
suming a channel formed by users A and B, user B may act
maliciously by refusing to issue signed transactions and also
refusing to sign transactions issued by A. This way, A’s coins
are forever stuck in the payment channel and unavailable to be
used in the blockchain. To address this potential vulnerability,
users A and B must generate a refund transaction, which
guarantees the user a refund in case of malicious behavior by
the counterpart. This transaction is created before the channel
is established and exchanged by users. Thus, user B has a
refund transaction signed by user A, and user A has a refund
transaction signed by user B. In the event of a malicious
action by one of the parties, the counterpart issues the refund
transaction on the blockchain and reclaims their coins. The
refund transaction only serves as an initial guarantee and is no
longer valid after the first transaction in the payment channel.
For this invalidation to occur safely, the system must correctly
revoke the latest state and introduce a new one, updating the
channel state.

1) Updating Channel States: A key aspect of payment
channel security is channel state updates [13], [54]. If channel
updates are incorrectly performed, a malicious user can take
advantage of his counterpart by publishing an old state that
benefits him. In the example of Figure 12, users perform
three off-chain transactions: Alice issues the first commitment
transaction, 7' X7, sending 2 coins to Bob; then, Bob issues
a second transaction, 7' X5, sending 1 coin to Alice. Finally,
Alice issues a third transaction, 7' X3, transferring 3 coins
to Bob. In this case, Alice can act maliciously and close
the channel by publishing the second transaction, in which
she had a balance of 4 coins instead of the current balance
of 1 coin. Also, Alice could act maliciously by sending the
refund transaction to the blockchain, redeeming the 5 coins
she initially owned instead of the 1 coin she currently owns.
This vulnerability happens because the blockchain does not
know which transaction is in the most recent state since it does
not keep track of off-chain transactions. Payment channels,
however, do not need to maintain a complete ordering of off-
chain transactions like blockchains; it suffices to keep track
of the latest state. In the example, it is enough to enforce that
only T' X, is valid, i.e., there must be a way to revoke T7'X
and consider T'X» as the current state. We explain how to
revoke old states in the following sections.

2) One-way Payment Channels: Several proposals have
been made to solve the problem of state updates in payment
channels [52]-[54]. In 2013, Spilman [52], [203] proposed
one of the first state update mechanisms for Bitcoinj’ payment
channels, which only works for one-way payments. This
mechanism imposes conditions for the redemption of coins
using the programming language of Bitcoin, the Bitcoin

7Bitcoinj is a Java implementation of the Bitcoin protocol. Available at
https://bitcoinj.org/

Blockchain

S

Bob Alice
Publish

Publish

Funding Tx -~

Commitment transaction
Balance: Alice = 3, Bob =7

“Closing Tx

Closing transaction

Funding transaction

(last commitment transaction)

Balance: Alice = 5, Bob = 5

Commitment transaction
Balance: Alice = 4, Bob =6

Balance: Alice = 1, Bob =9

@ W = 10 blocks

Commitment transaction
Balance: Alice = 1, Bob =9

Channel creation

Channel established

Channel closing

time

Figure 12. Payment channel operation. Users Alice and Bob contribute 5 coins each to issue the funding transaction and create a payment channel. After
establishing the channel, Alice and Bob can exchange coins by issuing private commitment transactions that rewrite their balances. For example, Alice sends
2 coins to Bob by signing the first commitment transaction, which changes her balance to 3. To close the channel and claim the coins on-chain, Alice or Bob

can publish the commitment transaction containing the most up-to-date balance.

script [204]. In the proposed mechanism, before establishing
a channel, users A and B generate a refund transaction that
contains the following conditions to close the channel: (i)
the locked coins can be redeemed after time ¢ counted from
the publication of the funding transaction, or (ii) the coins
can be redeemed immediately if the counterpart agrees to
the refund. The first condition guarantees that coins cannot
be locked in the channel forever, while the second condition
guarantees that the two users get a refund immediately if
there is a transaction signed by both, proving they agree
with it. After channel establishment, user A starts to send
coins by issuing commitment transactions to user B, who can
sign and publish the transactions in the blockchain, close the
channel, or wait for a new state change. It is easy to see that
this channel design works only as a one-way channel. While
user B receives transactions signed by A, the same does not
happen in the opposite direction. Furthermore, even if user B
returns a coin to user A, there is no guarantee that B will not
publish an old transaction on the blockchain in which he had
a higher balance. Thus, the correction of state replacement
is incentive-based since the user who receives the coins has
nothing to gain by publishing an old transaction. Any rational
user who receives payments will always post the latest state
as it benefits them the most [13].

The creation of a payment channel that works only in one
direction, however, restricts the potential applications of this
technology. Most day-to-day applications require payments in
both directions, e.g., refunds for purchases or cashback appli-
cations. Furthermore, two users who share a payment channel
can take on independent roles, buying and selling products
to each other. In this case, one-way channels eliminate the
possibility of safely sending payments in opposite directions.
Users who want to reverse the roles of sender and receiver

would have to create one channel in each way, which implies
more locked coins, more transaction fees, and more time to
establish the channels.

3) Bidirectional Payment Channels and State Revocation:
Creating bidirectional channels involves state revocation: re-
voking all previous states from both parties is necessary
to prevent malicious action. Nevertheless, blockchains do
not allow the creation of revocable transactions [54]. Once
signed and posted on the blockchain, the transaction cannot
be canceled. It is possible, however, to create policies that
discourage users from issuing old transactions and acting
maliciously [53], [54]. One of the early forms of state
replacement was a time-blocking replacement. In this model,
all transactions in the channel have a time lock, i.e., the coins
in the transaction can only be spent after a time window W
counted from its publication in the blockchain. This model
uses the blockchain as a reference to guarantee synchroniza-
tion, with the time window defined in terms of the number
of blocks in the blockchain. The time window decreases
each time the payment direction reverses. Thus, in a channel
between two users A and B, user A can issue a transaction
T X to B with a 30-minute time lock, approximately 3 blocks
on the Bitcoin network (recall that one block takes on average
ten minutes, see Section IV-B1). If B wants to pay A, B
issues 7' X9 with a time lock of 20 minutes, approximately 2
blocks in the Bitcoin network. That way, if B acts maliciously
and issues the previous transaction, 7'X7, in the blockchain,
user A can issue T X5 and redeem the coins before B since
T X5 has a shorter time lock. Despite safely ensuring state
replacement, this model has two disadvantages: (i) user A
must be online and constantly checking the blockchain to
monitor the actions of B; and (ii) W is limited. The initial
value of W, defined by the two users that create the channel,

is a difficult choice. A high value for W allows for more
state updates but locks coins longer when a user closes the
payment channel. A low value of W allows few channel
updates, reducing the channel expiration date.

Poon and Dryja [54] proposed a state substitution model
that has become the standard for payment channels. The
model creates bidirectional channels while discouraging ma-
licious behavior through financial punishment. Suppose it is
proven that a user acted maliciously by publishing an old
state in the blockchain. In that case, the channel counterpart
can contest the transaction and redeem all the coins in the
channel, including the attacker’s. Each payment generates a
pair of asymmetric commitment transactions: user A has a
commitment transaction signed by user B, and user B has a
commitment transaction signed by user A. Each transaction
has a corresponding secret with the following condition: if
the counterpart knows the secret and reveals it within a
period of ¢ from the transaction publication, it can redeem
all the coins in the channel. In practice, the transaction secret
is a private key that transfers the commitment transaction
outputs to the address of the user who did not publish the
transaction. The key verification is done automatically using
Bitcoin script as a root of trust, public to both participants.
To issue new payments on the channel, users change the state
by exchanging signatures and revealing the transaction secret
associated with the previous state. Thus, if any user publishes
an old state, the other user can immediately claim all the
coins using the previously-revealed private key. In contrast,
the user who closed the channel can only redeem coins after
W blocks.

The procedure for replacing states executes as follows.
Assume a channel between Alice and Bob in which, initially,
each user has 5 coins and Alice wants to send 1 coin to Bob.
To send the payment, Alice generates an asymmetric key pair
(PKa,SK), where PK 4 represents Alice’s public key and
SK 4 represents the secret key she generated. Bob performs
the same procedure, generating a key pair (PKp,SKp).
Alice then creates a commitment transaction 7°X 4p con-
taining the following conditions: (i) Alice has 4 coins that
she can claim immediately if the transaction is published;
(ii)) Bob has 6 coins, which can only be claimed after a
period W or if Alice authorizes it before the period ends;
(iii) the public key of this transaction is PKp and Alice can
redeem Bob’s 6 coins if she reveals SKg in time ¢;,t; < W.
Alice signs the transaction T'X 4 and sends it to Bob with
the secret key of the previous state. Bob performs the same
procedure, generating the transaction 7'X g 4, which contains
the following conditions: (i) Bob has 6 coins that he can claim
immediately after the transaction is published; (ii) Alice has 4
coins, which can only be claimed after a period W or if Bob
authorizes it before the period ends; (iii) the public key of this
transaction is PK 4 and Bob can redeem Alice’s 4 coins if
he reveals SK 4 in time ¢;,t; < W. Bob signs the transaction
TXpa, sends it to Alice, and reveals the transaction’s secret
key for the previous state. Thus, if either party publishes the

5
Charlie \ 1
6
Elvis Diana
Time™

Figure 13. Example of payment in a payment channel network. To send
Charlie 5 coins, Alice uses the existing channel with Bob, who forwards the
coins to the destination. The payment modifies the balance of the channels
involved in the payment path. Hashed Timelock Contracts (HTLC) guarantee
the security of this procedure.

latest state, only conditions (i) and (ii) can be triggered since
the secret keys SK4 and SKp will be shared in the next
state update. However, if an old state is published, condition
(iii) can be triggered immediately as the previous secret keys
have already been revealed.

C. Building Payment Channel Networks with Hashed Time-
lock Contracts (HTLC)

Despite providing fast and secure payments, a payment
channel can only be established between a pair of users.
Thus, more than this solution is needed to solve blockchains’
scalability problem as it would require users to establish chan-
nels to every payment destination [54]. As a consequence,
users who wish to transact with multiple destinations must:
(i) have a large number of coins which will be locked in the
blockchain to allocate funds across multiple channels; and
(ii) pay high transaction fees on each funding transaction and
wait for consensus to open the channels. Such requirements
hinder the use of this technology in everyday life, in which
fast payments to several different entities are common.

The scalability problem can be solved with a payment
channel network (PCN), which interconnects the existing
payment channels created by users in the blockchain. PCNs
allow users to transact with each other quickly with low
fees, even if they do not share a direct channel. Figure 13
shows an example of a PCN with 5 participants. In the
picture, Alice wants to transfer 5 coins to Charlie, with
whom she does not have a payment channel. Alice, however,
has a channel with Bob, which has a channel with Charlie.
Hence, Alice can transfer 5 coins in her channel with Bob,
who then transfers 5 coins in his channel with Charlie,
completing Alice’s payment. Note that payment channels
are independent, so Bob cannot transfer the coins from his
channel with Alice to the channel with Charlie. Bob receives
Alice’s commitment transaction on his channel with Alice
and generates a commitment transaction of equal value for
Charlie.

Payment channel networks must also provide mutual trust
between the participants. In the example of Figure 13, Bob
could act maliciously by receiving Alice’s coins without
forwarding the payment on his channel with Charlie. To
prevent this, a particular type of contract called a Hashed

HTLC
1.1 BTC
9 blocks

HTLC

1.0 BTC
8 blocks
>/ O\ Tees

Y Charlie
y=H(z)
xr = secret

Figure 14. Steps to make a payment on a payment channel network. 1)
Charlie, the receiver, generates a secret and sends the hash of this secret
to Alice. 2) Alice does not have a channel with Charlie and uses Bob as
an intermediary, establishing a contract that promises to deliver coins to
Bob if Bob reveals the secret generated by Charlie. 3) Bob performs the
same procedure with Charlie. 4) Charlie reveals the secret to Bob and claims
his coins. 5) Bob reveals Charlie’s secret to Alice, claiming his coins and
finishing the payment.

Timelock Contract (HTLC) guarantees that coins in a channel
will only be transferred if two conditions are met [54], [205]:

1) Secret disclosure. Bob only receives Alice’s coins if
he reveals (to Alice) the secret that generated the hash
included in the contract.

2) Time limit. Bob must reveal the secret within a limited
time, or else Alice considers Bob gave up the contract
and claims the coins back.

For example, assume Alice wants to send coins to Charlie,
using Bob as an intermediary. Using HTLCs, Alice only gives
the coins to Bob after she learns that Bob forwarded the coins
to Charlie. The proof that Bob forwarded the coins to Charlie
is the secret that Charlie generated. Charlie only gives the
secret to Bob after he receives the coins, i.e., when he is sure
Bob has kept his promise. Then Bob can relay the secret to
Alice, proving that he kept his promise, and receive Alice’s
coins. The secret generated by Charlie works like a digital
receipt. Each HTLC contains a value y = H(z), where H (z)
is the result of the hash function of a secret x generated by
the receiver and a timeout ¢. HTLCs can be redeemed by
revealing the secret = or canceled if no secret is revealed
before ¢. In the meantime, the coins are locked (or in-flight).
Each intermediary user creates an HTLC with the next hop
containing the same y value, creating a payment chain. The
receiver, who knows x, reveals the secret to the last hop and
triggers the backward unlocking of the payment chain.

In Figure 14, imagine Alice wants to send a coin to Charlie.
Charlie generates a random value x, calculates its hash, y =
H(x), and sends it to Alice. Alice establishes an HTLC with
Bob, informs Bob that Charlie is the next hop and promises
to deliver a coin to Bob if Bob reveals z within 9 blocks
(approximately 90 minutes in Bitcoin). Bob then generates
an HTLC with the same condition for Charlie and sets the
timeout to 8 blocks (approximately 80 minutes in Bitcoin).
Charlie, who initially generated the = value, reveals x to Bob
to redeem his payment. Bob, in turn, reveals = to Alice to
redeem the payment in the channel between him and Alice,

completing the payment. The maximum amount of coins a
node can forward in an HTLC is bounded by the number of
coins the node previously allocated in the payment channel.
In the example of Figure 13, Bob could not forward payments
of more than 10 coins in the channel with Charlie.

HTLCs are the core enablers of multi-hop payments, which,
in turn, are what make payment channel networks effective.
Due to the two conditions that must be met, HTLCs are said
to be locked by time and hash. More importantly, HTLCs
establish trust among users in the payment channel network
by guaranteeing that each payment can only be claimed by
revealing the payment’s secret or by releasing the locked coins
after a timeout.

Note that despite being called contracts, the mechanism of
HTLCs follows a simple logic that can be implemented even
in systems that do not support smart contracts. For example,
HTLCs are implemented in Bitcoin as simple if-then-else
clauses inside the script of commitment transactions [54].
This simplicity increases the applicability of payment channel
networks, which could be implemented in any blockchain
system.

Off-chain payments vs. On-chain transactions. Now that
we have presented the concept of HTLCs, it is useful to
precisely define the concept of an off-chain payment:

Concept definition 3. (Off-chain payment). An off-chain
payment, or simply a payment, is the off-chain transfer of
assets between a sender and a receiver through the channels
of a payment channel network. While in-flight, the payment
establishes a sequence of HTLCs, called a payment chain,
in the channels of the payment path. Each HTLC may be
claimed by the respective channel parties on-chain.

Such payment definition is needed to clarify the difference
between payments and transactions, which we omitted in the
previous sections for simplicity. On the one hand, a trans-
action is the signed data exchanged between two parties that
can be published to transfer assets on-chain, e.g., commitment
transactions in a channel. On the other hand, a payment is
an off-chain transfer that needs an end-to-end sequence of
HTLCs to occur. Because HTLCs reside inside commitment
transactions on each channel, a multi-hop payment involves
one transaction per channel in the payment path. Henceforth,
we refer to this definition whenever we mention the terms
“payment” or “off-chain payment”.

It is important to note that each intermediary in the path
of a payment receives a routing fee® which serves as an
incentive to forward payments. This routing fee is equal to
the difference between the value of the incoming HTLC and
the value of the outgoing HTLC (respectively, the HTLC
from Alice to Bob and the HTLC from Bob to Charlie in
Figure 14). Senders pay fees by setting the value of the

8Routing fees or payment fees are off-chain fees charged by intermedi-
aries to forward payments. They should not be confused with the transaction
fees needed to publish a transaction in the blockchain.

first HTLC as the sum of the payment value and all the
routing fees in the path. Then, the following HTLCs subtract
the routing fees per hop. This procedure ensures that every
hop will receive more than they have forwarded when the
payment is completed. In addition, each intermediary in the
payment chain must set a timeout shorter than the previous
hop timeout. This difference ensures that all intermediaries in
the payment path have enough time to redeem coins. Thus,
if Alice generates an HTLC with timeout ¢ with Bob, Bob
must generate an HTLC with timeout ¢; < ¢ with Charlie.
Otherwise, Bob risks losing funds.

D. PCNs: The Lightning Network

The Lightning Network, proposed by Poon and Dryja [54]
for Bitcoin in 2016, was the first implementation of the
PCN technology. The system issued its first channel-opening
transaction in 2017. As of February 2023, it is the largest
known payment channel network with more than 16,000
nodes and 80,000 payment channels distributed around the
world [143], [148], [149].

The number of nodes and channels tripled from January
2020 to August 2021, showing rapid network growth. Thus,
the Lightning Network is the reference implementation of a
payment channel network today, providing real-time digital
payments for several applications [206]. The development of
the Lightning Network is even mentioned as a key factor for
the adoption of Bitcoin as an official payment method in EIl
Salvador [207].

Lightning has a strong focus on providing user anonymity,
just like Bitcoin. As such, it implements several privacy-
preserving mechanisms, such as user identification through
public keys only. Payments use onion routing [208], a trans-
port protocol that encrypts packets at every hop, mostly
known for its Tor network implementation. This mechanism
ensures that no payment intermediary knows the full pay-
ment path. Intermediaries charge two types of routing fees
when forwarding payments: a base fee and a proportional
fee’ [210]. Base fees are a fixed amount charged to each
forwarded payment, regardless of the payment value. Propor-
tional fees are charged on top of the amount to be forwarded.
Despite featuring two types of routing fees, Lightning’s fees
are orders of magnitude lower than the fees charged for
publishing a transaction on Bitcoin, making it especially
attractive for real-time micropayments [211].

The network implements bidirectional payment channels
precisely as described in Section V-B [54]. However, users
have the option to publicly announce their channels to be
used as payment routes, or keep them private to ensure greater
privacy. The disclosure of channels in the network occurs
through channel announcement messages that the network
broadcasts in gossip fashion [212]. In this model, a participant
broadcasts a message to a specific number of neighbors, who
repeat the message to their neighbors until the entire network

9The proportional fee is also named “fee rate” in the documentation of
Lightning [209].

knows the channel. The network nodes build the network
topology containing the active channels with their respective
participants and capacities from the received messages. Pri-
vate channels are not advertised and therefore do not appear in
the topology. Thus, the number of channels a node knows is a
lower limit than the actual number of channels in the network,
which is difficult to estimate. Regardless of channel status,
channel balances are known only to the channel parties, while
channel capacity may or may not be disclosed. On the one
hand, this prevents outside observers from tracking payments
by monitoring channel balances, compromising user privacy.
On the other hand, the unknown balance hinders choosing
paths with sufficient funds to complete a specific payment.

Lightning standardizes the message formats and protocols
used in the network through the Basis of Lightning Technol-
ogy (BOLT) [209], documents inspired by Internet RFCs that
formally describe how the network should be implemented.
Currently, the Lightning Network provides 11 BOLTs, which
specify the format and exchange of messages for opening
and closing channels, payment encoding, routing protocols,
and other specifications.

As the main PCN, several works analyze the Lightning
Network. Seres et al. [87] analyze the topology of the
Lightning Network in January 2019. The results show a
strong centralization, with few nodes concentrating most
channels in the network. The authors analyze the robustness
of the network, simulating attacks directed at the nodes
that present the highest degree. They show that removing
the top 37 nodes reduces the network capacity by 50%.
Similarly, Lin et al. [88] assess the income concentration
in the Lightning Network from January 2018 to July 2019.
The income concentration of a node in the network can
be measured by checking the public capacity values of the
channels in which the node participates. The authors verify
a tendency of centralization around the higher degree nodes,
forming core-periphery structures in which the hubs form the
core and the periphery presents star-like substructures. The
results show that removing the hubs partitions the network
into multiple components, making it vulnerable to topology-
based attacks [79].

E. PCNs: Other Implementations

Other PCNs have also been proposed over the last few
years with some differences to Lightning [57], [63], [89]. We
highlight the most popular ones next.

1) Raiden: The most relevant alternative to the Lightning
Network is Raiden, an off-chain payment channel network
for the Ethereum blockchain [89]. Raiden, defined by its
developers as “Ethereum’s version of Bitcoin’s Lightning
Network”, implements operations that are very similar to
Lightning’s. Firstly, the users must provide balance proofs,
locking funds publicly in the blockchain. The tokens to be
locked are deposited in a smart contract that handles the
Raiden transaction logic. After this phase, users can send
payments for as long as they have sufficient funds. An HTLC

secures the payments, similarly to Lightning. However, an
advantage of Raiden over Lightning is the support for trading
tokens in general instead of only coins. It is possible to create
a Raiden network per cryptocurrency that operates on top of
Ethereum. There are nearly 15 thousand addresses that hold
Raiden tokens, accounting for a total of $3.71M [213], [214].
Today’s largest Raiden network is still under development and
contains 128 nodes and 148 channels [215].

2) Sprites and Pisa Sprites: Sprites [57] is a PCN and
state channels implementation (recall that state channels
are a generalization of payment channels) that differs from
Lightning by proposing constant lock times between linked
payments and partial withdrawals/deposits. The constant lock
time is obtained with a smart contract, modifying the current
HTLC notion of disputes. The difference is that Lightning
resolves disputes in a serial manner, one channel at a time,
while the smart contract of Sprites can do this procedure
concurrently. The notion of partial withdrawals/deposits in
a channel allows users to update the channel capacity on the
fly, without closing the channel. Thus, it reduces the need for
costly on-chain operations. This feature is also possible due to
the smart contract logic. Pisa improves Sprites by introducing
a custodian service that allows users to disconnect for long
periods without risking losing funds [76]. The custodian is
similar to the watchtowers in Lightning, which alleviates the
assumption that parties must always be online to guarantee
security in the final state channel result. Nevertheless, Sprites
and Pisa Sprites only support the Ethereum network as the
underlying blockchain because they need smart contracts to
implement the channel logic. The projects also lack large-
scale adoption by the cryptocurrency community.

3) Trinity: Trinity [63] is a state channel implementation
on the cryptocurrency Neo. It has the same purpose as Light-
ning: to improve throughput and offload the blockchain by
executing transactions off-chain. The blockchain is used only
to open the state channel, publish the final state, and solve
disputes. Participants in the network must provide a “proof
of assets” to execute transactions off-chain, which is similar
to reserving some financial resources in the blockchain. Neo,
however, has a small market value since 1 NEO is worth
0.0004 BTC, and the Trinity project has yet to release a new
version since 2018 [216].

4) Blind Off-chain Lightweight Transactions (BOLT):
BOLT [58] is a PCN proposed to guarantee anonymous pay-
ments, designed for ZCash and other anonymous cryptocur-
rencies. Anonymity is enforced with technologies such as
pseudorandom functions and non-interactive zero-knowledge
proofs. BOLT defines three types of channels: unidirectional,
bidirectional, and indirect. Unidirectional channels allow a
consumer to pay with recurrence to a merchant. Bidirec-
tional channels are used for recurrent payments between two
parties in both directions. Finally, indirect channels allow
users to make payments even though they do not share a
direct channel. In this case, users send payments through
untrusted intermediaries using a revocation scheme similar

to commitment transactions on Lightning. BOLT does not
provide a large-scale implementation, thus it is difficult to
assess its advantages and drawbacks in practice.

5) TumbleBit: TumbleBit [59] is a unidirectional payment
channel hub compatible with the Bitcoin protocol. TumbleBit
maintains user privacy using an intermediary called Tumbler,
which cannot link the payments between the parties involved
in transactions. The Tumbler is a special user that mixes the
received transactions with cryptographic techniques to ensure
that the blockchain will not record any information about
transactions between users. Users can also use Tumblebit as
a mixer to ensure privacy in non-recurrent transactions. Tum-
blebit is centralized and does not support payment forwarding
through generic untrusted intermediaries.

6) Teechain: Teechain [15], [77] is a PCN that uses
Trusted Execution Environments (TEE) to provide security
guarantees for off-chain transactions. Teechain allows dis-
putes to be solved asynchronously instead of during a dispute
period. To accomplish this, Teechain moves the root of trust
from the blockchain to TEEs, ensuring that the nodes always
act honestly. The architecture uses special CPU instructions
provided by Intel’s Software Guard Extensions® (SGX) to
create memory regions called enclaves isolated from the
operating system to implement these trusted environments.
In the proposed system, the client application maintains de-
posits within enclaves and manipulates the balances of these
deposits when receiving and sending transactions through
payment channels. The application with enclaves only inter-
acts with the blockchain at deposit creation and completion.
Before creating a deposit, the user must utilize an Intel
attestation mechanism to ensure that the application runs in a
genuinely trusted environment and that it will honestly follow
the protocol. Furthermore, the system replicates data between
device enclaves that participate in a committee, to prevent a
single point of failure. Teechain is compatible with the Bitcoin
network, but instead of using HTLC to transfer assets in the
PCN, Teechain locks the funds in the TEE. The remaining
operations are similar to Lightning. Teechain, however, has
the disadvantage of needing specific hardware. Thus, like
proposals on the hardware layer, the adoption of this payment
channel network is limited by the cost to the end user.

7) Comparison with Lightning: Despite many PCN pro-
posals, the Lightning Network is by far the most widely
adopted and the reference of a PCN implementation. Other
PCN proposals often lack large-scale implementations and
community validation, hindering their adoption and gain
of market share. The Lightning Network often incorporates
several ideas from alternative PCNs, centralizing the develop-
ment of a canonical PCN model. Hence, in the next section,
we refer to Lightning as the default example of a payment
channel network and address the main PCN open challenges.

VI. CHALLENGES IN PAYMENT CHANNEL NETWORKS

PCNs are a new technology that still needs to be exten-
sively studied. Many research questions regard the large-
scale adoption of PCNs. This section addresses the main

open challenges of PCNs and presents several efforts found
in the literature to solve them. We separate the challenges
into topics: (i) payment routing; (ii) channel rebalancing;
(iii) network design; (iv) security and privacy; (v) attacks
in PCNs; (vi) payment concurrency; (vii) payment load
balancing, congestion control, and scheduling; (viii) PCN
simulation; and (ix) support for light nodes.

A. Payment Routing

Although payment channel networks are peer-to-peer net-
works, the way payment channels work is unique regarding
payment routing. The main specificity of payment channels
is that recurrent coin transfers from one party to another
in the same channel indefinitely reduce its capacity in that
direction since each forward operation moves some balance
of the sending party to the receiving party. Therefore, the
forwarding capacity of a channel directly depends on how
many payments have already been sent. This particularity is
the main difference of routing in payment channel networks
compared to traditional datagram networks, in which forward-
ing packets reduces the capacity of a link only while packets
are in transit. For example, in a traditional packet-switched
network, even though a 1 Gb/s link is forwarding packets at
200 Mb/s and its available capacity is temporarily reduced
to approximately 800 Mb/s, the capacity will return to the
original value once the packets are transmitted. In contrast, if
a payment channel with a capacity of 1,000 coins forwards
200 coins in a specific direction, its capacity in that direction
is reduced to 800 coins unless there is a transfer of coins
in the opposite direction. This characteristic highlights the
need to balance payments in each direction and makes it
challenging to use maximum flow approaches for routing,
which are commonplace in packet-switched networks.

Another critical characteristic of payment channel networks
is that the balances of each channel are private, i.e., only the
two parties directly involved in the channel know its current
state. The total channel capacity, on the other hand, is public
and available on the blockchain. This creates a challenge
for routing algorithms: estimate the current state of channels
from their total capacity. If this is not done correctly, the
path choice algorithm may use channels that had a sufficient
balance at the opening time but have already been exhausted
by other payments. In this case, the payment fails and must
be attempted again, increasing the user’s latency and reducing
system efficiency. In protocols that split the payment into
multiple paths, failure of part of a payment also compromises
the atomicity of the payment. This can lead to situations
where the buyer correctly pays n coins for a product, but
the seller only receives n — x coins, where x is the sum of
the values of the failed payments.

1) Routing in the Lightning Network (Default Protocol):
The standard procedure for discovering payment paths in the
Lightning Network uses a trial-and-error single-path protocol
based on Dijkstra’s algorithm for selecting the shortest atomic
path. The user runs Dijkstra’s algorithm to find the shortest

path to the receiver and then tries to make the payment on
that path. Suppose the payment fails in some channel because
an intermediary does not have enough balance to forward
the payment. In that case, the protocol removes the channel
in which the payment failed from the graph and reruns the
Dijkstra algorithm. The Lightning Network defines the sum
of the fees to be paid in a path as the standard shortest path
metric, i.e., the algorithm selects the path that minimizes rout-
ing fees. This path-choosing procedure intentionally sacrifices
optimality to provide speed, as it considers most paths will
succeed. Nevertheless, this assumption may not hold true for
high-value payments. The protocol also tends to imbalance
the most central channels in the network, creating the need
for constant rebalancing operations. In practice, the default
LN protocol is highly dependent on the current topology of
the Lightning Network, with a small set of channels that
hold a high amount of allocated coins and are rebalanced
frequently [87]. It is unclear how the protocol would perform
in the long term if the network topology changes.

2) Atomic Multipath Payments: Atomic Multipath Pay-
ments (AMP) are the default multipath routing protocol for
the Lightning Network [67]. The primary goal of AMP is to
enhance the reliability, efficiency, and privacy of payments by
splitting them into smaller parts that can be routed through
different paths in the network. This way, users can send
large payments through small channels without incurring
large failure probabilities. In the example of Figure 13, the
maximum amount of payments Alice can transfer to Charlie
using the standard (single-path) LN protocol is limited by the
channel with the lowest capacity, which has 10 coins. Thus,
Alice cannot send a 12-coin payment as no path supports
such an amount. Using AMP, the payment can be split into
two parts: a 10-coin transfer via Bob — Charlie and a 2-
coin transfer via Bob — Elvis — Diana — Charlie. The
main advantage of AMP besides increasing payment success
ratio'” is the atomicity of payments: Charlie can only claim
the payment when all parts have arrived. On the other hand,
AMP dramatically increases the number of HTLCs in the
network since each payment part generates a new HTLC. The
increase in the number of HTLCs also incurs a proportional
increase in routing fees for the user, as each independent
HTLC means one extra fee to be paid. Thus, AMP is an
efficient alternative to the standard protocol in cases where
the payment is too large to fit a single path, but it is not
likely to become a new standard in the future.

3) Flare: Flare is an early alternative routing protocol for
payments in the Lightning Network [55]. The main innovation
of Flare is that it eliminates the need for storing the complete
topology of payment channels. The algorithm consists of two
phases: (i) a proactive construction of routing tables that store
a partial view of the connections in the network; and (ii) a
reactive probing of channels based on a routing request, which

10We consider the terms “payment goodput” and ”payment success ratio”
as synonyms for the amount of payments that are delivered successfully over
the amount of sent payments.

collects dynamic information such as channel balances and
forwarding fees to rank candidate paths. Then, the sender
chooses the best-ranked path and adopts source routing to
send the payment. The routing tables are not built like in
traditional hop-by-hop routing but instead contain a subgraph
of the topology in which all possible paths are known. They
also store the path to a few beacon nodes which are not in
the node’s neighborhood, so that nodes can reach other nodes
which might be far away in the topology. When a payment
must occur, the sender and receiver exchange routing tables
and look for common nodes to build possible paths. Thanks to
the beacon nodes, this procedure ensures paths can be found
with a high probability even if the sender and receiver do not
share nodes in their neighborhoods.

The analysis of Flare focuses largely on the amount of
data spent to maintain routing tables and on the minimum
amount of beacons needed to reach all nodes in the network.
The simulations on a 2,000-node Watts-Strogatz graph show
that 5 random beacons are needed to ensure nodes can send
payments to any other node in the network, which yields
tables of around 150 nodes. In a 100,000-node network, the
minimum number of beacons increases to 6 with tables of 600
nodes, indicating that the solution is scalable. However, it is
difficult to know whether this perceived scalability remains
true when analyzing table sizes in bytes, as Flare tables also
store the paths to each node. Other results in the paper indicate
that having a partial view of the network increases the size of
the shortest path by up to 13 hops as viewed by the sender.
Such an increase could be prohibitive in real use cases, as
each extra hop would incur an extra routing fee. The protocol,
despite being proposed by Lightning developers, has never
been fully implemented in the Lightning Network.

4) Spider: Spider is a payment routing protocol that splits
transactions into parts for sending over multiple paths, similar
to AMP [90], [217]. The main novelty of Spider in com-
parison with other protocols is that it introduces payment
parts that are bounded by a fixed maximum-transaction-unit
(MTU) value. Besides increasing the probability of payment
delivery, bounded payment parts allow payments to be pro-
cessed like packets on the Internet. Routers in Spider perform
congestion control through payment queues that are only
served when the channel has enough funds. Otherwise, the
router holds payments in the queue and waits for payments
in the opposite direction. Routers also notify payment senders
in case some part remains in the queue for too long, so
that senders can decide whether to abandon it or try other
paths. The congestion control mechanism ensures channels
remain balanced, improving channel longevity at the expense
of payment latency.

The evaluation of Spider’s prototype shows that the MTU
approach significantly improves payment delivery, espe-
cially in scenarios with large transactions (>164 euros) and
low-capacity channels (<1,000 euros). In comparison with
protocols like single-path LN [54], SilentWhispers [218],
Flare [55], and SpeedyMurmurs [68], Spider improves pay-

ment success ratio by up to 1.8 x in a network of 106 nodes
snowball-sampled from the Lightning Network. With low
channel capacities, it completes up to 3x more payments
than single-path LN. Spider also increases the longevity of
payment channels by up to 4x in comparison with the afore-
mentioned protocols, demonstrating the main strength of the
congestion control mechanism. On the other hand, the average
payment latency of Spider is up to 2.5x higher than landmark
protocols like Flare, SilentWhispers, and SpeedyMurmurs for
large transactions. Similar to AMP, Spider multiplies the
number of HTLCs in a payment proportionally to the MTU
value, which introduces management overhead and increases
the feed to be paid. Spider also ignores routing fees when
selecting routes and does not guarantee payment atomicity,
which can make it difficult to adopt it in practice.

5) Flash: The Flash protocol is an adaptive routing pro-
posal that differentiates the routing methods of high-value
(elephant) payments from low-value (mice) payments [80].
The authors argue that elephant payments are more likely
to fail due to a lack of channel funds, so the protocol
should adopt an optimized method to select paths. Thus, Flash
develops a modified version of the Edmonds-Karp max-flow
algorithm [219] which probes paths before sending payments.
On the other hand, the protocol adopts a simple trial-and-error
approach for mice payments, as they are likely to succeed
even if path selection is sub-optimal. As mice payments are
far more common in practice, this approach saves resources
that would otherwise be spent on complex max-flow path
selection and payment splits.

The authors of Flash compare a prototype of the protocol
with Spider [90], SpeedyMurmurs [68], and shortest path
selection with the number of hops as cost. Simulations in
a 1,870-node snapshot of the Ripple network [220] and
in a 2,511-node snapshot of the Lightning Network [54]
show that the performance of Flash is equivalent to Spider’s
concerning payment success ratio and that both protocols
outperform SpeedyMurmurs by roughly 10%. In a Watts-
Strogatz network with 100 nodes, the success ratio of Spider
is 8.8% higher than Flash’s on average, which the authors of
Flash attribute to Spider’s congestion control. However, Flash
outperforms Spider by 2.3 x and SpeedyMurmurs by 5x con-
cerning payment success volume (i.e., the total amount that
reaches the target) in the Ripple network, demonstrating the
max-flow approach of elephant payments is indeed effective.
Flash’s average processing latency is roughly 19% better than
Spider’s, which is a clear improvement but still means 4 x the
delay of simple shortest-path approaches. We conclude, thus,
that Flash provides a significant improvement over Spider
concerning success volume, but suffers from similar problems
concerning payment latency. Moreover, Flash’s max-flow
approach without congestion control facilitates channel ex-
haustion since the algorithm sends as much value as possible
through paths.

6) Pickhardt Payments: Pickhardt et al. propose a routing
protocol that estimates payment channel balances to minimize

uncertainties [116]. The initial estimate predicts that half of
the channel capacity is allocated to each party. With this
estimate, the protocol selects paths whose channels have the
highest balance and tries to send payments through them. If
the payment fails on any channel, the algorithm knows that
the balance of that channel is less than the payment value and
updates its topology to reflect this new information. The same
occurs when the payment is successful, as it is certain that
the channel balance decreased from the payment amount. The
protocol can collect information about the state of the network
through such updates while issuing payments, which serves
as flow control for future payments.

Another novelty of Pickhardt payments is the introduction
of a mixed-metric approach that considers a combination
of routing fees and delivery probabilities as the cost of
a channel. The user can then tune a parameter to decide
whether to put a larger weight into delivery probabilities,
maximizing the chance of successful payment, or into routing
fees, minimizing financial costs. The algorithm then solves a
min-cost flow problem to find paths that minimize the overall
combined weight. Although we cannot quantitatively estimate
the efficiency of the protocol as it has yet to be compared
with the other protocols, the flexibility of this approach seems
promising in use cases where payments cannot fail. The
main criticism of Pickhardt payments is its high latency due
to the complexity of topology updates and path selection
mechanisms [221].

7) CoinExpress: CoinExpress introduces a dynamic rout-
ing protocol to minimize channel balance uncertainty [66]. In
the protocol, the user probes the network to reserve channel
balances before sending the payment. CoinExpress adopts a
variation of the well-known Ford-Fulkerson algorithm to find
the paths that maximize the flow sent in the network [222].
In each step, the algorithm iteratively probes known channels
using Breadth-First-Search (BFS) and updates the candidate
path set whenever an augmenting path (i.e., a path that
increases the amount of flow sent) is found. However, in
contrast with other max-flow approaches like Spider and
Pickhardt payments, CoinExpress considers a timeliness side
constraint to ensure the payment latency is bounded. Paths
that would violate a predefined deadline are discarded. The
protocol also defines a locking mechanism to avoid race
conditions and deadlocks when multiple senders attempt to
reserve channel balances simultaneously. The path-finding
algorithm stops when the flow amount is equal to the payment
value or if no more augmenting paths can be found. In the first
case, the protocol proceeds to send the payment; otherwise,
it cancels it.

The probe-then-send approach ensures payment atomicity
and increases payment success ratio by up to 4x compared
to (single-path) shortest-path and widest-path approaches.
However, the timeliness constraint reduces the performance
in about 20% compared to a push-relabel max-flow ap-
proach [62], which the authors argue is the price to pay for
only selecting paths that meet a desired deadline. The main

advantage of CoinExpress is the payment latency it provides,
which for small payments is approximately 5% more than
single-path algorithms despite it being a multipath max-flow
algorithm. However, without a detailed analysis, it is unclear
whether this effect could be caused by small payments not
requiring more than one iteration of the max-flow algorithm.
It is also unclear how CoinExpress fares against other max-
flow approaches for large payments. As with other probing
protocols, CoinExpress may eventually flood the network with
probing messages in high-load scenarios and sacrifice channel
privacy. The proposal does not consider transaction queues,
congestion control, and multi-metric path discovery.

8) HushRelay: Another approach inspired by classical
max-flow algorithms is HushRelay [95]. In HushRelay, nodes
run an adapted version of the Push-Relabel algorithm in which
each node tries to push excess flow along its neighbors via
probing messages [223]. The nodes can either accept the
flow or reject it via acknowledgments. The protocol also pre-
serves payment privacy'! by replacing the sender and receiver
with dummy nodes that do not identify them as users. The
authors compare the protocol against SpeedyMurmurs [68]
and show HushRelay achieves up to twice the payment
success ratio with half the latency in 25,000-node scale-free
graphs. However, there is no clear discussion on why the
algorithm is so efficient nor comparisons with other routing
protocols. A possible explanation is that, like CoinExpress, we
expect HushRelay’s multi-path probing approach to improve
payment success ratio in comparison with single-path ap-
proaches but it can also overload the network with messages.
The authors do not present results regarding communication
overhead, nor multi-metric approaches or congestion control
techniques.

9) SilentWhispers: Malavolta et al. propose SilentWhis-
pers, a routing protocol in PCNs that contains privacy guaran-
tees and seeks to reduce the overhead generated by storing the
complete network topology in each user [218]. SilentWhis-
pers embeds the payment network into a geometric space
so that pathfinding can be guided with spatial information.
However, only a small number of nodes, the landmarks, know
the complete embedding. The other nodes only compute their
distance and routes to all landmarks. Then, whenever a user
sends a payment, it sends the payment to a landmark, which
will relay it to the destination. A querying mechanism helps in
this private route discovery, where nodes can inquire about po-
tential next hops without revealing the entire route or payment
details. The main advantage of this approach is that users need
only to maintain the paths to the landmarks. The hierarchical
architecture helps to preserve user and path privacy and is
better adapted to scenarios with resource-limited devices that
cannot calculate routes and maintain a complete network
topology. The main drawbacks are the centralization caused
by the landmarks, which can be malicious, and the frequent

ITA payment is considered private if the sender, receiver, and payment
value are confidential to the involved parties. We elaborate more on privacy
definitions for PCNs in Section VI-D.

channel reuse [68]. Using landmarks can also lead to longer
paths than necessary. This type of routing, despite presenting
a solution with more significant potential for the inclusion
of lightweight devices, still needs practical observations and
large-scale tests.

10) Rapido: Rapido is a routing protocol that splits the
routing procedure into phases and allocates them to dedicated
modules [96]. In the first phase, the network is split into
regions that elect a beacon node each. The beacon node
is responsible for delivering payments inside its region or
relaying them to other regions. Rapido splits routing into two
different parts. The first one, called the proactive part, gathers
static path information, such as paths to all elected beacons.
The second part, called the reactive part, focuses on dynamic
network information, such as how the capacity is split among
participants in the path. Then, whenever a user needs to send
a payment, it first leverages the proactive routing module to
compute paths to beacons. The reactive module probes the
paths for dynamic information that will be fed to the value
distribution module, which calculates the optimal payment
split to allocate to each path. The value distribution module
considers the balance of payment channels in the path, which,
similar to Pickhardt Payments, indirectly provides congestion
control. The work also proposes a new structure named
D-HTLC (Distributed HTLC) that provides privacy of the
payment value. Because nodes compute routes to beacons,
Rapido’s routing algorithm can be considered a form of
multipath landmark routing. The authors of Rapido compare
the proposal with the LN default routing protocol and show
that it improves the payment success ratio by up to 3x at
the expense of up to 20% more latency in pathfinding. The
proposal is yet to be compared with other multipath protocols.

11) SpeedyMurmurs: SpeedyMurmurs mitigates the draw-
backs of SilentWhispers by adopting an embedding-based
path discovery algorithm [68]. With path embedding, each
node is assigned a coordinate that can be used to calculate
the distance between the node and a target destination. Thus,
senders can calculate distances and find “shortcuts” in the
network that skip landmarks without maintaining the com-
plete topology. Landmark influence is also reduced to building
embeddings instead of routing every transaction. SpeedyMur-
murs keeps the privacy guarantees of SilentWhispers while
improving the payment success ratio by up to 40% and latency
by up to 5x. It also provides an efficient network stabilization
mechanism which keeps embedding up-to-date with a small
overhead. The main shortcomings of the protocol are the
susceptibility to congestion in the network, which heavily im-
pacts pathfinding latency, and the lack of payment atomicity.
Besides, like SilentWhispers, SpeedyMurmurs ignores routing
fees, making it difficult to assess whether the protocol might
be adopted in practice.

12) CheaPay: CheaPay proposes a routing protocol based
on the Bellman-Ford algorithm that aims to minimize routing
fees to be paid along a path [81], [225]. Apart from fees,
their approach also considers two critical aspects of payment

routing to find paths: payment feasibility, i.e., whether all
channels along a path will be able to forward the payment, and
payment timeliness, i.e., whether the payment can be fulfilled
before the HTLCs in each channel expire. The algorithm
enforces these constraints by iteratively checking candidate
paths and discarding them whenever either condition is not
met. The main difference of this work in comparison with
others is that it relies on routing tables instead of source rout-
ing. PCN nodes exchange link-cost information (in this case,
routing fees) using a distributed Bellman-Ford algorithm like
in classical networks to build and maintain the routing tables.
However, the work does not support multiple paths or metrics
nor preserves transaction privacy. It also lacks quantitative
comparisons with other payment routing protocols.

13) RobustPay: RobustPay is a routing protocol that aims
to increase payment success probability by sending payments
through redundant paths [224]. This way, payments could
be completed even if nodes along one of the paths become
unresponsive. The protocol invokes CheaPay to find minimal-
fee paths that hold the properties of payment feasibility and
timeliness [81]. It then uses a variant of Suurballe’s algorithm
to find two disjoint minimal paths and sends the payment
through both paths [226]. The work, however, does not truly
support multipath because the HTLCs in one of the paths are
canceled whenever the payment has been claimed in the other
path. Hence, the extra paths provide redundancy. Also, the
authors modify the default HTLC implementation to ensure
paths can be unlocked quickly and safely. Like in CheaPay,
paths are found through routing tables built via the distributed
Bellman-Ford algorithm, which reduces pathfinding delays.
RobustPay maintains a similar payment success ratio when
compared to CheaPay despite providing the extra robustness.
However, both RobustPay and CheaPay lack comparison with
other protocols. RobustPay may also cause deadlocks in high-
load scenarios due to the extra path locks.

14) AODV-based Routing: Hoenisch and Weber propose
adapting the Ad-hoc On-demand Distance Vector (AODV)-
based routing protocol for payment channel networks [69].
The key idea of the proposal is to acknowledge that a payment
channel network is inherently dynamic because of constant
changes in channel balances and routing fees and because of
node churn. Hence, routes should be discovered on demand,
and nodes should not be assumed to maintain a synchronized
topology proactively. As in traditional AODV-based routing,
whenever a sender wants to send a payment, it floods the
network with route request messages that will be forwarded
hop-by-hop until they reach the desired destination. Then,
the receiver communicates the complete route via a route re-
sponse message to the sender, which can proceed to issue the
payment normally. The main characteristic of this approach
is that it trades the message overhead needed to maintain a
synchronized topology for an on-demand message overhead
whenever a route is needed. Thus, it is most fit for dynamic
environments with many light nodes, in which synchronizing
nodes is infeasible. The on-demand approach also mitigates

Table V
COMPARISON BETWEEN ROUTING PROTOCOLS FOR PAYMENT CHANNEL NETWORKS.

Routing Global Congestion Support for Support for Payment Payment Other
Reference -
type view control multipath multimetric privacy? atomicity observations
Lightning .. s
Network i * * * / / chortest path algorth
(default) [54] J path alg

Lightning o ..

Nk S,k
(AMP) [67] g path payments
Spider [90] Soche v v v X X X Introduces tran‘sacmn queues

routing for congestion control

Flash [80] Sou'rce v X v X X X Differentiates rout{ng methods for

routing elephant and mice payments

Pickhardt Sou%'ce v % v v v X Adopts paymfent probgblllty

Payments [116] routing as a routing metric
. . Source Inspired by the distributed
CoinExpress (6] routing v X v d o v Ford-Fulkerson algorithm
. Source Inspired by the distributed
HushRelay [95] routing v X X X X X push-relabel algorithm
Flare [55] Sou'rce X X X X X v Finds paths based on local subgraphs
routing and node beacons
SilentWhispers [218] Landrpark X X % X v X Relies on landmarks to calculate
routing routes and forward payments
Rapido [96] Landmark X v v X v X Relies on landrr_]arks and
routing path probing
SpeedyMurmurs [68] Path—eml?eddlng X X v X v X Uses pat.h—embeddmg based on
routing coordinates and distances
Hop-by-hop Builds routing tables using
CheaPay [81] (proactive) X X X X X v the Bellman-Ford algorithm
Hop-by-hop Improves CheaPay with redundant
RobustPay [224] (proactive) X X X o o v paths to tolerate node faults
AODV-based Hop-by-hop X X X X X v Finds routes on-demand
Routing [69] (reactive) via route request and replies
Ant Routing [97] Hop—b}{—hop X X X X X v Finds routejs using pheerone
(reactive) seeds, like ant colonies.

L If marked ”v”, global view means the sender must know the complete topology of the network to find routes and issue payments.
2 Payment privacy is defined here as the secrecy of the sender/receiver pair, of the payment value, and of the payment path. We mark ”v"” for protocols in which
all of the aforementioned information is kept private to nodes that are involved in the payment. We elaborate more on privacy definitions in Section VI-D.

the impact of zombie channels'?, since unresponsive nodes
will never respond to the route requests. The proposal has not
been evaluated with respect to latency and payment success
ratio, nor compared with other routing protocols.

15) Ant Routing: Grunspan et al. propose a routing pro-
tocol that finds paths in the network inspired by colonies of
ants [97]. The idea is that both sender and receiver generate
the same random pheromone seed and broadcast it to random
neighbors in the network. Intermediary nodes gossip the seed
until some node receives the seed from different neighbors,
causing a match like ants touching antennas. When the seeds
match, the intermediary node sends a confirmation seed to
the payment sender that a path exists and that it can proceed
with the payment. The sender then issues the payment to the
neighbor from where the confirmation came, and the payment
gets routed in the network via the path found. Because the
pheromone seed is broadcast, multiple matches corresponding
to multiple possible paths can occur. However, like with

127ombie channels are channels in which one node has become unrespon-
sive, but it is still unclear whether they will come back. This is a significant
issue in payment routing since the channel is still officially available but
cannot route payments.

RobustPay, the extra paths are not used for delivering multiple
payment parts but rather to improve payment privacy and
allow the sender to choose between paths with different fees.
The protocol does not rely on routing tables but creates an
Adelson-Velsky and Landis (AVL) tree that associates each
payment with the next hop in the path [97]. It is not clear
whether such an approach is scalable or efficient, as it lacks
formal evaluation and comparison with other protocols.

16) Summary of Routing Protocols and Discussion: Ta-
ble V summarizes the main points of the proposals presented
for the routing challenges in PCN and compares them with
the implementation of the Lightning Network. In the table, the
topology overview line indicates whether the user must know
the complete network topology to issue a payment. Proposals
that adopt source routing, such as Lightning Network, Spider,
Flash, CoinExpress, and Pickhardt et al., assume senders
know the complete network topology to compute paths.
The main advantages of this approach are guaranteeing the
predictability of routing fees and allowing payments to be
onion-routed. However, senders must be synchronized with
the network and spend energy on pathfinding. Thus, source-
routing should be adopted when it is expected that nodes

in the network are synchronized and have enough computing
power. In CheaPay and RobustPay, routing tables indicate the
optimal paths and payments are routed hop-by-hop, saving
resources. This approach transfers the computing of tables
to capable nodes, enabling light nodes to participate at the
expense of unpredictable fees and weaker privacy. AODV-
based routing also routes hop-by-hop but adopts a reactive
mechanism for discovering routes instead of maintaining
routing tables, which slows down the routing process in
static networks. Therefore, AODV should only be used when
tables cannot be efficiently maintained. SilentWhispers and
SpeedyMurmurs provide a hybrid solution that requires the
sender to compute a partial path to one of the landmarks
which are responsible for forwarding the payment. This
approach also reduces the sender’s effort but could lead to
common routing attacks, such as sinkholes, if the landmarks
are adversaries.

We also observe that several protocols adopt multi-path
approaches for sending payments, seeking to increase the
payment success rate through payment splitting. The key
idea is that small payments fit into low-capacity channels,
increasing the probability of delivery. However, surprisingly
enough, not all protocols consider fixed routing fees a cost
metric despite them being the default metric for most payment
channel networks [66], [68], [90], [95], [218]. We argue
that such protocols are difficult to adopt by default in prac-
tice, as splitting would incur extra fees that would make
them unattractive for users. Multi-path approaches should
consequently be preferable only when payments do not fit
into a single path. Furthermore, multi-path payments raise
concerns about atomicity, as some payment parts may fail
while others reach the target. The atomicity of payments is
guaranteed by all single-path protocols and the AMP [67] and
CoinExpress [66] protocols, which cancel all payments if a
path cannot deliver a payment part. In particular, AMP can be
used as a generic atomicity service for multipath non-atomic
routing protocols [94].

Some protocols present unique characteristics which sepa-
rate them from the others. Pickhardt et al. [116] present the
only protocol that permits multi-metric optimization, consid-
ering fees and delivery probabilities. Multi-metric optimiza-
tion may be useful for applications with specific requirements,
such as a minimal payment delivery probability regardless
of the amount of fees to be paid. SilentWhispers, Speedy-
Murmurs, Rapido, and HushRelay are the only protocols
that guarantee payment privacy, i.e., the confidentiality of
the sender/receiver pair, payment value, and payment path.
Protocols that probe candidate paths with payment values,
such as CoinExpress, or that adopt distributed max-flow
algorithms, such as HushRelay, disclose payment information
to nodes that may not be involved in the chosen path, therefore
compromising payment privacy. We observe that the protocols
that ensure payment privacy are those that adopt source
routing without probing.

Despite being the most extensively studied topic of PCNs,

Before Rebalancing After Rebalancing

10@®
0

0
10
10 @

Time

Figure 15. Active rebalancing of channels through circular self-payments in
a payment channel network.

payment routing still presents open challenges and oppor-
tunities for research. For example, payment latency in the
Lightning Network is still in the order of seconds, which
needs to be improved for some applications. Current routing
protocols in payment channel networks do not cover this since
they aim to minimize routing fees or maximize the probability
of payment completion. Also, no works analyze in depth the
efficiency loss caused by routing payments individually as
opposed to a global payment scheduler that routes payments
optimally. This comparison would yield the “price of anarchy”
of routing protocols in payment channel networks, a concept
that measures how the efficiency of a system degrades due to
the selfish behavior of its agents [227]. Finally, most routing
protocols assume nodes share a globally synchronized topol-
ogy and are always online, which excludes mobile nodes with
low resources and intermittent connectivity. Recent efforts on
the Lightning Network attempt to improve this scenario, but
need more formalization and extensive testing [228].

B. Channel Rebalancing

The channel liquidity distribution directly influences its
capacity to forward payments and overall payment goodput.
Thus, keeping channels balanced is a crucial concern in
payment channel networks. Routing protocols that adopt con-
gestion control mechanisms, namely Spider [90], Pickhardt
payments [116], and Rapido [96], indirectly contribute to
reducing channel imbalance. However, as most applications
have a well-defined tendency for payment flows, e.g., from
buyers to sellers, more than congestion control is needed to
maintain balances in the long run. One of the most significant
challenges in payment channel networks is how to propose
efficient rebalancing mechanisms that preserve the duration of
the channels and maximize their usefulness. In this section,
we describe and compare several proposals found in the
literature.

1) Passive Rebalancing: The simplest and most used form
of rebalancing is to encourage payments by changing the
forwarding fees being charged. In this method, also called
passive rebalancing in the literature, intermediaries increase
their fees in a given channel whenever they detect that a
channel is imbalanced [54], [82]. The idea is that, as the fees
increase, fewer users will choose the channel in that direction,

and the channel will slowly balance itself as payments arrive
in the opposite direction.

In general, intermediaries manually adjust fees according
to convenience, but some tools automate the process [229],
[230]. Differently, Di Stasi et al. [65] propose a new fee func-
tion that discourages payments that promote further channel
imbalance. Similar to the Lightning Network, the fee function
has a fixed fee, accounting for operational costs, and a
proportional fee that depends on the size of the payment. The
proposed proportional fee has two different slopes: s;,,, and
Shigh- The slow slope, denoted by s;.,, accounts for the part
of the payment that decreases the channel imbalance, while
the steeper slope, sj;gn, is applied to the rest of the payment.
Thus, payments that further increase channel imbalance will
pay higher fees due to the steep slope. Likewise, payments
that reduce channel imbalance pay low fees due to the slow
slope, which helps to maintain channel balance.

The main advantage of passive rebalancing lies in re-
covering the channel usability while avoiding both on-chain
and off-chain payment fees. Thus, passive rebalancing is the
cheapest rebalancing method for the end user. Nevertheless,
passive rebalancing relies on payment flow demands uncertain
on the channel’s counterparty side. A node may lower its
fees and see little effect on its balance if no demands are
in the opposite direction. Furthermore, the feasibility of
this approach is restricted to central and richly connected
nodes that act as intermediaries for other payment flows.
This approach works best on the Lightning Network, as
its default algorithm considers fees the primary metric for
choosing paths. However, whether this strategy is efficient
with algorithms considering other parameters is uncertain.

2) Active Rebalancing Via Circular Payments: In active
rebalancing techniques, users issue payments to entities or
themselves to receive outbound or inbound liquidity. The
main advantage of this technique is that it does not rely on
uncertain payment demands. Nevertheless, as users have to
issue payments, active rebalancing introduces fees, presenting
itself as a more expensive alternative than passive rebalancing.
Active rebalancing methods can be further categorized into
circular and non-circular payments.

In the circular payments scheme, depicted in Figure 15,
users leverage the network topology to issue self-payments
and rebalance the channels along the payment path. While
circular payment techniques successfully avoid the blockchain
to refund the channel, the amount of coins is restricted by
the balances on the circular route. Circular payments can be
further divided into two types: local and global protocols.
Each user uses local protocols to calculate a set of rebalancing
transactions that are optimal for their channels.

Imbalance measure. Pickhardt and Nowostawski introduce
a network imbalance metric and a rebalancing method that
minimizes local imbalance between channels of a user [94].
The idea is that the user constantly calculates the difference
in balance between all the channels in which it is involved
in order to keep them in balance with each other. Suppose

there is a significant disparity between the two channels. In
that case, the user makes a cyclical payment to itself from
the channel with the highest balance to the channel with
the lowest balance, changing the distribution of balances.
Thus, the goal is that the user can always route payments
equally in any direction. The authors show that this local
heuristic improves the network’s global balance if nodes
collaborate with each other. Nevertheless, this collaboration is
difficult to guarantee in a decentralized system where users act
independently. The work also lacks significant experiments on
the impact of this strategy if only a fraction of the nodes adopt
the proposal.

Pickhardt and Nowostawski evaluate their strategy using
a Lightning Network snapshot. The authors verify that the
network imbalance, measured by a normalized Gini coef-
ficient, quickly drops with the adoption of their solution,
going from 0.5 to 0.2. They also quantify the number of
rebalancing operations in the network, which varies from
10,000 to 100,000 operations. Furthermore, using the author’s
strategy increases the number of paths that are able to forward
a single satoshi from 11.2% to 98.3% paths. Nonetheless,
the evaluation is limited as it lacks a comparison with other
proposals and experiments in a highly dynamic environment,
where nodes can open and close channels whenever they
want.

REBAL. Awaethare et al. [115] propose a local and circular
rebalancing algorithm called REBAL. REBAL accounts for
the channel’s workload history to decide on the rebalancing
amounts. To motivate their work, the authors simulate a PCN
environment by using the Lightning Network topology and
a real-world Ripple transaction wokload [68], [220]. They
show that even with initially balanced channels, over 63%
of channels become imbalanced after 200 seconds, with 80%
of the channel balance being concentrated on one side of
the bidirectional channel. REBAL rebalances the maximum
number of channels by selecting the longest cycle the node
is involved in at the start of the rebalancing algorithm.
REBAL has the major advantage of keeping channel balance
information private due to its local rebalancing. REBAL also
allows intermediary nodes to redirect payments through an
alternative path, which avoids halting payments while the
rebalancing occurs. However, the authors do not get into
detail on how the re-routes work, especially in an onion-based
source-routing PCN such as the Lightning Network.

The authors use the Spider simulator to implement REBAL
and compare it with other routing proposals for the Lightning
Network. The simulation shows that a rebalancing operation
takes around 2 seconds and that the transaction success
rate is higher when the node rebalances its channel every
40 seconds. In that configuration, REBAL processes more
than 2x the transaction volume of other routing algorithms,
such as Spider, landmark routing, and waterfilling, when
the transaction generation rate is small. Furthermore, the
simulation shows that the transaction success rate is higher if
the threshold to determine whether the channel is imbalanced

Table VI
PER-FEATURE COMPARISON OF REBALANCING ALGORITHMS IN THE LITERATURE.

Reference Rebalancing Circular Global Privacy Transaction on Other
Type Payments Rebalancing Guarantees the Blockchain Features
Allows users to share
Imbalance measure [94] Active v X v X balance to acheieve more
efficient rebalancing
REBAL [115] Active v X v X Considers workload h1§t0ry
to calculate rebalancing
REVIVE [61] Active % % X X Consensus to establish
fault-tolerance
Uses Multi-Party
Hide&Seek [128] Active v v v X Computation to ensure
privacy
.) . Exchanges on-chain funds
Submarine Swaps (Loop) [129] Active X X v v for off-chain balance
- . Requires users to close
Splicing [60] Active X X v v and reopen the channel
Allows fund shifting
Shaduf [130] Active X X v 4 through a single
on-chain transaction
Fee management Passive X X v X .Uses.ft?e t© .
(des)incentivize routing
Proposes a new fee
Di Stasi [65] Passive X X v X that (des)incentivize routing

through (im)balanced channels

is set to 50% of the channel capacity. The authors, however,
fail to evaluate crucial aspects of REBAL, such as success
rate under asymmetrical payment demands, costs, and how
REBAL affects other channels’ balances.

REVIVE. Khalil and Gervais [61] propose Revive, a circular
and global rebalancing algorithm that takes advantage of cy-
cles in the network topology to rebalance channels, reducing
the need to resort to the blockchain. In global rebalancing
protocols, users send their desired balances to a third party
that calculates a set of transactions among every user that
better fits their needs. In Revive, the elected leader receives
rebalancing requests from multiple users and calculates a set
of transactions that must be performed. This set of transac-
tions considers user requirements and must ensure that users
do not lose funds. Thus, the proposed algorithm shifts coins
between channels, respecting the rebalancing preferences pro-
vided by users and conserving the credit allocated by each
user on the network. REVIVE has the major advantage of
computing very efficient rebalancing operations given that it
uses information from a high number of nodes. The algorithm,
however, compromises users’ privacy: to calculate the set of
rebalancing transactions, the leader must know the balance
of the channels involved. Furthermore, the authors do not
evaluate REVIVE, which makes it difficult to assess the run
time of the complete protocol, from leader election to the
receiving of rebalancing transactions.

The choice between local and global rebalancing tech-
niques usually presents a trade-off between privacy and
efficiency. Local rebalancing focuses on local information to
calculate the optimal set of transactions, which can worsen

third-party channels’ balances despite protecting user privacy.
On the other hand, global rebalancing techniques efficiently
calculate a rebalance operation that is optimal for the whole
network. Nevertheless, this technique usually involves trusting
a third-party or revealing private balance information.

Hide&Seek. Avarikioti et al. [128] propose a privacy-
preserving global and circular rebalancing technique called
Hide&Seek. It uses multi-party computation (MPC) to im-
prove on REVIVE’s solution and reach a fully private so-
lution. In Hide&Seek, selected participants jointly compute
the optimal solution of a linear programming problem. The
authors model the rebalancing problem as a linear program-
ming problem and solve it to find the maximum circulation
payment flow that meets the rebalance demands from each
user. Although Hide&Seek offers additional privacy guaran-
tees, using MPC adds a significant overhead, which results
in slow rebalancing operations [128], [133]. Furthermore, the
authors fail to evaluate Hide&Seek, which makes it difficult to
quantify the MPC’s overhead and Hide&Seek’s improvement
in payment success rate.

3) Active Rebalancing Via Non-circular Payments: Non-
circular rebalancing techniques usually involve sending coins
to a user or entity and receiving the same amount as inbound
or outbound liquidity. In the Lightning Network, this happens
through two main alternatives: submarine swaps [129] and
splicing [60].

Submarine swaps. Submarine swaps present a trustless ex-
change of on-chain funds for off-chain balance [129]. Thus, a
user A that wishes to rebalance a channel issues a transaction

in the blockchain to user B and receives the same amount
back from user B on its off-chain channel. This technique is
named “submarine swap” because the payments of Layer 2
users have to “immerse” to a lower layer, Layer 1, to receive
the funds back on Layer 2, like a submarine immersing in
the ocean. The primary tool to perform submarine swaps
in the Lightning Network is Loop, which executes either
Loop In, which converts a Bitcoin payment to a Lightning
payment, or Loop Out, which converts Lightning payments to
Bitcoin payments [129]. While submarine swaps allow users
to acquire liquidity without closing the channel, they request
on-chain payments that are expensive and time-consuming.
Although submarine swaps became a popular solution in the
LN, it still lacks quantitative analysis comparing it to other
proposals.

Splicing. Splicing is a Layer-one rebalancing technique
that resorts to changing the channel’s capacity through a
blockchain transaction [60]. In Splicing, users must close and
reopen the channel with a different capacity by issuing an
on-chain transaction. The splicing operation is called Splice
In when the new channel capacity is higher than the closed
one and Splice Out when the new channel capacity is lower.
Although Splicing allows users to reopen the channel with
a new capacity, the channel must be closed and reopened
through a blockchain transaction, which is expensive and
time-consuming. Similarly to submarine swaps, Splicing lacks
quantitative analysis.

Shaduf. Ge et al. [130] introduce Shaduf, a non-circular
active rebalancing protocol that leverages a one-time binding
on-chain transaction to allow many-times channel rebalancing
off-chain. Shaduf relies on a Layer 1 transaction, avoiding
cycles to move funds. Instead, users can move funds through
adjacent channels as often as they want with only one on-
chain transaction. Similarly to Loop, however, Shaduf is
more expensive when compared to off-chain rebalancing, as it
introduces on-chain fees. Nonetheless, it allows users to move
funds through channels without requiring a specific topology
to achieve the rebalancing.

Ge et al. implement Shaduf and compare it to REVIVE [61]
and the standard Lightning Network operation. While RE-
VIVE enhances the transaction success rate by about 7%
the Lightning Network standard operation, Shaduf achieves
an enhancement from 10% to 22% as channel capacities get
larger. The authors also verify Shaduf’s success ratio when
the payments are highly skewed in the network. In their
simulation, some nodes receive the roles of merchants, who
receive more payments than they issue, while other nodes
are customers, who make more payments than they receive.
Under skewed payments, Shaduf increases the payment suc-
cess rate of the default LN operation in 15% while REVIVE
enhances 7.5%. The simulation also shows that Shaduf costs
at most 8.13 USD while closing and reopening the channel
costs around 3.07 USD. Nevertheless, Shaduf allows unlim-
ited channel rebalancing while closing and reopening the

channel must be repeated every time the channel is depleted.

4) Summary of Rebalancing Mechanisms and Discussion:
Table VI summarizes the categories and proposals on rebal-
ancing algorithms. The Lightning Network features a com-
bination of active and passive methods, as well as channel
reestablishment through blockchain transactions. The net-
work’s central routers often regulate their balances passively
through fee management, as they constantly receive payments
from all directions. Less central users adopt the circular
method if they have channels with sufficient capacity or
recreate the channel by reserving more coins through a direct
transaction on the blockchain. There is still no solution that
guarantees the balance of the network systematically.

Channel balancing is one of the most important research
topics in payment channel networks. Most researchers pro-
pose an active rebalancing mechanism, as passive rebalancing
depends on uncertain demands and is not widely available to
every node in the network. In particular, a great part of current
approaches proposes an active rebalancing through circular
routes [61], [94], [115], [128] due to its simplicity and low
cost. Nevertheless, there are still open challenges to reach
an efficient active rebalancing solution that maintains user
privacy. While global rebalancing mechanisms are usually
effective, they rely on users disclosing private information. On
the other hand, local rebalancing mechanisms keep channel
balance private but are usually ineffective. Future designs on
global active rebalancing need to provide stronger privacy
guarantees while reducing this efficiency loss. Using modern
cryptographic techniques, such as MPC in Hide&Seek, is
promising but requires further evaluation to assess its over-
head and feasibility. Alternatively, local rebalancing proposals
need studies on its convergence, how it impacts other nodes’
balance, and how far the local approach is from the more
efficient global rebalancing. There are still open challenges
for defining rebalancing policies to define when to rebal-
ance [231]. Some approaches [115], [129] define a channel
balance threshold to define whether a channel is balanced.
This is sub-optimal as it ignores dynamic payment demands in
the network. Similarly, defining how many coins to allocate to
a depleted channel and from which channel to allocate is still
an open challenge. Some proposals split the channel capacity
equally between the two parties when rebalancing [61], [94],
which is also sub-optimal when payment demands are unequal
in both directions of the channel.

C. Network Design

As the Lightning Network rapidly grows in terms of
participants, the research community delves into the strategies
of where to create a channel in the topology and how much
funds to allocate to it [98], [99], [117], [118], [134]. These
choices are crucial to new nodes that want to have a profitable
channel by maximizing the income from routing fees. Further-
more, this challenge is essential to some Lightning Network
implementations, which automate channel opening through
autopilots [83], [135]. The literature on network design in

the Lightning Network is rich. While some studies analyze
existing node attachment strategies and their impact on the
network [99], [117], [118], others propose novel attachment
strategies to nodes [98], [100].

1) Network Design Analysis: Some papers study the topol-
ogy of payment channel networks using game theory [99],
[118]. The idea is to analyze how the network was initially
formed, how it is evolving, and compare the efficiency loss of
this independently formed network with a centralized alterna-
tive. Avarikioti et al. [99] study the network’s topology when
players act selfishly by weighting the benefits of opening
a payment channel, determined by the potential transaction
forwarding fees and the routing price, and the costs of opening
a channel. To analyze this, the authors model the expected
fee reward of a channel using betweenness centrality, which
is based on the shortest paths passing through the node. Fur-
thermore, the authors use closeness centrality to predict the
number of fees paid when issuing transactions to other players
in the network. The paper then demonstrates that the problem
of finding the best response, i.e., where to add the node in
the network knowing every player’s strategy, is NP-hard. Also
using game theory, Wan et al. [134] study the existence of
pure Nash Equilibrium in the price-setting game between two
payment hubs. They compare the optimal revenue hubs can
achieve when cooperating instead of competing. They find
that the competitive nature of PCNs will result in much lower
fees with the increase in network capacity.

In another direction, Lange et al. [117] analyze possible
node attachment strategies and their long-term impact on the
network. The authors use common graph-theory strategies,
such as random, k-median, or highest-degree attachment,
and evaluate payment success rates, fee amounts, income
inequality, and the network diameter. The results show that,
from a selfish point of view, centralized attachments provide
better short-term results, such as a higher transaction success
rate. On the other hand, decentralized strategies provide better
long-term results to the network overall. For example, a
participant using the k-median approach to create channels
can concentrate almost 3% of all payments routed by opening
15 channels. Nevertheless, as the number of participants using
k-median grows, the network diameter and inequality soar,
becoming twice the value of k-center and random approaches.

2) Attachment and Balance Planning: The question of
how many coins to allocate to a newly created channel is
fundamental in payment channel networks. If a user creates
a channel with low funds, it must constantly be refunded
through the blockchain. On the other hand, allocating too
many funds to a channel is inefficient, as other applications
might use these coins. To solve this problem, Li et al. present
PnP, a secure balance planning for PCNs [98]. PnP uses
estimated payment demands to calculate a chance-constrained
optimization problem that minimizes channel deposits ef-
ficiently. Furthermore, in PnP, nodes use a cryptographic
sortition protocol to randomly select a committee that runs
the proposed algorithm, removing the need for a centralized

or trusted third party.

Li et al. implement PnP as a service to interact with LND,
an implementation of the Lightning Network. The authors find
the effect of demand estimate error on the number of satisfied
payment demands of PnP is only around 3%. Furthermore, the
authors also verify that PnP satisfies around 95% of payment
demands and creates on average 82 channels with only 4
being exhausted. The authors refrain from comparing PnP
with other work in the literature as PnP was the first balance
planning protocol for PCNs.

In a different direction, Esroy et al. [100] study how
to make payment channels profitable. More specifically, the
authors analyze how users can maximize profit by evaluating
where to create a channel and how much to charge for
routing fees. The authors formulate the maximum reward
improvement problem (MRI): finding k£ channels incident
to a given node n that maximize the expected reward of
n. This problem is based on the maximum betweenness
improvement problem (MBI) [70] with the difference that
MRI also tries to choose an optimal fee policy. Then, the
paper shows that the MRI problem is NP-hard and proposes
a greedy algorithm that tries multiple channels, calculates the
expected reward, and connects to those that give the maximum
reward. To calculate the expected rewards, the authors use
the betweenness centrality graph metric and a function that
defines the fees to be charged.

The authors also evaluate their proposal on a snapshot of
the Lightning Network. The results show that their proposed
method of fee optimization increases by 2x the reward
in comparison with centrality-based attachment strategies.
Although greedy attachment algorithms such as the one
proposed by Ersoy et al. present a high reward to the user,
the work of Lange et al. [117] also show that their running
time is significantly higher than other attachment strategies.
While strategies such as connecting to the highest degree
nodes, k-Median, and k-Center take only a few seconds to
suggest channels, greedy strategies such as MBI take over
24,000 seconds (around 6 hours) to suggest 10 channels. As
the network is highly dynamic, the greedy strategy might be
computing channels in an outdated version of the network
topology.

3) Autopilots: Multiple Lightning Network implementa-
tions offer autopilots that automatically open channels with
multiple users [83], [135]. The autopilot of LND [135], an
implementation of the Lightning Network, allows users to
set parameters such as the maximum number of channels,
the minimum and maximum size of the channel, and the
number of funds to be allocated, and opens channels auto-
matically for users. The autopilot uses the Barabasi-Albert
model [232] of preferential attachment, randomly selecting
where to add a node with a probability distribution based on
the existing node’s degree. In that case, the autopilot favors
connections to already highly central nodes. Although this
model is the standard strategy adopted by the autopilot, the
LND implementation provides an interface that supports the

implementation of alternative preferential attachment models.

Pickhardt [83] introduces [ib_autopilot, a Python library
that uses statistics to recommend channel openings. The
implementation allows users to select preferential attachment
strategies and offers four main heuristics: random, central,
decreased diameter, and richness. The random heuristic fol-
lows the Erdés—Rényi model [233] and chooses the prospect
channel partners from a uniform distribution. In the central
strategy, the probability distribution of prospect partners is
weighted by their betweenness centrality metric, which favors
more central nodes. Alternatively, the decreased diameter
heuristic prefers nodes with lower connectivity, and the rich-
ness heuristic draws nodes from a uniform distribution of the
richest nodes, i.e., nodes with the highest capacities, in the
network. The proposed autopilot also estimates the number of
funds the user should allocate to the channels based on the
channel capacities of the new partners. Both LND’s autopilot
and lib-autopilot still lack quantitative comparisons between
each other and with other proposals.

4) Summary of Network Design and Discussion: Network
design works mainly focus on modeling the network’s current
state and proposing methods for optimally opening channels.
Choosing where to place new payment channels is particularly
important in PCNs as it creates a trade-off between decentral-
ization and efficiency [117]. Current implementations of the
Lightning Network offer autopilots that automatically create
channels without considering centralization. While attaching
new channels to nodes with large capacity and numerous con-
nections produces short paths and low payment fees, it also
contributes to centralization in the network. The centralization
facilitates topological attacks and leads to other long-term
security vulnerabilities [79].

Several studies analyze the Lightning Network topology
and attachment strategies [99], [117], [134] but efficient
autopilot solutions remain largely unexplored in academia.
Current autopilots [83], [135] use inefficient heuristics such
as connecting to nodes with the highest betweenness centrality
or degree. These heuristics, although fast, usually disregard
potential financial gains for the user. Future autopilot de-
signs must also acknowledge the trade-off between efficiency,
meaning what is best for the user, and decentralization,
meaning what is best for the network [117]. Possible solutions
involve a hybrid approach that combines short-term financial
gain with long-term network stability.

Furthermore, a significant part of current network design
proposals assumes a uniform payment distribution among
nodes in the network. This assumption is a result of PCNs
keeping payment information private, which leads researchers
to model sender-receiver pairs following a familiar distri-
bution. Despite its popularity, this assumption might not
accurately reflect the traffic in the network. Future designs
should account for existing literature on PCN traffic analysis
and diverse payment distribution to create more accurate
attachment strategies [87], [91].

D. Challenges in Security and Privacy

Providing user privacy is arguably one of the main features
of blockchain systems, especially for public cryptocurren-
cies such as Bitcoin and Ethereum. Hence, the off-chain
mechanisms involved in payment channel networks must be
carefully designed to avoid leaking information that may
compromise user privacy. In this section, we discuss and
classify the privacy challenges of PCNs: node anonymity, link
privacy, and payment privacy.

1) Node Anonymity: As in blockchain systems, users in a
payment channel network should not be personally identified.
Otherwise, they might suffer targeted attacks and be prose-
cuted by governments and financial institutions. To preserve
privacy, PCNs rely on the underlying blockchain and adopt
the user’s public key as the node identifier in the PCN [234].
Using public keys provides a level of anonymity that is as
good as the anonymity on the underlying blockchain. The user
is responsible for not linking personal data to the public key
in servers of untrusted third parties, e.g., by managing keys
via custodial wallets that adopt know-your-customer (KYC)
measures. Note, however, that nodes in PCNs often reveal
their identities to provide some level of reputation-based trust
if the node is owned by a well-known blockchain company
such as Bitfinex [235] or if the node is a known retailer.

2) Link Privacy: Link privacy refers to preserving payment
channel information other than the channel nodes and the
channel capacity, which are published in the blockchain.
Kappos et al. [112] identify two privacy requirements for
payment channels:

o Channel privacy: Two users should, if they wish, be
able to hide the existence of the channel they share and
preserve any information about the channel from third-
party access.

« Balance privacy: Although total channel capacities are
public, the channel balances, i.e., the distribution of
resources in the channel, must remain private. Other-
wise, payments could be tracked by monitoring channel
balances. Publishing balances would also create a scal-
ability problem because notifying balance updates to all
channels in a highly dynamic environment would flood
the network with messages.

Link privacy is usually preserved by global specifications
that apply systematically to all nodes in a payment chan-
nel network. For example, the Lightning Network provides
channel privacy by enforcing the advertisement of public
channels on the network using the gossip protocol [234]. If
a channel is not announced, other users are unaware of its
existence. Nodes that only participate in private channels are
also considered private since their node identifier is never
announced. However, channel announcement messages in
the Lightning Network do not provide space for advertising
channel balances, and there is no other message type for this
purpose. This means users cannot systematically reveal bal-
ances, although those can still be inferred in some situations
via channel probing [66], [116], [212].

Alice

Charlie

@2‘ HTLC(1.3,y,t1)@3. HTLC(1.2,y,t2) @ 4. HTLC(1.1,y7t3)g 5. HTLC(l.o,z,m@
Bob

Lyl|H(@) =y

Figure 16. Example of a wormhole attack. Bob and David collude to steal routing fees that Charlie should claim. The solid lines indicate the steps of the
payment-establishing phase, while the dotted lines indicate the payment-settling phase.

Kappos et al. [112] try to identify private channels in the
Lightning Network using two heuristics to understand LN’s
privacy limitations. First, the authors use a property heuristic
to identify an upper-bound number of private channels. They
search for every Bitcoin transaction which occurred after
January 12, 2018, when the Lightning mainnet was launched.
In particular, the heuristic selects transactions that use a
specific type of output address, called payment to witness
script hash (P2WSH), which is used to open and close
channels in the Lightning Network. Then, the authors filter
these transactions with common channel opening and closing
transaction features, such as having a 2-of-2 multi-signature
address and having at most two outputs. The authors reach
an upper bound of 77,245 pairs of transactions that could
have been used to open and close private channels in the
network. Then, the authors develop another heuristic, called
tracing heuristic, to identify associated private channels. This
heuristic verifies common patterns in opening transactions,
such as using the output of a channel-closing transaction
to open more channels or using the change in the channel-
opening transaction to continue to create channels. The results
show that the intersection between the two heuristics indicates
27,183 transactions which likely represent the opening of
private channels.

3) Payment privacy: Payments contain sensitive informa-
tion that can lead to attacks and failed payments if disclosed
to unauthorized parties. According to the literature, the fol-

lowing requirements should be guaranteed for payments in
PCNs [56], [102], [119]:

« Balance security: A PCN must ensure that an honest
user in a path does not lose coins, even if all other nodes
along the path are malicious or corrupted.

o On-path relationship anonymity: Intermediary nodes
that route a payment should only know their immediate
predecessor and successor in the payment path. Thus,
the relationship between the sender and the receiver of
a payment is private unless it is a single-hop payment.

o Off-path payment privacy: Nodes not involved in
the payment path should not be able to obtain any
information about a payment routed by honest nodes.
This includes the payment value, path, and identifiers of
senders and receivers.

While PCNs provide link privacy by design, payment
privacy usually depends on the routing protocol. For instance,

the Lightning Network’s default routing protocol adopts onion
source routing to guarantee on-path relationship anonymity
and computes paths locally to preserve off-path payment
privacy [209]. Some new proposals attempt to provide on-
path payment privacy, i.e., to ensure the full payment path
is unknown even to the sender and intermediaries via route
blinding [101]. Route blinding, however, is yet to be imple-
mented and tested in the Lightning Network. Other protocols,
such as AODV-based routing [69] and CheaPay [81], leak
payment information due to their collaborative path-finding
approach. HTLCs guarantee balance security if nodes are
always online (Section VI-E2 gives an example where this
is not the case).

4) Privacy-utility trade-off: It is worth mentioning that, as
in many computational systems, ensuring privacy in PCNs
impacts performance. Not revealing channel balances in the
network forces users to guess if a given path has enough
balance to support a particular payment via trial-and-error.
This trial-and-error approach causes concurrency issues that
waste resources, increase average payment latency, and reduce
payment goodput. On the other hand, PCNs cannot simply
publish channel balances to improve performance since it
would compromise user privacy. Tang et al. demonstrate that
privacy and utility represent a trade-off for PCNs and that
it is unfeasible to provide both simultaneously [103]. In
the Lightning Network, central nodes with many resources
mitigate this issue by opening large channels that can route
payments with high probability at the core of the network. The
approach, however, incurs centralization and is not effective
for payments that must be routed in the network periphery.

5) Summary of Security and Privacy in PCNs and Discus-
sion: Privacy in payment channel networks can be defined on
several levels. First, PCNs rely on the underlying blockchain
for node anonymity, which is usually accomplished by adopt-
ing public keys as identifiers. The PCN itself (or its channel
announcement protocol) guarantees balance secrecy and gives
the option of keeping the channel private by forcing users to
announce their channels if they want them to be public. The
channel opening transaction is inherently private due to the
SegWit protocol and only a channel’s node can prove that
a multisig transaction is used to create a channel. Payment
privacy, i.e., the secrecy of the sender-receiver pair, payment
value, and payment path, depends on the routing protocol,
which must ensure that no information about the payment can
be leaked to off-path nodes. Lastly, PCNs present a privacy-

utility trade-off that forces payment routing protocols and
gossip protocols to either favor privacy or performance, both
cannot be achieved simultaneously [103]. Efficient routing
protocols in PCNs usually rely on weaker privacy assump-
tions.

E. Attacks in PCNs

1) Wormhole attacks: The Lightning Network has some
security vulnerabilities despite ensuring privacy and security
requirements.

Malavolta et al. [71] demonstrate the wormhole attack. In
this type of attack, an attacker in the path of a payment
colludes with or controls another node in the same path.
Although the payment path is confidential, the attacker can
easily check if another node under its control is in the
payment path since the HTLCs in the Lightning Network have
the same hash. Thus, upon receiving two HTLCs at different
points with the same hash function, the attacker infers that
the payment is on the same path.

Figure 16 illustrates the attack. Alice wants to send a coin
to Erin. Each intermediary charges 0.1 coins as a forwarding
fee. Bob and David collude to carry out the attack. In the
first part, the attacker legitimately establishes HTLCs in the
payment path with block hash y | H(x) = y. The receiver
reveals the value of x to David to unlock the chain of pay-
ments, who passes it on directly to Bob without redeeming the
payment in the channel he has with Charlie. Bob then redeems
the payment on his channel with Alice. From Charlie’s point
of view, who does not get the x value, the HTLC failed.
The wormhole attack allows the attacker to receive fees that
would otherwise be destined for intermediary nodes. In the
example, each intermediary would receive a 0.1 fee if Bob
and David acted honestly. However, Bob receives 0.3 coins
by performing the wormhole attack, which he can split with
David. Despite not losing any coins, the wormhole attack
hurts Charlie, who does not receive payment fees and must
keep the coins unavailable until the HTLC expires.

Wormhole attacks are possible because relationship
anonymity is not guaranteed when nodes on the same path
collude [71]. To solve this problem, Malavolta et al. propose
a new type of contract called multi-hop HTLC [56]. In this
construction, each intermediary receives two hash values y;
and y;y1, where y; = H(z;) and y;41 = H(x; © 2441),
where z; @ x,;4; represents the logical “exclusive-or” op-
eration between z; and z;4;. In addition to these values,
intermediaries also receive the value x;11 and a proof that
Jz; | yi = H(x;),yi+1 = H(x;Dx;41). This proof uses zero-
knowledge proof (ZKP) techniques, which allow the sender to
prove a claim without revealing secret information pertinent
to the claim [236]. Thus, as in HTLCs, disclosing z; is
enough to unlock the entire payment chain since z; is the only
information intermediaries omit. This construction guarantees
the anonymity of the relationship since each intermediary has
a different hash, making it difficult to associate payments in
the same chain.

The authors develop a proof-of-concept implementation
of their proposal in Python to analyze its feasibility. They
verify that a sender takes 309 ms to create each proof for
intermediary nodes. Furthermore, each proof has 1.65 MB and
each intermediary takes around 130 ms to verify the proof.
As an example, the authors use a path with 5 users and verify
that the overall computation overhead is 1.32 seconds and the
communication overhead is 5 MB.

2) Coin Theft: In any payment channel network, it is
possible to steal coins if one of the parties on the channel
disconnects for a sufficiently long period. PCNs such as the
Lightning Network [54] and the Raiden Network [89] assume
that any node transacts in the network remains online as long
as the channel is open. Otherwise, one of the channel parties
can terminate it by publishing an old transaction'?, which
invalidates sent coins and effectively recovers them for the
sending party. The system punishes this type of malicious
behavior by allowing the victim to spend all the coins in the
channel, including those of the malicious party, if they recover
from the disconnection during a predefined lock time window.
Therefore, the attack is only worth trying if the malicious
node can guarantee that the other party will not check the
blockchain during the dispute period, which remains until the
time window expires.

In networks with fast and reliable connections where all
users have a copy of the blockchain, a tiny default value for
block time windows allows victims to recover and punish their
attackers in time. In such cases, users can detect malicious
behavior instantly, without trusting a third party, simply by
synchronizing their blockchains and verifying the most recent
blocks. However, in heterogeneous scenarios with many users,
especially mobile devices, some nodes may disconnect for
long periods or indefinitely. Device downtime is especially
challenging for use cases where the direction of payments is
biased to one side, such as when a seller uses her device
to receive transactions from multiple buyers. In this case,
the payment channels are expected to be highly imbalanced
concerning one of the parties.

Channel imbalance indicates a greater vulnerability to
the coin theft problem, as demonstrated in the following
formulation. Let two devices b and s, which represent de-
vices of a buyer and a seller, respectively, connected to the
routers 71 and ro through payment channels as shown in
Figure 17. Each payment channel uv <> v has a balance
balycyo(t) = (baly(t),bal,(t)), where bal,(t) and bal,(t))
are the balances of nodes w and v at time ¢, respectively.
Note that bal,, (t) 4 bal, (t) is constant. For payment channels
between buyers and routers, for example, b <> r1, the initial
balance is balpesr, (0) = («,0), where « is the number of
coins that the buyer b reserves for payments in the channel.
Likewise, the initial balance of payment channels between
vendors and routers, for example, 7o > s is bal,,«s(0) =
(8,0) where S is the number of coins that the router ro
reserves to forward payments to the seller s. The formulation

13 Also described as a “revoked state” in the literature [54], [55], [127].

The link between 75 and s
becomes yulnerable

Figure 17. An example of the coin theft vulnerability in payment channel networks [127]. On the left, a continuous amount of € coins flows from a source
b to a destination s until the channel capacity between router r2 and s is exhausted. Then, on the right, s becomes vulnerable if it loses connection because

r2 has nothing to lose if it tries to close the channel with an old balance.

assumes for simplicity and without loss of generality that s
and b only participate in one payment channel.

Considering a scenario where a payment of € coins occurs
from b to s, 7o and s sign a commitment transaction 7'z(1)
containing the new channel balance bal,, (1) = (8 — €, €).
If s disconnects indefinitely after subscribing, ro can close
the channel with the previous transaction 7z (0) and recover
€ coins. Doing so is risky because ry would lose all of its
coins if s recovers and detects the malicious behavior before
the end of the dispute period. However, as s receives more
payments, the balance at 5 <> s converges to bal,,ss(t) =
(0, 8). If that happens, ro has little to lose by closing the
channel with a previous transaction, even if s recovers in
time. This strategy is optimal for any rational r router when
its payment channel to a seller runs out. Malicious nodes
may also attack in intermediate cases, depending on the risk-
benefit ratio. Therefore, the traditional security mechanisms
of payment channel networks do not prevent routers from
adopting this strategy. The seller s is subject to coin theft
even without malicious behavior. Although formulated for an
extreme case of buyers and sellers, the problem applies to
any situation where a node receives payments and disconnects
without properly closing the channel.

The coin theft problem becomes even more significant
when the network nodes are mobile devices with intermittent
connectivity and disconnections for long periods. Some works
propose improvements such as time windows adapted to
the device connectivity profile, hiring “watchdog” nodes that
constantly check the blockchain to detect channels that were
closed improperly, or reputation systems in which nodes
would punish the malicious behavior by issuing opinions
about routers [114], [127]. However, these solutions still need
to be deeply explored, have privacy issues, and can lead to
system centralization [146], [237]. Major payment channel
network implementations do not currently have an effective
solution for these cases [88], [89].

3) Flood and Loot: As the name suggests, the flood and
loot attack [104] has two steps: flood, when the attacker
attempts to publish multiple transactions in the blockchain
simultaneously, and loot, when he steals the coins from a vic-
tim. Flood and loot mitigation consists of limiting unresolved
HTLCs.

Initially, the attacker creates two different addresses, one to
act as a source and the other as the destination of payments. It

also creates direct channels between those fake addresses and
the victim. In the second step, the attacker sends a payment
from the source to the destination using the victim’s channels
as an intermediate. To execute the payment, the attacker
creates an HTLC between the source and the victim, and
the victim creates an HTLC between itself and the attacker’s
destination. Once the destination receives the transaction,
it follows the protocol and sends the secret to the victim.
Currently, there are no locked coins between the victim and
the destination. The victim now tries to redeem the coin
between itself and the source. The source, however, does not
follow the protocol, forcing the victim to close the channel
and claim coins on-chain. The attacker does the same to many
victims, creating a flood in the transaction mempool, i.e., the
list of all pending transactions in the Bitcoin network. Since
the blocks have a limited number of transactions, the victims
may need to wait a long time for their transactions to be
published, triggering the HTLC’s timeout clause.

Once the HTLC reaches its timeout on the blockchain, the
source sends a transaction to the network claiming the coins
with a higher transaction fee, prioritizing it over the victims’
transactions. If the victim cannot confirm the transaction
before the attacker, the attacker steals the victim’s coins by
validating the channel’s last state. It is worth mentioning
that the attacker does not publish a revoked state; instead,
it validates the legitimate HTLC-timeout transaction. Thus,
even though the honest user detects malicious behavior, the
attacker cannot be punished as he would be in the coin theft
attack.

Since the attack is executed based on a race condition
triggered by the replace-by-fee policy, the network could
reduce the number of conflicting transactions by limiting the
number of simultaneous unresolved HTLCs. Another more
realistic approach is to implement a reputation system to
prevent an honest user from executing payments of attackers.

4) Route Hijacking: The Lightning Network has a topo-
logical problem: it is highly centralized in a few nodes [79],
[87]. Besides, the channel fees are publicly available. Based
on this information, Tochner et al. [84], [105] proposed the
route hijack attack, in which the attacker node increases its
centrality to be present in victims’ routes. To do this, the
attacker strategically opens new channels with central nodes
to have fewer hops for every possible destination. Moreover,
it charges low fees to attract users. Finally, when many users

Table VII
ATTACKS IN PAYMENT CHANNEL NETWORKS AND POSSIBLE COUNTERMEASURES.

Attack Description Effect Threat Level Countermeasure
Coin theft [54] Publish old transaction in the Loss of coins medium Watchtowers [114] and minimum
blockchain lock time windows [127]
Wormbhole [71] Bypass HTLC secret to steal fees ~ Loss of routing fees high Multi-Hop HTLC [56]
Flood and loot [104] Flood the network and execute Loss of coins low Limiting unresolved HTLCs
HTLC timeout to retrieve coins
Route hijack [84] Offer lower fees to hijack routes Loss of routing fees medium Introduce randomness to pathfind-
ing [105]
Griefing [85] Lock channel liquidity with un- Denial of service medium Griefing-Penalty [238]
solved HTLCs
Amount jamming [120] Exhaust the channel capacity with Denial of service medium Unconditional fees and peer repu-
unsolved HTLCs tation [132]
Slot jamming [239] Exhaust the maximum limit of Denial of service high Unconditional fees and peer repu-
HTLCs with unsolved HTLCs tation [132]
Balance discovery [86], [107], [108], [136] Estimate balance by sending pay- Privacy disclosure high Generic error responses

ments and analyzing error response

choose the attacker as a hop in their path, it starts a denial of
service (DoS) attack on the users, refusing to fulfill payments.
Then, attacked users must wait until the HTLC timeout to
retrieve their locked coins. This attack is similar to the black
hole attack in ad hoc networks [240], where the attacker
pretends to have the best routes to a destination and then
drops all the received packets.

The cause of this attack is the reasonable and predictable
behavior of users in the payment channel network: Nonethe-
less, reasonable users with many resources and high centrality
are expected to prefer receiving profits from routing fees
instead of delaying payments. They choose the routing path
that minimizes the total fees. Hence, introducing random
behavior or other path-finding metrics could prevent the
attack. Increasing the fees in a path can also improve se-
curity, which makes the attacker’s channels less attractive.
Tochner et al. [84] name this trade-off between fee and se-
curity the “price of predictability”. The authors also mention
that opening 30 channels is enough to hijack 80% of the
routes in the Lightning Network.

5) Griefing Attacks: Another possible malicious action is
to delay the resolution of HTLCs by executing griefing at-
tacks [85]. The attack is feasible because a user can withhold
payments, even if that seems illogical and unprofitable. The
attacker needs to be a destination or an intermediate node of
payments in the network to execute this attack.

Recall that HTLCs guarantee that each payment can only
be claimed either by revealing the payment’s secret or by
releasing the locked coins after a timeout. In griefing attacks,
the attacker withholds the payment secret to the previous hop
for as long as possible. By doing this, all nodes between
the attacker and the source are forced to wait, possibly until
the HTLC timeout, to claim their locked coins. Thus, latency
in the network increases, which causes a decrease in the
throughput of channels that link the source and the attacker. If
the attacker executes this procedure many times, it can prevent
the involved channels from forwarding payments since all

channel capacity is locked.

Mazumdar et al. [238] highlight that griefing attacks occur
because the network does not punish attackers for withhold-
ing HTLCs. The authors propose the implementation of a
griefing penalty, which consists of compensating the victims
of delayed transactions with financial restitution. The authors
propose to modify HTLCs to add the compensating fee, which
is proportional to the time the victims wait to retrieve their
coins. Thus, with Hash TimeLock Contracts with Griefing-
Penalty (HTLC-GP), the attacker (specifically, the destination
node) would have to pay a compensating fee to all nodes in
the attacked path.

6) Channel Jamming: Channel jamming, also known as
congestion attack [120], consists of blocking the liquidity of
a channel in the Lightning Network by executing false pay-
ments [239]. The attacker controls the source and destination
of payments, routing them through the victims. Like a griefing
attack, the attacker exploits HTLCs by making the victims
wait until the expiration to redeem their funds. However, in
channel jamming, intermediary nodes are the victims.

Initially, the attacker issues a payment from an address
controlled by itself or some colluding node. After establishing
HTLCs with each intermediary in the payment route, the
destination refuses to reveal the secret. This locks channels
in the payment path until the HTLCs time out. Moreover,
since the destination refuses the payment, no routing fees
are paid, and the attack cost is zero. The attacker only needs
enough resources to lock channels temporarily. If the attacker
executes this procedure repeatedly, it could cause a denial of
service attack to the nodes on the route.

There are two types of channel jamming in PCNs: amount
and slot jamming. In the amount jamming, the attacker
attempts to exhaust channels. The attacker needs to possess
a large number of coins and block them during the attack. It
sends a high-value payment and refuses it at the destination,
effectively locking up the capacity of channels in the payment
path. The attacker must also correctly estimate the channels’

balance since channels would refuse payments over their route
capacity. Hence, in amount jamming, attackers often probe
channel balances before attacking.

On the other hand, slot jamming targets the protocol’s max-
imum limit of simultaneously unresolved HTLCs. Because
HTLCs are implemented as if-then-else conditions inside the
script area of commitment transactions, establishing a large
number of HTLCs increases the size of the commitment
transaction. In the Lightning Network, the maximum size of
a Bitcoin transaction imposes a limit of 483 simultaneous
HTLCs per channel. Otherwise, the channel-closing transac-
tion would be too large to be validated on-chain. Slot jamming
exploits this restriction by creating many small payments that
occupy the available slots in a payment channel. Eventually,
no HTLCs can be served.

The solutions to channel jamming often rely on peer
reputation. The core idea is that nodes analyze the HTLC
initiator’s reputation before taking action. For example, sup-
pose an HTLC initiator has a low reputation. In that case, the
HTLC receiver can limit its maximum amount and number
of unresolved HTLCs to a small value, charge extra fees
for compensating the risk, or even refuse to forward the
payments. Shikhelman et al. [132] propose such a peer
reputation system with extra fees. Reputation-based systems,
however, can compromise user privacy [237]. A new solution
called “boomerang payments” proposes to modify HTLCs to
include adaptor signatures [106]. Adaptor signatures enable
reversible HTLC-type forwarding, i.e., they allow established
HTLC:s to be canceled before timeout if needed, which would
prevent channel jamming. Spear proposes HTLCs with two
hash digests to accomplish the same goal [121]. Instead of
using a coding technique such as Boomerang, Spear utilizes
ARQ (Automatic Repeat Request) to achieve message trans-
mission reliability through unreliable channels. The receiver
informs the sender about the partial payments completed.
The proposals, however, impose structural modifications to
HTLCs that are yet to be tested in large-scale PCNs. So far,
channel jamming remains a significant concern and an open
issue in payment channel networks.

7) Balance Discovery: The balance discovery attack tries
to break channel privacy, estimating the balance between
the channel participants [86], [107], [108], [136]. Firstly,
the attacker sends a payment to a controlled address with a
high-value transaction. Since the path must have sufficient
funds, the transaction will likely fail. Then, the attacker
repeatedly decreases the transaction value until the payment is
completed. This condition determines the bottleneck channel
balance from the origin to the destination. Since the channel
capacity is publicly available, the attacker can calculate the
reverse path balance. Besides, the attacker can execute this
attack without cost by refusing the transaction in the desti-
nation, since it controls the address. The procedure, however,
can only estimate the balance of the channels during a short
period, since the network evolution will change the balances
over time.

8) Summary of PCN Attacks and Discussion: Table VII
summarizes the attacks in payment channel networks. The
threat level column indicates on a scale of low, medium,
and high what the attack feasibility and the resources com-
promised if the attacker succeeds. It is possible to identify
three significant effects of the attacks: loss of coins, privacy
disclosure, and Denial of Service (DoS).

Despite researchers and developers discussing security
breaches in PCNs, there is no evidence that they already
happened or are feasible in the current network. The attacks
that involve the loss of coins are the most difficult to execute
since they usually rely on the blockchain to recover the coins,
except the wormhole attack that steals routing fees.

Privacy can also be compromised during short periods
of time by executing the balance discovery. Although this
is a low-cost attack, PCNs are highly dynamic, hence, the
balance measurement might be unreliable after minutes or
even seconds. Finally, we highlight that DoS by slot jamming
is currently a significant threat to payment channel networks
because it is easily feasible even for users with low resources.
Thus, future research in PCN security should focus on mit-
igating channel jamming attacks due to their potential harm
to the network.

F. Payment Concurrency

Executing a payment in a PCN is similar to circuit-switched
networks in that the network must reserve a path with
enough resources before sending data. In PCNs, however,
users perform path reservations via HTLCs in a decentralized
way without a global view of concurrent payments. Nodes in
payment channel networks also forward multiple payments
simultaneously in a best-effort manner without intelligent
scheduling. Such behavior can result in individually feasible
payments that block each other when routed or even dead-
locks that block both payments. We show an example of
this problem in Figure 18. In this section, we briefly present
the main proposals in the literature for dealing with payment
concurrency.

1) Fulgor and Rayo: Malavolta et al. [S6] propose two
mechanisms for mitigating payment deadlocks: a blocking
protocol that aborts both payments, named Fulgor, and a
non-blocking protocol that guarantees at least one payment
completes, called Rayo. In Fulgor, two deadlocked payments
will stay blocked until the HTLC timeout expires. When this
happens, the algorithm sets a random waiting period to reduce
the probability of a new deadlock without disclosing payment
information. The approach preserves payment privacy at the
expense of payment goodput. In Rayo, the authors assume
a global payment index that acts as a priority list. Instead
of performing best-effort forwarding, nodes verify the global
index and abort payments with lower priority. This approach
improves payment goodput because one of the payments gets
unblocked instantaneously but weakens payment privacy since
the transaction identifiers are available to all nodes in the
network. It is unclear how this global priority list would be

Figure 18. Simultaneous payments occurring in a payment channel network. On the left, a race condition between two payments occurs on channel (D,E),
causing one of the payments to fail. On the right, two payments reserve resources from each other’s path on channels (A,C) and (D,B), creating a deadlock
in the network. Race conditions and deadlocks can result in failed payments and wasted resources if untreated.

maintained in a large-scale environment. Nevertheless, the
authors do not evaluate their proposal in term of payment
concurrency.

2) Pre-locking Channel Liquidity: Werman and Zohar [72]
propose to modify Fulgor by introducing a locking phase
before the establishment of HTLCs. During this phase, a
sender asks nodes in the path to reserve resources for a time
T much shorter than an HTLC timeout. Nodes ignore other
payment requests during 7. This way, the authors claim,
the network can ensure only one payment occurs per path
and that a rejected payment will be blocked for at most 7'
time units. Rohrer et al. [62] introduce a similar mechanism
called capacity locking to improve payment goodput when
routing. The experiments show that their proposal provides a
higher payment success rate when the number of flows and
the transaction volume increase compared to the sequential
approach. Their proposal has a success rate above 75% while
the sequential approach is near to 0% when the number of
flows is 2'2. The success rate decreases abruptly in term
of the transaction volume for the sequential approach, while
their proposal softens this behavior, exhibiting a difference
of approximately 50% for a transaction volume of 25. How-
ever, sending requests compromises privacy since it discloses
payment information and allows attackers to perform denial-
of-service attacks via fake requests.

3) Summary of Payment Concurrency and Discussion:
Many payment-sending mechanisms in PCNs lock paths
based only on the user’s view without considering infor-
mation about other payments [55], [66], [80], [116]. This
can create deadlocks which heavily impact throughput in the
network. Nevertheless, the topic of payment concurrency still
needs to be extensively studied. Besides Fulgor, Rayo, and
its improvements, the literature lacks works which explore
and propose mechanisms to solve concurrency issues. We
speculate that this is due to the difficulty of preserving privacy
and scalability in such mechanisms, as obtaining information
from other payments incurs extra processing and may re-
veal sensitive payment data. Besides, payment concurrency
issues do not appear frequently in current PCNs as they
still lack a massive adoption that would cause heavy loads.
Nevertheless, proposing an efficient protocol for dealing with
payment concurrency is a fundamental challenge for PCNs
as it can dramatically improve their performance in the
long run. Also, most payment concurrency proposals lack

quantitative evaluation results. An interesting research area is
to define experimental scenarios, such as network topologies
and client workloads, to compare proposals and quantify their
improvements.

G. Load Balancing, Congestion Control, and Payment

Scheduling

Besides dealing with deadlocks, PCNs face challenges
similar to traditional packet-switched networks. For example,
when multiple payments traverse the same hops simultane-
ously, some channels may become congested or exhausted.
Since payments have a deadline to fulfill and channels might
run out of capacity under heavy loads, payment scheduling
should intelligently control the load balancing of channels
to provide network stability and achieve maximum payment
goodput. Some authors also propose transport protocols be-
yond simple forwarding to improve payment delivery [90],
[109], [124].

1) Levels of Load Balancing: In their survey on PCNs,
Papadis and Tassiulas [109] consider that payment load can
be balanced at three levels: channel, path, or node level,
Load balancing can be achieved in each level as follows:

« Channel level. In channel-level load balancing, the goal
is to evenly distribute a load of channels to avoid
overloading any particular one. In this case, a node
might adjust the rate at which it serves payments in
each channel so that the channels preserve enough funds
in all directions. This can be achieved with hop-by-
hop forwarding decisions and fee adjustments that make
channels more or less attractive.

« Path level. In path-level load balancing, load between
pairs of sources and destinations should be distributed
across different paths, similar to the techniques used in
the load balancing of Internet traffic. Most multipath
payment routing protocols consider per-path balancing
since it improves payment goodput [67], [80], [90],
[116].

« Node level. Finally, in node-level load balancing, users
might want to avoid central nodes that process too many
payments since these could incur extra delays and pos-

14Note that the term “load balancing” here is not to be confused with the
channel rebalancing techniques discussed in Section VI-B. In this case, we
want to schedule payments optimally so that all payments can be delivered
without disrupting the network.

X4, gang) ()0 5:% Xa

Figure 19. An example of payment queues g4 and ¢p in Spider routers
(adapted from [90]). Red circles represent unit payments. When the payment
arrival rate at A, x 4, is greater than the arrival rate at B, g, A eventually
runs out of funds, and its payment queue g4 starts to grow. If payments stay
in the queue for too long, A will send a message to the payment senders as
a warning to reduce their payment rates.

sibly payment failures. Node reputation and monitoring
are the main strategies to achieve node-level balancing.

2) Congestion Control with Spider: The Spider routing
protocol introduces routers that keep payment queues and
adjust payment rates according to the channel load [90]. Fig-
ure 19 shows an example of such routers. Their work provides
congestion control to PCNs and is inspired by the mechanisms
of Multipath TCP for communication networks [241]. The
idea is that payments that cannot be forwarded will be stored
in a queue instead of failing immediately and will be served
as soon as a payment comes in the opposite direction. This
way, payments can tolerate ephemeral load changes without
reducing payment goodput. Also, if a payment stays too long
in a queue, the corresponding router sends a warning message
to the sender, which proactively limits the payment rate for
paths that traverse that channel. The work also indirectly
provides load balancing at the path level, as the payment
sender will try a different path when receiving routers’
warnings.

3) Payment Scheduling with PMDE: Papadis and Tassiulas
formalize and study the payment scheduling problem in
depth, paving the way for new scheduling policies [124].
They propose to replace the default scheduling mechanism
in a payment channel, in which payments are forwarded
or rejected as soon as they arrive, with payment buffers
and nodes that schedule payments following some priority.
They introduce the Process or Match on Deadline Expiration
(PMDE) policy, which attempts to forward a payment only
on a given deadline and prove its optimality for fixed arriving
payment amounts. The policy also ensures payments are only
served if matched with a payment in the opposite direction,
preserving channel balances. To our knowledge, their work is
the first to propose an optimal payment scheduling policy for
PCNs.

The authors build a discrete event simulator of a PCN
to evaluate the proposed scheduling policy. They compare
their proposed PMDE with three other policies: process at
regular intervals with immediate processing (PRI-IP), with-
out immediate processing (PRI-NIP), and process feasible
immediately (PFI). The PMDE policy achieves higher nor-
malized throughput under symmetric demand compared to
other policies. In particular, while PMDE achieves near 100%
normalized throughput, PRI-IP and PRI-NIP stop at around
90% of normalized throughput. When the payment demands
are asymmetric, however, PMDE performs similarly to the

rest of the evaluated policies, with a normalized throughput
of 80%.

4) Summary of Load Balancing, Payment Scheduling, Con-
gestion Control, and Discussion: Payment concurrency, load
balancing, congestion control, and payment scheduling are
some of the least explored challenges of payment channel
networks. One plausible explanation is the difficulty of en-
forcing systematic modifications in a decentralized network.
Out of the discussed topics, congestion control receives more
attention as it is essential for payment routing protocols [90],
[96], [116]. However, we expect more works on payment
scheduling will appear in the following years.

H. PCN Simulation

Payment channel networks are an emerging technology that
still needs large-scale deployment on real-world applications.
Consequently, most PCNs today run on small networks of
tens of nodes [89] or rely on proof-of-concept implementa-
tions [57], [63]. Lightning is a large-scale PCN, but obtaining
data from it is difficult due to privacy concerns. Therefore,
there is a need for PCN simulators that can effectively
mimic a real PCN while allowing researchers to experiment
with different network conditions that represent potential
applications in the future. We present some PCN simulation
proposals below.

1) PCNsim: PCNsim [123] is an open-source payment
channel network simulator that reproduces the behavior of
a PCN on top of the OMNeT++ simulation environment.
The simulator follows the specifications of the Basis of
Lightning Technology (BOLT) [212] to simulate the mes-
sages exchanged between nodes involved in a payment. The
simulator also allows users to model channel parameters,
such as capacity and fees, based on real data. It includes
network topology and workload generator modules that allow
researchers to test their proposals under different networking
conditions. The main features of PCNsim are the flexibility
of its modules and the reproduction of the Lightning Network
payment state machine on top of OMNeT++, which supports
testing PCNs with several underlying network protocols using
the INET framework'>. However, the current version of the
simulator only implements single-path Dijkstra’s SPF algo-
rithms for routing and lacks quantitative comparison to the
real LN operation.

2) CLoTH: CLoTH is a PCN simulator that produces
performance measures such as the probability of payment
success and the average payment latency [111]. Like PCNsim,
CloTH aims to mimic the behavior of the Lightning Net-
work according to its documented specifications. The current
version of the simulator implements LN’s default payment
state machine, Dijkstra’s SPF routing protocols, and multipath
payments. The main difference between CLoTH and PCNsim
is that CLoTH simulates the Lightning Network in pure C
language, whereas PCNsim is built on top of the OMNeT++
environment. Although this difference is insignificant in terms

15 Available at https:/inet.omnetpp.org/Introduction.html

Table VIII
COMPARISON BETWEEN THE EXISTING PCN SIMULATORS IN THE LITERATURE.

Reference Language Source code Main features Main limitations
- Unpublished source code
CoinExpress [66] C++/Python Unpublished - Based on the ns-3 nethrk s1mul:ator - Does not support graph inputs
- Implements several routing algorithms - Unclear whether the simulator
follows LN specifications
. e . - Simplifies HTLC functions
LNSim [65] C++ https://github.com/gdistasi/LNSim - Simulates a simp hﬁEd, version of the LN - Does not support underlying
- Generates networks via input or randomly .
networking protocols
- Unpublished source code
- Simplifies HTLC functions
. - Simulates a simplified version of the LN - Does not support graph inputs
Blyskavka [64] Java Unpublished - Uses MASON as a simulation engine - Limited to 10,000 nodes
- Does not support underlying
networking protocols
el on e OUNeTe e SIS i HTLC nions
Spider [90] C++/Python https://github.com/spider-pcn/spider_omnet P . st - The implemented routers do
- Implements several routing algorithms . R
. not follow LN specifications
- Generates networks via input or randomly
- Simulates a simplified version of the LN - Limited to fixed-amount payments
LNTrafficSimulator [91] Python https://github.com/ferencberes/LNTrafficSimulator - Generates traffic automatically based on - Simplifies HTLC funcuor}s
LN snapshots - Does not support underlying
- Generates networks via input or randomly networking protocols
- Accurately reproduces the LN - Does not support underlyin
CLoTH [111] C/Python https://github.com/marcono/cloth specifications and code functions . PP ymg
X networking protocols
- Implements multi-path payments
- Simulates a simplified version of the LN) U.Ilpul"Jl‘l shed source CO‘.je
. . - Simplifies HTLC functions
Kappos et al. [112] Python Unpublished - Focuses on PCN privacy guarantees .
- Supports graph inputs from LN snapshots - Does not support underlying
)) B networking protocols
. - Implements payment queues/buffers B Restrlctedlto single-hop payments
Papadis and Python https://github.com/npapadis/payment-channel-scheduling - Supports several single-hop payment - Does not implement HTLCs
Tassiulas [124] Y ps:fie i pap pay £ PO . & P pay - Does not support underlying
scheduling policies .
networking protocols
- Based on the OMNeT++ network simulator
PCNSim [123] C++/Python https://github.com/gfrebello/pcnsim - Accurately reproduces the LN - Does not support multi-path payments

specifications and code functions

of the implementation of Lightning Network functions, it
means CLoTH’s simulation is restricted to the application
layer, while PCNsim can simulate the underlying commu-
nication network using OMNeT++. Like PCNsim, CLoTH
lacks a comparison to the real operation of the LN to assert
the simulation accuracy.

3) Spider: Spider [90] develops an event-based simulator
for payment channel networks besides proposing a routing
protocol. The simulator extends the OMNeT++ simulation
framework to model a PCN with Spider routers, providing
the congestion control functionalities proposed in the paper.
The Spider simulator offers three types of network topology
for PCN simulation: the LN topology on July 15, 2019,
a Watts-Strogatz small world [242], and a Barabasi-Albert
topology [243]. Furthermore, the simulator draws transactions
from a credit-card dataset [244] to model transaction size.
The code is open-source, and the authors use the simulator
to extract statistics and compare their proposal with other
routing protocols.

The authors prove their simulation is sound by comparing
the transaction goodput of the simulator with a real Light-
ning Network implementation. The comparison focuses on
evaluating the Spider simulator against a modified version
of the LND implementation of the Lightning Network. The
modified LND implementation queues up HTLCs in interme-
diary nodes following the Spider design. The results show that

the average payment success ratio on the simulator is within
a 5% margin of the modified LND. This result is the only
quantitative comparison between the Spider simulator and a
Lightning Network implementation. The evaluation ignores
other important network features, such as payment latency and
throughput, and mainly focuses on Spider’s routing protocol
proposal while simplifying the core functionalities of PCNs,
such as payment state control messages and HTLCs. Thus,
it is challenging to use Spider as a generic simulator to test
other payment strategies, for example.

4) Blyskavka, LNSim, and LNTrafficSimulator: Other pro-
posals implement simplifications of the Lightning Network.
Piatkivskyi and Nowostawski [64] develop Blyskavka, a
Lightning Network simulator written in Java, to evaluate
the impact of payment splitting when routing. Blyskavka
simulates the Lightning Network operation rather than the
Lightning Network itself, meaning it does not implement
its specific messages and states. It also simplifies HTLC
simulation by only blocking and releasing payments on the
path after a short delay. Stasi et al. [65] develop LNSim, an
LN simulator, to evaluate a novel fee definition strategy and a
multipath routing heuristic. Their open-source simulator can
simulate the network at the LN protocol level but does not
implement HTLCs. Beres et al. [91] develop LNTrafficSim-
ulator, a Lightning Network traffic simulator based on LN
public data, to analyze the economic and privacy implications

of payments. Their work focuses on single-hop payments and
simplifies other PCN functionalities.

5) Simulators for Specific PCN Functionalities: Several
other proposals implement simple simulators for specific
purposes. Kappos et al. [112] develop a PCN simulator
in Python to evaluate whether an on-path adversary can
successfully identify the payment sender. Their simulator uses
publicly available Lightning Network snapshots and informa-
tion published by central node owners, but the simulation
code is yet to be published. CoinExpress [66], [245] develop
a PCN simulation tool to test their routing proposal on top
of the ns-3 discrete-event network simulator. The simulator
creates a random Watts-Strogatz network with random pay-
ments between users. The paper, however, does not clearly
describe the simulator functionalities, and no source code is
available. Papadis and Tassiulas [124] develop a discrete event
simulator of a payment channel with support for transaction
buffers. Their simulator aims to evaluate the impact of several
single-hop payment forwarding strategies. Consequently, the
simulator focuses on scheduling policies instead of providing
a complete simulation of PCN functionalities.

6) Summary of PCN Simulation and Discussion: We high-
light the main differences between the discussed simulators
in Table VIII. Besides CoinExpress, Blyskavka, and Kap-
pos et al., all simulators provide open-source code that can
be tested at will. Most simulators implement a version of
the Lighting Network, with PCNsim and CLoTH being the
only simulators that fully reproduce the phases involved in a
payment process [64], [65], [91], [111], [112], [123].

Despite the recent proposals, there are still open research
opportunities in PCN simulators. Some simulators, such as
PCNsim [123] and CLoTH [111], lack comparisons to the real
operation of the Lightning Network to evaluate their accuracy
and improve their design. Future simulators could focus on
creating PCN simulators for networks other than the Light-
ning Network [89], [202], [220]. Furthermore, defining simu-
lation parameters and inputs is still challenging. A significant
number of PCN simulators uses either the Ripple transaction
dataset [68], [220] or a credit-card payment dataset [244] for
workload simulation [68], [80], [90], [115], [123]. Using both
of these datasets to generate transaction workload, although
widely accepted, might result in inaccurate results. The most
accurate approach for workload generation uses real payment
data collected from a central node that runs on the Lightning
Network. Another challenge when designing a PCN simulator
is choosing nodes to act as sender-receiver pairs. Collecting
real data from a central node becomes useless, given that
intermediary nodes know only their predecessor and the
following node on the payment path in the onion routing
operation. Thus, PCN simulators have few options to select
potential sender-receiver pairs. First, simulators could assume
a payment distribution and draw nodes from it. This approach
has the obvious downside of the uncertainty on how realistic
the produced synthetic data is. A second approach is to assign
roles based on the available payment data. For example,

simulators could identify similarities between the Ripple
network and the Lightning Network and use this information
to associate nodes on the Ripple payment dataset [220]
with nodes on the Lightning Network. The downside of
this approach is that it assumes that payments in different
PCNs are similar. A third approach could use state-of-the-art
traffic analysis from the Lightning Network to select sender-
receiver pairs [91]. Nonetheless, all of the above-mentioned
approaches present drawbacks derived from PCN’s privacy-
preserving mechanisms.

L. Support for Light Nodes

Despite having several implementations for computer net-
works, payment-channel networks still present open chal-
lenges related to resource-constrained devices such as mo-
bile phones, smart objects, and sensors. The main problem
is that current PCNs assume nodes with high availability,
large storage capacity, and high computational power. For
example, most routing protocols assume nodes can store
and synchronize a copy of the complete topology to find
paths [67], [80], [90], [116]. The Lightning Network and the
Raiden Network require nodes to store a full copy of the
blockchain by default and adopt onion routing to provide
payment privacy at the expense of extra processing [54],
[89], [119]. Such assumptions create a challenge for wireless
devices with limited resources and intermittent connectivity,
devices that today account for over half of all the traffic on
the Internet [122]. Moreover, as discussed in Section VI-E2,
new vulnerabilities appear when light devices are present in
the network [127]. This section presents the main proposals
that adapt payment channel networks to consider payments
with light devices.

1) LNGate: Kurt et al. [113] propose LNGate, a thresh-
old cryptography-based protocol that allows light devices to
interact with the Lightning Network via untrusted gateways,
store the blockchain, and process payments. In LNGate, any
operation, such as opening a channel or sending a payment,
only happens if it is signed by both the light device and its
corresponding gateway. Payment processing is thus delegated
to gateways without compromising security once gateways
cannot execute operations without the user’s knowledge. In
an extended version of the work, the authors use game
theory to analyze the security of the proposal and test it
with different underlying communication protocols. They also
prove that the extra signing step incurs negligible delay
to operations [125]. Specifically, using WiFi incurs a 1.07
seconds delay and Bluetooth Low Energy (BLE) takes around
3 seconds while using the usual time, with no IoT device,
takes 0.31 seconds. The simulation results also show that the
IoT device consumes 3.56 mWh when the user sends 100
payments, while its consumption is usually around 3.03 mWh
when idle. Nevertheless, LNGate requires changes to the core
of the Lightning Network protocol, which are difficult to
enforce in a decentralized environment.

2) Hannon-Jin Protocol: Hannon and Jin [78] propose a
watchdog-based protocol and demonstrate its security and
fairness using game theory. In their work, light nodes open
payment channels with gateways and rely on third parties
called watchdogs to monitor the blockchain for possible coin-
stealing attacks in the channel. This concept is similar to
watchtowers [114] in the Lightning Network. The watchtow-
ers receive financial incentives for the monitoring service,
which allows light devices to go offline without losing funds.
This approach, however, is vulnerable to collusion attacks
between a malicious party and the watchtower and assumes
the light nodes send every transaction to the watchtower
before disconnecting. The work does not specify how a light
node opens a payment channel with the gateway or finds paths
without having enough computational resources to store the
network topology. It also lacks a quantitative comparison with
other proposals.

3) IoTBnB: Robert et al. [92] propose an integration of the
Lightning Network with existing large-scale IoT ecosystems
called IoTBnB. IoTBnB, which stands for “IoT service for
puBlication and Billing”, is a digital marketplace where buy-
ers pay for commercialized data using the Lightning Network.
They propose to use a Lightning Network gateway mod-
ule which stores the blockchain and the network topology.
The light devices delegate the operations of opening/closing
channels and sending payments to the gateways instead of
processing them locally. The work, however, assumes gate-
ways are not malicious since they are part of a trusted IoT
platform. A similar approach is used in Lightning Service
Providers (LSP) [126]. LSPs are companies that provide
access to the Lightning Network, analogous to traditional
Internet service providers. Users with light nodes trust LSPs
to manage their channels and send/receive payments on their
behalf, simplifying the user experience and allowing devices
to receive payments offline.

4) Other Architectures: Mercan et al. [93] and Re-
bello et al. [127] present alternative lightweight PCN archi-
tectures that focus on reducing computational requirements
for mobile devices. In their works, light nodes connect to
gateways via payment channels and monitor the blockchain
on-demand by downloading blocks from random nodes. Their
solution, however, implies that devices have a minimal pro-
cessing capacity and stay offline only for short periods.
Such an assumption does not cover light devices that may
disconnect for weeks or months, nor devices that are so
restricted in resources that they cannot even establish and
verify payment channels. Dealing with such devices is an
important issue that needs to be addressed in the current
literature.

5) Lessons Learned on Support for Light Nodes:
Resource-constrained devices represent new challenges for
PCNs, such as dealing with nodes that have intermittent
connectivity and limited processing and storage capacities.
All proposals leverage gateways to relay payments on the
light node’s behalf but differ in how they guarantee security.

LNGate [113], [125] adds support for threshold cryptography
into the HTLC exchange protocol, which prevents gateways
from performing actions that do not have the signature of
the light node. Instead of enforcing signatures, Hannon and
Jin [78] adopt watchdogs to monitor the actions of gate-
ways and punish them if needed. This concept is similar
to watchtowers in the Lightning Network [114]. IoTBnB
and Lightning Service Providers provide their gateway nodes
and assume gateways are trusted because they are controlled
by a trusted entity [92], [126]. Other architectures, namely
Mercan et al. and Rebello et al., assume light nodes have a
minimum capacity to download data from gateways and do
operations locally as a normal node. However, this assumption
is unrealistic for many light nodes, such as smart objects and
IoT devices.

J. Summary of PCN Challenges and Discussion

Overall, designing PCNs that are efficient, secure, and
provide support to heterogeneous devices is still an ongoing
effort. Nonetheless, some areas seem more advanced than
others. In the payment routing field, several works propose
alternative protocols that focus primarily on multipath routing
to improve payment goodput [66]-[68], [80], [90], [96], [116],
[218]. The open challenges in this area include minimizing
payment latency, analyzing the efficiency of routing protocols,
and supporting multi-metric routing. Channel rebalancing
also receives a fair amount of attention from researchers,
with active local rebalancing (i.e., rebalancing where a node
sends payments to itself to balance its channels) being the
most explored technique [60], [61], [94], [115], [128]-[130].
Despite the efforts, it is still unclear how rebalancing methods
affect the network as a whole and how much they would cost
to users in the long run. Finally, extensive analysis shows
that the Lightning Network, the most popular PCN, is central-
ized [87], [88], [131]. Besides facilitating topological attacks,
such centralization can lead to long-term vulnerabilities [79].
Current implementations of the Lightning Network create
channels disregarding centralization.

The main underexplored challenges of PCNs lie in security
and privacy. In particular, the privacy of channel balances
can easily be compromised with cheap channel probing
techniques that exploit error messages [86], [107], [108],
[136]. Amount jamming and slot jamming, two major de-
nial of service attacks that exhaust channels, also have no
systematic solution so far [86], [132]. Works that include
resource-constrained devices into the PCN topology must
deal with new vulnerabilities, such as untrusted gateways and
coin theft [113], [127]. Besides security and privacy, other
areas that need more extensive studies include congestion
control, payment concurrency, load balancing, and payment
scheduling policies.

VII. SCALABILITY IN LAYER TWO: ROLLUPS

Besides payment channel networks, another layer-two solu-
tion that emerged from academia and business in recent years

is transaction rollups, or simply rollups. Rollups were first
proposed as a solution to scale blockchain systems that aggre-
gate and compute transactions off-chain to reduce congestion
and transaction overload on layer one. The name comes from
the idea that transaction data are rolled up in batches before
being published in the blockchain [137]. Some works consider
rollups as hybrid layer-one/layer-two protocols as they publish
information on every single transaction on the blockchain,
unlike other pure layer-two protocols that summarize multiple
off-chain operations in a single on-chain transaction [160].
Although rollups have been successfully deployed in the
Ethereum ecosystem, their implementation is more complex
than payment channel networks, as they require deploying
smart contracts on a root-of-trust blockchain. Thus, rollups are
considered too complex to implement in blockchain systems
that do not support Turing-complete smart contracts, such as
Bitcoin and its forks [138], [246].

Similarly to payment channel networks, the blockchain is
used as a root of trust to solve disputes and initialize the
off-chain layer. Users interested in issuing transactions off-
chain can allocate funds using the deployed smart contract.
A smart contract on the blockchain stores the state root, which
is the Merkle root of the current rollup state; for example, it
could be the current users’ account balances. To update the
state of the rollup, an agent, usually called an aggregator,
can “roll-up” a set of off-chain transactions, calculate its
Merkle root, and send it to the smart contract, as depicted
in Figure 20. Aggregators send rolled-up transactions to the
smart contract in a highly compressed form to reach their goal
of reducing congestion. This compressed batch must provide
enough information to allow users to compute the state update
but can dismiss a significant volume of data, such as 20-
byte-long addresses and some signatures. The smart contract
verifies the new Merkle root and updates the rollup state.

As the compressed batch misses essential information and
anyone can submit a batch, it is necessary to implement
methods to attest to the correctness of the published batch.
Currently, we can classify rollups according to their new-state
verification method: optimistic or zero-knowledge.

A. Optimistic Rollups

In optimistic rollups, an aggregator batches transactions
and sends a summary to the on-chain smart contract without
providing proof of validity for the new state. Instead, every
new state is optimistically considered valid, and, as in PCNs,
a dispute period begins in the root blockchain. During this
dispute period, validators can provide proof that the new
state is invalid or incorrectly computed and challenge the
update. The smart contract on layer-one can easily verify this
proof, and the dishonest party can be punished. Usually, both
validators and aggregators stake up part of their funds in a
bond, and if any agents act maliciously, the attacker loses
its coins at stake [137]. Similarly to PCNs, once the dispute
period is finished, the state root is considered valid and cannot
be changed or challenged by the validators.

1) Optimism: Optimism is the first optimistic rollup for
Ethereum [140]. In Optimism, a single party called sequencer
acts as a rollup aggregator by managing layer-two block
production, transaction confirmations, state updates, and in-
teraction with layer-one. Verifiers monitor the blockchain to
challenge fraudulent state updates. If a verifier challenges a
state update, the smart contract executes the challenged batch
of transactions, starting from the last unchallenged update
until the challenged state. This approach presents guarantees
that the smart contract will find and correct the fraudulent
update but it also requires a step-by-step execution of each
instruction, which is inefficient. Furthermore, the sequencer
must send enough data to layer-one in each state update.
Otherwise, the smart contract cannot verify the state update or
challenge. This approach results in high-costs given that smart
contracts in Ethereum usually charge by instruction execution
and data storage.

2) Arbitrum: Kalodner et al. [73] propose Arbitrum, an
optimistic rollup system for the Ethereum blockchain. Like
Ethereum, Arbitrum introduces a virtual machine, the Arbi-
trum Virtual Machine (AVM), that allows users to write codes
and deploy applications. Agents called managers monitor the
progress of the virtual machine and receive incentives to
ensure its correct behavior by agreeing on the state updates.
Unlike Optimism, Arbitrum does not require a step-by-step
execution of the whole transaction batch in case of a dispute.
Instead, Arbitrum opts for an off-chain bisection protocol
between the disagreeing parties when a dispute occurs. In this
bisection protocol, the parties interact with each other to find
the disagreement in the state update using a process similar
to a binary search. The goal is to reduce the disagreement to
a single VM instruction that the validators can easily verify.
This procedure significantly reduces the amount of data sent
to layer-one, which makes Arbitrum’s execution cheaper. In
this bisection protocol, the managers must deposit funds in a
bond, which they may lose as punishment for a malicious act.
If proved correct, the challenger receives half of a manager’s
deposits and his/her coins back.

3) Cartesi: Similarly, Teixeira and Nehab [74] present the
Cartesi machine, a reproducible virtual machine that runs
on top of the Ethereum blockchain. The main difference
between Cartesi and other optimistic rollups is that Cartesi
machines are based on the RISC-V architecture and run
a Linux-based system allowing the deployment of multiple
applications in general programming languages as long as
they are deterministic. Thus, while Optimism and Arbitrum
introduce a virtual machine that solely runs programs com-
patible with the Ethereum Virtual Machine, Cartesi builds its
virtual machine following the RISC-V architecture, broad-
ening application possibilities. Cartesi nodes interact with
smart contracts implemented in the root chain to update
states that other participants can dispute. Like Arbitrum, when
nodes challenge a result, they trigger a partition contract that
starts a binary search to find the instruction that caused the
disagreement. Once the instruction is found, the challenger

Layer 1

— — — Ox14f...

If account balances change due to transactions,
a new state root is generated and stored in Layer 1.

Figure 20. Instead of sending every transaction to the blockchain, rollups store account balances on a Merkle tree and update transactions off-chain. When
an account balance changes, the state root is modified deterministically and can be verified by participants.

provides machine logs to the smart contract that emulates the
computation and checks if the challenger is correct. Although
Cartesi rollups are promising, they are still under development
and lack comparative evaluation with other optimistic rollups.

B. Zero-knowledge Rollups

Unlike optimistic rollups, zero-knowledge (ZK) rollups
require aggregators to provide a computational proof, called
validity proof, to attest the proposed new state root. This
validity proof is constructed using a cryptographic technique
called zero-knowledge proof (ZKP), which allows users to
prove a computation to other parties while keeping the inputs
used to perform the computation private. Zero-knowledge
systems introduce a setting where a prover (P) wants to prove
a statement to a probabilistic polynomial-time verifier (V')
while keeping information about the statement private [110].
These proof systems have the following properties [248]:

1) Completeness: If the statement is true, an honest veri-
fier V' will be convinced of the statement by an honest
prover P.

2) Soundness: If the statement is false, a malicious prover
P is unable to convince an honest verifier V' that the
statement is true, except for a small probability.

3) Zero-knowledge: The verifier V' obtains no additional
information about the statement other than the truth
of the statement. As an example, at the end of the
procedure, if the statement is true, the verifier V' learns
nothing about the statement other than it is true.

Zero-knowledge rollups leverage these properties to pro-
vide validity proof for the “rolled-up” batch of transactions.
A layer-one smart contract automatically verifies if the update
is valid by checking the correctness of the provided mathe-
matical proof. Therefore, zero-knowledge rollups eliminate
the requirement for a dispute window and achieve faster
transaction finality.

There are two leading technologies used to compute
zero-knowledge proofs in blockchain-based systems: Zero-
Knowledge Succinct Non-interactive ARgument of Knowl-
edge (ZK-SNARK) [249] and Zero-Knowledge Scalable

Layer 2

Only the state root of the
Merkle Tree is stored on Layer 1 State root

Alice Bob
200 ETH

Charlie
25 ETH

Account balances

Transparent ARgument of Knowledge (ZK-STARK) [75].
ZK-SNARKSs are non-interactive, provide small proofs and
allow users to quickly verify the computation without ex-
changing messages. Current ZK-SNARKSs implementations,
however, demand a trusted setup between participants to
prevent an attacker from creating false statements. A com-
promised trusted setup allows malicious parties to provide
proof for false statements while remaining undetected to
honest parties [110]. On the other hand, ZK-STARKSs are
transparent, meaning that they don’t rely on any trusted party.
Nevertheless, ZK-STARK schemes compile long proofs that
require longer processing times compared to ZK-SNARKSs.

1) zkSync: zkSync [138] is a zk-rollup system that runs on
top of Ethereum. zkSync’s zero-knowledge scheme is based
on Plonk [139], a Succinct Non-interactive Oecumenical
(Universal) ARgument of Knowledge (SNORK). SNORK
schemes are similar to SNARKs with the difference that
the trusted setup is universal and can be used for multi-
ple applications. zkSync supports the Solidity programming
language, allowing users to deploy their Ethereum Dapps
with small or no changes to the rollup systems while paying
less for fees and receiving higher throughput. In zkSync,
users move funds from the Ethereum mainnet to a designated
zkSync account using a smart contract. Then, users can freely
issue transactions off-chain to a zkSync operator through an
APIL. The operator will organize the transactions in blocks
that are sent to the Ethereum smart contract with a zero-
knowledge proof. The proof is sent to the blockchain in a
single transaction and achieves finality when the transaction
is accepted in a block.

2) StarkEx: StarkEx [246] presents an Ethereum rollup
based on ZK-STARK proofs. Like zkSync, StarkEx maintains
a contract on the Ethereum mainnet to verify submitted
zero-knowledge proofs. However, unlike zkSync, StarkEx
establishes a Shared Prover (SHARP), a proving service main-
tained by the StarkWare company that provides the required
infrastructure to generate the ZK proofs. StarkWare appli-
cations receive user requests, batch off-chain transactions,

Table IX
COMPARISON BETWEEN THE EXISTING ROLLUP PROPOSALS IN THE LITERATURE.

Rollups Type Validity proof Reported throughput (tps) Challenge window Main Feature EVM compatibility
Optimism [140] Optimistic Fraud proof 2,000 7 days First implementation of optimistic rollup v
Atbitrum [73] Optimistic Fraud proof 4,500 7 days Minimizes on-chain fees by reducing v
disagreement to a single instruction
Cartesi [74] Optimistic Fraud proof Impl‘ements rollups on a RISC._V archl%ectl}re v
allowing for general-purpose Linux applications
zkSync [138] Zero-knowledge SNORK 2,000 No challenge Provides small and non-interactive proofs v
StarkEx [246] Zero-knowledge ~ STARK 3,000 No challenge Eliminates the requirement of a trusted setup x
for validity proof generation
Loopring [247] Zero-knowledge SNARK 2,025 No challenge Deploys an order-ring structure to X

enable multiple order-matching

and send the batch to the SHARP service. Then, SHARP
processes a proof and sends it to the on-chain smart contract,
which will deterministically attest the generated proof.

3) Loopring: Loopring [141], [247] is a zk-rollup protocol
which runs a Decentralized Exchange (DEX) on top of
Ethereum. Instead of creating traditional order books to match
exchange orders, Loopring’s protocol deploys an order ring,
which enables the matching of multiple orders in a circular
trade. Unlike traditional pair matching in order books, order
rings can scale up to 16 orders. A match happens in an
order ring if all orders in the ring execute at an exchange
rate equal to or better than the original rate set by the user.
Loopring employs a specific type of participant called ring
miners who receive a fee incentive for creating the order
rings. Loopring differs from general zero-knowledge rollups,
e.g. zkSync, by focusing on asset exchange instead of general
DeFi applications.

C. Summary of Rollups and Discussion

Rollups present a layer-two alternative to payment channel
networks that aggregate transactions off-chain to reduce fee
costs and enable faster transaction processing. There are two
main types of rollups: optimistic and zero-knowledge. In
optimistic rollups, users assume that the batch of transactions
is legitimate unless a participant disputes its result publicly.
In zero-knowledge rollups, the batch of transactions contains
a mathematical proof that can be publicly verified, stating
that the set of transactions is valid. As zero-knowledge
rollups eliminate the requirement of a dispute window, it pro-
vides faster transaction finality when compared to optimistic
rollups. Table IX compares current rollup proposals in the
literature.

Although rollups have a huge potential to scale
blockchains, there are still many open challenges. First, their
implementation requires deploying a complex smart contract.
This requirement prevents the implementation of rollups in
blockchains with simple scripting logic, such as Bitcoin [3].
Second, a significant part of optimistic rollups is still highly
centralized. As an example, the Optimism Foundation runs
the sole transaction aggregator in Optimism [140]. Similarly,
Arbitrum presents a transaction aggregator run by Offchain
Labs [250]. Thus, current optimistic rollups prioritize scal-
ability and security over decentralization in the blockchain

trilemma. This centralization exposes the system to the same
vulnerabilities as centralized systems, such as introducing a
single point of failure. Finally, while zero-knowledge rollups
should provide faster transaction finality in theory, creating
and verifying zero-knowledge proofs is still slow. Designing
more efficient zero-knowledge proofs is critical to enable the
mass adoption of zk-rollups systems. Furthermore, optimistic
rollups should also focus on decentralizing aggregators to
create more secure solutions.

Compared to PCNs, rollups still have some major disad-
vantages. PCNs usually allow users to move from layer two
to layer one in 24 hours in case of a dispute [251] while
optimistic rollup withdrawal time reaches 7 days. Although
zero-knowledge rollups eliminate this dispute window, as
mentioned before, they still struggle to generate proofs effi-
ciently. Finally, PCNs’ throughput is only limited by network
bandwidth and computational power while most rollups scale
up to only thousands of transactions per second. Nonetheless,
rollups present great potential for scaling applications other
than issuing payments.

VIII. CONCLUSION

Our survey presented existing techniques to solve the
blockchain scalability problem at different layers. We dis-
cussed the advantages, disadvantages, and requirements to
implement each solution in current blockchain networks. To
the best of our knowledge, this work was the first to focus on
layer-two solutions in detail, presenting the main challenges
of payment channel networks and rollups. We have identified
several key findings, outlined below.

A. Lessons Learned

Layers HW, L0, and L1. Scalability enhancements for the
Hardware Layer (HW), Layer 0 (LO), and Layer 1 (L1)
often need significant structural modifications to blockchain
systems which can be challenging to execute. For instance,
adopting FPGAs [16], [18] or TEE-backed consensus [14],
[15], [77] in layer HW to improve transaction throughput
shows significant results but imply users have specific hard-
ware. This restricts the adoption of such solutions to enter-
prise environments in which nodes are homogeneous and have
the capacity to purchase and configure expensive equipment.
Modifications in LO attempt to optimize message formats and

communication protocols to maximize the amount of useful
data transferred among nodes [20]-[26], [28], [187]. The main
issue of this approach is it provides limited throughput gain
and often leads to compatibility issues between upgraded
nodes and legacy nodes [189]. Lastly, L1 proposals that focus
on improving consensus provide significant throughput gains
at the expense of security. For instance, DAG-based solutions
achieve high throughput by allowing multiple transactions to
be validated concurrently, which can lead to double-spend
attacks in the short and medium term [30], [32], [46]. Block
sharding parallelizes block validation into shards, which may
lead to attacks where malicious nodes control a shard. Cross-
chain and side-chain solutions delegate the validation of
transactions to a secondary consensus protocol with fewer
nodes, effectively weakening the security of the system [29],
[33]-[35], [43], [51]. Thus, these solutions present good po-
tential for improving scalability if the corresponding security
concerns are overcome.

Payment channel networks. Despite representing one of
the most promising solutions to improve blockchain scala-
bility, efficient, secure, and heterogeneity-supporting PCNs
are still under development, with some areas more mature
than others. The payment routing domain seems to concen-
trate most of the efforts from the community, particularly
in the form of multipath protocol proposals that emphasize
payment goodput [66]-[68], [80], [90], [96], [116], [218].
However, some challenges remain open in this subject, such
as minimizing payment latency and performing multi-metric
routing [116]. Channel rebalancing is another significant area
of focus, with local rebalancing being a dominant technique
for large nodes [94], [115], [129], [230]. Small nodes with
few connections still lack a cost-efficient rebalancing solution.
Lastly, the Lightning Network, a leading PCN, has been
shown to have centralization issues, which poses potential
long-term vulnerabilities and topological attack surfaces [79],
[87], [131]. This centralization is often overlooked when
creating channels in the current implementations.

The critical unaddressed challenges in PCNs revolve
around security and privacy. Namely, the privacy of channel
balances is at risk due to cheap probing mechanisms that
leverage overly-informative error messages [66], [80], [95],
[116]. Similar techniques can be used to discover private
channels [252]. There are unsolved major denial-of-service
attacks, such as amount and slot jamming [86], [132], that can
disable channels consistently with low effort. Gateway-related
vulnerabilities that arise from the integration of resource-
limited devices into PCNs also need to be explored [93],
[113], [125]. Thus, we conclude that these topics represent
significant opportunities for research that should receive in-
creased focus from the community in the immediate future.
Given the growing relevance of PCNs, we anticipate that
currently overlooked challenges, including congestion control,
payment concurrency, load balancing, and payment schedul-
ing protocols, will ascend in importance due to their great
potential to influence the network’s operational efficiency.

Rollups. Rollups present a novel and promising layer-two
solution for public blockchains with Turing-complete smart
contracts that, unlike PCNs, are not restricted to issuing
payments. Nevertheless, their nascent stage poses additional
challenges. First, the current implementation of rollups de-
mands the deployment of sophisticated smart contracts, which
precludes their use in simpler blockchains like Bitcoin. Sec-
ond, dispute-resolution mechanisms in optimistic rollups are
inefficient, causing large delays when a dispute occurs. A no-
table portion of optimistic rollups circumvents the problem by
centralizing transaction aggregation in a trusted entity, which
leads to several centralization-related attack surfaces [73],
[74], [140]. Third, zero-knowledge rollups, which aim to
eliminate the need for disputes, suffer from the current
inefficiency of zero-knowledge proofs in general [138], [246],
[247]. Therefore, improvements in zero-knowledge proof ef-
ficiency and decentralizing aggregators are crucial to foster
the widespread adoption of rollups. The literature on this
topic is currently scarce and should be developed in the
next years. Finally, when contrasted with PCNs, rollups have
longer withdrawal times but are not bound by network-
related limitations such as bandwidth and pathfinding delays,
indicating they will likely serve different purposes.

In light of all the aforementioned takeaways, we conclude
that, notwithstanding the inherent challenges they present,
layer-two solutions emerge as the most viable technology to
enhance the scalability of public blockchains. As layer-two
solutions run off-chain, these solutions remove the require-
ment for a consensus protocol over every transaction, effec-
tively reducing transaction confirmation delays and increasing
throughput. Furthermore, they maintain the same level of
payment security as guaranteed in other blockchain layers.
Our examination encompassed payment channel networks
and rollups, both of which are prevalent layer-two solutions
in public blockchains. Presently, payment channel networks
exhibit a more advanced stage of development compared to
rollups, with the Lightning Network standing as the most
mature example of a large-scale PCN. Nonetheless, our
projection suggests a symbiotic coexistence of PCNs and
rollups within the blockchain ecosystem; specifically, PCNs
are optimally suited for swift financial transactions, while
rollups cater to multifaceted, general-purpose applications.

IX. ACKNOWLEDGMENTS

This study was financed in part by the Coordenagdo
de Aperfeicoamento de Pessoal de Nivel Superior -
Brasil (CAPES) — Finance Code 001. This paper was
also funded by CNPq, CAPES, FAPERJ and FAPESP
(2018/23292-0, 2015/24494-8, 2015/24514-9, 2015/24485-9,
and 2014/50937-1).

REFERENCES

[1] Blockchain.com, “Blockchain charts,” 2022, Last access: Nov. 21th
2023. [Online]. Available: https://www.blockchain.com/charts

[2] World Bank, “GDP (current USS$),” 2022, Last access: Nov. 21th 2023.

[3] S. Nakamoto, “Bitcoin: A peer-to-peer electronic cash system,” 2008.

[4]

[3]

(6]

(7]

(8]

[91

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]
[21]

[22]

[23]

[24]

[25]

[26]

G. Wood, “Ethereum: A Secure Decentralised Generalised Transaction
Ledger,” 2014. [Online]. Available: http://bitcoinaffiliatelist.com/w
p-content/uploads/ethereum.pdf

H.-N. Dai, Z. Zheng, and Y. Zhang, “Blockchain for internet of things:
A survey,” IEEE Internet of Things Journal, vol. 6, no. 5, pp. 8076—
8094, 2019.

J. Xie, H. Tang, T. Huang, F. R. Yu, R. Xie, J. Liu, and Y. Liu,
“A survey of blockchain technology applied to smart cities: Research
issues and challenges,” Communications Surveys & Tutorials, vol. 21,
no. 3, pp. 2794-2830, 2019.

D. C. Nguyen, M. Ding, Q.-V. Pham, P. N. Pathirana, L. B. Le,
A. Seneviratne, J. Li, D. Niyato, and H. V. Poor, “Federated learning
meets blockchain in edge computing: Opportunities and challenges,”
Internet of Things Journal, vol. 8, no. 16, pp. 12806-12 825, 2021.
L. A. C. de Souza et al., “DFedForest: Decentralized Federated For-
est,” in International Conference on Blockchain (Blockchain). 1EEE,
2020, pp. 90-97.

D. C. Nguyen, M. Ding, P. N. Pathirana, and A. Seneviratne,
“Blockchain and ai-based solutions to combat coronavirus (covid-19)-
like epidemics: A survey,” leee Access, vol. 9, pp. 95730-95753,
2021.

D. Marbouh, T. Abbasi, F. Maasmi, I. A. Omar, M. S. Debe, K. Salah,
R. Jayaraman, and S. Ellahham, “Blockchain for covid-19: review,
opportunities, and a trusted tracking system,” Arabian Journal for
Science and Engineering, vol. 45, pp. 9895-9911, 2020.

Visa Inc., “Visa annual report,” 2022, Last access: Nov. 21th 2023.
[Online]. Available: https://s29.q4cdn.com/385744025/files/doc_dow
nloads/2022/Visa-Inc-Fiscal-2022- Annual-Report.pdf

V. Buterin, “Why sharding is great: demystifying the technical
properties,” 2021, Last access: Nov. 21th 2023. [Online]. Available:
https://vitalik.ca/general/2021/04/07/sharding.html

L. Gudgeon, P. Moreno-Sanchez, S. Roos, P. McCorry, and A. Gervais,
“SoK: Layer-two Blockchain Protocols,” in International Conference
on Financial Cryptography and Data Security (FC). Springer, 2020,
pp. 201-226.

V. Costan and S. Devadas, “Intel sgx explained,” Cryptology ePrint
Archive, Report 2016/086, 2016, https://ia.cr/2016/086.

J. Lind, I. Eyal, F. Kelbert, O. Naor, P. Pietzuch, and E. G. Sirer,
“Teechain: Scalable Blockchain Payments using Trusted Execution
Environments,” arXiv preprint arXiv:1707.05454, 2017.

Y. Sakakibara, S. Morishima, K. Nakamura, and H. Matsutani, “A
Hardware-based Caching System on FPGA NIC for Blockchain,”
Transactions on Information and Systems, vol. 101, no. 5, pp. 1350—
1360, 2018.

B. Ampel, M. Patton, and H. Chen, “Performance modeling of
hyperledger sawtooth blockchain,” in International Conference on
Intelligence and Security Informatics (ISI). 1EEE, 2019, pp. 59-61.
H. Javaid, J. Yang, N. Santoso, M. Upadhyay, S. Mohan,
C. Hu, and G. Brebner, “Blockchain Machine: A Network-Attached
Hardware Accelerator for Hyperledger Fabric,” arXiv preprint
arXiv:2104.06968, 2021.

The Hyperledger Foundation, “Hyperledger sawtooth,” Available at
https://sawtooth.hyperledger.org/, 2022, Last access: Nov. 21th 2023.
M. Corallo, “High-speed Bitcoin Relay Network,” 2013.

E. Lombrozo, J. Lau, and P. Wuille, “BIP 141: Segregated Witness
(Consensus Layer),” Available at https://www.omgwiki.org/dido/dok
u.php?id=dido:public:ra:xapend:xapend.b_stds:defact:bitcoin:bips:
bip_0141, 2015, Last access: Nov. 21th 2023.

M. Corallo, “BIP 152: compact block relay,” 2016, Last access: Nov.
21th 2023. [Online]. Available: https://github.com/bitcoin/bips/blob
/master/bip-0152

S. Riisch, I. Messadi, and R. Kapitza, “Towards Low-Latency Byzan-
tine Agreement Protocols Using RDMA,” in International Conference
on Dependable Systems and Networks Workshops (DSN-W). 1EEE,
2018, pp. 146-151.

D. Ding, X. Jiang, J. Wang, H. Wang, X. Zhang, and Y. Sun, “Txilm:
Lossy block compression with salted short hashing,” arXiv preprint
arXiv:1906.06500, 2019.

K. Otsuki, Y. Aoki, R. Banno, and K. Shudo, “Effects of a Simple
Relay Network on the Bitcoin Network,” in Proceedings of the Asian
Internet Engineering Conference, 2019, pp. 41-46.

B. Huang, L. Jin, Z. Lu, X. Zhou, J. Wu, Q. Tang, and P. C.
Hung, “BoR: Toward High-Performance Permissioned Blockchain

(27]

(28]

[29]

[30]

[31]

(32]

[33]

[34]

[35]

[36]

[37]

[38]

(391

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

in RDMA-enabled Network,” Transactions on Services Computing
(TSC), vol. 13, no. 2, pp. 301-313, 2019.

K. A. Cheow, “Something on Transaction Structure,” 2020, Last
access: Nov. 21th 2023. [Online]. Available: https://medium.com/@
ackhor/something-on-transaction-structure- 1ef60f719f01

M. Xu, S. Liu, D. Yu, X. Cheng, S. Guo, and J. Yu, “CloudChain:
a Cloud Blockchain Using Shared Memory Consensus and RDMA,”
Transactions on Computers, 2022.

A. Back, M. Corallo, L. Dashjr, M. Friedenbach, G. Maxwell,
A. Miller, A. Poelstra, J. Timé6n, and P. Wuille, “Enabling Blockchain
Innovations with Pegged Sidechains,” URL: http://www. open-
sciencereview. com/papers/123/enablingblockchain-innovations-with-
pegged-sidechains, vol. 72, 2014.

A. Churyumov, “A decentralized system for storage and transfer of
value,” 2016, "https://obyte.org/Byteball.pdf”.

L. Luu, V. Narayanan, C. Zheng, K. Baweja, S. Gilbert, and P. Saxena,
“A Secure Sharding Protocol for Open Blockchains,” in Conference
on Computer and Communications Security (SIGSAC). ACM, 2016,
pp. 17-30.

S. Popov, “The Tangle,” cit. on, p. 131, 2017, https://assets.ctfassets
.net/r1drévzfxhev/2t4uxvsIgkOEUau6g2sw0g/45eae33637ca92f85dd
9f4a3a218elec/iotal_4_3.pdf. Last access: Nov. 21th 2023.

J. Poon and V. Buterin, “Plasma: Scalable Autonomous Smart Con-
tracts,” White paper, pp. 1-47, 2017.

W. Li, A. Sforzin, S. Fedorov, and G. O. Karame, “Towards Scalable
and Private Industrial Blockchains,” in Workshop on Blockchain,
Cryptocurrencies and Contracts (BCC). ACM, 2017, pp. 9-14.

S. Ellis, A. Juels, and S. Nazarov, “Chainlink: A Decentralized
Oracle Network,” Retrieved March, vol. 11, p. 38, 2017, Last access:
Nov. 21th 2023. [Online]. Available: https://research.chain.link/whit
epaper-v1.pdf?_ga=2.22993531.1352052829.1651659724-175618861
4.1651659724

E. Kokoris-Kogias, P. Jovanovic, L. Gasser, N. Gailly, E. Syta, and
B. Ford, “Omniledger: A Secure, Scale-out, Decentralized Ledger via
Sharding,” in Symposium on Security and Privacy (SP). 1EEE, 2018,
pp. 583-598.

M. Zamani, M. Movahedi, and M. Raykova, “Rapidchain: Scaling
blockchain via full sharding,” in Conference on Computer and Com-
munications Security (SIGSAC). ACM, 2018, pp. 931-948.

Z. Team and P. Barrett, “The Zilliga Project: A Secure, Scalable
Blockchain Platform,” Zilliga, pp. 1-18, 2018.

L. Zhao and J. Yu, “Evaluating DAG-based blockchains for IoT,” in
International Conference On Trust, Security And Privacy In Com-
puting And Communications / International Conference On Big Data
Science And Engineering (TrustCom/BigDataSE). 1EEE, 2019, pp.
507-513.

H. Dang, T. T. A. Dinh, D. Loghin, E.-C. Chang, Q. Lin, and
B. C. Ooi, “Towards Scaling Blockchain Systems via Sharding,” in
International Conference on Management of Data (SIGMOD). ACM,
2019, pp. 123-140.

A. Bugday, A. Ozsoy, and H. Sever, “Securing Blockchain Shards by
Using Learning Based Reputation and Verifiable Random Functions,”
in International Symposium on Networks, Computers and Communi-
cations (ISNCC). 1EEE, 2019, pp. 1-4.

J. Wang and H. Wang, “Monoxide: Scale out Blockchains with Asyn-
chronous Consensus Zones,” in Symposium on Networked Systems
Design and Implementation (NSDI). USENIX, 2019, pp. 95-112.
J. Kwon and E. Buchman, “Cosmos Whitepaper,” A Network of
Distributed Ledgers, 2019.

A. Gopalan, A. Sankararaman, A. Walid, and S. Vishwanath, “Stability
and Scalability of Blockchain Systems,” Measurement and Analysis
of Computing Systems (POMACS), vol. 4, no. 2, pp. 1-35, 2020.

S. Popov, H. Moog, D. Camargo, A. Capossele, V. Dimitrov, A. Gal,
A. Greve, B. Kusmierz, S. Mueller, A. Penzkofer et al., “The
coordicide,” 2020, Last access: Nov. 21th 2023. [Online]. Available:
https:/files.iota.org/papers/20200120_Coordicide_ WP.pdf

L. Baird and A. Luykx, “The hashgraph protocol: Efficient asyn-
chronous BFT for high-throughput distributed ledgers,” in Interna-
tional Conference on Omni-layer Intelligent Systems (COINS), 2020,
pp. 1-7.

A. Singh, K. Click, R. M. Parizi, Q. Zhang, A. Dehghantanha, and
K.-K. R. Choo, “Sidechain Technologies in Blockchain Networks: An

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

Examination and State-of-the-Art Review,” Journal of Network and
Computer Applications (JNCA), vol. 149, p. 102471, 2020.

L. Lys, A. Micoulet, and M. Potop-Butucaru, “Atomic cross chain
swaps via relays and adapters,” in Cryptocurrencies and Blockchains
for Distributed Systems (CryBlock). ACM, 2020, pp. 59-64.

1. D. Alvarenga, G. F. Camilo, L. A. De Souza, and O. C. M. Duarte,
“DAGSec: A Hybrid Distributed Ledger Architecture for the Secure
Management of the Internet of Things,” in International Conference
on Blockchain (Blockchain). 1EEE, 2021, pp. 266-271.

Z. Hong, S. Guo, P. Li, and W. Chen, “Pyramid: A Layered Sharding
Blockchain System,” in Internation Conference on Computer Commu-
nications (INFOCOM). 1EEE, 2021, pp. 1-10.

L. Breidenbach et al., “Chainlink 2.0: Next Steps in the Evolution
of Decentralized Oracle Networks,” p. 136, 2021, Last access: Nov.
21th 2023. [Online]. Available: https://research.chain.link/whitepaper
-v2.pdf?_ga=2.69000657.1352052829.1651659724-1756188614.1651
659724

J. Spilman, “[Bitcoin-development] Anti DoS for tx Replacement,”
Available at https://lists.linuxfoundation.org/pipermail/bitcoin-dev/2
013-April/002433.html, 2013.

C. Decker and R. Wattenhofer, “A fast and scalable payment network
with bitcoin duplex micropayment channels,” in Stabilization, Safety,
and Security of Distributed Systems, A. Pelc and A. A. Schwarzmann,
Eds. Cham: Springer International Publishing, 2015, pp. 3-18.

J. Poon and T. Dryja, “The Bitcoin Lightning Network: Scalable Oft-
Chain Instant Payments,” 2016.

P. Prihodko, S. Zhigulin, M. Sahno, A. Ostrovksiy, and O. Osuntokun,
“Flare: An Approach to Routing in Lightning Network,” 2016, Last
access: Nov. 21th 2023.

G. Malavolta, P. Moreno-Sanchez, A. Kate, M. Maffei, and S. Ravi,
“Concurrency and Privacy with Payment-Channel Networks,” in Pro-
ceedings of the 2017 ACM SIGSAC Conference on Computer and
Communications Security, 2017.

A. Miller, I. Bentov, R. Kumaresan, C. Cordi, and P. McCorry, “Sprites
and state channels: Payment networks that go faster than lightning,”
2017.

M. Green and I. Miers, “BOLT: Anonymous Payment Channels for
Decentralized Currencies,” in Proceedings of the 2017 ACM SIGSAC
Conference on Computer and Communications Security, 2017, pp.
473-489.

E. Heilman, L. AlShenibr, F. Baldimtsi, A. Scafuro, and S. Goldberg,
“TumbleBit: An Untrusted Bitcoin-Compatible Anonymous Payment
Hub,” in Network and Distributed System Security Symposium (NDSS),
2017.

“Splicing. [Lightning-dev] Channel top-up,” Available at https:/lists.
linuxfoundation.org/pipermail/lightning-dev/2017-May/000696.html,
2017, Last access: Nov. 21th 2023.

R. Khalil and A. Gervais, “Revive: Rebalancing Off-Blockchain
Payment Networks,” in Conference on Computer and Communications
Security (CCS). New York, NY, USA: ACM, 2017, p. 439-453.
[Online]. Available: https://doi.org/10.1145/3133956.3134033

E. Rohrer, J.-F. LaB, and F. Tschorsch, “Towards a Concurrent and
Distributed Route Selection for Payment Channel Networks,” in Data
Privacy Management, Cryptocurrencies and Blockchain Technology
(ESORICS), ser. Lecture Notes in Computer Science, J. Garcia-Alfaro,
G. Navarro-Arribas, H. Hartenstein, and J. Herrera-Joancomarti, Eds.
Cham: Springer International Publishing, 2017, pp. 411-419.
Trinity, “Trinity White Paper: Universal Off-chain Scaling Solution,”
2018, Last access: Nov. 21th 2023. [Online]. Available: https:
/Iwww.trinity.tech/#/writepaper

D. Piatkivskyi and M. Nowostawski, “Split Payments in Payment
Networks,” in Data Privacy Management, Cryptocurrencies and
Blockchain Technology (ESORICS), ser. Lecture Notes in Computer
Science, J. Garcia-Alfaro, J. Herrera-Joancomarti, G. Livraga, and
R. Rios, Eds. Cham: Springer, 2018, pp. 67-75.

G. Di Stasi, S. Avallone, R. Canonico, and G. Ventre, “Routing
Payments on the Lightning Network,” in International Conference
on Internet of Things (iThings) and Green Computing and Commu-
nications (GreenCom) and Cyber, Physical and Social Computing
(CPSCom) and Smart Data (SmartData). 1EEE, 2018, pp. 1161-
1170.

R. Yu, G. Xue, V. T. Kilari, D. Yang, and J. Tang, “CoinExpress:
A Fast Payment Routing Mechanism in Blockchain-Based Payment

[67]

[68]

[69]

[70]

[71]

[72]

(73]

[74]

(751

[76]

(771

(78]

[791

[80]

[81]

[82]

[83]

Channel Networks,” in International Conference on Computer Com-
munication and Networks (ICCCN). 1EEE, 2018, pp. 1-9, iSSN:
1095-2055.

O. Osuntokun, “[Lightning-dev] AMP: Atomic Multi-Path Payments
over Lightning,” Available at https://lists.linuxfoundation.org/pipe
rmail/lightning-dev/2018-February/000993.html, 2018, Last access:
Nov. 21th 2023.

S. Roos, P. Moreno-Sanchez, A. Kate, and 1. Goldberg, “Settling
Payments Fast and Private: Efficient Decentralized Routing for
Path-Based Transactions,” in Proceedings of the 2018 Network and
Distributed System Security Symposium. Internet Society, 2018,
arXiv: 1709.05748. [Online]. Available: http://arxiv.org/abs/1709.057
48

P. Hoenisch and I. Weber, “AODV-Based Routing for Payment
Channel Networks,” in International Conference on Blockchain and
Cryptocurrency (ICBC), ser. Lecture Notes in Computer Science,
S. Chen, H. Wang, and L.-J. Zhang, Eds. = Cham: Springer, 2018,
pp. 107-124.

E. Bergamini, P. Crescenzi, G. D’angelo, H. Meyerhenke, L. Severini,
and Y. Velaj, “Improving the betweenness centrality of a node by
adding links,” Journal of Experimental Algorithmics (JEA), vol. 23,
2018. [Online]. Available: https://doi.org/10.1145/3166071

G. Malavolta, P. Moreno-Sanchez, C. Schneidewind, A. Kate, and
M. Maftfei, “Anonymous Multi-Hop Locks for Blockchain Scalability
and Interoperability,” Cryptology ePrint Archive, Report 2018/472,
2018, https://ia.cr/2018/472.

S. Werman and A. Zohar, “Avoiding Deadlocks in Payment Chan-
nel Networks,” in Data Privacy Management, Cryptocurrencies and
Blockchain Technology (ESORICS), ser. Lecture Notes in Computer
Science, J. Garcia-Alfaro, J. Herrera-Joancomarti, G. Livraga, and
R. Rios, Eds. Cham: Springer, 2018, pp. 175-187.

H. Kalodner, S. Goldfeder, X. Chen, S. M. Weinberg, and E. W.
Felten, “Arbitrum: Scalable, private smart contracts,” in Security
Symposium. Baltimore, MD: USENIX, 2018, pp. 1353-1370.
[Online]. Available: https://www.usenix.org/conference/usenixsecuri
ty 18/presentation/kalodner

A. Teixeira and D. Nehab, “The core of cartesi,” Whitepaper, Cartesi,
2018.

E. Ben-Sasson, I. Bentov, Y. Horesh, and M. Riabzev, “Scalable,
transparent, and post-quantum secure computational integrity,”
Cryptology ePrint Archive, Paper 2018/046, 2018, https://eprint.iacr.
org/2018/046. [Online]. Available: https://eprint.iacr.org/2018/046

P. McCorry, S. Bakshi, I. Bentov, S. Meiklejohn, and A. Miller,
“Pisa: Arbitration Outsourcing for State Channels,” in Conference on
Advances in Financial Technologies (AFT). ACM, 2019, pp. 16-30.
J. Lind, O. Naor, I. Eyal, F. Kelbert, E. G. Sirer, and
P. Pietzuch, “Teechain: A Secure Payment Network with
Asynchronous Blockchain Access,” in Symposium on Operating
Systems Principles (SOSP). ACM, 2019, p. 63-79. [Online].
Available: https://doi.org/10.1145/3341301.3359627

C. Hannon and D. Jin, “Bitcoin Payment-Channels for Resource
Limited IoT Devices,” in International Conference on Omni-Layer
Intelligent Systems (COINS). New York, NY, USA: ACM, 2019, pp.
50-57. [Online]. Available: https://doi.org/10.1145/3312614.3312629
E. Rohrer, J. Malliaris, and F. Tschorsch, “Discharged payment
channels: Quantifying the lightning network’s resilience to topology-
based attacks,” in European Symposium on Security and Privacy
Workshops (EuroS PW). 1EEE, 2019, pp. 347-356.

P. Wang, H. Xu, X. Jin, and T. Wang, “Flash: Efficient Dynamic
Routing for Off-chain Networks,” in International Conference on
Emerging Networking Experiments And Technologies (CoNEXT).
Orlando Florida: ACM, 2019, pp. 370-381. [Online]. Available:
https://dl.acm.org/doi/10.1145/3359989.3365411

Y. Zhang, D. Yang, and G. Xue, “CheaPay: An Optimal Algorithm for
Fee Minimization in Blockchain-Based Payment Channel Networks,”
in International Conference on Communications (ICC). 1EEE, 2019,
pp. 1-6, iSSN: 1938-1883.

M. Conoscenti, A. Vetro, and J. C. De Martin, “Hubs, rebalancing
and service providers in the lightning network,” Access, vol. 7, pp.
132 828-132 840, 2019.

R. Pickhardt, “lightning-network-autopilot,” Available at https://gith
ub.com/renepickhardt/lightning-network-autopilot, 2019, Last access:
Nov. 21th 2023.

[84]

[85]

[86]

[87]

[88]

[89]

[90]

[91]

[92]

[93]

[94]

[95]

[96]

[97]

[98]

[99]

[100]

[101]

[102]

S. Tochner, S. Schmid, and A. Zohar, “Hijacking Routes in Pay-
ment Channel Networks: A Predictability Tradeoff,” arXiv preprint
arXiv:1909.06890, 2019.

D. Robinson, “HTLCs Considered Harmful,” in Stanford Blockchain
Conference (SBC), 2019, available at: https://www.youtube.com/watc
h?v=qUAyW4pdooA&ab_channel=Cyberlnitiative. Last access: Nov.
21th 2023.

J. Herrera-Joancomarti, G. Navarro-Arribas, A. Ranchal-Pedrosa,
C. Pérez-Sola, and J. Garcia-Alfaro, “On the Difficulty of Hiding
the Balance of Lightning Network Channels,” in Asia Conference on
Computer and Communications Security. ACM, 2019, pp. 602-612.
I. A. Seres, L. Gulyds, D. A. Nagy, and P. Burcsi, “Topological
analysis of bitcoin’s lightning network,” in Mathematical Research
for Blockchain Economy. Springer, 2020, pp. 1-12.

J.-H. Lin, K. Primicerio, T. Squartini, C. Decker, and C. J. Tessone,
“Lightning network: a second path towards centralisation of the bitcoin
economy,” New Journal of Physics, vol. 22, no. 8, p. 083022, 2020.
brainbot labs Est., “The Raiden Network: Fast, cheap, scalable token
transfers for Ethereum,” 2020, available at: https://raiden.network/.
Last access: Nov. 21th 2023. [Online]. Available: https://raiden.net
work/

V. Sivaraman, S. B. Venkatakrishnan, K. Ruan, P. Negi, L. Yang,
R. Mittal, G. Fanti, and M. Alizadeh, “High Throughput
Cryptocurrency Routing in Payment Channel Networks,” in
Symposium on Networked Systems Design and Implementation
(NSDI). USENIX, 2020, pp. 777-796. [Online]. Available:
https://www.usenix.org/conference/nsdi20/presentation/sivaraman

F. Beres, I. A. Seres, and A. A. Benczur, “A Cryptoeconomic
Traffic Analysis of Bitcoin’s Lightning Network,” arXiv, Tech.
Rep. arXiv:1911.09432, 2020, arXiv:1911.09432 [cs] type: article.
[Online]. Available: http://arxiv.org/abs/1911.09432

J. Robert, S. Kubler, and S. Ghatpande, “Enhanced Lightning
Network (off-chain)-based micropayment in IoT ecosystems,” Future
Generation Computer Systems (FGCS), vol. 112, pp. 283-296, 2020.
[Online]. Available: https://www.sciencedirect.com/science/article/pii/
S0167739X19322654

S. Mercan, E. Erdin, and K. Akkaya, “Improving Transaction Suc-
cess Rate via Smart Gateway Selection in Cryptocurrency Payment
Channel Networks,” in International Conference on Blockchain and
Cryptocurrency (ICBC). 1EEE, 2020, pp. 1-3.

R. Pickhardt and M. Nowostawski, “Imbalance measure and proactive
channel rebalancing algorithm for the lightning network,” in Interna-
tional Conference on Blockchain and Cryptocurrency (ICBC). IEEE,
2020, pp. 1-5.

S. Mazumdar, S. Ruj, R. G. Singh, and A. Pal, “HushRelay: A
Privacy-Preserving, Efficient, and Scalable Routing Algorithm for Off-
Chain Payments,” in International Conference on Blockchain and
Cryptocurrency (ICBC). 1EEE, 2020, pp. 1-5.

C. Lin, N. Ma, X. Wang, and J. Chen, “Rapido: Scaling blockchain
with multi-path payment channels,” Neurocomputing, vol. 406, pp.
322-332, 2020.

C. Grunspan, G. Lehéricy, and R. Pérez-Marco, “Ant Routing
Scalability for the Lightning Network,” 2020, arXiv:2002.01374 [cs].
[Online]. Available: http://arxiv.org/abs/2002.01374

P. Li, T. Miyazaki, and W. Zhou, “Secure Balance Planning of Off-
Blockchain Payment Channel Networks,” in International Conference
on Computer Communications (INFOCOM). 1EEE, 2020, pp. 1728—
1737.

Z. Avarikioti, L. Heimbach, Y. Wang, and R. Wattenhofer, “Ride the
lightning: The game theory of payment channels,” in International
Conference on Financial Cryptography and Data Security (FC).
Springer, 2020, pp. 264-283.

O. Ersoy, S. Roos, and Z. Erkin, “How to profit from payments
channels,” in International Conference on Financial Cryptography and
Data Security (FC). Springer, 2020, pp. 284-303.

B. Teinturier, “Route Blinding,” 2022, Last access: Nov. 21th 2023.
[Online]. Available: https://github.com/lightning/bolts/pull/765

E. Rohrer and F. Tschorsch, “Counting Down Thunder: Timing
Attacks on Privacy in Payment Channel Networks,” in Conference
on Advances in Financial Technologies (AFT). New York, NY,
USA: ACM, 2020, pp. 214-227. [Online]. Available: https:
//doi.org/10.1145/3419614.3423262

[103]

[104]

[105]

[106]

[107]

[108]

[109]

[110]

[111]

[112]

[113]

[114]

[115]

[116]

[117]

[118]

[119]

[120]

[121]

[122]

W. Tang, W. Wang, G. Fanti, and S. Oh, “Privacy-Utility Tradeoffs
in Routing Cryptocurrency over Payment Channel Networks,”
Measurement and Analysis of Computing Systems, vol. 4, no. 2,
2020. [Online]. Available: https://doi.org/10.1145/3392147

J. Harris and A. Zohar, “Flood & Loot: A Systemic Attack on the
Lightning Network,” in Proceedings of the 2nd ACM Conference on
Advances in Financial Technologies (AFT), 2020, pp. 202-213.

S. Tochner, A. Zohar, and S. Schmid, “Route Hijacking and DoS in
Off-chain Networks,” in Proceedings of the 2nd ACM Conference on
Advances in Financial Technologies (AFC), 2020, pp. 228-240.

V. Bagaria, J. Neu, and D. Tse, “Boomerang: Redundancy improves
latency and throughput in payment-channel networks,” in International
Conference on Financial Cryptography and Data Security (FC).
Springer, 2020, pp. 304-324.

G. v. Dam, R. A. Kadir, P. N. Nohuddin, and H. B. Zaman, “Im-
provements of the Balance Discovery Attack on Lightning Network
Payment Channels,” in International Conference on ICT Systems
Security and Privacy Protection (IFIP SEC). Springer, 2020, pp.
313-323.

S. Tikhomirov, R. Pickhardt, A. Biryukov, and M. Nowostawski,
“Probing channel balances in the lightning network,” arXiv preprint
arXiv:2004.00333, 2020.

N. Papadis and L. Tassiulas, “Blockchain-Based Payment Channel
Networks: Challenges and Recent Advances,” Access, vol. 8, pp.
227596227 609, 2020.

A. Kosba, D. Papadopoulos, C. Papamanthou, and D. Song, “MI-
RAGE: Succinct arguments for randomized algorithms with applica-
tions to universal zk-SNARKS,” in Conference on Security Symposium
(SEC). USA: USENIX, 2020.

M. Conoscenti, A. Vetrd, and J. C. De Martin, “CLoTH: A Lightning
Network Simulator,” SoftwareX, vol. 15, p. 100717, 2021. [Online].
Available: https://www.sciencedirect.com/science/article/pii/S23527
11021000613

G. Kappos, H. Yousaf, A. Piotrowska, S. Kanjalkar, S. Delgado-
Segura, A. Miller, and S. Meiklejohn, “An Empirical Analysis of Pri-
vacy in the Lightning Network,” in Financial Cryptography and Data
Security (FC), ser. Lecture Notes in Computer Science, N. Borisov
and C. Diaz, Eds. Berlin, Heidelberg: Springer, 2021, pp. 167-186.
A. Kurt, S. Mercan, O. Shlomovits, E. Erdin, and K. Akkaya,
“LNGate: Powering IoT with Next Generation Lightning Micro-
Payments using Threshold Cryptography,” in Conference on Security
and Privacy in Wireless and Mobile Networks (WiSec). New
York, NY, USA: ACM, 2021, pp. 117-128. [Online]. Available:
https://doi.org/10.1145/3448300.3467833

ION Lightning Network Wiki, “Watchtowers,” 2021, available
at: https://wiki.ion.radar.tech/tech/research/watchtowers. Last access:
Nov. 21th 2023.

N. Awathare, Suraj, Akash, V. J. Ribeiro, and U. Bellur, “Rebal:
Channel balancing for payment channel networks,” in International
Symposium on Modeling, Analysis, and Simulation of Computer and
Telecommunication Systems (MASCOTS). 1EEE, 2021, pp. 1-8.

R. Pickhardt and S. Richter, “Optimally Reliable & Cheap Payment
Flows on the Lightning Network,” arXiv:2107.05322 [cs], 2021,
arXiv: 2107.05322. [Online]. Available: http://arxiv.org/abs/2107.053
22

K. Lange, E. Rohrer, and F. Tschorsch, “On the impact of at-
tachment strategies for payment channel networks,” arXiv preprint
arXiv:2102.09256, 2021.

G. Avarikioti, R. Scheuner, and R. Wattenhofer, “Payment networks
as creation games,” 2019. [Online]. Available: https://arxiv.org/abs/
1908.00436

E. Erdin, S. Mercan, and K. Akkaya, “An Evaluation of
Cryptocurrency Payment Channel Networks and Their Privacy
Implications,” 2021, arXiv:2102.02659 [cs]. [Online]. Available:
http://arxiv.org/abs/2102.02659

A. Mizrahi and A. Zohar, “Congestion Attacks in Payment Channel
Networks,” in International Conference on Financial Cryptography
and Data Security (FC). Springer, 2021, pp. 170-188.

S. Rahimpour and M. Khabbazian, “Spear: Fast multi-path payment
with redundancy,” in Conference on Advances in Financial Technolo-
gies (AFT). ACM, 2021, pp. 183-191.

S. Geissler, F. Wamser, W. Bauer, M. Krolikowski, S. Gebert, and
T. HoBfeld, “Signaling Traffic in Internet-of-Things Mobile Net-

[123]

[124]

[125]

[126]

[127]

[128]

[129]

[130]

[131]

[132]

[133]

[134]

[135]

[136]

[137]

[138]

[139]

[140]

[141]

[142]

[143]

works,” in International Symposium on Integrated Network Manage-
ment (IM). TFIP/IEEE, 2021, pp. 452-458, iSSN: 1573-0077.

G. A. F Rebello, G. F. Camilo, M. Potop-Butucaru, M. E. M.
Campista, M. D. de Amorim, and L. H. M. K. Costa, “PCNsim: A
Flexible and Modular Simulator for Payment Channel Networks,” in
International Conference on Computer Communications Workshops
(INFOCOM WKSHPS). IEEE, 2022, pp. 1-2.

N. Papadis and L. Tassiulas, “Payment Channel Networks: Single-Hop
Scheduling for Throughput Maximization,” in International Confer-
ence on Computer Communications (INFOCOM). 1EEE, 2022, pp.
900-909, iSSN: 2641-9874.

A. Kurt, K. Akkaya, S. Yilmaz, S. Mercan, O. Shlomovits, and
E. Erdin, “LNGate?: Secure Bidirectional IoT Micro-payments using
Bitcoin’s Lightning Network and Threshold Cryptography,” 2022,
arXiv:2206.02248 [cs]. [Online]. Available: http://arxiv.org/abs/2206
.02248

Bitcoin Design, “Lightning Services,” Available at https://bitcoin.de
sign/guide/how-it-works/lightning-services, 2022, Last access: Nov.
21th 2023.

G. A. F. Rebello, M. Potop-Butucaru, M. D. de Amorim, and O. C.
M. B. Duarte, “Securing Wireless Payment-Channel Networks With
Minimum Lock Time Windows,” in International Conference on
Communications (ICC). 1EEE, 2022, pp. 2297-2302, iSSN: 1938-
1883.

Z. Avarikioti, K. Pietrzak, I. Salem, S. Schmid, S. Tiwari, and
M. Yeo, “HIDE & SEEK: Privacy-Preserving Rebalancing on
Payment Channel Networks,” Cryptology ePrint Archive, Paper
2021/1401, 2021, https://eprint.iacr.org/2021/1401. [Online].
Available: https://eprint.iacr.org/2021/1401

L. Labs, “Lightning Loop,” 2022, Last access: Nov. 21th 2023.

Z. Ge, Y. Zhang, Y. Long, and D. Gu, “Shaduf: Non-cycle Payment
Channel Rebalancing,” in Network and Distributed Systems Security
Symposium (NDSS). The Internet Society, 2022, pp. 1-18.

G. F. Camilo, G. A. F. Rebello, L. A. Souza, M. Potop-Butucaru, M. D.
Amorim, M. E. M. Campista, and L. H. M. K. Costa, “Topological
evolution analysis of payment channels in the lightning network,”
in Latin-American Conference on Communications (LATINCOM).
IEEE, 2022.

C. Shikhelman and S. Tikhomirov, “Unjamming Lightning: A Sys-
tematic Approach,” Cryptology ePrint Archive, 2022.

Z. Hong, S. Guo, R. Zhang, P. Li, Y. Zhan, and W. Chen, “Cycle:
Sustainable Off-Chain Payment Channel Network with Asynchronous
Rebalancing,” in International Conference on Dependable Systems
and Networks (DSN). 1EEE/IFIP, 2022, pp. 41-53.

X. Wang, H. Gu, Z. Li, F. Zhou, R. Yu, and D. Yang, “Why Riding
the Lightning? Equilibrium Analysis for Payment Hub Pricing,” in
International Conference on Communications (ICC). 1EEE, 2022,
pp. 5409-5414.

“Ind-autopilot,” Available at https://github.com/lightningnetwork/Ind/
tree/master/autopilot, 2022, Last access: Nov. 21th 2023.

A. Biryukov, G. Naumenko, and S. Tikhomirov, “Analysis and probing
of parallel channels in the lightning network,” in Financial Cryptog-
raphy and Data Security (FC). Springer, 2022, pp. 337-357.

L. T. Thibault, T. Sarry, and A. S. Hafid, “Blockchain scaling using
rollups: A comprehensive survey,” Access, vol. 10, pp. 93 039-93 054,
2022.

“zkSync Basics,” Available at https://v2-docs.zksync.io/dev/fundam
entals/zkSync.html, 2022, Last access: Nov. 21th 2023.

A. Gabizon, Z. J. Williamson, and O. Ciobotaru, “PLONK:
Permutations over Lagrange-bases for oecumenical noninteractive
arguments of knowledge,” Cryptology ePrint Archive, Paper 2019/953,
2019, https://eprint.iacr.org/2019/953. [Online]. Available: https:
/leprint.iacr.org/2019/953

“Protocol specs.” [Online]. Available: https://community.optimism.io/
docs/protocol/

“protocols/packages/loopring_v3/DESIGN.md at master
Loopring/protocols.” [Online]. Available: https://github.com/Loo
pring/protocols/blob/master/packages/loopring_v3/DESIGN.md

IML, “Lightning Network Explorer,” Available at https://1ml.com,
2022, Last access: Nov. 21th 2023.

M. Jourenko, K. Kurazami, M. Larangeira, and K. Tanaka,
“SoK: A Taxonomy for Layer-2 Scalability Related Protocols for

[144]

[145]

[146]

[147]

[148]

[149]

[150]

[151]

[152]

[153]

[154]

[155]
[156]

[157]

[158]

[159]

[160]

[161]

[162]

[163]

[164]

Cryptocurrencies,” 2019, report Number: 352. [Online]. Available:
https://eprint.iacr.org/2019/352

L. Gudgeon, P. Moreno-Sanchez, S. Roos, P. McCorry, and A. Gervais,
“Sok: Off the chain transactions,” JACR Cryptol. ePrint Arch., p. 360,
2019.

A. Hafid, A. S. Hafid, and M. Samih, “Scaling Blockchains: A
Comprehensive Survey,” Access, vol. 8, pp. 125244-125262, 2020.
H. Khojasteh and H. Tabatabaei, “A Survey and Taxonomy of
Blockchain-based Payment Channel Networks,” in High Performance
Extreme Computing Conference (HPEC). IEEE, 2021, pp. 1-8, iSSN:
2643-1971.

C. Sguanci, R. Spatafora, and A. M. Vergani, “Layer 2 Blockchain
Scaling: a Survey,” 2021, arXiv:2107.10881 [cs]. [Online]. Available:
http://arxiv.org/abs/2107.10881

Z. Zhao, L. Zhou, and C. Su, “Systematic Research on Technology
and Challenges of Lightning Network,” in Conference on Dependable
and Secure Computing (DSC). 1EEE, 2021, pp. 1-8.

A. Gangwal, H. R. Gangavalli, and A. Thirupathi, “A survey of
layer-two blockchain protocols,” Journal of Network and Computer
Applications, vol. 209, p. 103539, 2023. [Online]. Available: https:
/Iwww.sciencedirect.com/science/article/pii/S1084804522001801
G.-T. Nguyen and K. Kim, “A Survey about Consensus Algorithms
Used in Blockchain,” Journal of Information Processing Systems
(JIPS), vol. 14, no. 1, pp. 101-128, 2018, publisher: Korea
Information Processing Society. [Online]. Available: https://koreasci
ence.kr/article/JAKO201810256452304.page

S. Kim, Y. Kwon, and S. Cho, “A Survey of Scalability Solutions
on Blockchain,” in International Conference on Information and
Communication Technology Convergence (ICTC). 1EEE, 2018, pp.
1204-1207.

J. Xie, F. R. Yu, T. Huang, R. Xie, J. Liu, and Y. Liu, “A Survey on
the Scalability of Blockchain Systems,” Network, vol. 33, no. 5, pp.
166-173, 2019.

Y. Xiao, N. Zhang, W. Lou, and Y. T. Hou, “A Survey of Distributed
Consensus Protocols for Blockchain Networks,” Communications Sur-
veys & Tutorials, vol. 22, no. 2, pp. 1432-1465, 2020.

D. Yang, C. Long, H. Xu, and S. Peng, “A Review on Scalability of
Blockchain,” in International Conference on Blockchain Technology
(ICBCT). ACM, 2020, pp. 1-6.

G. Yu, X. Wang, K. Yu, W. Ni, J. A. Zhang, and R. P. Liu, “Survey:
Sharding in Blockchains,” Access, vol. 8, pp. 14 155-14 181, 2020.
Q. Zhou, H. Huang, Z. Zheng, and J. Bian, “Solutions to Scalability
of Blockchain: A Survey,” Access, vol. 8, pp. 16440-16455, 2020.
D. Khan, L. T. Jung, and M. A. Hashmani, “Systematic
Literature Review of Challenges in Blockchain Scalability,” Applied
Sciences, vol. 11, no. 20, p. 9372, 2021. [Online]. Available:
https://www.mdpi.com/2076-3417/11/20/9372

A. 1. Sanka and R. C. C. Cheung, “A systematic review of blockchain
scalability: Issues, solutions, analysis and future research,” Journal
of Network and Computer Applications (JNCA), vol. 195, p. 103232,
2021. [Online]. Available: https://www.sciencedirect.com/science/arti
cle/pii/S1084804521002307

M. H. Nasir, J. Arshad, M. M. Khan, M. Fatima, K. Salah, and
R. Jayaraman, “Scalable blockchains — A systematic review,” Future
Generation Computer Systems (FGCS), vol. 126, pp. 136-162, 2022.
[Online]. Available: https://www.sciencedirect.com/science/article/pii/
S0167739X21002971

Vitalik Buterin, “An Incomplete Guide to Rollups,” Available at https:
//vitalik.ca/general/2021/01/05/rollup.html, 2021, Last access: Nov.
21th 2023.

G. A. F. Rebello, G. F. Camilo, L. C. Guimaraes, L. A. C. de Souza,
G. A. Thomaz, and O. C. Duarte, “A security and performance analysis
of proof-based consensus protocols,” Annals of Telecommunications,
pp. 1-21, 2021.

J. Chen and S. Micali, “Algorand: A Secure and Efficient Distributed
Ledger,” Theoretical Computer Science, vol. 777, pp. 155-183, 2019.
I Eyal, A. E. Gencer, E. G. Sirer, and R. Van Renesse, “{Bitcoin-
NG}: A scalable blockchain protocol,” in Symposium on Networked
Systems Design and Implementation (NSDI). USENIX, 2016, pp.
45-59.

M. Castro and B. Liskov, “Practical byzantine fault tolerance,” in
Symposium on Operating Systems Design and Implementation (OSDI).
Berkeley, CA, USA: USENIX, 1999, pp. 173-186.

[165]

[166]

[167]

[168]

[169]

[170]

[171]

[172]

[173]

[174]

[175]

[176]

[177]

[178]

[179]

[180]

[181]

[182]

[183]

[184]

[185]

[186]

[187]

ference on Networked Systems.

M. Yin, D. Malkhi, M. K. Reiter, G. G. Gueta, and I. Abraham, “Hot-
stuff: Bft consensus with linearity and responsiveness,” in Symposium
on Principles of Distributed Computing. ACM, 2019, pp. 347-356.
S. D. Angelis, L. Aniello, R. Baldoni, F. Lombardi, A. Margheri, and
V. Sassone, “Pbft vs proof-of-authority: applying the cap theorem to
permissioned blockchain,” in Italian Conference on Cyber Security,
2018. [Online]. Available: https://eprints.soton.ac.uk/415083/

A. Miller, Y. Xia, K. Croman, E. Shi, and D. Song, “The honey badger
of bft protocols.” in Conference on Computer and Communications
Security (CCS). ACM, 2016, pp. 31-42.

B. Guo, Z. Lu, Q. Tang, J. Xu, and Z. Zhang, “Dumbo: Faster
asynchronous bft protocols,” in Conference on Computer and Com-
munications Security (CCS). ACM, 2020, pp. 803-818.

B. Guo, Y. Lu, Z. Lu, Q. Tang, J. Xu, and Z. Zhang, “Speeding
dumbo: Pushing asynchronous bft closer to practice,” Cryptology
ePrint Archive, 2022.

Y. Gao, Y. Lu, Z. Lu, Q. Tang, J. Xu, and Z. Zhang, “Dumbo-ng:
Fast asynchronous bft consensus with throughput-oblivious latency,”
in Conference on Computer and Communications Security (CCS).
ACM, 2022, pp. 1187-1201.

E. Androulaki er al., “Hyperledger Fabric: a distributed operating
system for permissioned blockchains,” in /3th EuroSys Conference,
2018, p. 30.

L. Chen, L. Xu, N. Shah, Z. Gao, Y. Lu, and W. Shi, “On security
analysis of proof-of-elapsed-time (poet),” in International Symposium
on Stabilization, Safety, and Security of Distributed Systems (SSS).
Springer, 2017, pp. 282-297.

D. Schwartz, N. Youngs, and A. Britto, “The ripple proto-
col consensus algorithm,” Ripple Labs Inc White Paper, 2014,
https://ripple.com/files/ripple_consensus_whitepaper.pdf.

D. Larimer, “EOS.IO White Paper,” 2017, available at
https://developers.eos.io/-welcome/latest/protocol/consensus_protocol.
Last access: Nov. 21th 2023.

Y. Amoussou-Guenou, A. Del Pozzo, M. Potop-Butucaru, and
S. Tucci-Piergiovanni, “Dissecting tendermint,” in International Con-
Springer, 2019, pp. 166-182.

E. Buchman, “Tendermint: Byzantine Fault Tolerance in the Age of
Blockchains,” Ph.D. dissertation, University of Guelph, 2016.

F. Yang, W. Zhou, Q. Wu, R. Long, N. N. Xiong, and M. Zhou,
“Delegated Proof of Stake with Downgrade: A Secure and Efficient
Blockchain Consensus Algorithm with Downgrade Mechanism,” Ac-
cess, vol. 7, pp. 118541-118 555, 2019.

G. Wang, Z. J. Shi, M. Nixon, and S. Han, “SoK: Sharding on
Blockchain,” in Conference on Advances in Financial Technologies
(AFT). ACM, 2019, pp. 41-61.

Blockchain.com, “Blockchain Size,” 2022, Last access: Nov. 21th
2023. [Online]. Available: https://www.blockchain.com/explorer/char
ts/avg-block-size

Visa, “Visa Acceptance for Retailers,” Available at https://usa.visa.c
om/run-your-business/small-business-tools/retail.html, 2022, Last
access: Nov. 21th 2023.

LetsExchange, “What Is Block Confirmation on Ethereum and How
Many Confirmations Are Required?” Available at https://letsexchange
.io/blog/what-is-block-confirmation-on-ethereum-and-how-many-\
\confirmations-are-required/, 2021, Last access: Nov. 21th 2023.

C. Decker and R. Wattenhofer, “Bitcoin Transaction Malleability and
MtGox,” in European Symposium on Research in Computer Security
(ESORICS). Springer, 2014, pp. 313-326.

P. Wuille, J. Nick, and A. Towns, “Taproot: SegWit Version 1
Spending Rules,” Available at https://github.com/bitcoin/bips/blob
/master/bip-0341.mediawiki, 2020, Last access: Nov. 21th 2023.
——, “Validation of Taproot Scripts,” Available at https://github.com
/bitcoin/bips/blob/master/bip-0342.mediawiki, 2020, Last access:
Nov. 21th 2023.

C. P. Schnorr, “Method for identifying subscribers and for generating
and veritying electronic signatures in a data exchange system,” 1991,
uS Patent 4,995,082.

J. Lau, “Merkelized Abstract Syntax Tree,” 2016, Last access: Nov.
21th 2023. [Online]. Available: https://github.com/bitcoin/bips/blob
/master/bip-0114.mediawiki

Cardano, “CARDANO: Making the World Work Better for All,”
Available at https://cardano.org/, 2022, Last access: Nov. 21th 2023.

[188]

[189]

[190]

[191]
[192]

[193]

[194]

[195]

[196]

[197]

[198]

[199]

[200]

[201]

[202]

[203]
[204]
[205]

[206]

[207]

[208]

[209]

[210]

[211]

B. Cash, “Bitcoin cash,” 2023, Last access: Nov. 21th 2023. [Online].
Available: https://bitcoincash.org/

K. Peters, “A history of bitcoin hard forks,” 2023, Last access: Nov.
21th 2023. [Online]. Available: https://www.investopedia.com/tech/hi
story- bitcoin-hard-forks/

I. Eyal and E. G. Sirer, “Majority is not enough: Bitcoin mining
is vulnerable,” Communications, vol. 61, no. 7, p. 95-102, 2018.
[Online]. Available: https://doi.org/10.1145/3212998

J. Xu, C. Wang, and X. Jia, “A survey of blockchain consensus
protocols,” Computing Surveys, 2023.

Q. Wang, J. Yu, S. Chen, and Y. Xiang, “SoK: Diving into DAG-based
blockchain systems,” 2020, https://arxiv.org/abs/2012.06128v2.

M. Conti, G. Kumar, P. Nerurkar, R. Saha, and L. Vigneri, “A survey
on security challenges and solutions in the iota,” Journal of Network
and Computer Applications (JNCA), p. 103383, 2022.

T. Rocket, M. Yin, K. Sekniqgi, R. van Renesse, and E. G. Sirer,
“Scalable and probabilistic leaderless BFT consensus through metasta-
bility,” arXiv preprint arXiv:1906.08936, 2019.

I. Amores-Sesar, C. Cachin, and E. Tedeschi, “When Is Spring Com-
ing? A Security Analysis of Avalanche Consensus,” in International
Conference on Principles of Distributed Systems (OPODIS). Schloss
Dagstuhl-Leibniz-Zentrum fiir Informatik, 2023.

J. C. Corbett et al, “Spanner: Google’s Globally Distributed
Database,” Transactions on Computer Systems, vol. 31, no. 3, 2013.
[Online]. Available: https://doi.org/10.1145/2491245

H. Huang, X. Peng, J. Zhan, S. Zhang, Y. Lin, Z. Zheng, and
S. Guo, “BrokerChain: A Cross-Shard Blockchain Protocol for
Account/Balance-based State Sharding,” in Internation Conference on
Computer Communications (INFOCOM). 1EEE, 2022.

E. Syta, P. Jovanovic, E. K. Kogias, N. Gailly, L. Gasser, 1. Khoffi,
M. J. Fischer, and B. Ford, “Scalable Bias-Resistant Distributed
Randomness,” in Symposium on Security and Privacy (SP). IEEE,
2017, pp. 444-460.

L. Lamport, R. Shostak, and M. Pease, “The Byzantine Generals
Problem,” Transactions on Programming Languages and System,
1982.

F. Vogelsteller and V. Buterin, “Eip-20: Token standard,” 2015, Last
access: Nov. 21th 2023. [Online]. Available: https://ethereum.org/en/
developers/docs/standards/tokens/erc-20/

M. Hearn, “[ANNOUNCE] Micro-payment channels implementation
now in bitcoinj,” Bitcoin Forum. Available at https://bitcointalk.org/
index.php?topic=244656.0, 2013.

S. Dziembowski, S. Faust, and K. Hostdkovd, “General state
channel networks,” in Conference on Computer and Communications
Security (CCS). ACM, 2018, p. 949-966. [Online]. Available:
https://doi.org/10.1145/3243734.3243856

Bitcoinj.org, “bitcoinj,” Available at https://bitcoinj.org/., 2022.
BitcoinWiki, “Script - Bitcoin Wiki,” Available at https://en.bitcoin.i
t/wiki/Script, 2021.

Bitcoin Wiki, “Hash Time Locked Contracts,” Available at https://en
.bitcoin.it/wiki/Hash_Time_Locked_Contracts, 2021, Last access:
Nov. 21th 2023.

Lightning Network Developers, “Lightning App Directory,” Available
at https://dev.lightning.community/lapps/, 2022.

CloudTweaks, “How Bitcoin Brought The Lightning Network To El
Salvador,” https://cloudtweaks.com/2021/07/how-bitcoin-brought-lig
htning-network-el-salvador/, 2021, Last access: Nov. 21th 2023.

R. Dingledine, N. Mathewson, and P. Syverson, “Tor: The
Second-Generation onion router,” in Security Symposium (Security).
USENIX, 2004. [Online]. Available: https://www.usenix.org/confere
nce/13th-usenix-security-symposium/tor-second- generation-onion-r
outer

A. Towns et al., “BOLT #0: Introduction and index,” https://github.c
om/lightning/bolts/blob/master/00-introduction.md, 2022, Last access:
Nov. 21th 2023.

R. Russell et al., “BOLT #3: Bitcoin transaction and script formats,”
https://github.com/lightning/bolts/blob/master/03-transactions.md#fee
s, 2022, Last access: Nov. 21th 2023.

P. Zabka, K.-T. Forster, S. Schmid, and C. Decker, “Node classification
and geographical analysis of the lightning cryptocurrency network,” in
International Conference on Distributed Computing and Networking
(ICDCN). New York, NY, USA: ACM, 2021, p. 126-135. [Online].
Available: https://doi.org/10.1145/3427796.3427837

[212]

[213]

[214]

[215]
[216]

[217]

[218]

[219]

[220]

[221]

[222]

[223]

[224]

[225]

[226]

[227]

[228]

[229]

[230]

R. Russell et al., “BOLT #2: Peer protocol for channel management,”
https://github.com/lightningnetwork/lightning-rfc/blob/master/02-pee
r-protocol.md, 2022, Last access: Nov. 21th 2023.

IntoTheBlock, “Raiden Network Statistics,” 2022, Last access: Nov.
21th 2023. [Online]. Available: https://app.intotheblock.com/coin/RD
N/deep-dive?group=network&chart=all

Messari, “Raiden Network Market Data,” 2022, Last access: Nov.
21th 2023. [Online]. Available: https://messari.io/asset/raiden-netwo
rk/metrics/all

brainbot labs Est., “Raiden explorer,” 2022, Last access: Nov. 21th
2023. [Online]. Available: https://explorer.raiden.network/tokens
Trinity, “Trinity Project,” 2018, Last access: Nov. 21th 2023.
[Online]. Available: https://github.com/trinity-project/trinity

V. Sivaraman, S. B. Venkatakrishnan, M. Alizadeh, G. Fanti, and
P. Viswanath, “Routing Cryptocurrency with the Spider Network,” in
Proceedings of the ACM Workshop on Hot Topics in Networks, 2018,
pp. 29-35.

G. Malavolta, P. Moreno-Sanchez, A. Kate, and M. Maffei,
“SilentWhispers: Enforcing Security and Privacy in Decentralized
Credit Networks,” in Network and Distributed System Security
Symposium (NDSS). San Diego, CA: Internet Society, 2017.
[Online]. Available: https://www.ndss-symposium.org/ndss2017/ndss
-2017-programme/silentwhispers-enforcing-security-and-privacy-dec
entralized-credit-networks/

J. Edmonds and K. RM Richard, “Theoretical Improvements in
Algorithmic Efficiency for Network Flow Problems,” Journal of the
ACM (JACM), vol. 19, no. 2, pp. 248-264, 1972.

F. Armknecht, G. O. Karame, A. Mandal, F. Youssef, and E. Zenner,
“Ripple: Overview and outlook,” in Trust and Trustworthy Computing,
M. Conti, M. Schunter, and I. Askoxylakis, Eds. Cham: Springer,
2015, pp. 163-180.

R. Pickhardt, “[Lightning-dev] Code for sub second runtime of piece-
wise linarization to quickly approximate the minimum convex cost
flow problem,” Available at https://lists.linuxfoundation.org/piperm
ail/lightning-dev/2022-March/003510.html, 2022, Last access: Nov.
21th 2023.

L. R. Ford and D. R. Fulkerson, “Maximal Flow Through a
Network,” Canadian Journal of Mathematics, vol. 8, pp. 399-404,
1956, publisher: Cambridge University Press. [Online]. Available:
https://www.cambridge.org/core/journals/canadian-journal-of-mathe
matics/article/maximal-flow-through-a-network/SD6E55D3B06C4F7
B1043BC1D82D40764

A. V. Goldberg, “The Partial Augment-Relabel Algorithm for the
Maximum Flow Problem,” in Algorithms - ESA, D. Halperin and
K. Mehlhorn, Eds. Berlin, Heidelberg: Springer, 2008, pp. 466-477.
Y. Zhang and D. Yang, “RobustPay+: Robust Payment Routing With
Approximation Guarantee in Blockchain-Based Payment Channel
Networks,” Transactions on Networking (TON), vol. 29, no. 4, pp.
1676-1686, 2021.

R. Bellman, “On a routing problem,” Quarterly of Applied
Mathematics (Q Appl Math), vol. 16, no. 1, pp. 87-90, 1958.
[Online]. Available: https://www.ams.org/qam/1958-16-01/S0033-5
69X-1958-0102435-2/

J.. W. Suurballe and R. E. Tagan, “A quick
method for finding shortest pairs of disjoint paths,’
Networks, vol. 14, no. 2, pp. 325-336, 1984, _eprint:

https://onlinelibrary.wiley.com/doi/pdf/10.1002/net.3230140209. [On-
line]. Available: https://onlinelibrary.wiley.com/doi/abs/10.1002/net.
3230140209

R. Pickhardt, “Price of anarchy from selfish routing strategies on the
lightning,” 2022, Last access: Nov. 21th 2023. [Online]. Available:
https://www.bitcoininsider.org/article/167640/price-anarchy-selfish-r
outing-strategies-lightning-network-rene- pickhardt

B. Teinturier, “Trampoline Routing,” 2021, Last access: Nov. 21th
2023. [Online]. Available: https://github.com/lightning/bolts/pull/829
A. Bosworth, “Balance of Satoshis,” 2021, available at:
https://github.com/alexbosworth/balanceofsatoshis. Last access: Nov.
21th 2023. [Online]. Available: https://github.com/alexbosworth/bala
nceofsatoshis

C. Otto, “Rebalance-LND,” 2022, available at: https://github.com/C-
Otto/rebalance-Ind. Last access: Nov. 21th 2023. [Online]. Available:
https://github.com/C-Otto/rebalance-1nd

[231]

[232]

[233]

[234]

[235]

[236]

[237]

[238]

[239]

[240]

[241]

[242]

[243]

[244]

[245]

[246]

[247]

[248]

[249]

[250]

N. Papadis and L. Tassiulas, “Deep reinforcement learning-based
rebalancing policies for profit maximization of relay nodes in
payment channel networks,” Cryptology ePrint Archive, Paper
2022/1385, 2022, https://eprint.iacr.org/2022/1385. [Online].
Available: https://eprint.iacr.org/2022/1385

R. Albert and A.-L. Barabdsi, “Statistical mechanics of complex
networks,” Reviews of Modern Physics, vol. 74, pp. 47-97, 2002.
[Online]. Available: https://link.aps.org/doi/10.1103/RevModPhys.74
47

P. Erd6s, A. Rényi et al., “On the evolution of random graphs,” Publ.
Math. Inst. Hung. Acad. Sci, vol. 5, no. 1, pp. 17-60, 1960.

R. Russell et al., “BOLT #7: P2p node and channel discovery,” https:
//github.com/lightningnetwork/lightning-rfc/blob/master/https:
//github.com/lightning/bolts/blob/master/07-routing-gossip.md, 2022,
Last access: Nov. 21th 2023.

IML, “Lightning Network Explorer: Bitfinex Lightning Node,” Avail-
able at https://1ml.com/node/033d8656219478701227199cbd6£67033
5¢8d408a92ae88b962¢49d4dc0e83e025, 2022, Last access: Nov. 21th
2023.

S. Goldwasser, S. Micali, and C. Rackoff, “The knowledge complexity
of interactive proof-systems,” in Symposium on Theory of Computing
(STOC). New York, NY, USA: ACM, 1985, p. 291-304. [Online].
Available: https://doi.org/10.1145/22145.22178

G. F. Camilo, G. A. F Rebello, L. A. C. de Souza, and
0. C. M. Duarte, “A Secure Personal-Data Trading System Based
on Blockchain, Trust, and Reputation,” in International Conference
on Blockchain (Blockchain). 1EEE, 2020, pp. 379-384.

S. Mazumdar, P. Banerjee, and S. Ruj, “Time is Money: Countering
Griefing Attack in Lightning Network,” in International Conference
on Trust, Security, and Privacy in Computing and Communications
(TrustCom). 1EEE, 2020, pp. 1036-1043.

J. Bier, “Preventing Channel Jamming,” 2021, available at:
https://blog.bitmex.com/preventing-channel-jamming/. Last access:
Nov. 21th 2023. [Online]. Available: https://blog.bitmex.com/preven
ting-channel- jamming/

M. Al-Shurman, S.-M. Yoo, and S. Park, “Black Hole Attack in
Mobile Ad Hoc Networks,” in Proceedings of the 42nd annual
Southeast regional conference (ACM-SE, 2004, pp. 96-97.

A. Ford, C. Raiciu, M. J. Handley, O. Bonaventure, and
C. Paasch, “TCP Extensions for Multipath Operation with Multiple
Addresses,” Internet Engineering Task Force, Request for Comments
RFC 8684, 2020, num Pages: 68. [Online]. Available: https:
//datatracker.ietf.org/doc/rfc8684

D. J. Watts and S. H. Strogatz, “Collective dynamics of ‘small-world’
networks,” Nature, vol. 393, no. 6684, pp. 440—442, 1998. [Online].
Available: https://www.nature.com/articles/30918

A.-L. Barabdsi and R. Albert, “Emergence of scaling in random
networks,” Science, vol. 286, no. 5439, pp. 509-512, 1999. [Online].
Available: https://www.science.org/doi/abs/10.1126/science.286.5439
.509

“Credit Card Fraud Detection.” [Online]. Available: https://www.ka
ggle.com/datasets/mlg-ulb/creditcardfraud

G. F. Riley and T. R. Henderson, “The ns-3 Network Simulator,” in
Modeling and Tools for Network Simulation, K. Wehrle, M. Giines,
and J. Gross, Eds. Berlin, Heidelberg: Springer, 2010, pp. 15-34.
[Online]. Available: https://doi.org/10.1007/978-3-642-12331-3_2
“StarkEx Documentation,” Available at https://docs.starkware.co/star
kex/index.html, Last access: Nov. 21th 2023.

D. Wang, J. Zhou, M. Finestone, and A. Wang, “Loopring: A
Decentralized Token Exchange Protocol,” 2018.

O. Goldreich and Y. Oren, “Definitions and properties of zero-
knowledge proof systems,” Journal of Cryptology, vol. 7, no. 1, pp.
1-32, 1994. [Online]. Available: http://link.springer.com/10.1007/BF
00195207

N. Bitansky, R. Canetti, A. Chiesa, and E. Tromer, “From
extractable collision resistance to succinct non-interactive arguments
of knowledge, and back again,” in Innovations in Theoretical
Computer Science Conference (ITCS). ACM, 2012, p. 326-349.
[Online]. Available: https://doi.org/10.1145/2090236.2090263

“The Sequencer and Censorship Resistance | Arbitrum Docs,” 2023.
[Online]. Available: https://developer.arbitrum.io/sequencer

[251] A. Poinsot, “Answer to "How do I set the our_to_self_delay
parameter?”,” 2022. [Online]. Available: https://bitcoin.stackexchang
e.com/a/116433

[252] T. Giorgio, “Preliminary Hidden Lightning Network Analysis,” Avail-
able at https://lists.linuxfoundation.org/pipermail/lightning-dev/202
2-June/003599.html, 2022, Last access: Nov. 21th 2023.

