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Artificial neural network prediction of the water retention curve from physical soil 
parameters: comparing continuous and pointwise approaches 

Prédiction par un réseau de neurones artificiels de la courbe de rétention à partir des paramètres 
physiques du sol : comparaison des approches continue et par points 

 

Adel Abdallah 

Université de Lorraine, CNRS, LEMTA, Nancy, France 

 

ABSTRACT: The soil water retention curve (SWRC) is a key characteristic for solving unsaturated transient hydraulic and coupled 
hydromechanical problems in geotechnical applications. Its determination in the laboratory is however still costly, time-consuming, 
and uncertain. Several pedo-transfer functions able to predict the SWRC based on the soil physical properties were developed but 
their applicability is generally restricted by the limited locally or regionally available soils data. With the recent developments, the 
availability of large international databases and the bringing into the practice of machine and deep learning algorithms, allowed the 
elaboration statistics-empowered predictive functions for the SWRC with improved performance. In this paper, two Artificial Neural 
Networks are trained to predict the curve using data extracted from the UNSODA database (Leij et al. 1996). The original dataset 
includes drying and wetting tests’ data covering over 790 different soils from all over the world. The prediction of fitted van 
Genuchten (1980) model’s parameters (continuous) is compared with a pointwise prediction network for which the soil suction is 
added to the predictors. The results show a better performance of pointwise prediction when comparing the global metrics but an 
advantage in the favor of the continuous prediction in terms of curve consistency. 
 
RÉSUMÉ : La courbe de rétention de l’humidité du sol (CRHS) est une caractéristique clé dans la résolution des problèmes 
géotechniques dans le domaine non saturé (hydrauliques ou hydromécaniques). Sa détermination est cependant encore couteuse, longue 
et incertaine. Plusieurs fonctions de pédo-transfert afin de la prédire en se servant de paramètres physiques du sol mais leur applicabilité 
est restreinte par la représentativité locale ou régionale des données ayant servi à leur détermination. Récemment, la disponibilité de 
larges bases de données et la mise en pratique des algorithmes d’apprentissage automatique et profond, ont permis de proposer des 
fonctions prédictives plus performantes et basées sur les statistiques. Dans cette communication, deux réseaux de neurones artificiels ont 
été entraînés pour prédire la CRHS en utilisant des données extraites de la base de données UNSODA (Leij et al. 1996) représentant plus 
de 790 sols. La prédiction des paramètres du modèle continu de van Genuchten (1980) est comparée avec une prédiction point par point 
qui considère la succion comme un prédicteur additionnel. Les résultats montrent une meilleure performance de la prédiction point par 
point pour les indicateurs globaux mais donnent un avantage à la prédiction continue en termes de consistance de la courbe prédite. 

KEYWORDS: Artificial neural network, water retention, machine learning, prediction, unsaturated soils. 

1  INTRODUCTION 

The soil water retention curve (SWRC) refers to the function 
describing the evolution of the soil’s volumetric water content 
(alternatively degree of saturation) vs. suction (or pore-water 
potential). This function is of primary importance in various 
geotechnical engineering problems involving unsaturated soils. 
Its determination from laboratory or field hydraulic tests is 
however still costly and often tricky requiring the combination of 
different suction measurement or imposing techniques to cover 
the entire suction range. The highly non-linear shape of this 
function has led to the development of multi-parameter 
mathematical models to complete the description of the SWRC 
for the numerical modelling requirements. The high relative 
errors associated with suction measurement/imposition, the 
overlapping of techniques with varying accuracy, and the limited 
number of experimental points, frequently complicate the 
optimization process of the models’ parameters. An additional 
complexity rises from the non-univocity of the SWRC depending 
on the followed path (wetting or drying).    

Many researchers (Rawls et al. 1982, Schaap et al. 2001, 
Nemes et al. 2006, Baker 2008, Ghanbarian-Alavijeh & Millán 
2010, etc.) had developed alternative mathematical relations to 
predict either the SWRC models’ parameters, or pointwise 
SWRC based on physical and geotechnical routine identification 
tests as the soil bulk/dry densities, consistency limits for fine-
textured soils, and the parameters of the particle-size distribution 
as clay/silt/sand percentages. These so-called Pedo-Transfer 
Functions (PTFs) are formulated using various statistical 
regression techniques, and more recently Artificial Neural 
Networks (ANNs). They are convenient in practice, but their use 

is often limited by the soils range covered by the dataset on which 
they were calibrated.  

An Artificial Neural Network (ANN) is a computational 
method based on the simplified functioning of biological neural 
cells. The network is an assembly of an input layer, one or more 
hidden layers, and an output layer of artificial neurons. Each 
artificial cell, receives several input parameters, computes a 
weighed linear combination (with weights and bias terms), and 
generates an output using an activation function. The output is 
transmitted as an input to the next neuron until reaching the 
network output layer. The weights and bias terms of all cells are 
gradually optimized by scanning the training dataset and using 
the algorithm of back-propagation of error gradient, this step is 
referred to as the training phase. ANNs have been shown to be a 
very efficient technique for classification, clustering and 
regression tasks in different engineering and science fields. They 
are at the heart of Artificial Intelligence (AI) developments.    

Recently, advances in using AI-based methods stimulated 
their application to the SWRC prediction from routine 
geotechnical identification parameters (essentially dry/bulk 
density and grain-size fractions). Large datasets issued from 
international databases have been used for training and testing 
the developed models. The SWRC is predicted using statistics-
based regression algorithms with the selected most significant 
predictors available in the training dataset. Pham et al. (2019) 
thoroughly analysed ANN-based PTFs for SWRC prediction.  
Indeed, they compared different network architectures and 
various training algorithms and concluded that the Bayesian 
Regulation method outperformed the Levenberg-Marquardt and 
Conjugate Gradient Descent methods whatever the used 
architecture. Bayesian Regulation is a probability-based 
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optimization algorithm offering the advantage of not requiring a 
validation subset of data as do other training methods, but its 
computational cost is slightly higher. Moreover, they compared 
using the full available dataset and a processed dataset from 
which outliers have been withdrawn. The ANNs trained using the 
processed dataset showed enhanced performance compared to 
the ANNs trained on the full dataset. The authors concluded that 
the data quality significantly influences the obtained results.   
Typically, two different approaches have been notably used: 
continuous and pointwise predictions.  

The continuous approach assumes that the SWRC can be 
described using a mathematical equation selected among the 
various ones available in the literature, the van Genuchten (1980) 
equation being the most popular function (designated here by 
vG). The developed model is then designed to predict the 
equation’s parameters using several selected input parameters. 
The continuous approach’s main advantages are its suitability for 
incorporation in available numerical simulation codes and 
guarantee of curve shape consistency. Their drawbacks are (i) the 
lack of flexibility to adapt to SWRC non-standard shapes (bi- or 
multimodal) and to non-monotonous paths (including alternation 
of drying and wetting steps) and (ii) the incorporation of 
additional errors relative to model adequacy and to the 
parameters’ fitting procedure.  

The pointwise approach is on the contrary suited for adapting 
to the effective soil behavior and is theoretically able to integrate 
the hysteretic wetting-drying alternate paths. Nevertheless, when 
it is based on machine learning methods which are subject to the 
well-known issue of overfitting, a particular attention should be 
put on checking their capacity to generalize to unseen data 
patterns which lie out of the ranges covered by the training 
dataset. In the pointwise approach, the suction is used as an 
additional input to predict the corresponding volumetric water 
content resulting in a SWRC point prediction. Pros and cons, 
literature 

This paper aims at comparing the performance of the two 
approaches using a SWRC dataset extracted from the UNSODA 
unsaturated soil hydraulic database (Leij et al. 1996).  

2  MATERIALS AND METHODS 

UNSODA contains data from 790 different soils including point 
records of the SWRC and hydraulic conductivity/diffusivity 
along with basic identification parameters as grain-size 
distribution data, particle density, porosity, saturated volumetric 
water content, etc.) whenever available. Abdallah (2019) by 
testing different machine learning algorithms concluded that the 
quality of data corresponding to the wetting path in UNSODA is 
neither quantitatively, nor qualitatively, sufficient for predicting 
the SWRC. Only the data issued from laboratory water retention 
drying tests are considered in this study. The data were mainly 
obtained from pressure plate and tensiometer measurements. 
These methods cover different ranges and have different 
accuracies which leads to relatively high variance in the data. As 
per soil classification, sands are over-represented in the database 
(Leij et al. 1996). 

2.1  Data preparation 

Based on the correlation coefficients between the candidate 
parameters and the target (volumetric water content), five 
predictors were selected (Abdallah 2019): suction, porosity, and 
clay/silt/sand fractions. The originally extracted dataset had to be 
reorganized to make it convenient for the regression analysis. For 
instance, redundant points, rows missing the main predictor 
(suction), soils with more than 50% missing data were deleted. 
The cleaned dataset resulted in 1551 records corresponding to 
203 different soils. To avoid any effect of the variables’ different 

magnitude, the dataset was normalized by applying the minmax 
scaling. 

2.2  Network architecture and training 

In this study, a standard ANN architecture in Matlab® was used. 
It consists of a one 10-neuron hidden layer with hyperbolic 
tangent (tanh) activation functions for all nodes. The network is 
trained by the Bayesian Regulation algorithm (Mathworks 2020), 
using a random partition of the data to 80% for training, 20% for 
testing. 

2.3  Pointwise SWRC prediction 

To improve the dataset quality, soils with more than 50% records 
containing missing parameters were deleted. The cleaned dataset 
is composed of 1159 records corresponding to 144 different soils. 
Figure 1 shows a simplified flowchart of the pointwise prediction 
model. 

2.4  Continuous SWRC prediction 

For each soil in the dataset, the vG model (equation 1) parameters 
 and n, were fitted to the suction-volumetric water content data 
using the Levenberg-Marquardt algorithm (Mathworks 2020). 
 𝜃𝜃 = 𝜃𝜃𝑟𝑟 + (𝜃𝜃𝑠𝑠 − 𝜃𝜃𝑟𝑟) ( 11+(𝛼𝛼 𝑠𝑠)𝑛𝑛)𝑛𝑛−1𝑛𝑛

 (1) 

 

with s, being the suction while s and r, are the saturated and 

residual volumetric water content values, respectively. 
 
 When missing, s was assumed equal to the porosity and r was 
fixed to 0.1. Lower/upper bounds: 0.03 ≤  ≤ 5 kPa-1, and 1 ≤ n 
≤ 5, were imposed to keep the physical meaning of the optimized 
parameters based on literature (Carsel & Parrish 1988). Fittings 
resulting in a coefficient of determination R² lower than 0.75 
were rejected. This process ended up with 103 records of fitted 
curves. Six predictors (porosity, clay/silt/sand fractions, s, and 
r) and two targets ( and n) were selected for the regression. 

Different configurations have been tested for the ANN 
architecture and the best performance was obtained when two 
connected networks were used. The first standard network was 
used to predict n using the six predictors. The second standard 
network used the six predictors plus the previously predicted n, 
to predict . Figure 2 shows the simplified flowchart of the 
prediction vG continuous model. 

3  RESULTS AND DISCUSSION 

In this section, the overall regression performance of the two 
models is evaluated on the entire dataset through the coefficient 
of correlation (R) and the Root Mean Standard Errors (RMSE) as 
metrics. Afterwards, the predicted SWRC on three selected 
reference soils are compared and discussed. 

 
 
 

 
 

Figure 1. Flowchart of the ANN pointwise prediction model. 
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Figure 2. Flowchart of the ANN vG continuous prediction model. 

3.1  Pointwise SWRC prediction 

The predicted  is plotted against the target value on figure 3. 
With a RMSE of 0.027, the performance of the pointwise 
prediction model is globally satisfactory. It is worth noticing 
however that the residual prediction error appears to be too high 
for certain points (up to 0.14). Higher residual errors concentrate 
around 0.35 target value which corresponds to the median s 
value in the dataset. It is well known that suction measurement 
accuracy is lower for near-saturation states and this could explain 
this observation. 

 
Figure 3. ANN point-wise predicted values of soil volumetric water 
content vs. measured values in the UNSODA drying laboratory tests 
cleaned dataset. 

3.2  Continuous SWRC prediction 

Figure 4 compares the predicted and target values of the vG 
parameter n. The overall performance of the model appears to be 
poor with a RMSE of 0.326 as compared to the median value of 
n in the dataset (1.38). This likely results from the combination 
of the data error with additional errors relative to the vG model 
adequacy and the fitting procedure.    

Figure 5 shows the predicted and target values of the vG 
parameter . The global performance of the model with a RMSE 
of 0.458 is quite acceptable if one omits the data points with the 
target value of 5 which is the upper bound imposed in the fitting 
procedure. A major part of the error for these points can probably 
be attributed to the fitting over the SWRC data series. The vG 
model was likely inconvenient to correctly fit the data for the 
corresponding soils. 

3.3  Discussion 

To further discuss the obtained results and comparatively 
evaluate the two approaches’ performance, three reference soils 
(Table 1) were selected in the dataset. These soils represent at 
most to the maximum clay, silt, and sand contents, respectively. 

The position of these soils with respect to all the soils in the 
cleaned dataset are shown on the ternary textural diagram 
(Figure 6). Table 1 summarizes the main parameters of the 
reference soils. Given that the dataset is mainly dominated by 
sandy soils, the regression performance on the reference sand is 
expected to be better than on the references clay and reference 
silt. 

 

 
Figure 4. Continuous ANN predicted values of the n vG parameter vs. 
fitted values on soils’ data from the UNSODA drying laboratory tests 
cleaned dataset. 

 
Figure 5. Continuous ANN predicted values of the  vG parameter vs. 
fitted values on soils’ data from the UNSODA drying laboratory tests 
cleaned dataset. 

 
Table 1. Reference soils parameters. 

Reference soil Clay  Silt Sand 

Sand fraction (%) 33 32 97.3 

Silt fraction (%) 13 46 0 2 

Clay fraction (%) 54 22 2.5 

Porosity (-) 0.58 0.356 0.361 

s (-)  0.577 0.356* 0.361 

r (-) 0.1* 0.1* 0.024 

*fixed to the lower or upper bound. 

 

Figures 7 to 9 compare the measured SWRC data with the 
pointwise predictions (markers) and the vG fit on measured data 
with the vG continuous predictions for the reference clay, silt, 
and sand respectively (lines). The main outcome is that the two 
models captured the shape of the SWRCs and successfully 
reproduced the range of . For the reference clay and silt, 



𝜃𝜃 = 𝜃𝜃𝑟𝑟 + (𝜃𝜃𝑠𝑠 − 𝜃𝜃𝑟𝑟) ( 11+(𝛼𝛼 𝑠𝑠)𝑛𝑛)𝑛𝑛−1𝑛𝑛
 

 
≤  ≤ ≤ 

≤ 5


 


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pointwise prediction tended to overestimate  while the vG 
continuous predictions were likely to underestimate it. These 
trends are more pronounced on the reference clay than the on the 
reference silt. 

 

 
Figure 6. USCS-SCS ternary diagram for textural classification of the 
UNSODA drying laboratory tests cleaned dataset (represented using 
Graham & Midgley 2000). 

 
Figure 7. Comparison of the measured and fitted SWRC with the 
pointwise and continuous vG predicted SWRC for reference clay. 

 
Figure 8. Comparison of the measured and fitted SWRC with the 
pointwise and continuous vG predicted SWRC for reference silt. 

 
Figure 9. Comparison of the measured and fitted SWRC with the 
pointwise and continuous vG predicted SWRC for reference sand. 

 
Clay soils being under-represented in the training data, the 

accuracy and consistence of the predictions are low as it could 
expected. On the reference sand, the models’ predictions are 
quite comparable. However, even if the data is dominated by 
sands, the SWRC predicted by the pointwise model for the 
reference sand exhibits a local discrepancy around 10 kPa of 
suction. This kind of error is avoided when using a continuous 
function prediction ensuring the consistency of the predicted 
curve.  

The use of the vG theoretical equation is shown to efficiently 
accommodate data imprecision. Considering the general 
appreciations on the entire curve’s representation, the pointwise 
approach although having demonstrated acceptable performance, 
appears to be subject to local inconsistency. The use of the 
continuous prediction based on a mathematical model can 
address this issue by guaranteeing the SWRC shape theoretical 
compliance. 

4  CONCLUSIONS 

In this paper, two different approaches were used and compared 
for predicting the SWRC from basic geotechnical parameters. 
The Dataset used for training the two models was extracted from 
the UNSODA database and includes drying laboratory test data. 
The two models used feedforward ANNs trained using Bayesian 
Regulation algorithm. The first model (pointwise) used 
geotechnical parameters and suction to predict the volumetric 
water content providing one point of the SWRC at a time. The 
second model (continuous vG) used two connected ANNs to 
predict  and n vG parameters from geotechnical inputs. 

The preliminary analysis and cleansing on the original data 
lead to drastically decrease the size of the dataset to favor the 
data quality.  

Considering the standard metrics for evaluation the prediction 
performance on the training-testing data (i.e., R and RMSE), the 
pointwise prediction outperformed the continuous vG prediction. 
This can be attributed to the difference in the size of the datasets 
and to the additional errors introduced by the fitting of the vG 
model on experimental data series of each soil in the database. 

However, after analyzing and comparing the predicted curves 
by the two models with the corresponding original inputs, it 
appeared that the continuous vG approach provided more 
consistent results even for all reference soils selected in the 
database.      

Further investigations are required for improving the 
developed continuous vG model. Improvements could include: 

- the use of alternative SWRC equations and selection of 
the model based on the best fit; 
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- investigation of using the data fitting evaluation (R²) as 
an indicator for modulating the weight of the records 
according to the associated confidence level. 
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