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ABSTRACT
The development of phase-resolved real-time wave forecast-

ing is outlined. This framework is an enhancement over previous
work in that the algorithm of real-time wave prediction is extended
into multidirectional seas by including the wave measurements
and components in direction. However, the computations with
multidirectional seas become much more numerically expensive,
and hence it is often not possible to accomplish a real-time sys-
tem of nonlinear ocean wave prediction. Accordingly, we sug-
gest an improved assimilation procedure in the process of wave
reconstruction, which is proven to alleviate the computational
costs and establish the numerical stability of the Lagrangian ap-
proach. In addition, given an observation zone recorded by an
optical sensor mounted on a fixed offshore structure, we provide a
spatio-temporal prediction zone where it is suitable to obtain the
prediction of the wave field by evolving the reconstructed wave
information in time and space. In order to validate the phase-
resolved wave forecasting, we conducted a tank-scale experi-
mental campaign with unidirectional seas (long-crested waves)
and multidirectional seas (short-crested waves). Through the
comparison of model performance against the laboratory data
between unidirectional and multidirectional seas, it is confirmed
that the directional wave components are necessarily considered
to increase model accuracy in the multidirectional case as in the
unidirectional case.
Keywords: Ocean waves, Phase-resolved model, Real-time
prediction

1. INTRODUCTION
In the study of marine science and ocean engineering, real-

time ocean wave predictions have an impact on operations of
surface vessels [1, 2], ocean wave energy harvesting systems
[3, 4], and designs of offshore structures [5]. In particular, the
control strategies of floating offshore wind turbines (FOWTs)
require an accurate real-time forecast of the incoming surface
wave conditions.

The disadvantage of phase-averaged models (e.g., SWAN,
[6]) in ocean wave prediction is that the lack of phase infor-
mation in the average quantities renders them to have inherent
difficulties in capturing accurate and detailed nonlinear wave dy-
namics. Alternatively, phase-resolved models accounting for a
history of phase correlations provide the instantaneous state of
ocean wave motion and the statistical properties in relation to
surface wave dynamics. In an attempt to forecast the ocean wave
surface from the spatio-temporal, several authors have reported
on the development of phase-resolved reconstruction and predic-
tion algorithms from large spatio-temporal data sets of surface
wave elevations obtained by an optical system [1, 2, 7, 8].

In the present study, we extend the phase-resolved real-time
ocean wave prediction in the case of multidirectional sea states.
Due to the time constraints in the real-time prediction, the wave
model based on the linear wave theory is mainly employed since
the wave prediction model leads to the process of wave model
inversion where we obtain the initial condition as a form of am-
plitude coefficients from the wave elevation measurements in time
and space. However, in real conditions, the inclusion of nonlin-
earity is important to provide a more accurate prediction of wave
surface. The nonlinearity must be included in the simulation of
ocean wave surface, particularly when it comes to the severe sea
states in terms of wave steepness.

In order to achieve a good balance between the computational
efficiency and the model accuracy, we employ wave models on
the basis of Lagrangian analysis, since the Lagrangian model at
the equivalent order, compared to the Eulerian counterparts, ap-
pears to be particularly attractive in the study of waves in steep
conditions [9]. Further, in the case of multidirectional wave
fields, more challenging computational costs are expected due
to the great increases in wave components and wave measure-
ments to address directional spreading in comparison with the
unidirectional case. Hence, we propose a simplified and succinct
assimilation method in the process of reconstruction, which leads
to a significant reduction in the computational effort. The exper-
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imental work was carried out at École Centrale de Nantes (ECN)
to mimic the measurements of a LIDAR in a real configuration
with multidirectional seas (short-crested waves) as well as uni-
directional seas (long-crested waves). Through the comparison
of the model results by the linear model and the second-order
nonlinear model in the unidirectional and multidirectional cases
to the experimental data, we investigate the effect of spreading
and multidirectional wave effects on real-time wave prediction.

2. WAVE MODELS
2.1 Linear wave model

A Cartesian coordinate system (𝑥, 𝑦, 𝑧) = (r, 𝑧) is selected,
with 𝑥, 𝑦 located on the mean water surface, and 𝑧 taken positive
vertically upwards from the still water level. For inviscid, incom-
pressible, and irrotational fluid, a linear ocean surface elevation
is derived from the linearized water wave boundary problem with
respect to wave steepness:

𝜂LWT (𝑥, 𝑦, 𝑡) =
𝑁∑︂
𝑛=1

[𝑎𝑛 cos𝜓𝑛 + 𝑏𝑛 sin𝜓𝑛] (1)

where subscript 𝑛 indicates the 𝑛th wave component vector, 𝑛 =

(𝑛𝜔 , 𝑛𝜃 ) with 𝑛𝜔 and 𝑛𝜃 indicating 𝑛𝜔th components in frequency
and direction, respectively. The total number of wave components
is 𝑁 = 𝑁𝜔 × 𝑁𝜃 and a combination of the complex amplitude 𝐴𝑛
and the phase 𝜑𝑛 yields the wave amplitude parameters (𝑎𝑛, 𝑏𝑛) =
(𝐴𝑛 cos 𝜑𝑛, 𝐴𝑛 sin 𝜑𝑛). The linear phase function is given:

𝜓𝑛 = k𝑛 · r − 𝜔𝑛𝑡 (2)

where the propagating direction 𝜃𝑛𝜃 with respect to the +𝑥-
direction determines the unit wave vector wavenumber vector
k̂𝑛𝜃 = (cos 𝜃𝑛𝜃 , sin 𝜃𝑛𝜃 ). The wavenumber vector k𝑛 and the unit
wave vector k̂𝑛𝜃 are related as k̂𝑛𝜃 = k𝑛/𝑘𝑛𝜔 . The magnitude of
wavenumber 𝑘𝑛𝜔 is related to the wave angular frequency 𝜔𝑛𝜔
by the linear dispersion relation in deep water. We note here that
the extension to finite water depth is straightforward.

2.2 Improved choppy wave model
In order to achieve an efficient simulation, Nouguier et al.

[10] derived the choppy wave model (CWM) based on the La-
grangian approach on the nonlinear ocean surface. Since then,
to overcome a significant drawback of CWM regarding the lack
of nonlinearity in its celerity, Guérin et al. [11] formulated the
improved choppy wave model (ICWM) from the second-order La-
grangian expression. To connect the wave information recorded
in the form of time series based on the Eulerian coordinate system
with the Lagrangian-based models, ICWM was transformed into
the approximated model in the Eulerian system [8, 11]. The free
surface elevation by ICWM is given as:

𝜂ICWM (𝑥, 𝑦, 𝑡) =
𝑁∑︂
𝑛=1

[𝑎𝑛 cosΨ𝑛 + 𝑏𝑛 sinΨ𝑛 +
1
2
(𝑎𝑛2 + 𝑏𝑛2)𝑘𝑛]

(3)
in which the nonlinear phase function for ICWM Ψ𝑛 retains the
nonlinear phase shift and Stokes drift U𝑠0:

Ψ𝑛 = k𝑛 · [r −
𝑁∑︂
𝑖=1

k𝑖 (−𝑎𝑖 sin 𝜓̃𝑖 + 𝑏𝑖 cos 𝜓̃𝑖)] − 𝜔̃𝑛𝑡 (4)

U𝑠0 =

𝑁∑︂
𝑛=1

(𝑎𝑛2 + 𝑏𝑛2)𝜔𝑛k𝑛 (5)

where a tilde superscript refers to the modified variables with
Stokes drift (i.e., 𝜔̃𝑛 = 𝜔𝑛 + 1

2k𝑛 ·U𝑠0 and 𝜓̃𝑛 = k𝑛 · r− 𝜔̃𝑛𝑡). For
the zero-mean sea level, the last term in Eq. (3) is introduced.

3. DATA ASSIMILATION
Real-time phase-resolved ocean wave predictions are car-

ried out by first data assimilation to reconstruct wave amplitude
parameters on the basis of measurements 𝜂, and then wave pre-
diction to simulate wave surfaces over a prediction zone. The
wave amplitude parameters (𝑎𝑛, 𝑏𝑛) are specified by the model
inversion from measurements on the assumption of unchanged
amplitudes over a certain zone in the space-time domain. By
means of a variational approach [12], we determine the optimized
parameters via an optimization process minimizing a quadratic
cost function representing the difference between predicted and
measured ocean surface elevations (𝜂𝑙 and 𝜂𝑙):

𝐹 (p) = 1
2

𝐿∑︂
𝑙=1

[𝜂𝑙 (p) − 𝜂𝑙]2 =
1
2

𝐽∑︂
𝑗=1

𝐾∑︂
𝑘=1

[𝜂 ( 𝑗 ,𝑘 ) (p) − 𝜂 ( 𝑗 ,𝑘 ) ]2

(6)
where the 𝑙th spatio-temporal measurement is indicated by 𝑙, a
pair of 𝑙 = ( 𝑗 , 𝑘); 𝑗 and 𝑘 refer to the measured data at spatial
point 𝑟𝑗 = (𝑥𝑗 , 𝑦𝑗 ) and time 𝑡𝑘 , respectively. We define the total
number of spatio-temporal data points 𝐿 by the size of data in
space and time 𝐽 and 𝐾 , respectively (i.e., 𝐿 = 𝐽×𝐾). Then, the
derivatives of the cost function with respect to the parameters p
yield the system of equations with matrix operation Ap = B:

𝜕𝐹

𝜕𝑎𝑚
= 0 ⇒

𝐿∑︂
𝑙=1

𝜂𝑙
𝜕𝜂𝑙

𝜕𝑎𝑚
=

𝐿∑︂
𝑙=1

𝜂𝑙
𝜕𝜂𝑙

𝜕𝑎𝑚
⇒ 𝐴(𝑚,𝑛) 𝑝𝑛 = 𝐵𝑚

𝜕𝐹

𝜕𝑏𝑚
= 0 ⇒

𝐿∑︂
𝑙=1

𝜂𝑙
𝜕𝜂𝑙

𝜕𝑏𝑚
=

𝐿∑︂
𝑙=1

𝜂𝑙
𝜕𝜂𝑙

𝜕𝑏𝑚
⇒ 𝐴(𝑁+𝑚,𝑛) 𝑝𝑛 = 𝐵𝑁+𝑚

(7)
where the model coefficient 1 × 2𝑁 vector p consists of 𝑝𝑛 = 𝑎𝑛
and 𝑝𝑁+𝑛 = 𝑏𝑛 for 𝑛, 𝑚 ∈ {1, ..., 𝑁}2.

3.1 Linear assimilation
The assimilation matrices (A and B) during the wave recon-

struction procedure rely on the wave propagating model and are
given for LWT:

𝐴𝐿𝑊𝑇(𝑚,𝑛) =
𝐿∑︂
𝑙=1

cos𝜓𝑛𝑙𝑃𝐿𝑊𝑇𝑚𝑙 , 𝐴𝐿𝑊𝑇(𝑚,𝑁+𝑛) =
𝐿∑︂
𝑙=1

sin𝜓𝑛𝑙𝑃𝐿𝑊𝑇𝑚𝑙

𝐴𝐿𝑊𝑇(𝑁+𝑚,𝑛) =
𝐿∑︂
𝑙=1

cos𝜓𝑛𝑙𝑄𝐿𝑊𝑇𝑚𝑙 , 𝐴𝐿𝑊𝑇(𝑁+𝑚,𝑁+𝑛) =
𝐿∑︂
𝑙=1

sin𝜓𝑛𝑙𝑄𝐿𝑊𝑇𝑚𝑙

𝐵𝐿𝑊𝑇𝑚 =

𝐿∑︂
𝑙=1

𝜂𝑙𝑃
𝐿𝑊𝑇
𝑚𝑙 , 𝐵𝐿𝑊𝑇𝑁+𝑚 =

𝐿∑︂
𝑙=1

𝜂𝑙𝑄
𝐿𝑊𝑇
𝑚𝑙

(8)
with

𝑃𝐿𝑊𝑇𝑚𝑙 = cos𝜓𝑚𝑙 , 𝑄𝐿𝑊𝑇𝑚𝑙 = sin𝜓𝑚𝑙 (9)

where 𝜓𝑚𝑙 = k𝑚𝑙 · r𝑙 − 𝜔𝑚𝑡𝑙 .
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3.2 Nonlinear assimilation

Unlike the linear system, since the nonlinear phase function
for ICWM Ψ𝑛 containing the nonlinear phase shift and Stokes
drift U𝑠0 includes the amplitude parameter, we need to proceed
iteratively to find the amplitude parameters. The system of non-
linear assimilation was previously derived [8]:

𝐴𝐼𝐶𝑊𝑀(𝑚,𝑛) =

𝐿∑︂
𝑙=1

(cosΨ𝑛𝑙 +
1
2
𝑎𝑛𝑘𝑛)𝑃𝐼𝐶𝑊𝑀𝑚𝑙

𝐴𝐼𝐶𝑊𝑀(𝑚,𝑁+𝑛) =
𝐿∑︂
𝑙=1

(sinΨ𝑛𝑙 +
1
2
𝑏𝑛𝑘𝑛)𝑃𝐼𝐶𝑊𝑀𝑚𝑙

𝐴𝐼𝐶𝑊𝑀(𝑁+𝑚,𝑛) =
𝐿∑︂
𝑙=1

(cosΨ𝑛𝑙 +
1
2
𝑎𝑛𝑘𝑛)𝑄𝐼𝐶𝑊𝑀𝑚𝑙

𝐴𝐼𝐶𝑊𝑀(𝑁+𝑚,𝑁+𝑛) =
𝐿∑︂
𝑙=1

(sinΨ𝑛𝑙 +
1
2
𝑏𝑛𝑘𝑛)𝑄𝐼𝐶𝑊𝑀𝑚𝑙

𝐵𝐼𝐶𝑊𝑀𝑚 =

𝐿∑︂
𝑙=1

𝜂𝑙𝑃
𝐼𝐶𝑊𝑀
𝑚𝑙 , 𝐵𝐼𝐶𝑊𝑀𝑁+𝑚 =

𝐿∑︂
𝑙=1

𝜂𝑙𝑄
𝐼𝐶𝑊𝑀
𝑚𝑙

(10)

with

𝑃𝐼𝐶𝑊𝑀𝑚𝑙 = cosΨ𝑚𝑙 − [𝑘𝑚 (𝑎𝑚 sinΨ𝑚𝑙 − 𝑏𝑚 cosΨ𝑚𝑙)
× {sin 𝜓̃𝑚𝑙 − [𝑘𝑚 (𝑎𝑚 cos 𝜓̃𝑚𝑙 + 𝑏𝑚 sin 𝜓̃𝑚𝑙) + 1]
× 𝑎𝑚𝜔𝑚𝑘𝑚𝑡𝑙}] + 𝑎𝑚𝑘𝑚

𝑄𝐼𝐶𝑊𝑀𝑚𝑙 = sinΨ𝑚𝑙 − [𝑘𝑚 (𝑎𝑚 sinΨ𝑚𝑙 − 𝑏𝑚 cosΨ𝑚𝑙)
× {− cos 𝜓̃𝑚𝑙 − [𝑘𝑚 (𝑎𝑚 cos 𝜓̃𝑚𝑙 + 𝑏𝑚 sin 𝜓̃𝑚𝑙) + 1]
× 𝑏𝑚𝜔𝑚𝑘𝑚𝑡𝑙}] + 𝑏𝑚𝑘𝑚

(11)

where Ψ𝑚𝑙 = k𝑚𝑙 · [r𝑙 −
𝑁∑︁
𝑖=1

(−𝑎𝑖 sin 𝜓̃𝑖𝑙 + 𝑏𝑖 cos 𝜓̃𝑖𝑙)] − 𝜔̃𝑚𝑡𝑙 and

𝜓̃𝑖𝑙 = k𝑖 · r𝑙 − 𝜔̃𝑖𝑡𝑙 .
The solution matrix at the 𝑞th iteration is referred to as p𝑞 .

The solution at the first iteration is initialized from the linear
solution, and the parameter vector p𝑞+1 at the current iteration
𝑞 +1 is obtained based on the computed matrix by using p𝑞 at the
previous iteration 𝑞. If the relative error between solutions of p at
two successive iterations becomes smaller than a fixed tolerance
parameter (set to 10−3), the assimilation process stops. Also, we
consider the maximum iteration number of 100 to account for the
severely ill-conditioned or divergent case.

In the matrix system for ICWM shown in Eq. (10), the com-
putational effort is more associated with the second factors (i.e.,
𝑃 and𝑄) rather than the first factors (e.g., cosΨ𝑛𝑙 + 1

2𝑎𝑛𝑘𝑛). This
is due to the components retaining the derivative of the nonlinear
phase function with respect to the amplitude coefficients and thus
being more variable at every iteration. Accordingly, we can sim-
plify the nonlinear assimilation matrices (A and B) for ICWM
by truncating 𝑃 and 𝑄 up to the order of unity. The simplified
assimilation nonlinear matrices for ICWM (ICWM-S) consist of

the first parts of ICWM, and 𝑃 and 𝑄 of LWT:

𝐴𝐼𝐶𝑊𝑀−𝑆
(𝑚,𝑛) =

𝐿∑︂
𝑙=1

(cosΨ𝑛𝑙 +
1
2
𝑎𝑛𝑘𝑛)𝑃𝐿𝑊𝑇𝑚𝑙

𝐴𝐼𝐶𝑊𝑀−𝑆
(𝑚,𝑁+𝑛) =

𝐿∑︂
𝑙=1

(sinΨ𝑛𝑙 +
1
2
𝑏𝑛𝑘𝑛)𝑃𝐿𝑊𝑇𝑚𝑙

𝐴𝐼𝐶𝑊𝑀−𝑆
(𝑁+𝑚,𝑛) =

𝐿∑︂
𝑙=1

(cosΨ𝑛𝑙 +
1
2
𝑎𝑛𝑘𝑛)𝑄𝐿𝑊𝑇𝑚𝑙

𝐴𝐼𝐶𝑊𝑀−𝑆
(𝑁+𝑚,𝑁+𝑛) =

𝐿∑︂
𝑙=1

(sinΨ𝑛𝑙 +
1
2
𝑏𝑛𝑘𝑛)𝑄𝐿𝑊𝑇𝑚𝑙

𝐵𝐼𝐶𝑊𝑀−𝑆
𝑚 =

𝐿∑︂
𝑙=1

𝜂𝑙𝑃
𝐿𝑊𝑇
𝑚𝑙 , 𝐵𝐼𝐶𝑊𝑀−𝑆

𝑁+𝑚 =

𝐿∑︂
𝑙=1

𝜂𝑙𝑄
𝐿𝑊𝑇
𝑚𝑙

(12)

The simplified method could be justified for use in the proce-
dure of nonlinear assimilation as the derivation of the numerical
wave model is based on the assumption of small wave amplitudes.
We will verify this simplified approach by comparing the result-
ing ocean wave surfaces from both assimilation methods (i.e., the
previous and simplified ones) with the experimental results later.

4. EXPERIMENTAL DATA
We present an experimental setup mimicking measurements

coming from remote measurements such as LIDAR (Light de-
tection and ranging) cameras during one of the campaigns of the
FLOATECH project. The experiment was conducted at the geo-
metric scale of 1:40 in the hydrodynamic and ocean engineering
tank at École Centrale de Nantes (ECN), which is a 30-m wide,
50-m long, and 5-m deep water testing volume. Waves are gen-
erated by a wavemaker at one end of the tank, consisting of 48
individual hinged flaps, and absorbed by a beach at the other end.
We generated a random wave field using a Pierson-Moskowitz
spectrum [13] with a peak period 𝑇𝑝 = 12 s, a significant wave
height 𝐻𝑠 = 7 m, a peak wavelength 𝐿𝑝 = 225 m at full scale
(corresponding to a moderate nonlinear sea state, 𝐻𝑠/𝐿𝑝 = 3.1%
and deep water, 𝑘𝑝𝑑 ≈ 5.6), and its main propagating direction
along the 𝑥-axis, 0◦. The wave directionality is considered by the
angular spreading function proposed by Mitsuyasu et al. [14]:

𝐺 (𝜃) = 22𝑠−1

180
(𝑠!)2

(2𝑠)! cos2𝑠
(︃
𝜃

2

)︃
for 𝜃 ∈ [−180◦, 180◦] (13)

Figure 1 details an experimental setup for a multidirec-
tional wave field obtained from the optical remote sensing sys-
tem where the sensor is located at a location of (𝑥𝑐, 𝑦𝑐, 𝑧𝑐) =

(19.86 m, 15 m, 30 m) and aimed at some distance (𝛼 = 76◦) with
vertical and horizontal aperture angles (𝛼𝑎 = 20◦ and 𝛽𝑎 = 64◦).
Through 𝐽𝑟×𝐽𝜃 rays with 𝐽𝑟 = 20 and 𝐽𝜃 = 9, the measurement
zone forms a shape of a radial segment (see Figure 2). The wave
measurements at all the wave gauges in the experiment satisfied
repeatability. We reconstructed a network of wave gauges thanks
to the repeatability as well as the rotating straight structure. We
made this choice of probe locations in this experiment without
considering the actual locations that would result from the inter-
section between optical rays and an irregular ocean surface.
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WG21

𝒙

𝒚

𝒛

𝑦𝑐

𝑥𝑐

𝑧𝑐

𝛽𝑎

𝛼

𝛼𝑎

𝐽𝑟

𝐽𝜃

WG24

beachwavemaker

FIGURE 1: EXPERIMENTAL SETUP BY AN OPTICAL SYSTEM (•:
WAVE OBSERVATIONS; ▲: TARGET LOCATION, WG21; ■: THREE
ADDITIONAL DOWNSTREAM WG22, WG23, AND WG24).

FIGURE 2: LOCATION OF WAVE GAUGES (•: WAVE OBSERVA-
TIONS; ▲: TARGET LOCATION, WG21; ■: THREE ADDITIONAL
DOWNSTREAM WG22, WG23, AND WG24).

Of several wave conditions in the campaign of the FLOAT-
ECH project, we address case A with moderate directional spread-
ing and wave steepness (𝑠 = 25 and 𝐻𝑠/𝐿𝑝 = 3.1%). Figure 3
shows the normalized spectral energy density of the free surface
elevation 𝑆∗𝜂 = 𝑆𝜂 𝑓𝑝/(𝐻2

𝑠/16). The straight ladder on which 20
wave gauges are located, with the gaps between gauges varying
with the distance from the center of rotation, was allowed to ro-
tate with the evenly-spaced nine angles (𝐽𝜃 = 9) on the 𝑥𝑦-plane
ranging from −32◦ to 32◦. Also, as a reference case, the second
dataset used to analyze the performance of wave models is a uni-
directional case B with the same values of 𝐻𝑠 and 𝑇𝑝 where a
structure parallel to the 𝑥-axis was used only and 𝑠 = ∞ denotes
the long-crested waves in Table 1. Four additional downstream
wave gauges were installed along 𝑦 = 𝑦𝑐, including the target
location (referred to as WG21) and farthest gauge WG24 for the

gauge 0.12𝐿𝑝 far away from WG21.
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FIGURE 3: OCEAN WAVE DIRECTIONAL SPECTRUM OF CASE A.

TABLE 1: EXPERIMENTAL SETUP AND WAVE PARAMETERS.

Case 𝑠 𝐽𝜃 𝐻𝑠 (m) 𝑇𝑝 (s)
A 25 9 7 12
B ∞ 1 7 12

5. PREDICTION ZONE
5.1 Cutoff frequencies and directions

To use the dataset obtained from the experimental test cam-
paign, a judicious choice of cutoff frequencies and directions
should be made in advance to provide a suitable phase-resolved
wave prediction. As in the previous study [8], we determine the
cutoff frequencies based on the spectral density at peak angular
frequency 𝜔𝑝 with a small parameter of 𝜇 = 0.05:

𝑆𝜂 (𝜔min) = 𝑆𝜂 (𝜔max) = 𝜇𝑆𝜂 (𝜔𝑝) (14)

where 𝑆𝜂 (𝜔) refers to the wave spectrum at the angular frequency
𝜔, and 𝜔min and 𝜔max yields the group velocities 𝑐𝑔max and 𝑐𝑔min
by the deep water approximation of linear dispersion relation,
respectively. Next, in order to retain most of the spectral energy,
we set the directional cutoff limits 𝜃min = −45◦ and 𝜃max = 45◦;
this directional range contains 99.5% of the spectral energy in the
directional case A (see Figure 3).

5.2 Temporal evolution of prediction zone
To address the prediction zone over which the wave predic-

tion is available, a similar approach based on the group velocity
within the prespecified frequency and direction bandwidths is
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followed as in the previous study [8, 15, 16]. We here suggest
the prediction zone when measurements are provided using an
optical system mounted on the offshore structure over an assimi-
lation time 𝑇𝑎. The multidirectional predictable spatio-temporal
domain is determined by the intersection of a unidirectional pre-
diction zone within the prescribed wave propagating direction
bandwidth 𝜃 ∈ [−45◦, 45◦].

Figure 4 illustrates the observation zone and the prediction
zone at the latest time of wave reconstruction 𝑡 = 𝑡𝑟 . For the
sake of simplicity, we consider the simplified boundaries of ob-
servation by using the left and right boundaries with the selected
measurement points.

 

x

        

  

     
  
 

     

          
 

        

  

 

 

 

 

 

     

           

    

   

         

x

                 

                  

 

  

  

     +        

            

  

      

  

 

 

 

     
  
 

     

   

           

(a)

(b)

FIGURE 4: OBSERVATION AND PREDICTION ZONES: (A) OBSER-
VATION ZONE; (B) PREDICTION ZONE (DASHED: LEFT BOUND-
ARY; SOLID: RIGHT BOUNDARY; RED SHADING: NOWCAST; GRAY
SHADING: FORECAST).

The segment of each boundary propagates in +𝑥-direction
differently depending on its propagating direction 𝜃, therefore,
the greater the propagating direction 𝜃, the faster the segment
propagates in +𝑥-direction. As a result, the temporal prediction
zone 𝑡′ = 𝑡 − 𝑡𝑟 ∈ [𝑡′min, 𝑡

′
max] at any location 𝑥 along 𝑦 = 𝑦𝑐 is

given as:

𝑡′min = max[−𝑇𝑎,−𝑇𝑎 +
𝑥 − 𝑥𝐻
𝑐𝑔min

]

𝑡′max = min[ 𝑥 − 𝑥𝐷
𝑐𝑔max

cos(𝜃𝐵/2),
𝑥 − 𝑥𝐵 + 𝑦𝐵
𝑐𝑔max

cos 45◦]
(15)

where the half of horizontal aperture angle is 𝜃𝐵 = 𝛽𝑎/2. Further,
by substituting 𝜃𝐵 = 0, the temporal prediction zone for the
multidirectional case is reduced to that of the unidirectional case:

max[−𝑇𝑎,−𝑇𝑎 +
𝑥 − 𝑥𝐻
𝑐𝑔min

]≤𝑡′≤ 𝑥 − 𝑥𝐷
𝑐𝑔max

. (16)

6. NUMERICAL SIMULATIONS
6.1 Normalized misfit error

In order to provide an accurate evaluation of model perfor-
mance, we employ an ensemble average of normalized misfit
error by using partly overlapping surface samples, shifted in time
by Δ𝑡:

𝜀 (𝑥, 𝑦, 𝑡) = 1
𝑁𝑠

𝑁𝑠∑︂
𝑖=1

|︁|︁𝜂𝑝𝑟𝑒𝑑,𝑖 (𝑥, 𝑦, 𝑡) − 𝜂𝑟𝑒 𝑓 ,𝑖 (𝑥, 𝑦, 𝑡)|︁|︁
𝐻𝑠

(17)

where 𝜂𝑝𝑟𝑒𝑑,𝑖 and 𝜂𝑟𝑒 𝑓 ,𝑖 denote the prediction and reference val-
ues of surface elevation from the 𝑖th surface sample, respectively.

Here, the time shift between two consecutive surface samples
Δ𝑡 plays a significant role in the total number of surface samples
𝑁𝑠 yielding the convergence. We use the number of surface
samples 𝑁𝑠 = 400 (or 𝑇𝑐/𝑇𝑝 ≈ 25) which is required to reach
the convergence in prediction error for both cases. The smaller
Δ𝑡, the faster convergence for the prediction error, resulting in the
less total time duration during the assimilation procedure over 𝑁𝑠
samples for the convergence (i.e.,𝑇𝑐 = 𝑇𝑎+(𝑁𝑠−1)Δ𝑡) despite the
convergence error which is independent of Δ𝑡 [8]. Accordingly,
we useΔ𝑡/𝑇𝑝 = 0.053 which is small enough to ensure converged
results. The normalized misfit error is further averaged over the
time prediction zone [𝑡min, 𝑡max]:

𝜀𝑝 (𝑥, 𝑦) = 1
𝑡max − 𝑡min

∫ 𝑡max

𝑡min

𝜀 (𝑥, 𝑦, 𝑡) 𝑑𝑡 (18)

6.2 Wave parameters
In the following, we employ the spatio-temporal ocean sur-

face (where the number of data is 𝐽×𝐾) acquired by an opti-
cal sensor at grazing incidence in the process of wave assimila-
tion/reconstruction, and then evolve in time and space to offer
the ocean surface forecast. We used all the measured data for
each experimental case, therefore, the numbers of measurement
points in space 𝐽 = 𝐽𝑟×𝐽𝜃 for Cases A and B are 20×9 and 20,
respectively. The assimilation time 𝑇𝑎, over which the wave field
is reconstructed from the wave measurement, directly yields the
number of measurement data in time 𝐾 . In order to gain an ef-
ficient numerical effort and model accuracy simultaneously, we
conducted an optimization process with respect to the assimila-
tion time 𝑇𝑎 as shown in Figure 5. For all the cases of this study,
the normalized misfit errors are converged for 𝑇𝑎/𝑇𝑝 ≈ 5.2, cor-
responding to 𝐾 = 100.

5 Copyright © 2023 by ASME; 
reuse license CC-BY 4.0

D
ow

nloaded from
 http://asm

edigitalcollection.asm
e.org/O

M
AE/proceedings-pdf/O

M
AE2023/86878/V005T06A104/7047808/v005t06a104-om

ae2023-104857.pdf by guest on 12 D
ecem

ber 2023



FIGURE 5: PREDICTION ERROR OF ICWM AT WG21 AGAINST
Ta/Tp (SOLID: CASE A; DASHED: CASE B).

The bandwidths of the reconstructed wave field are re-
quired to be defined from the numerical point of view, where
the wavenumber bandwidths are determined by the advection of
wave information during 𝑇𝑎 as well as the distance between wave
gauges (or observation grid). Accordingly, the wavenumber of
the first frequency mode is obtained by the sum of the largest hor-
izontal distance with respect to the 𝑥-axis between wave gauges,
namely, the beginning and end of gauges (𝑥𝑏 and 𝑥𝑒) and the prop-
agating distance of the right boundary over 𝑇𝑎 into +𝑥-direction
(see Figure 4):

𝑘1 =
2𝜋

𝑥𝑒 − 𝑥𝑏 + 𝑐𝑔,𝑁𝜔
𝑇𝑎

(19)

Here, it confirms that the last wave component in frequency
(𝑛𝜔 = 𝑁𝜔) is necessarily prespecified in defining the minimum
cutoff limit (or 𝑘1). Following Desmars et al. [8], we use a linear
proportional relation between 𝑘𝑁𝜔

and 𝑁𝜔 with 𝑘𝑁𝜔
= 20𝑘𝑝

and 𝑁𝜔 = 50 in order to fix the identical spacing in between
the cutoff limits. The prediction error decreases with increasing
𝑁𝜔 , and converges to a minimum at 𝑁𝜔 = 30, corresponding to
𝑘𝑁𝜔

= 12𝑘𝑝 , which is consistent with the finding of Desmars et
al. [7] that 𝑘𝑁𝜔

= 12𝑘𝑝 may be sufficiently large for addressing
an appropriate inversion of the wave reconstruction. For the
directional bandwidth, we use the same limits as in the prediction
zone [𝜃min = −45◦, 𝜃max = 45◦] in the numerical simulation.
As for the number of wave components in frequency 𝑁𝜔 , the
sensitivity analysis with respect to the number of directional wave
components 𝑁𝜃 is also conducted.

Figure 6 shows that the optimal number of wave components
for multidirectional case A is determined as 𝑁 = 𝑁𝜔×𝑁𝜃 = 30×7
from the sensitivity analysis. The dash-dot line denotes the results
for the unidirectional case B by using the identical number of wave
components in frequency, that is, 𝑁 = 𝑁𝜔 × 𝑁𝜃 = 30, which
can provide a precise comparison with a consistent approach
in the unidirectional case. While the change in the frequency
bandwidth with respect to 𝑁𝜔 makes little difference in results,
the increase of 𝑁𝜃 leads to a sharp reduction in the prediction
error in comparison to the unidirectional approach by 𝑁𝜃 = 1.
It is confirmed from the comparison of results between both
cases that the multidirectional approach including the directional
aspect reaches the model accuracy which is equivalent to that in
the unidirectional case.

FIGURE 6: PREDICTION ERROR OF ICWM AT WG21: (A) AGAINST
N /θ; (B) AGAINST N /ω (SOLID: CASE A; DASHED: CASE B).

6.3 Results
First, the ability of the simplified nonlinear assimilation is

verified by comparing the prediction errors of the previous and
the newly-developed methods. The time length of the practical
prediction zone from the latest time of nowcast 𝑡𝑟 to when the re-
constructed information becomes obsolete 𝑡max at WG21, namely,
𝑡′max = 𝑡max − 𝑡𝑟 is about 1.8𝑇𝑝 = 21.6 s at full scale. Therefore,
the constraint for a real-time system is that the total numerical
time 𝑇𝑡𝑜𝑡𝑎𝑙 , summation of times for nowcast 𝑇𝑛𝑜𝑤𝑐𝑎𝑠𝑡 and fore-
cast 𝑇𝑓 𝑜𝑟𝑒𝑐𝑎𝑠𝑡 , has to be smaller than 1.8𝑇𝑝 = 21.6 s. Table 2
compares the prediction error (𝜀𝑝) as well as numerical cost and
efficiency. When it comes to the time duration, the nowcast re-
constructing the wave amplitudes far outweighs the forecast simu-
lating wave surfaces with the reconstructed wave amplitudes (i.e.,
𝑇𝑛𝑜𝑤𝑐𝑎𝑠𝑡≫𝑇𝑓 𝑜𝑟𝑒𝑐𝑎𝑠𝑡 ). The simplified method appears to offer a
significant improvement with respect to computational efficiency
and stability over the previous one, with maintaining the model
performance. In particular, the simplified method allows real-
time phase-resolved wave forecasting (𝑇𝑡𝑜𝑡𝑎𝑙 < 𝑡′max = 𝑡max − 𝑡𝑟 ).
Here, it would be opportune to discuss the benefit of reducing
the computational cost. The final objective of the wave predic-
tion is to be able to control the wind turbine to minimize the
motions of the platform and/or to maximize energy production.
The wind turbine controller needs to know the incoming waves or
the resulting excitation force in advance in order to perform the
control. With a lead time of 16.2 s, this should allow the set-up of
such a control strategy on a FOWT. We notice that this significant
improvement is consistent with the increase in the spatial extent
of the prediction zone that can have some practical applications.

Figure 7 compares the descriptions of wave surface by ICWM
and LWT with laboratory observations. Model predictions are
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TABLE 2: COMPARISON BETWEEN ASSIMILATION METHODS
FOR CASE A AT WG21 WHERE PRACTICAL PREDICTION ZONE IN
TIME tmax − tr ≈ 21.6 S AT FULL SCALE.

Method Previous, Eq.(10) Simplified, Eq.(12)
𝑇𝑛𝑜𝑤𝑐𝑎𝑠𝑡 59.04 5.40
𝑇𝑓 𝑜𝑟𝑒𝑐𝑎𝑠𝑡 < 0.01 < 0.01
𝑇𝑡𝑜𝑡𝑎𝑙 59.04 5.40

Iteration number
(max = 100) 23.3 6.2

Convergence
probability
(𝑁𝑠 = 400)

88%
(346)

97%
(388)

𝜀𝑝 0.0429 0.0431

in overall good agreement with the observations, both for mul-
tidirectional and unidirectional cases. In order to quantitatively
assess the model performances in the multidirectional case A,
both models are further checked with the temporal evolution of
the ensemble average of misfit error 𝜀 over the surface samples
within the temporal prediction zone [𝑡min, 𝑡max] (see Figure 8).
As shown in Figure 8(a), the theoretical prediction zone over-
laps with the time horizon where the prediction errors remain
significantly small, where the value of minimum error is 3.99%
by LWT, which is decreased by about 9% when using ICWM.
Moreover, ICWM is somewhat more advantageous at 𝑡 = 𝑡max
with the maximum misfit error of 5.93%, while it is 6.74% by
LWT, which is about 14% larger compared to ICWM. Further,
Figure 8(b) shows that the theoretical prediction zone in time and
space agrees successfully with the resulting surface error at all
the locations along the centerline.

FIGURE 7: TIME SERIES OF SURFACE ELEVATION AT WG21: (A)
CASE A; (B) CASE B (SOLID: DATA; DASHED: ICWM; DOTTED:
LWT).

Lastly, we examine the effect of the directional spreading
and the propagating distance from the wave measurement zone
on the phase-resolved wave forecast (see Figure 9). Above all, the
model performances by both linear and nonlinear models become
relatively more deleterious with the increasing distance from the
observation zone. In other words, the most significant prediction
errors in both cases become the greatest for all the models at
WG24, to which the propagating distances from the end of 𝑥𝑒
are about 0.28𝐿𝑝. It is not a surprising result since the wave

FIGURE 8: EVOLUTION OF PREDICTION ERROR FOR CASE A: (A)
USING ICWM AND LWT AT WG21; (B) USING ICWM AT ALL WGS
ALONG y = yc (SOLID: ICWM; DASHED: LWT; DASH-DOT: BOUND-
ARIES OF PREDICTION ZONE; RED SHADING: NOWCAST; GRAY
SHADING: FORECAST; VERTICAL WHITE LINES: x -LOCATION OF
WGS ALONG y = yc ; BLACK RECTANGLE: ASSIMILATED DATA
SET).

information obtained from the system of equations to assimilate
observation data is increasingly in error as waves propagate in
space and time.

Regardless of whether the sea state is unidirectional or direc-
tional, the nonlinear models demonstrate nearly the same results
at every downstream location in terms of the normalized misfit
error. In contrast, the ratio of prediction errors by ICWM to that
by LWT is quite different between the multidirectional and uni-
directional cases; the performance improvement by the nonlinear
model is more pronounced for the unidirectional cases. In com-
parison to the model based on linear wave theory, the nonlinear
model on the basis of Lagrangian analysis retains the summation
in Eq. (4) (or geometric nonlinearity) and Stokes drift U𝑠0 in its
equation. The angular directionality leads the effect of Stokes
drift to be negligible in comparison to the unidirectional case.
Stokes drift in the nonlinear phase function is represented as a
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second-order term in wave steepness, therefore, the summation
of the directional wave components becomes less dominant than
that in the unidirectional condition. This is mainly due to the fact
that the summation of the more decomposed components in the
direction for one frequency mode is smaller.

FIGURE 9: SPATIAL EVOLUTION OF PREDICTION ERROR: (A) ER-
ROR BY ICWM; (B) COMPARISON OF ERROR BETWEEN ICWM
AND LWT (SOLID: CASE A; DASHED: CASE B).

7. CONCLUSION
The wave prediction algorithm with the simplified assimila-

tion method is validated against the dedicated experimental data
in the directional case with maintaining the model accuracy as
in the unidirectional case. The major findings are given below:
(1) the advantage of using the simplified assimilation approach is
the significant reduction in numerical cost; (2) the overall results
demonstrate that the model predictions by LWT and ICWM are
in overall good agreement with the observations; (3) the perfor-
mance improvement by the nonlinear model is less obvious for
the directional case due to the decomposition into the directional
wave components.

ACKNOWLEDGMENTS
This work was done within the framework of the European

H2020 FLOATECH project, Grant agreement ID: 101007142.
The authors acknowledge the support of the French Agence Na-
tionale de la Recherche (ANR), under grant ANR-20-CE05-0039
(project CREATIF).

REFERENCES
[1] Grilli, Stéphan T, Guérin, Charles-Antoine and Goldstein,

Bart. “Oceanwave reconstruction algorithms based on
spatio-temporal data acquired by a flash LiDAR camera.”

The Twenty-first International Offshore and Polar Engineer-
ing Conference: pp. 275–282. 2011. OnePetro.

[2] Nouguier, Frédéric, Grilli, Stéphan T and Guérin, Charles-
Antoine. “Nonlinear ocean wave reconstruction algorithms
based on simulated spatiotemporal data acquired by a flash
LIDAR camera.” IEEE Transactions on Geoscience and
Remote Sensing Vol. 52 No. 3 (2013): pp. 1761–1771.

[3] Li, Guang, Weiss, George, Mueller, Markus, Townley, Stu-
art and Belmont, Mike R. “Wave energy converter control
by wave prediction and dynamic programming.” Renewable
Energy Vol. 48 (2012): pp. 392–403.

[4] Previsic, Mirko, Karthikeyan, Anantha and Lyzenga, David.
“In-ocean validation of a deterministic sea wave prediction
(DSWP) system leveraging X-band radar to enable optimal
control in wave energy conversion systems.” Applied Ocean
Research Vol. 114 (2021): p. 102784.

[5] Ma, Yu, Sclavounos, Paul D, Cross-Whiter, John and Arora,
Dhiraj. “Wave forecast and its application to the optimal
control of offshore floating wind turbine for load mitiga-
tion.” Renewable Energy Vol. 128 (2018): pp. 163–176.

[6] Booĳ, NRRC, Ris, Roeland C and Holthuĳsen, Leo H. “A
third-generation wave model for coastal regions: 1. Model
description and validation.” Journal of geophysical re-
search: Oceans Vol. 104 No. C4 (1999): pp. 7649–7666.

[7] Desmars, Nicolas, Pérignon, Yves, Ducrozet, Guillaume,
Guérin, Charles-Antoine, Grilli, Stephan T and Ferrant,
Pierre. “Phase-resolved reconstruction algorithm and deter-
ministic prediction of nonlinear ocean waves from spatio-
temporal optical measurements.” International Conference
on Offshore Mechanics and Arctic Engineering, Vol. 51272:
p. V07BT06A054. 2018. American Society of Mechanical
Engineers.

[8] Desmars, Nicolas, Bonnefoy, Félicien, Grilli, ST, Ducrozet,
Guillaume, Perignon, Yves, Guérin, C-A and Ferrant,
Pierre. “Experimental and numerical assessment of deter-
ministic nonlinear ocean waves prediction algorithms using
non-uniformly sampled wave gauges.” Ocean Engineering
Vol. 212 (2020): p. 107659.

[9] Pierson Jr, Willard J. “Models of random seas based on
the Lagrangian equations of motion.” Technical report no.
New York Univ Bronx School of Engineering and Science.
1961.

[10] Nouguier, Frédéric, Guérin, Charles-Antoine and Chapron,
Bertrand. ““Choppy wave” model for nonlinear gravity
waves.” Journal of geophysical research: oceans Vol. 114
No. C9 (2009): pp. 1–16.

[11] Guérin, Charles-Antoine, Desmars, Nicolas, Grilli,
Stéphan T, Ducrozet, Guillaume, Perignon, Yves and Fer-
rant, Pierre. “An improved Lagrangian model for the time
evolution of nonlinear surface waves.” Journal of Fluid
Mechanics Vol. 876 (2019): pp. 527–552.

[12] Blondel, E, Bonnefoy, F and Ferrant, P. “Deterministic
non-linear wave prediction using probe data.” Ocean Engi-
neering Vol. 37 No. 10 (2010): pp. 913–926.

[13] Pierson Jr, Willard J and Moskowitz, Lionel. “A proposed
spectral form for fully developed wind seas based on the

8 Copyright © 2023 by ASME; 
reuse license CC-BY 4.0

D
ow

nloaded from
 http://asm

edigitalcollection.asm
e.org/O

M
AE/proceedings-pdf/O

M
AE2023/86878/V005T06A104/7047808/v005t06a104-om

ae2023-104857.pdf by guest on 12 D
ecem

ber 2023



similarity theory of SA Kitaigorodskii.” Journal of geo-
physical research Vol. 69 No. 24 (1964): pp. 5181–5190.

[14] Mitsuyasu, Hisashi, Tasai, Fukuzo, Suhara, Toshiko,
Mizuno, Shinjiro, Ohkusu, Makoto, Honda, Tadao and Riki-
ishi, Kunio. “Observations of the directional spectrum of
ocean WavesUsing a cloverleaf buoy.” Journal of Physical
Oceanography Vol. 5 No. 4 (1975): pp. 750–760.

[15] Wu, Guangyu. “Direct simulation and deterministic pre-
diction of large-scale nonlinear ocean wave-field.” Ph.D.
Thesis, Massachusetts Institute of Technology. 2004.

[16] Qi, Yusheng, Wu, Guangyu, Liu, Yuming and Yue, Dick KP.
“Predictable zone for phase-resolved reconstruction and
forecast of irregular waves.” Wave Motion Vol. 77 (2018):
pp. 195–213.

9 Copyright © 2023 by ASME; 
reuse license CC-BY 4.0

D
ow

nloaded from
 http://asm

edigitalcollection.asm
e.org/O

M
AE/proceedings-pdf/O

M
AE2023/86878/V005T06A104/7047808/v005t06a104-om

ae2023-104857.pdf by guest on 12 D
ecem

ber 2023


	Abstract
	1 Introduction
	2 Wave models
	2.1 Linear wave model
	2.2 Improved choppy wave model

	3 Data assimilation
	3.1 Linear assimilation
	3.2 Nonlinear assimilation

	4 Experimental data
	5 Prediction zone
	5.1 Cutoff frequencies and directions
	5.2 Temporal evolution of prediction zone

	6 Numerical simulations
	6.1 Normalized misfit error
	6.2 Wave parameters
	6.3 Results

	7 Conclusion
	Acknowledgments
	References



