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A B S T R A C T

As of today, the uncertain distribution and dynamics of inundations in the tropical wetlands cause large
uncertainties in the quantification of the world’s methane emissions. Long-term, global remote sensing
observations currently rely on optical sensors, affected by cloud cover and vegetation, and on passive
microwave imagery with a low spatial resolution. Global Navigation Satellite System Reflectometry (GNSS-R)
L-band observations from space onboard the Cyclone GNSS (CYGNSS) mission can provide information about
the dynamics of surface water at moderate to low spatial resolution and with a frequent revisit. In this article,
we propose a methodology to compute the fraction of water contained in 0.1◦ pixels (∼10 km) using CYGNSS
reflectivity and Above Ground Biomass (AGB) maps. We produced a 1-year time series of water fractions
with a weekly time sampling for the full coverage of CYGNSS between ±38◦ of latitude, from August 2018
to July 2019. We evaluated the results against regional reference maps of surface water based on MODIS,
JERS-1, and PALSAR, and against the Global Inundation Extent from Multi-Satellite (GIEMS) dataset. CYGNSS
water fractions represent well the spatial distribution and the seasonality of inundation extent for most of the
tropical wetlands, with a global RMSD of 15.0 % against GIEMS. We found a likely overestimation when the
soil moisture (SM) exceeds 0.3-0.4 cm3∕cm3, i.e. for saturated soils where GNSS-R reflections are coherent,
as the SM was not parameterized in our retrieval model. Despite this, the results are consistent in the entire
intertropical band including over densely vegetated areas. These weekly water fractions for 2018-2019 with a
0.1◦ pixel size are distributed to contribute to further comparisons and hydrological researches.
1. Introduction

Wetlands strongly contribute to the hydrological and biogeochemi-
cal cycles while covering only 8% of the land surfaces (Davidson et al.,
2018). They regulate river discharges to mitigate floods and supply
water during the dry season (Bullock and Acreman, 2003; Acreman
and Holden, 2013; Junk et al., 2013). They store an important carbon
pool (Mitsch et al., 2013) and are the major natural source of methane
emissions, up to 20%–30% (Whalen, 2005; Bergamaschi et al., 2007;
Saunois et al., 2020). Yet, the spatial distribution of wetlands and the
temporal variations of their extent largely contribute to uncertainties
on methane emissions (Melton et al., 2013), particularly due to the lack
of reliable estimations of surface water extent (Poulter et al., 2017).

∗ Corresponding author at: Laboratoire d’Etudes en Géophysique et Océanographie Spatiale (LEGOS), UT3 Paul Sabatier, Toulouse, France.
E-mail address: pierre.zeiger@univ-grenoble-alpes.fr (P. Zeiger).

The monitoring of surface water extent usually relies on remote
sensing because of the sparsity of in-situ observations. Optical sensors
are suited to detect open water but are particularly limited over vege-
tated wetland. High-resolution (30 m to 90 m) surface water datasets
were derived from the 40-year Landsat archives (Verpoorter et al.,
2014; Yamazaki et al., 2015; Feng et al., 2016; Pekel et al., 2016). For
example, the Global Surface Water (GSW) dataset (Pekel et al., 2016)
provides monthly estimates of permanent and seasonal water at 30 m
spatial resolution since 1984. Other surface water datasets were derived
at the regional scale using the Moderate Resolution Imaging Spectrora-
diometer (MODIS), especially over semi-arid regions such as the Inner
Niger Delta (IND) and Lake Chad (Bergé-Nguyen and Crétaux, 2015;
Pham-Duc et al., 2020), and also the Mackenzie Delta (Normandin
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022-1694/© 2023 The Authors. Published by Elsevier B.V. This is an open access a

https://doi.org/10.1016/j.jhydrol.2023.130305
Received 10 May 2023; Received in revised form 25 August 2023; Accepted 24 Sep
rticle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

tember 2023

https://www.elsevier.com/locate/jhydrol
http://www.elsevier.com/locate/jhydrol
mailto:pierre.zeiger@univ-grenoble-alpes.fr
https://doi.org/10.1016/j.jhydrol.2023.130305
https://doi.org/10.1016/j.jhydrol.2023.130305
http://creativecommons.org/licenses/by/4.0/


Journal of Hydrology 626 (2023) 130305P. Zeiger et al.
et al., 2018). However, the visible and infrared signals are unable
to penetrate neither cloud cover nor vegetation. As a consequence,
the products based on Landsat and MODIS largely underestimate the
wetland extent in tropical regions, especially the vegetated seasonal
inundation.

Microwave signals are well suited for studying tropical wetland
dynamics because they provide information day and night, penetrate
cloud cover and partially the vegetation, especially at L-band due to
the larger wavelength/lower frequency. Side-looking Synthetic Aper-
ture Radars (SAR) can map surface water at high resolution (up to
1 m) as open water acts like a mirror and produces a low backscat-
ter, and flooded vegetation produces a high backscatter due to the
double-bounce effect (Richards et al., 1987). L-band SAR images were
used to map inundations in the densely forested Amazon and Congo
basins (Hess et al., 2003, 2015; Betbeder et al., 2014; Chapman et al.,
2015; Rosenqvist et al., 2020). However, the use of SAR images was
limited by a low temporal resolution before the launch of Sentinel-1,
the low availability of L-band data, and the complexity to identify water
signatures at large spatial scales with varying geophysical properties,
incidence angles and different polarizations. This caused SAR data to
be mainly used for near-real time flood monitoring at small spatial
scales (Pulvirenti et al., 2011; Pierdicca et al., 2013; Westerhoff et al.,
2013; Martinis et al., 2015; Twele et al., 2016), but not to derive a
global surface water extent dataset. Recently, Martinis et al. (2022)
proposed global inundation maps using the C-band SAR Sentinel-1 to
complement optical data from Sentinel-2 in regions affected by cloud
cover. However, this approach remains limited over forested regions.
The monitoring of surface water extent changes in the tropics therefore
relies on the use of passive microwave observations, as the brightness
temperatures decreases in the presence of water, especially for the
horizontal polarization (Choudhury, 1991; Sippel et al., 1994; Prigent
et al., 2001; Parrens et al., 2017). Passive sensors are mostly limited
by their coarse spatial resolution (25–50 km). They are used in multi-
mission products like the Global Inundation Extent from Multi-Satellite
(GIEMS, Prigent et al., 2007, 2020), which provides monthly surface
water extent estimations at 25 km spatial resolution since 1992, based
on the brightness temperatures from the Special Sensor Microwave
Imager (SSM/I) and its successor, the Special Sensor Microwave Imager
Sounder (SSMIS). This 25 km, monthly spatiotemporal resolution is
insufficient to capture small water surfaces, flash flood or to study
floodplain connectivity.

Global Navigation Satellite System (GNSS) Reflectometry (GNSS-R)
can help in improving the representation of inundation dynamics, espe-
cially in tropical wetlands. This opportunistic remote sensing technique
emerged the last decades with the rising number of GNSS satellites ded-
icated to positioning. It consists in measuring the GNSS L-band signals
reflected by the Earth’s surface, in a bistatic observational configuration
where the transmitter and the receiver are separated (Martin-Neira
et al., 1993; Zavorotny et al., 2014). The geophysical properties of
the reflecting surface (or glistening zone) impact the signals, which are
especially sensitive to the amount of surface water, the soil moisture,
the surface roughness and topography, and the presence of vegetation.
These fields of investigation recently benefited from the launch of
spaceborne GNSS-R missions. The UK TechDemoSat −1 (TDS-1) was a
first proof of concept that successfully allowed to retrieve either ocean
wind speed and sea level (Foti et al., 2015; Clarizia et al., 2016), or
land geophysical parameters like soil moisture and vegetation (Camps
et al., 2016; Chew et al., 2016). It was followed by the NASA Cyclone
GNSS (CYGNSS) mission, launched in 2016. It is a constellation of 8
Low Earth Orbit (LEO) micro-satellites carrying onboard a GNSS-R re-
ceiver (Ruf et al., 2016), and collecting observations in the intertropical
band (±38◦ latitude). CYGNSS is dedicated to monitor the formation of
tropical cyclones and supplies an ocean wind speed product (Clarizia
and Ruf, 2016). Over land, it was used to retrieve soil moisture (Chew
and Small, 2018; Al-Khaldi et al., 2019; Clarizia et al., 2019; Eroglu
2

et al., 2019; Chew and Small, 2020a; Yan et al., 2020), and vegetation
parameters such as the opacity (Pierdicca et al., 2021) or the Above
Ground Biomass (AGB) (Carreno-Luengo et al., 2020). The combination
of 8 receivers with four channels each allows a high sampling of
the Earth’s surface. Numerous studies exploited the frequent revisit of
CYGNSS at low spatial resolution (sub-daily observations in pixels of
∼25 km, Ruf et al., 2016).

The characteristics of CYGNSS make the mission a valuable tool for
hydrological applications. Several studies exploited the observed sen-
sitivity of CYGNSS reflectivity to the presence of surface water (Chew
et al., 2018; Morris et al., 2019; Wan et al., 2019; Gerlein-Safdi and
Ruf, 2019; Gerlein-Safdi et al., 2021; Ghasemigoudarzi et al., 2020;
Rajabi et al., 2020; Zeiger et al., 2022; Chew et al., 2023). A high
returned power is typically associated to a coherent scattering regime
over smooth water or saturated soils (Chew and Small, 2020b; Loria
et al., 2020). Early studies mapped floods following an extreme event
(cyclone or typhoon), mostly using a threshold on CYGNSS reflectivity.
The random walker segmentation method was also used to delineate
flooded from non-flooded areas (Gerlein-Safdi and Ruf, 2019; Gerlein-
Safdi et al., 2021). Jensen et al. (2018) also studied the relationship
between floods, vegetation and CYGNSS reflectivity in a small subset of
the Amazon basin. Over the same tropical wetland complex, Rodriguez-
Alvarez et al. (2019) classified the open water, flooded vegetation and
non-flooded land using CYGNSS reflectivity. All these studies were
performed over small regions, as the detection of surface water at
global scale is hampered by changes in the geophysical properties of
the reflecting surface. Recently, Zeiger et al. (2022) demonstrated that
CYGNSS reflectivity could be used to derive a surface water extent
dataset in the entire intertropical area despite a large attenuation of
the GNSS-R signals in dense forests. A clustering method based on
Dynamic Time Warping (DTW) was applied to the time-series of re-
flectivity, and five clusters were defined depending on their inundation
dynamics. This study dealt with the detection of surface water but
did not compute the fractional inundation (or water fraction) in each
0.1◦ pixel. Chew et al. (2023) provided the first fractional inundation
estimations based on CYGNSS, with a physical rather than statistical
approach. The dielectric model employed requires the modeling of soil
and water roughness that are highly variable and uncertain. Additional
uncertainties are related to the spatial interpolation of sparse CYGNSS
observations used to retrieve water fractions with a 3-km and 3-day
spatiotemporal sampling, and to the attenuation of GNSS-R signals by
the vegetation that was not parameterized in their dielectric model but
only represented as a linear relationship between the reflectivity (in
dB) and the AGB.

Because smooth water surfaces are associated to a coherent scatter-
ing regime, recent studies used the coherence of CYGNSS observations
to map open water or flood extent. The coherence can be computed at
high sampling rate (1 ms) using the phase from complex unprocessed
signal samples, named raw Intermediate Frequency (IF) data (Li et al.,
2021, 2022; Collett et al., 2022; Russo et al., 2022; Chapman et al.,
2022). This characteristics permitted to detect water bodies with a
width of ∼100 m, including floods in densely vegetated areas, i.e.
with an AGB of 250–300 Mg/ha (Li et al., 2021). However, although
being very promising for surface water monitoring and for phase-delay
altimetry (Cardellach et al., 2004; Li et al., 2017), this dataset is limited
by the low amount of raw IF tracks recorded. Because the complex
information is very large, it is incoherently averaged over 0.5 s (1 s
before July, 2019) to produce the Level 1 Delay Doppler Maps (DDM)
that represent the main CYGNSS data record. An operational flood mon-
itoring based on raw IF data is not possible, at least before the launch
of the future ESA’s HydroGNSS mission planned for 2024 (Unwin et al.,
2021). Hence, proxies for estimating the coherence based on the shape
of Level 1 DDM were developed (Al-Khaldi et al., 2021a,b; Wang et al.,
2022). Particularly, the DDM power-spread detector (DPSD) proposed
in Al-Khaldi et al. (2021b) was further used to map permanent water in

the full CYGNSS coverage at 1 km spatial resolution (Al-Khaldi et al.,
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2021a). Seasonal floods can also be detected using this method but at
lower spatial resolution.

Few studies took advantage of the high revisit of CYGNSS to map
the inundation dynamics in the entire intertropical band. Furthermore,
to the best of our knowledge, the contributions up to now considered
a binary classification case to separate flooded and non-flooded areas,
except a recently published article (Chew et al., 2023). In this study, the
static classification of wet areas presented in Zeiger et al. (2022) and
time-series of CYGNSS reflectivity are used to further derive weekly,
0.1◦ (∼11 km at the equator) water fractions in the full CYGNSS cov-
rage. Here, we build a statistical model using reference water fraction
aps in an attempt to exploit the potential of CYGNSS for the moni-

oring of surface water extent spatiotemporal variations at both global
nd regional spatial scales. We particularly focus on producing realistic
stimations over vegetated wetlands which cover a large fraction of the
ntertropical band and are poorly monitored up to now. The datasets
sed in this study are presented in Section 2, and Section 3 presents
he water fraction retrieval methodology. The results and discussions
f this work are given in Sections 4 and 5, respectively.

. CYGNSS and reference datasets

.1. CYGNSS Level 1 DDM

CYGNSS is mainly dedicated to ocean wind speed retrieval (Clar-
zia and Ruf, 2016) in order to monitor the formation of tropical
yclones (Ruf et al., 2016). The constellation’s 8 Low Earth Orbit
LEO) micro-satellites cover the intertropical region (±38◦ latitude)
ith a high spatiotemporal revisit. Four GNSS reflected signals are

imultaneously recorded by the Delay Doppler Mapping Instrument
DDMI) onboard each spacecraft, and incoherently averaged over 1
(0.5 s, respectively) before (after) July 2019. The mean (median,

espectively) revisit time over a 25 km ocean pixel was previously
stimated to 7 (3) h in a 1-Hz sampling configuration (Ruf et al., 2016;
larizia and Ruf, 2016).

A GNSS-R observation over the ocean has a low spatial resolution
ue to surface roughness (waves) that produces a diffuse scattering.
he spatial resolution is much higher in the case of a dominantly
oherent observation over smooth water surfaces or flat and saturated
oils. In such configuration, it is approximately defined by the First
resnel Zone (FFZ) that comprises most of the returned power (Camps,
019). The FFZ size is ∼0.6 km × 0.6 km for an observation near nadir,
nd increases with the incidence angle 𝜃. Because the received power
s incoherently averaged as CYGNSS spacecrafts move, the spatial
esolution is degraded to 6.6 km along-track (with a 1 Hz sampling).
owever, CYGNSS Level 1 DDM can be used to detect water bodies
own to few hundred meters according to both models (Loria et al.,
020) and observations (Al-Khaldi et al., 2021a). This is explained by
he dominant contribution of the water fraction to the reflected power.

For the purpose of this study, we used the daily files from CYGNSS
evel 1 Science Data Records, v3.0 (CYGNSS, 2020) distributed by the
hysical Oceanography Distributed Active Archive Center (PODAAC).
e used a 1-year dataset from August 2018 to July 2019 over the entire

YGNSS coverage. Only one year of data was used as in Zeiger et al.
2022) due to the high computational load required and for testing first
he methodology. A further application to the ongoing 7-year CYGNSS
ecords is likely. The study period corresponds to a 1 Hz sampling
f the measurements (except for the last month), while twice more
bservations are performed monthly in the following years.

.2. GIEMS surface water extent

We need external inundation datasets to compare with CYGNSS
ater Fraction estimations. There are two global, long-term and low-

esolution (0.25◦) surface water extent products based on a combina-
ion of passive and active microwave observations: the Global Inun-
ation Extent from Multi-Satellite v2 (GIEMS-2, Prigent et al., 2020)
3

nd the Surface Water Microwave Product Series (SWAMPS, Schroeder
t al., 2015). We used GIEMS as numerous issues were pointed out
n SWAMPS in an inter-comparison (Pham-Duc et al., 2017), although
ome were further corrected in the later releases (Jensen and Mcdonald,
019). GIEMS surface water extent maps for 2018 and 2019 have been
pecifically processed for this study, averaged over 10 days. CYGNSS
nd GIEMS-2 water fractions are independent (see Section 3) and feed
n inter-comparison of inundation extent and dynamics in both datasets
Section 4).

.3. Regional maps of the flood dynamics

GIEMS spatial resolution is 0.25◦ (∼28 km at the equator) which
imits the detection of small water bodies. The sensitivity of CYGNSS
o small river streams is therefore much higher (Zeiger et al., 2022). In
his study, high resolution surface water extent maps were employed
oth in the retrieval methodology (see Section 3) and to compare
ith CYGNSS output water fractions. Global, high resolution datasets
ased on optical sensors like Landsat (Pekel et al., 2016) cannot de-
ect flooded forests and so they are not suitable for comparison with
YGNSS in the intertropical band. We finally used a set of regional
aps based on both optical and SAR data, which represent the diversity

f the pan-tropical climate regions.
The first dataset consists in flood maps at 500 m spatial resolution

ased on MODIS surface reflectances from the MOD09A1 product
level 3/v6, 8-day binned). They are retrieved with the multi-threshold
pproach from Frappart et al. (2018) and Normandin et al. (2018)
s a simplification of Sakamoto et al. (2007), using the Enhanced
egetation Index (EVI, Huete et al., 1997) and the land surface water

ndex (LSWI, Xiao et al., 2005) values. We computed MODIS flood maps
or the 2018–2019 study period over three distinct climate regions: the
arana/La Plata river basin presenting flooded savannas and higher
egetation in the north, the Lower Mekong basin (LMB) with paddy
ields and a strong seasonal flood signal around the Tonle Sap, and the
nner Niger Delta (IND) with low vegetation and bare soils.

Because MODIS is unable to detect flooded forests, especially in the
mazon and Congo basins, we need other high-resolution reference
atasets covering dense tropical forests. This kind of dataset is rare
nd mostly based on L-band SAR images, which penetrate better the
anopy layers. We used here the dual-season wetland classification in
he Amazon basin from Hess et al. (1995, 2003). Based on JERS-1 L-
and mosaics for the reference year 1995–1996, it provides a 100 m
etland mask at both low and high water stages (October–November
995 and May–June 1996, respectively). Other similar datasets exist
see Fleischmann et al., 2022 for a comparison) but this one is still
onsidered as a reference and has been widely used to compare with
ater studies.

Finally, flood maps at high and low water stages in the Cuvette
entrale of Congo were extracted from Betbeder et al. (2014). They are
ased on six images from the Phased-Array type L-band Synthetic Aper-
ure Radar (PALSAR) onboard the Advanced Land Observing Satellite
ALOS) in 2009 and 2010, combined with Enhanced Vegetation Index
EVI) from MODIS and canopy height estimated with Light Detection
nd Ranging (LIDAR) data. Four wetland classes were initially delin-
ated and correspond to open water, permanent inundations, long-term
easonal inundations, and short-term floods. Unlike MODIS and JERS-
reference maps over the Parana, Niger, Mekong and Amazon basins,

he PALSAR classification over the Cuvette Centrale of Congo was only
sed for validation and not in the retrieval methodology.

.4. GlobBiomass AGB map

The detection of water using CYGNSS reflectivity is suitable for an
GB up to 200–300 Mg/ha according to a previous work (Zeiger et al.,
022). However, the attenuation of the GNSS-R coherent component for
high biomass content (Loria et al., 2020) is responsible for a decrease
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in the reflectivity (Carreno-Luengo et al., 2020). In order to retrieve cor-
rect water fractions in flooded forests, we modeled the GNSS-R signal
attenuation by the vegetation using the GlobBiomass AGB map at 3.2’’
spatial resolution (Santoro, 2018; Santoro et al., 2021). It is based on L-
band ALOS/PALSAR and C-band ENVISAT/ASAR (Advanced Synthetic
Aperture Radar) backscatters recorded in 2010. According to Santoro
et al. (2021), GlobBiomass presents a bias over dense tropical forests
where the dynamic range of the observations is low, but the spatial
patterns are well reproduced.

Other biomass maps derived from EO observations including lidar
such as the Global Ecosystem Dynamics Investigation (GEDI) (Dubayah
et al., 2022) and the future SAR missions BIOMASS (Scipal et al., 2010)
and NISAR (Kellogg et al., 2020) offer new opportunities to account
for the attenuation of L-band signals in densely vegetated areas. As de-
forestation and subsequent regrowth can substantially modify CYGNSS
reflectivity, the use of annual biomass updates could help in reducing
surface water detection errors caused by land cover changes.

2.5. Other datasets

The AGB represents a static information and is related to the total
woody volume, but the optical signals from MODIS can be affected by
the vegetation growth. To evaluate the influence of the vegetation on
the statistical comparisons performed, we used the Normalized Differ-
ence Vegetation Index (NDVI) maps from the MOD09A1 product (8-day
binned level 3, version 6), derived from MODIS surface reflectance
measurements. Moreover, our retrieval model neglects the influence of
moisture variations to only consider the attenuation of GNSS-R signals
by the vegetation (see Section 3). We nevertheless evaluated how the
comparisons performed between CYGNSS, GIEMS, and MODIS Water
Fractions vary according to the SM content. For this, we used the SMAP
enhanced L3 9 km SM version 5 distributed by the National Snow
and Ice Data Center (NSIDC) (O’Neill et al., 2021). The 9 km spatial
resolution of SMAP enhanced L3 SM is close to the 0.1 ◦CYGNSS maps
produced (see Section 3), and a global coverage on Earth is obtained
every 3 days. All files from August 2018 to July 2019 were downloaded
and further regridded to obtain reference SM values. Additionally,
we filtered out deserts and open water areas as these targets were
shown to produce false alarms and missed surface water detections,
respectively (Al-Khaldi et al., 2021a; Zeiger et al., 2022). For this, we
used the static open water and flood masks from the Regularly Flooded
Wetland (RFW) dataset (Tootchi et al., 2019). Finally, the European
Space Agency’s (ESA) Climate Change Initiative (CCI) land cover maps
were used for the input land cover information required (ESA, 2017).

2.6. Resampling of the datasets

The ancillary datasets were resampled to correspond to the spa-
tiotemporal resolution of CYGNSS estimated water fractions (0.1◦ and

days). The average and standard deviation of AGB and NDVI per pixel
ere computed. We also upscaled the 500 m MODIS, 100 m JERS-1 and
00 m PALSAR flood maps at 0.1◦. We computed the reference water
ractions as a ratio between the number of flooded sub-pixels and the
otal number of sub-pixels in a given 0.1◦ pixel. Finally, we resampled
MAP SM maps from 9 km to 0.1◦ using a simple linear interpolation,
nd we computed the weekly averaged SM for all grid pixels.

The version of GIEMS we used is provided at ∼25 km spatial
resolution and 10-day temporal resolution. We performed the statistical
comparison between CYGNSS and GIEMS at 7 days and 0.25◦ spatial
resolution (see Section 4). Hence, we have upscaled CYGNSS water
fractions at 0.25◦ spatial resolution for this comparison. GIEMS 10-day
estimations were also upsampled to 7 days, using a weighted average
of the two closest observations in time (with a maximum delta time of
7 days).
4

3. Methods

The CYGNSS dataset is first preprocessed as in Zeiger et al. (2022).
The preprocessing steps include the extraction of each DDM peak
power, the application of quality flags and of an ocean mask, and the
removal of measurements when the peak power is located in the first
or last three delay rows of the DDM, the latter being an indicator of
topography effects that may degrade the measurement quality.

3.1. CYGNSS reflectivity computation

The GNSS-R signals are composed of an incoherent and a coher-
ent components. The coherent part corresponds to specular reflec-
tions inside the FFZ, while the incoherent part corresponds to diffuse
scattering all around. Bistatic scattering models (De Roo and Ulaby,
1994; Zavorotny and Voronovich, 2000; Voronovich and Zavorotny,
2018) have modeled both the coherent and the incoherent compo-
nents. We computed CYGNSS surface reflectivity assuming a coherent
reflection, which is in fact mostly associated to smooth inland surface
waters (Chew and Small, 2020a; Loria et al., 2020). The reflectivity can
be derived from the peak of a CYGNSS DDM (𝑃𝐷𝐷𝑀 ), following De Roo
and Ulaby (1994) and Gleason et al. (2020):

𝛤 (𝜃𝑖) =
( 4𝜋

𝜆

)2 𝑃𝐷𝐷𝑀 (𝑅𝑟 + 𝑅𝑡)2

𝐺𝑟𝐺𝑡𝑃𝑡
(1)

where 𝜆 is the wavelength (𝜆𝐺𝑃𝑆𝐿1 = 0.1903 m), 𝑅𝑡 and 𝑅𝑟 are the ranges
(distances from the specular point to the transmitter and the receiver,
respectively), 𝜃𝑖 is the incidence angle, 𝐺𝑟 is the receiver antenna gain,
and 𝑃𝑡𝐺𝑡 is the GPS Equivalent Isotropically Radiated Power (EIRP).
In this study, the reflectivity is expressed in linear units and not in
decibels. While the formulation in decibels was adopted in most of the
literature (e.g. Chew and Small, 2020b; Chew et al., 2023), a linear
scale is more convenient to formulate the linear relationships further
used to invert water fractions (see Section 3.2). CYGNSS reflectivity was
further normalized at a 0◦ incidence (nadir measurement) to correct
the variations of the received power with the varying incidence angle,
following Zeiger et al. (2022):

𝛤 = 𝛤 (𝜃𝑖 = 0◦) =
( 4𝜋

𝜆

)2 𝑃𝐷𝐷𝑀 (𝑅𝑟 + 𝑅𝑡)2

𝐺𝑟𝐺𝑡𝑃𝑡
× 1

𝑐𝑜𝑠(𝜃𝑖)
(2)

We further aggregated the 1-year reflectivity dataset into a 7-
day, 0.1◦ spatiotemporal grid. The resulting time series of reflectivity
showed gaps because CYGNSS measurements are not evenly distributed
over the Earth’s surface. To reduce the number of data gaps, we applied
to each pixel a 30-day moving window weighted with a Gaussian
distribution (𝜎 = 7 days). Then, we computed several statistical pa-
ameters describing the distribution of CYGNSS reflectivity in each
ixel and per time step: the weighted average and standard deviation
𝛤𝑚𝑒𝑎𝑛 and 𝛤𝑠𝑡𝑑 , respectively), the median (𝛤𝑚𝑒𝑑𝑖𝑎𝑛), and the nineteenth
ercentile (𝛤90%). These parameters allowed the detection of flooded

pixels in Zeiger et al. (2022) owing to a clustering method based on
Dynamic Time Warping (Berndt and Clifford, 1994). In this study, they
were further used to quantify the fraction of water contained in each
pixel.

3.2. Inversion of the Water Fractions

Fig. 1 shows the complete flowchart for the retrieval of CYGNSS
water fractions (WF). After the preprocessing and the gridding steps
previously described, a linear model is established between the WF
to be retrieved and 𝛤𝑚𝑒𝑎𝑛. Only the methodology is described in this
section whereas the results are presented in Section 4.1.

We used the clustering results from Zeiger et al. (2022) to select
pixels likely to be affected by floods. We also filtered out desert pixels
as defined by a flood occurrence of zero and a land cover composed

of at least 90% of bare soils, using the RFW dataset from Tootchi
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Fig. 1. Flowchart of the retrieval methodology for estimating CYGNSS Water Fractions at 0.1◦ spatial and 7 days temporal resolutions.
et al. (2019) and the ESA Climate Change Initiative (CCI) land cover
maps (ESA, 2017). Fig. 2a shows the resulting desert mask which is
mostly composed of the Sahara and the Arabian Peninsula. We also
removed pixels containing more than 80% of open water (according to
the RFW dataset). These masks are used to avoid false alarms over flat
deserts that produce high reflectivity values (Al-Khaldi et al., 2021a;
Zeiger et al., 2022), and misdetections of large open water bodies
showing a quite low reflectivity due to the important roughness (i.e.
waves) caused by wind (Chew and Small, 2020b; Loria et al., 2020),
e.g. over the Lake Victoria and Tonle Sap (Zeiger et al., 2022).

The reference WFs used to train our linear model were extracted
from the regional surface water extent products based on MODIS over
the Parana, Mekong, and Niger basins (Normandin et al., 2018), and
based on JERS-1 over the Amazon (Hess et al., 2003, 2015). The
latter only provides wetland maps at high and low water stages in
1995–1996. Similar dual-season maps were therefore extracted from
the 8-day MODIS product in order to ensure the consistency of the
learning dataset (see Fig. 1).

The relationship between the reference WF and 𝛤𝑚𝑒𝑎𝑛 is dependant
on the biomass content of the pixel, as shown in Section 4.1. The
average GlobBiomass AGB of the pixel was therefore associated to each
training and validation samples. Fig. 2b presents the distribution of the
AGB for samples were the reference WF dataset is either derived from
MODIS (in blue, 19 228 samples) or JERS-1 (in green, 11 878 samples,
Amazon). The latter perfectly complements the lack of MODIS data for
pixels with moderate to high biomass, i.e. for an AGB greater than 100–
150 Mg/ha. Hence, the MODIS dataset contains 91.1% of the samples
with an AGB lower than 50 Mg/ha, and only 0.6% of the samples with
an AGB greater than 150 Mg/ha. The combination of both data sources
makes the reference dataset consistent for an AGB range of 0 to ∼280
Mg/ha. Fig. 2c–d present similar histograms for the reference WF and
𝛤𝑚𝑒𝑎𝑛 samples, with a predominance of low WF and low 𝛤𝑚𝑒𝑎𝑛 values.

The linear model was established as follows. First, we defined ran-
domly a 70% training and a 30% validation datasets from the reference
5

Fig. 2. Datasets used in the WF retrieval methodology. (a) Mask of non-flooded bare
soils, (b) Distribution of the AGB for samples associated to MODIS (Parana, IND and
LMB) or JERS-1 (Amazon) reference WF maps, (c–d) Similar histograms for the WF and
𝛤𝑚𝑒𝑎𝑛, respectively. Bar widths are 5 Mg/ha and 2% for the AGB and WF histograms,
respectively. (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)
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Fig. 3. Scatterplots of the average 𝛤𝑚𝑒𝑎𝑛 computed in 2% WF bins, for different AGB intervals ranging from [0–5] Mg/ha to [265–270] Mg/ha in the training dataset. The linear
relationships between 𝛤𝑚𝑒𝑎𝑛 and the WF are shown in red for each interval, and the Pearson’s correlation are also given. The slopes (𝑎𝐴𝐺𝐵) and intercepts (𝑏𝐴𝐺𝐵) of these linear
fits are further parameterized as a function of the AGB (see Fig. 4). (For interpretation of the references to color in this figure legend, the reader is referred to the web version
of this article.)
WF, the average AGB, and 𝛤𝑚𝑒𝑎𝑛 samples (see Fig. 1). We binned the
training dataset along both the AGB (5 Mg/ha intervals) and the WF
(2% WF intervals) dimensions and we computed the average 𝛤𝑚𝑒𝑎𝑛 in
each bin. This permits to compute pairs of (WF, 𝛤𝑚𝑒𝑎𝑛) equally sampled.
It was implemented because the low-WF and low-𝛤𝑚𝑒𝑎𝑛 values dominate
the histograms of both variables (Fig. 2c–d), and as a consequence, the
use of all samples resulted in biased high WF estimations. Our model
looks for a linear relationship between the equally-sampled WF and
𝛤𝑚𝑒𝑎𝑛 in each AGB interval, where the attenuation by the vegetation
is assumed to be constant. CYGNSS WF estimations (𝑊𝐹𝐶𝑌𝐺𝑁𝑆𝑆 ) are
computed as:

𝑊𝐹𝐶𝑌𝐺𝑁𝑆𝑆 = 𝑎𝐴𝐺𝐵 × 𝛤𝑚𝑒𝑎𝑛 + 𝑏𝐴𝐺𝐵 (3)

where 𝑎𝐴𝐺𝐵 and 𝑏𝐴𝐺𝐵 are the slope and the intercept and vary depend-
ing on the AGB. We tried to parameterize the relations between 𝑎𝐴𝐺𝐵
or 𝑏𝐴𝐺𝐵 and the AGB as first to fifth order polynomials. Based on the
correlation and the Root Mean Square Error (RMSE) (see Section 4.1),
a third order polynomial was selected as the optimal parameterization.
We thus computed 𝑎𝐴𝐺𝐵 and 𝑏𝐴𝐺𝐵 as:

𝑎𝐴𝐺𝐵 = 𝑎3 × 𝐴𝐺𝐵3 + 𝑎2 × 𝐴𝐺𝐵2 + 𝑎1 × 𝐴𝐺𝐵 + 𝑎0 (4)

𝑏𝐴𝐺𝐵 = 𝑏3 × 𝐴𝐺𝐵3 + 𝑏2 × 𝐴𝐺𝐵2 + 𝑏1 × 𝐴𝐺𝐵 + 𝑏0 (5)

where 𝑎𝑖 and 𝑏𝑖, 𝑖 ∈ [0, 3] are the third order polynomial coefficients
corresponding to the regression of 𝑎𝐴𝐺𝐵 and 𝑏𝐴𝐺𝐵 against the AGB,
respectively. We computed the final robust coefficients as the average
output of 100 random selections of the training dataset. The final
equation for estimating 𝑊𝐹𝐶𝑌𝐺𝑁𝑆𝑆 is:

𝑊𝐹𝐶𝑌𝐺𝑁𝑆𝑆 = 𝐴𝐺𝐵3 (𝑎3𝛤𝑚𝑒𝑎𝑛 + 𝑏3
)

+ 𝐴𝐺𝐵2 (𝑎2𝛤𝑚𝑒𝑎𝑛 + 𝑏2
)

( ) (6)
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+𝐴𝐺𝐵 𝑎1𝛤𝑚𝑒𝑎𝑛 + 𝑏1 + 𝑎0𝛤𝑚𝑒𝑎𝑛 + 𝑏0
Table 1
Coefficients of the third order polynomial fits of the slope and intercept against the
AGB.
a0 a1 a2 a3 b0 b1 b2 b3
1.67 −12.1 𝑒−3 6.8𝑒−5 0 −0.30 5.6𝑒−3 −3.5𝑒−5 0.6𝑒−7

4. Results

4.1. Linear relation between 𝛤𝑚𝑒𝑎𝑛 and the Water Fraction

In every AGB interval of the learning dataset, the average 𝛤𝑚𝑒𝑎𝑛
per 2% WF bin was computed. Fig. 3 presents some examples of the
linear relationships found between these pairs of samples, for nine
AGB intervals ranging from [0–5] Mg/ha to [265–270] Mg/ha. The
Pearson’s correlation between the 𝛤𝑚𝑒𝑎𝑛 and WF samples is also shown
for each subplot. As it can be seen, it is generally high when removing
the influence of the vegetation. Also, it is important to note that both
the slope (𝑎𝐴𝐺𝐵) and the intercept (𝑏𝐴𝐺𝐵) of the linear relationships
vary considerably with the AGB. Indeed, Fig. 4 presents the slopes
(red circles) and intercepts (blue triangles) extracted in all the AGB
intervals. The red and blue curves are the third order polynomial fits
of 𝑎𝐴𝐺𝐵 and 𝑏𝐴𝐺𝐵 against the AGB, respectively. These curves fit well
most of the samples with an AGB below 200 Mg/ha. The relationships
obtained using only samples with an AGB below 200 Mg/ha are also
shown with the dashed red and blue lines. The parameterization of
the slope does not change but the parameterization of the intercept
diverges for high AGB values. The full AGB range from 0 to 300 Mg/ha
is required to obtain realistic estimations of the Water Fractions over
densely vegetated regions, although values above 200 Mg/ha should be
treated cautiously as they show a larger deviation.
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Fig. 4. Slopes (𝑎𝐴𝐺𝐵 , red circles) and intercepts (𝑏𝐴𝐺𝐵 , blue triangles) of the linear
relationships between 𝛤𝑚𝑒𝑎𝑛 and the WF in each AGB interval. The red and blue curves
are the third order polynomial fits of 𝑎𝐴𝐺𝐵 and 𝑏𝐴𝐺𝐵 against the AGB, respectively.
The coefficients of this regression are listed in Table 1. The dashed red and blue lines
indicate the same polynomial fits computed only with AGB samples lower than 200
Mg/ha. (For interpretation of the references to color in this figure legend, the reader
is referred to the web version of this article.)

Fig. 5. Parameterization of the slope (a) and intercept (b) samples as a function of
the AGB, using first to fifth order polynomials. For both cases the Pearson’s correlation
(R) and the RMSE are evaluated. The slope is correctly parameterized using a second
order polynomial, while the intercept requires the introduction of a third order term
following Eq. (6). (For interpretation of the references to color in this figure legend,
the reader is referred to the web version of this article.)

The parameterization of the slopes and intercepts against the AGB
were also tested using first to fifth order polynomial regressions. In
every case, the Pearson’s correlation and the Root Mean Square Error
(RMSE) were computed between the slope/intercept samples and their
fitted values. The results for both 𝑎𝐴𝐺𝐵 and 𝑏𝐴𝐺𝐵 are presented in
Fig. 5. A second order polynomial sufficiently describes the relationship
between the slope and the AGB. However, a third order term should be
introduced to describe the relationship between the intercept and the
AGB. The parameterization of these relationships in Eq. (6) therefore
employs third order polynomials. The ultimate coefficients 𝑎𝑖 and 𝑏𝑖, 𝑖 ∈
[0, 3] are listed in Table 1 and correspond to the red and blue curves
plotted in Fig. 4, respectively. Note that 𝑎3 = 0 in accordance with the
results shown in Fig. 5a.

Finally, bootstrapping was used to evaluate the robustness of the
methodology across 100 iterations (results do not change significantly
when increasing the number of iterations), with a random selection of
the 70% training and 30% validation datasets. The coefficients 𝑎𝑖 and
𝑏𝑖, 𝑖 ∈ [0, 3] were determined at each iteration using the training dataset,
and were used to compute predicted WF with the validation dataset.
The RMSE and the Pearson’s correlation were evaluated between the
predicted and reference WF. Table 2 presents the results over 100
iterations for the entire validation dataset and for distinct 50 Mg/ha
AGB intervals. The RMSE is around 0.20 (20%) over the entire AGB
range. The best RMSE observed for an AGB greater than 250 Mg/ha
could be a consequence of the lower average water fraction found
under dense vegetation covers. A larger deviation between minimum
7

Table 2
RMSE and Pearson’s correlation (R) between the reference Water Fractions and
predictions from the validation dataset across 100 iterations, with a random selection
of the training and validation samples. The mean, minimum, maximum and standard
deviation values of RMSE are indicated with the mean R. Statistics are computed over
the entire AGB range covered and over distinct 50 Mg/ha AGB intervals.

AGB range (Mg/ha) RMSE𝑚𝑒𝑎𝑛 RMSE𝑚𝑖𝑛 RMSE𝑚𝑎𝑥 RMSE𝑠𝑡𝑑 R𝑚𝑒𝑎𝑛

All 0.207 0.202 0.212 2.3𝑒−3 0.606
0–50 0.199 0.191 0.207 3.2𝑒−3 0.551
50–100 0.235 0.219 0.250 7.5𝑒−3 0.641
100–150 0.235 0.218 0.249 7.1𝑒−3 0.567
150–200 0.212 0.197 0.230 6.6𝑒−3 0.538
200–250 0.204 0.194 0.215 4.0𝑒−3 0.506
250–300 0.187 0.166 0.208 8.4𝑒−3 0.437

and maximum results and lower correlations are indeed observed for
the 250–300 Mg.ha AGB interval.

4.2. CYGNSS pan-tropical Water Fractions

Weekly, 0.1◦ Water Fractions were estimated over the full coverage
of CYGNSS (hereafter named 𝑊𝐹𝐶𝑌𝐺𝑁𝑆𝑆 ) using the coefficients listed
in Table 1 and Eq. (6). This subsection briefly introduces the new
product delivered here. Fig. 6 a shows the total number of weeks
where inundations occur in each pixel during the 2018–2019 study
period. Many areas show residual surface water throughout the year,
as indicated by the number of weeks tending toward 52 in deep blue.
Fig. 6b also shows the number of weeks with a Water Fraction greater
than 20% in each pixel. The duration of inundations according to this
metric largely decreases in most of the world. Large floodplains like the
Orinoco and Llanos de Mojos wetlands in South America have a Water
Fraction greater than 20% around 20 to 30 weeks a year. We show
that only small WF values (<20%) are retrieved most of the time. These
WF are particularly affected by the background noise and uncertainties
related to the methodology proposed here (e.g. the 𝛤𝑚𝑒𝑎𝑛 vs. AGB model,
soil moisture, etc.). However, they still present valuable information as
a 20% WF represents around 20 km2 of inundations.

Fig. 7 presents the time series of total surface water extent (SWE) in
four latitude bins covering the entire study area. The [−38◦, −20◦] bin
contains mostly inundations from the Parana basin with a maximum
reached in May 2019. The [−20◦, 0◦] bin comprises large tropical
wetlands, including the southern parts of the Amazon and Congo
basins. It shows a large inundation peak during the spring with a
maximum SWE around 500,000 km2. The [0◦, 20◦] bin includes the
northern parts of the Congo and the Amazon, the Orinoco basin, the
Sahel and Southeast Asian basins like the Mekong. It shows a large
inundation peak during the summer, more pronounced in 2018 with a
SWE peaking at 500,000 km2. Finally, the [20◦, 38◦] bin includes North
American wetlands (below 38◦ latitude), the Ganges, Brahmaputra and
Indus basins in the Indian subcontinent, and the Yangtze in China. It
shows a maximum SWE during the summer reaching 400,000 km2 in
both August 2018 and July 2019. Overall, the phase difference between
inundation patterns in the Southern and Northern hemispheres is well
retrieved. All curves also show large amplitude variations except the
[−38◦, −20◦] latitude bin dominated by the Parana floodplains.

4.3. Comparison of CYGNSS Water Fractions with GIEMS

Our 𝑊𝐹𝐶𝑌𝐺𝑁𝑆𝑆 estimations were first compared to the fully in-
dependent estimations from GIEMS-2 (hereafter 𝑊𝐹𝐺𝐼𝐸𝑀𝑆 ) over the
entire coverage of CYGNSS (±38◦ latitude). The resampling of GIEMS-
2 to a 7-day temporal resolution and the upscaling of CYGNSS to
a 0.25◦ spatial resolution were described in Section 2.6. The global
Root Mean Square Deviation (RMSD), bias and Pearson’s correlation
(R) were computed between 𝑊𝐹𝐶𝑌𝐺𝑁𝑆𝑆 and 𝑊𝐹𝐺𝐼𝐸𝑀𝑆 . First, only
the samples with non-null WF in both datasets were considered. We
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Fig. 6. Duration of inundations according to CYGNSS Water Fractions. (a) Number of weeks with a non-zero WF, and (b) Number of weeks with a WF greater than 20%. Open
water areas based on the open water mask are filtered out in the retrieval and filled with a 100% WF. (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)
Fig. 7. Time series of cumulative CYGNSS surface water extent (SWE) grouped by
latitude bins.

found a bias of −8.9% and a RMSD of 18.3% which falls to 15.9%
when the bias is removed first (i.e. unbiased RMSD), with a correlation
of 0.53 between both datasets. The global bias corresponds to lower
𝑊𝐹𝐶𝑌𝐺𝑁𝑆𝑆 than 𝑊𝐹𝐺𝐼𝐸𝑀𝑆 , which is consistent with further results
and especially Fig. 11. The coverage of non-null WF is also more restric-
tive in 𝑊𝐹𝐶𝑌𝐺𝑁𝑆𝑆 (∼8%) than in 𝑊𝐹𝐺𝐼𝐸𝑀𝑆 (∼16%). When selecting
all estimations with a non-null 𝑊𝐹𝐶𝑌𝐺𝑁𝑆𝑆 only for the computation
of the statistics (no condition over 𝑊𝐹𝐺𝐼𝐸𝑀𝑆 ), we found a negligible
bias (−0.6%) and a RMSD of 15.0%.

Fig. 8 presents the average 𝑊𝐹𝐶𝑌𝐺𝑁𝑆𝑆 and 𝑊𝐹𝐺𝐼𝐸𝑀𝑆 in August
2018 (top two panels), during the wet season in most of the northern
hemisphere, along with the bias and RMSD per pixel between the
two datasets (bottom two panels). A positive bias (in red) means
𝑊𝐹𝐶𝑌𝐺𝑁𝑆𝑆 > 𝑊 𝐹𝐺𝐼𝐸𝑀𝑆 . Figure S1 also shows other monthly aver-
aged 𝑊𝐹𝐶𝑌𝐺𝑁𝑆𝑆 and 𝑊𝐹𝐺𝐼𝐸𝑀𝑆 in December 2018 and April 2019.
Overall, both datasets are consistent and detect the major floodplains
while CYGNSS shows a much higher sensitivity to small water bodies,
especially around the Amazon and Congo tributaries. This is due to
the higher native spatial resolution of CYGNSS coherent observations
(∼1 × 6 km). Conversely, 𝑊𝐹𝐺𝐼𝐸𝑀𝑆 is higher along the Amazon main-
stream and in Southeast and East Asia. High soil moisture consecutive
to monsoons likely drives this clear overestimation (see also Fig. 11).
Finally, it is worth noting a positive bias along the coastlines, either
due to contamination from the ocean which can affect both datasets,
8

or to the presence of mangroves not detected by GIEMS mostly due
to its lower spatial resolution. Global high-resolution mangrove maps
like (Hamilton and Casey, 2016) could feed further work on this issue.

4.4. Regional comparisons

A better evaluation of the performances of 𝑊𝐹𝐶𝑌𝐺𝑁𝑆𝑆 and
𝑊𝐹𝐺𝐼𝐸𝑀𝑆 is conducted at the scale of the river basin. In Fig. 9,
both datasets are compared at low and high water stages with the
inundation extent in the Amazon derived from JERS-1 (𝑊𝐹𝐽𝐸𝑅𝑆 ) in
1995-1996 (Hess et al., 2015). This comparison shows that most of
the floodplains and river streams are delineated in 𝑊𝐹𝐶𝑌𝐺𝑁𝑆𝑆 and the
spatial correspondence with 𝑊𝐹𝐽𝐸𝑅𝑆 is good. The comparison between
𝑊𝐹𝐶𝑌𝐺𝑁𝑆𝑆 and 𝑊𝐹𝐺𝐼𝐸𝑀𝑆 shows a seasonal flood signal with similar
amplitude, and a better level of detail in 𝑊𝐹𝐶𝑌𝐺𝑁𝑆𝑆 due to its higher
spatial resolution. Finally, 𝑊𝐹𝐶𝑌𝐺𝑁𝑆𝑆 and 𝑊𝐹𝐺𝐼𝐸𝑀𝑆 are generally
lower than 𝑊𝐹𝐽𝐸𝑅𝑆 . This bias is particularly noticeable at high water
stage, along the Amazon stream and in the Llanos de Mojos (∼65◦W
and 15◦S) in Bolivia.

Over the Cuvette Centrale of Congo, we used the wetland classifica-
tion from Betbeder et al. (2014) to conduct a similar comparison which
is shown in Figure S2. 𝑊𝐹𝐶𝑌𝐺𝑁𝑆𝑆 matches well the water fractions
extracted from the PALSAR classification at low water stage, but is
much lower at high water stage (December) when the Cuvette Centrale
of Congo is almost entirely flooded according to the reference maps.
Both 𝑊𝐹𝐶𝑌𝐺𝑁𝑆𝑆 and 𝑊𝐹𝐺𝐼𝐸𝑀𝑆 only detect water along the streams
of the Congo River and its main tributaries, where the longest floods
occur.

We also compared 𝑊𝐹𝐶𝑌𝐺𝑁𝑆𝑆 and 𝑊𝐹𝐺𝐼𝐸𝑀𝑆 to MODIS WF es-
timations (𝑊𝐹𝑀𝑂𝐷𝐼𝑆 ) in the IND, the LMB and the Parana basins.
Figure S3 presents the annual maximum WF per pixel for all of the
three datasets and the three study areas, with the associated surface
water extent. The bias and RMSD per pixel were also computed and are
shown in Fig. 10 between 𝑊𝐹𝐶𝑌𝐺𝑁𝑆𝑆 and 𝑊𝐹𝑀𝑂𝐷𝐼𝑆 (top two rows)
and between 𝑊𝐹𝐶𝑌𝐺𝑁𝑆𝑆 and 𝑊𝐹𝐺𝐼𝐸𝑀𝑆 (rows 3 and 4). Finally, the
bottom row in Fig. 10 shows the annual maximum NDVI for further
analysis.

𝑊𝐹𝐶𝑌𝐺𝑁𝑆𝑆 and 𝑊𝐹𝑀𝑂𝐷𝐼𝑆 present similar spatial features in the
IND and LMB. In these areas, a large spread is observed in 𝑊𝐹
𝐺𝐼𝐸𝑀𝑆
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Fig. 8. Comparison of the Water Fractions estimated from CYGNSS and GIEMS, in percentage of a grid cell. (a) Average 𝑊𝐹𝐶𝑌𝐺𝑁𝑆𝑆 and (b) average 𝑊𝐹𝐺𝐼𝐸𝑀𝑆 in August 2018. (c)
Pixel-by-pixel bias between CYGNSS and GIEMS time series (red for 𝑊𝐹𝐶𝑌𝐺𝑁𝑆𝑆 > 𝑊 𝐹𝐶𝑌𝐺𝑁𝑆𝑆 , blue otherwise), and (d) Pixel-by-pixel RMSD between 𝑊𝐹𝐶𝑌𝐺𝑁𝑆𝑆 and 𝑊𝐹𝐺𝐼𝐸𝑀𝑆 .
(For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
indicating a likely overestimation of flood extent during the wet season.
We mostly observe a lower amplitude in 𝑊𝐹𝑀𝑂𝐷𝐼𝑆 than in both
𝑊𝐹𝐶𝑌𝐺𝑁𝑆𝑆 and 𝑊𝐹𝐺𝐼𝐸𝑀𝑆 (positive biases in Fig. 10a,f,k indicating
𝑊𝐹𝐶𝑌𝐺𝑁𝑆𝑆 > 𝑊 𝐹𝑀𝑂𝐷𝐼𝑆 ). It is interesting to notice that in the IND, we
find opposed biases in the northern part (𝑊𝐹𝐺𝐼𝐸𝑀𝑆 < 𝑊 𝐹𝐶𝑌𝐺𝑁𝑆𝑆 <
𝑊 𝐹𝑀𝑂𝐷𝐼𝑆 ) where the maximum NDVI is very low (bare soils) and in
the southern part (𝑊𝐹𝐺𝐼𝐸𝑀𝑆 > 𝑊 𝐹𝐶𝑌𝐺𝑁𝑆𝑆 > 𝑊 𝐹𝑀𝑂𝐷𝐼𝑆 ) where the
maximum NDVI is in the range 0.4–0.6.

A much lower flood signal is observed in the Parana basin in
𝑊𝐹𝑀𝑂𝐷𝐼𝑆 , as compared to 𝑊𝐹𝐶𝑌𝐺𝑁𝑆𝑆 and 𝑊𝐹𝐺𝐼𝐸𝑀𝑆 which are close
both in extent and amplitude. The annual maximum of NDVI shown
in Fig. 10e,j,h clearly reveals that a higher NDVI is observed in the
Parana (above 0.7–0.8) than in the IND and LMB. The presence of a
denser vegetation characterized by higher NDVI values could explain
this strong bias observed in the Parana between the optical-based
𝑊𝐹𝑀𝑂𝐷𝐼𝑆 and other datasets based on microwave signals, which are
less affected by the vegetation.

We computed the spatiotemporal RMSD, bias, and Pearson’s corre-
lation over the year in each basin between 𝑊𝐹𝐶𝑌𝐺𝑁𝑆𝑆 and 𝑊𝐹𝑀𝑂𝐷𝐼𝑆 ,
𝑊𝐹𝐶𝑌𝐺𝑁𝑆𝑆 and 𝑊𝐹𝐺𝐼𝐸𝑀𝑆 , and 𝑊𝐹𝑀𝑂𝐷𝐼𝑆 and 𝑊𝐹𝐺𝐼𝐸𝑀𝑆 , and they
are listed in Table 3. We previously filtered out all the samples having
9

a WF equals to zero in either one of the two datasets used in the com-
parison. A positive bias is found between 𝑊𝐹𝐶𝑌𝐺𝑁𝑆𝑆 and 𝑊𝐹𝑀𝑂𝐷𝐼𝑆 ,
especially in the Parana basin (17.3%). The RMSD ranges from 18.3%
(Mekong) to 26.2% (Parana), while the correlation ranges from 0.42
(Parana) to 0.69 (Mekong). The comparison between 𝑊𝐹𝐶𝑌𝐺𝑁𝑆𝑆 and
𝑊𝐹𝐺𝐼𝐸𝑀𝑆 shows a smaller bias, with a RMSD ranging from 19.1%
(Mekong) to 24.9% (IND) and a correlation around 0.60. Finally, the
comparison between 𝑊𝐹𝐺𝐼𝐸𝑀𝑆 and 𝑊𝐹𝑀𝑂𝐷𝐼𝑆 shows a strong positive
bias up to 23.3% in the IND. The RMSD ranges from 17.4% (Mekong)
to 31.8% (IND), and the correlation ranges from 0.50 (Parana) to 0.65
(Mekong). Overall, the large deviation between the three datasets is
illustrated by a RMSD of ∼20% and correlations of ∼0.60. Interestingly,
MODIS does not have the closest comparison to CYGNSS despite being
used in the methodology. Both 𝑊𝐹𝐶𝑌𝐺𝑁𝑆𝑆 and 𝑊𝐹𝐺𝐼𝐸𝑀𝑆 show a
positive bias when compared to 𝑊𝐹𝑀𝑂𝐷𝐼𝑆 , which could be due either
to an overestimation of 𝑊𝐹𝐶𝑌𝐺𝑁𝑆𝑆 and 𝑊𝐹𝐺𝐼𝐸𝑀𝑆 with soil moisture,
or to an underestimation of 𝑊𝐹𝑀𝑂𝐷𝐼𝑆 because of the high vegetation
cover during the wet season.

Finally, for the samples with 𝑊𝐹𝐶𝑌𝐺𝑁𝑆𝑆 = 0, the mean (me-
dian) values of 𝑊𝐹𝐺𝐼𝐸𝑀𝑆 and 𝑊𝐹𝑀𝑂𝐷𝐼𝑆 are 1.9% (0%) and 0.9%
(0%), respectively, and the RMSD is 6.5% for 𝑊𝐹 and 4.0%
𝐺𝐼𝐸𝑀𝑆
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Fig. 9. Maximum Water Fraction at high water stage (May/June) and low water stage (October/November) in the Amazon basin, from JERS-1 (in 1995–1996), CYGNSS and
GIEMS (both in 2018–2019). (a) JERS-1 high water, (b) JERS-1 low water, (c) CYGNSS high water, (d) CYGNSS low water, (e) GIEMS high water, and (f) GIEMS low water. For
each case, the corresponding total surface water area is shown in red. (For interpretation of the references to color in this figure legend, the reader is referred to the web version
of this article.)
Table 3
Statistics of the regional comparison between CYGNSS and MODIS (C-M), CYGNSS and GIEMS (C-G) MODIS and GIEMS (M-G) Water Fractions,
using all the estimations from August 2018 to July 2019. The columns present the RMSD, bias, and correlation (R) over the Inner Niger Delta
(IND), the Mekong basin and the Parana basin. The samples with no water at all in either one of the two datasets compared are excluded from
the computation.

RMSD𝐼𝑁𝐷 Bias𝐼𝑁𝐷 R𝐼𝑁𝐷 RMSD𝑀𝐸𝐾 Bias𝑀𝐸𝐾 R𝑀𝐸𝐾 RMSD𝑃𝐴𝑅 Bias𝑃𝐴𝑅 R𝑃𝐴𝑅

C-M 21.7% 8.9% 0.56 18.3% 10.5% 0.69 26.2% 17.3% 0.42
C-G 24.9% −7.5% 0.61 19.1% −1.7% 0.61 20.4% 8.3% 0.59
G-M 31.8% 23.3% 0.59 17.4% 9.8% 0.65 18.7% 7.8% 0.50
for 𝑊𝐹𝑀𝑂𝐷𝐼𝑆 . These values statistically illustrate the low number of
missed detections in this comparison.

4.5. Inundation extent dynamics

The surface water extent in each pixel can be easily computed by
multiplying the WF by the pixel’s size (∼90–110 km2). This step permits
to analyze time series of surface water extent, either at the pixel’s scale
or aggregated over a particular area like a given river basin. Fig. 11
presents the results of this analysis conducted at the scale of the river
basin, for study areas located in South America (the Orinoco, Amazon
and La Plata/Parana), in Africa (the IND, Lake Chad and Congo), and
in Asia (the Ganges–Brahmaputra, Mekong and Yangtze). Both CYGNSS
(𝑆𝑊 𝐸𝐶𝑌𝐺𝑁𝑆𝑆 ) and GIEMS (𝑆𝑊 𝐸𝐺𝐼𝐸𝑀𝑆 ) surface water extent time
series are shown for all the basins with the MODIS-based estimates
(𝑆𝑊 𝐸 ) when available.
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𝑀𝑂𝐷𝐼𝑆
𝑆𝑊 𝐸𝐶𝑌𝐺𝑁𝑆𝑆 and 𝑆𝑊 𝐸𝐺𝐼𝐸𝑀𝑆 show a nearly identical seasonality
in all the river basins studied, with a correlation above 0.9 in most of
the cases. Their estimations at low water stage are close in all study
areas except in the Yangtze, which is remarkable as 𝑊𝐹𝐶𝑌𝐺𝑁𝑆𝑆 is
retrieved independantly from GIEMS. Moreover, the seasonal amplitude
in 𝑊𝐹𝐶𝑌𝐺𝑁𝑆𝑆 and 𝑊𝐹𝐺𝐼𝐸𝑀𝑆 are close in five basins: the Orinoco,
Amazon, Parana/La Plata, Lake Chad and Congo. GIEMS shows a higher
peak surface water extent in the IND and in the study areas located in
Asia, where monsoon regimes produce intense seasonal rainfall.

The comparison of 𝑆𝑊 𝐸𝐶𝑌𝐺𝑁𝑆𝑆 and 𝑆𝑊 𝐸𝐺𝐼𝐸𝑀𝑆 against MODIS-
based estimations (𝑆𝑊 𝐸𝑀𝑂𝐷𝐼𝑆 ) in the IND and LMB is consistent.
𝑆𝑊 𝐸𝑀𝑂𝐷𝐼𝑆 presents a similar seasonality with a quite lower am-
plitude than 𝑆𝑊 𝐸𝐶𝑌𝐺𝑁𝑆𝑆 (much lower than 𝑆𝑊 𝐸𝐺𝐼𝐸𝑀𝑆 ). In these
two study areas, both the spatial (Figure S3 and Fig. 10) and tem-
poral variations of surface water extent are correctly captured in our
CYGNSS-derived estimations. The larger seasonal flood signal in GIEMS
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Fig. 10. Pixel-by-pixel bias and RMSD obtained between 𝑊𝐹𝐶𝑌𝐺𝑁𝑆𝑆 and either 𝑊𝐹𝑀𝑂𝐷𝐼𝑆 (top two rows) or 𝑊𝐹𝐺𝐼𝐸𝑀𝑆 (3rd and 4th rows). The last row shows MODIS yearly
maximum NDVI in each study area. (a–d) Results over the Parana, (e–h) results over the Inner Niger Delta (IND), and (i–l) results over the Lower Mekong. A positive bias (pixels
in red in subplots a,c,f,h,k,m) means 𝑊𝐹𝐶𝑌𝐺𝑁𝑆𝑆 is greater than the other dataset. (For interpretation of the references to color in this figure legend, the reader is referred to the
web version of this article.)
when compared to both CYGNSS and MODIS indicates a likely overes-
timation of surface water extent in the IND and LMB by the former,
likely due to a high soil moisture content during the wet season.
Conversely, the comparison of 𝑆𝑊 𝐸𝐶𝑌𝐺𝑁𝑆𝑆 and 𝑆𝑊 𝐸𝐺𝐼𝐸𝑀𝑆 in the
Parana is very consistent both in seasonality and in amplitude, while
𝑆𝑊 𝐸𝑀𝑂𝐷𝐼𝑆 shows a much lower surface water extent at high water
stage. As it was previously pointed out, this is likely due to the higher
vegetation density found in the Parana during the wet season. This
produces abnormally low WF estimates by MODIS at high water stage
in areas such as the Pantanal wetlands. It is worth noting that although
𝑊𝐹𝐶𝑌𝐺𝑁𝑆𝑆 was trained with 𝑊𝐹𝑀𝑂𝐷𝐼𝑆 , it compares as well with
GIEMS as with MODIS surface water extent.

Finally, the surface water extent estimations from JERS-1
(𝑆𝑊 𝐸𝐽𝐸𝑅𝑆 ) at high and low water stages in the Amazon are indicated
in Fig. 11 in dark and light green, respectively. It is in both cases much
higher than the corresponding seasonal estimations from 𝑆𝑊 𝐸
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𝐶𝑌𝐺𝑁𝑆𝑆
and 𝑆𝑊 𝐸𝐺𝐼𝐸𝑀𝑆 . It suggests a possible underestimation of flood extent
in the Amazon as the GNSS-R coherent signal can be attenuated or
even lost with dense vegetation layers (Loria et al., 2020). The L-
band SAR-based wetland maps over the Amazon and the Congo basins
indicate a higher surface water extent at high water stage than both
𝑆𝑊 𝐸𝐶𝑌𝐺𝑁𝑆𝑆 and 𝑆𝑊 𝐸𝐺𝐼𝐸𝑀𝑆 (see Fig. 9 and Figure S2, respectively).
However, the SAR data used to create these maps are from 1995–1996
and 2009–2010 and a direct comparison thus neglects the interannual
variability as well as possible climate trends. Furthermore, an inter-
comparison of existing inundation datasets in the Amazon basin was
recently performed by Fleischmann et al. (2022). It concludes that the
SAR-based datasets (and especially the wetland maps from Hess et al.
(2015) we used in this study) systematically give a higher flood extent
than other methods. The long-term minimum and maximum surface
water extents given by this inter-comparison are 490,300 ± 204,800
km2 and 139,300 ± 127,800 km2, respectively. Both 𝑆𝑊 𝐸 and
𝐶𝑌𝐺𝑁𝑆𝑆
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Fig. 11. Time series of weekly surface water extent estimated from CYGNSS and GIEMS (upsampled from the 10-day GIEMS product), averaged for 9 River basins: (a) Orinoco,
(b) Amazon, (c) Parana/La Plata, (d) IND, (e) Chad (f), Congo, (g) Ganges-Brahmaputra, (h) LMB, and (i) Yangtze. Also shown, the MODIS surface water extent time series for the
Parana, IND and LMB, and the surface water extent at high and low water stages in the Amazon from Hess et al. (2015). The correlations between the time series of 𝑆𝑊 𝐸𝐶𝑌𝐺𝑁𝑆𝑆
and 𝑆𝑊 𝐸𝐺𝐼𝐸𝑀𝑆 (R𝐶−𝐺) and, when exist, 𝑆𝑊 𝐸𝑀𝑂𝐷𝐼𝑆 (R𝐶−𝑀 ), are printed in red in each subplot. (For interpretation of the references to color in this figure legend, the reader
is referred to the web version of this article.)
𝑆𝑊 𝐸𝐺𝐼𝐸𝑀𝑆 at low and high water stages in 2018–2019 are within the
range of these results when taking the large uncertainties into account.

4.6. Spatiotemporal dynamics of inundations

To highlight the potential of this new dataset for hydrological stud-
ies, we take here the example of the Llanos de Mojos in the South of the
Amazon basin. The inundations in these complex and large wetlands
are generated by both an endogenous process fed by local precipitation,
and an exogenous process due to a flood wave in the Mamore River
generated by intense rainfall over the Andes Range (Bourrel et al.,
2009). The flooded savannas around the Mamore, Beni, and Itenez
rivers correspond well to the spatial extent of inundations derived from
both JERS-1 and CYGNSS (Fig. 9). If we consider a square box between
−68◦ and −61◦ longitude and between −16.5◦ and −11.5◦ latitude,
centered on the Mamoré River, the maximum surface water extent
retrieved with CYGNSS and GIEMS are ∼79,300 and ∼80,050 km3,
respectively. This is close to the yearly maximum inundation extent
observed in this region with the Scanning Multichannel Microwave
Radiometer (SMMR) between 1979 and 1987 by Hamilton et al. (2004),
for example. The weekly information of 𝑊𝐹𝐶𝑌𝐺𝑁𝑆𝑆 at 0.1◦ could be
further used to decompose the different flooding processes and their
respective spatial extents, as achieved in Bourrel et al. (2009) for the
1997–1998 El-Niño event.
12
5. Discussion

The methodology developed here was shown to be efficient for
mapping the spatiotemporal variations of inundation extent over the
tropics. A special attention was given to the performances over vege-
tated regions including the dense tropical forests of the Amazon and
Congo basins. While the results presented above prove that both the
spatial distribution and the temporal variations of surface water extent
are consistent with most of the regional reference datasets, a large
dispersion was also highlighted (RMSD ∼20%, R ∼0.60). We discuss
here the choice of the methodology and some sources of error in our
retrieval model. We also highlight the large interest of CYGNSS and
spaceborne GNSS-R for monitoring the spatiotemporal dynamics of
inundations at large scale.

5.1. Retrieval model

The retrieval model proposed in this study is quite simple as it is
based on the assumption of the linearity between 𝛤𝑚𝑒𝑎𝑛 and the Water
Fraction. Previous studies stated, on the contrary, that relationships be-
tween CYGNSS reflectivity and the surface water are non-linear (Chew
and Small, 2020b). Here, we use the redundancy of CYGNSS obser-
vations within each pixel and compute their distribution statistics.
The linearity between 𝛤𝑚𝑒𝑎𝑛 (in linear units) and the Water Fraction
was illustrated in Fig. 3 for different AGB values. These curves were
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computed using the average 𝛤𝑚𝑒𝑎𝑛 per Water Fraction bin (2% bins)
instead of all samples in the learning dataset. The linear relationships
computed this way are more robust to noise, and they were shown to
better represent the spatiotemporal variations of inundations. The few
pixels affected by a large Water Fraction were underestimated when
using all the samples of the learning dataset, dominated by low WF.

We identified the contribution of the vegetation to the GNSS-R
signal and developed a correction for this effect. We used the AGB
maps from GlobBiomass (Santoro, 2018; Santoro et al., 2021) to bin
the learning dataset. Inside a single AGB interval, 𝛤𝑚𝑒𝑎𝑛 was expected
to vary linearly with the Water Fraction (see Fig. 3). On the contrary,
the slope and intercept of this linear relationship vary depending on the
average AGB in the pixel, as shown in Fig. 4. This was better modeled
using a third order polynomial fit, such that the final expression of the
relationship between 𝛤𝑚𝑒𝑎𝑛, the AGB, and the Water Fraction comprises
8 unknowns (𝑎𝑖 and 𝑏𝑖, 𝑖 ∈ [0, 3] in Eq. (6)). Modeling the attenuation
of GNSS-R signals by the vegetation and its influence on 𝛤𝑚𝑒𝑎𝑛 was
essential to correctly represent the dynamics of floods in densely veg-
etated regions. It permitted to retrieve fractional inundations in pixels
with an average AGB up to ∼300 Mg/ha in the Congo and Amazon
basins. Our methodology is based on a statistical more than physical
approach of the link between CYGNSS reflectivity and the Water Frac-
tion. Still, the evolution of slope and intercept against the AGB may
be physically-interpreted. For a moderate AGB, GNSS-R signals over
areas with low WF values are rapidly attenuated. On the contrary, a
strong forward scattering is still found over large floodplains. This is
a possible explanation for the intercept tending toward zero while the
slope slightly decreases in the 0–100 Mg/ha AGB range. For high-AGB
values, GNSS-R signals are strongly attenuated whatever the flooding
state. This explains the late and important slope increase in our model,
to account for the large decrease of 𝛤𝑚𝑒𝑎𝑛 over flooded areas.

Other geophysical parameters are not taken into account in our
retrieval model. The surface roughness and SM are commonly used
to describe the coherent reflected power, through the Rayleigh pa-
rameter and the Fresnel reflection coefficients (De Roo and Ulaby,
1994; Voronovich and Zavorotny, 2018). They also have been used
to parameterize the response of CYGNSS reflectivity to the presence
of surface water (Chew and Small, 2020b). In the next section, we
investigate the sensitivity of CYGNSS Water Fractions compared to the
reference datasets for different geophysical parameters, including SM.

5.2. Sources of error

We used the SMAP enhanced L3 9 km SM version 5 product re-
gridded at 0.1◦ and 7-day spatiotemporal resolution to analyze the
influence of the SM content on the results. The biases and the RMSD
between 𝑊𝐹𝐶𝑌𝐺𝑁𝑆𝑆 and 𝑊𝐹𝑀𝑂𝐷𝐼𝑆 (C-M) and between 𝑊𝐹𝐶𝑌𝐺𝑁𝑆𝑆
nd 𝑊𝐹𝐺𝐼𝐸𝑀𝑆 (C-G) were computed in 1% SM bins, and they are
hown in Fig. 12a-c for the Parana, IND and Mekong basins, respec-
ively. For the three basins, a similar pattern can be observed for the
omparison between CYGNSS and MODIS. The bias is around 0 for SM
0.3 cm3∕cm3, and then reaches 10%–20% for SM > 0.4 cm3∕cm3. This

reveals a logical overestimation of the WF derived from CYGNSS for
wet soils, as during intense rainfall periods. It is consistent with the
coherency of GNSS-R signals over saturated soils which was highlighted
in Collett et al. (2022), for example. On the contrary, the comparison
between CYGNSS and GIEMS does not show a significant trend on the
evolution of the biases across the three study areas. A larger RMSD
was found for high SM values, but it could be linked to larger floods
during the rainfall events. A negative bias is found over wet soils in
the IND and Mekong basins, which is consistent with the results from
Fig. 11 suggesting an overestimation of the inundated areas by GIEMS
during the large West African and Southeast Asian monsoons. Finally,
note that the SM derived from L-band radiometers (SMAP and SMOS) is
particularly affected by the presence of surface water, which introduces
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an overestimation of the SM during the wet season. This limits the use
of ancillary information in our retrieval model to correct the sensitivity
of GNSS-R observations to SM.

Fig. 12d–f shows a similar analysis conducted on the MODIS NDVI
values. Although we took into account the biomass in our retrieval
model, the vegetation has strong seasonal variations and can be the
cause of an underestimation of flooded areas, especially for the optical
sensors. It is also worth noting that the SM and NDVI have similar
seasonal variations and can be highly correlated. Here, contrasting
behaviors are observed in the three study areas. Over the Parana, the
bias between 𝑊𝐹𝐶𝑌𝐺𝑁𝑆𝑆 and 𝑊𝐹𝑀𝑂𝐷𝐼𝑆 is negative for NDVI < 0.4
and positive otherwise. CYGNSS estimations are greater than MODIS
over most of the NDVI range, while Fig. 10 highlighted the high NDVI
values at high water stage in the Parana. This backs up the hypothesis
of an underestimation of the surface water extent from MODIS due to
vegetation growth, while CYGNSS and GIEMS are in good agreement. In
the IND, a positive bias between 𝑊𝐹𝐶𝑌𝐺𝑁𝑆𝑆 and 𝑊𝐹𝑀𝑂𝐷𝐼𝑆 was also
observed for NDVI > 0.3. It could explain the larger amplitude observed
in CYGNSS and GIEMS in the central part of the IND at high water
stage (see Figure S3 and Fig. 10). Over the Mekong, a small positive
bias is found over the full NDVI range. Finally, the biases computed
between 𝑊𝐹𝐶𝑌𝐺𝑁𝑆𝑆 and 𝑊𝐹𝐺𝐼𝐸𝑀𝑆 mostly vary from ±10%, with
obvious spatial patterns observed across the three study areas.

Due to the lack of a consistent dataset of soil roughness at the scale
of the GPS L1 wavelength, this parameter was not studied. According to
models, an underestimation of fractional inundations is expected when
the surface roughness is high (Chew and Small, 2020b), because of
the loss of coherency in the GNSS-R signals (Loria et al., 2020). We
evaluated the influence of the topography (i.e. large scale roughness) on
the statistical comparisons performed between 𝑊𝐹𝐶𝑌𝐺𝑁𝑆𝑆 , 𝑊𝐹𝑀𝑂𝐷𝐼𝑆
and 𝑊𝐹𝐺𝐼𝐸𝑀𝑆 in the Parana and the Mekong basins. For this, we used
the SRTM30+ Global 1-km Digital Elevation Model (DEM) Version 11
for land surfaces (Sandwell et al., 2014), distributed by the Pacific
Islands Ocean Observing System (PacIOOS). The std height in each
0.1◦ pixel was computed and was used to bin the compared datasets,
and the results are presented in Figure S4. Surprisingly, no significant
differences were observed between the samples with high and low large
scale roughness. On the same figure, we evaluated the evolution of
the statistics depending on the AGB. Logically, consistent results were
obtained across the full AGB range in both Parana and Mekong basins,
because it was used as input to parameterize our model. Finally, the
barplots in Figure S4 present the same statistics computed for each
general land cover type, derived from the ESA CCI land cover maps
at 300 m resolution (ESA, 2017). The largest RMSD were obtained
for the open water and flooded herbaceous classes, in addition to the
irrigated croplands in the Mekong basin and especially in the Mekong
Delta. The biases of CYGNSS versus MODIS are largely positive for
the vegetated classes (irrigated cropland and flooded herbaceous). This
is another element indicating that MODIS is likely to underestimate
the inundation extent due to the limitations of optical signals over
vegetated wetlands.

6. Conclusion

In this study we proposed an algorithm for retrieving weekly frac-
tions of water at 0.1◦ spatial resolution based on CYGNSS reflectivity.
We assumed that the fraction of water in a pixel increases linearly with
𝛤𝑚𝑒𝑎𝑛, within each 5 Mg/ha range of biomass. Third order polynomial
fits against the AGB were used to account for the influence of the
vegetation on GNSS-R signals. The final model comprises 8 parameters
that were fitted using a learning dataset. We used reference surface
water maps based on MODIS over the Parana, Niger, and Mekong basins
and based on JERS-1 over the Amazon basin, for estimating the model
parameters required to further compute CYGNSS fractions of water
(𝑊𝐹𝐶𝑌𝐺𝑁𝑆𝑆 ). We also used GIEMS at global scale for an independent

comparison with our intertropical estimations of inundation extent.
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Fig. 12. Influence of the soil moisture (SM) and vegetation (NDVI) on the result of the statistical comparisons conducted between 𝑊𝐹𝐶𝑌𝐺𝑁𝑆𝑆 , 𝑊𝐹𝐺𝐼𝐸𝑀𝑆 and 𝑊𝐹𝑀𝑂𝐷𝐼𝑆 over the
Parana, IND and Mekong basins. (a–c) Bias and RMSD computed between 𝑊𝐹𝐶𝑌𝐺𝑁𝑆𝑆 and 𝑊𝐹𝑀𝑂𝐷𝐼𝑆 (C–M) and between 𝑊𝐹𝐶𝑌𝐺𝑁𝑆𝑆 and 𝑊𝐹𝐺𝐼𝐸𝑀𝑆 (C–G), as a function of the
SM content. (d–f) Same statistics computed as a function of the NDVI from MODIS. The statistics were computed for 1% SM and 0.01 NDVI bins. Only bins with at least 200
samples are shown here for the sake of robustness.
Our retrieval model demonstrated good performances over most
selected river basins. The spatial distribution of inundations at high
water stage is in good agreement with the reference maps, except over
the Parana basin where MODIS may be affected by the vegetation
growth, and over the Cuvette Centrale of Congo where long-term
inundation signals are detected but not short-term flood pulses un-
der the densest canopies. 𝑊𝐹𝐶𝑌𝐺𝑁𝑆𝑆 matches well the seasonality
of 𝑊𝐹𝑀𝑂𝐷𝐼𝑆 and 𝑊𝐹𝐺𝐼𝐸𝑀𝑆 datasets and the time series of total
inundated areas are consistent with the former, except once again over
the Parana basin. Statistically, our estimations were compared at the
regional scale with MODIS and GIEMS datasets and we obtained a
RMSD of ∼20% and a correlation of ∼0.60. A positive bias was found
between 𝑊𝐹𝐶𝑌𝐺𝑁𝑆𝑆 and 𝑊𝐹𝑀𝑂𝐷𝐼𝑆 . Two factors were identified to
account for these differences: (i) an overestimation of 𝑊𝐹𝐶𝑌𝐺𝑁𝑆𝑆 over
saturated soils, when the SM exceeds 0.3–0.4 cm3∕cm3, and (ii) an
underestimation of 𝑊𝐹𝑀𝑂𝐷𝐼𝑆 at high water stage due to the vegetation
growth, when the NDVI exceeds 0.4–0.5 (especially in the Parana
basin). On the contrary, the comparisons of 𝑊𝐹𝐶𝑌𝐺𝑁𝑆𝑆 and 𝑊𝐹𝐺𝐼𝐸𝑀𝑆
show low biases, despite some deviation in the estimations illustrated
by a global RMSD of 15.0%. It is finally worth noting that 𝑊𝐹𝑀𝑂𝐷𝐼𝑆
and 𝑊𝐹𝐺𝐼𝐸𝑀𝑆 are subjected to their own, large uncertainties.

Overall, we evaluated the WF maps proposed over a large range
of environments, spanning from the semi-arid areas in the IND to
the dense tropical forests in the Amazon and Congo basins. Some
limitations are still to be taken into account in our retrieval model,
e.g. the overestimation highlighted over saturated soils and coastal
pixels. Nevertheless, we also highlighted the large benefit of these
estimations over tropical wetlands for the hydrological community.
First, 𝑊𝐹 shows a much higher level of spatial detail than
14

𝐶𝑌𝐺𝑁𝑆𝑆
previously obtained with GIEMS, due to the higher spatial resolution
of CYGNSS coherent observations and their averaging into a 0.1◦ grid
(against 0.25◦ for GIEMS). Then, the weekly time sampling allows a
fine mapping of the inundation dynamics, for regions affected by short
or multiple flood pulses. Finally, CYGNSS has been operating since
2016 and its successors like the ESA’s HydroGNSS mission will extend
both the current time series of spaceborne GNSS-R acquisitions over the
tropics and its spatial coverage, especially over polar regions.
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