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ABSTRACT 

This paper presents an approach to estimate link travel 

time in urban areas. This approach consists of a data fusion 

from underground loop detectors and probe vehicles 

equipped with global positioning system (GPS). This method 

is expected to be more accurate, reliable and robust than using 

either of these data sources alone. In this approach, an 

algorithm is developed. This algorithm is based on the 

unscented Kalman filter using vehicle counts and flows from 

loop detectors located at the end of every link, and travel time 

from probe vehicles. From these counts the average travel time 

is calculated using the “cumulative plot” method. Furthermore, 

in order to incorporate the GPS data, a map-matching method 

is used to associate a travel time to the appropriate link. 

 

Keywords: unscented Kalman filter, loop detector, probe vehicle, 

map-matching, travel time estimation 

INTRODUCTION 

Travel time is the time required to traverse a route 

between any two points of interest. This information is 

an important parameter that can be used to identify and 

assess operational problems as well to measure the 

effectiveness of transportation systems. Travel times in 

excess (delay) causes indirect costs to drivers in terms of 

lost time, discomfort and frustration, and a direct cost in 

terms of fuel consumption. An excessive delay reflects 

the inefficiency of the system performance. Travel time 

information is easy to be perceived by users and has the 

potential to reduce congestion on both temporal and 

spatial scales. By reducing congestion, it provides traffic 

flow that reduces vehicle emissions and energy 

consumption, global warning and greenhouse effect. As 

a result, it maximizes the efficiency and capacity of the 

road network. 

Travel time estimation has been an important 

research topic for decades. But most of these research 

estimate travel time for arterial/freeway areas. 

Different techniques are used to estimate the travel 

time on roads. These techniques depend on the type of 

system used to collect traffic data. These systems may 

rely on traditional methods such as loop detectors [1], or 

advanced methods such as vehicle tracking devices by 

GPS or driver mobile phone (called probe vehicle) [2]. 

The traffic data obtained from magnetic loops provide 

information adjacent to where the detectors are installed 

(point measurement) while data from probe vehicles 

provide information describing the vehicle behavior. 

Thus, the traffic information obtained from a point 

measurement must be carefully used to estimate the 

spatial behavior of traffic. Similarly, information 

obtained from a vehicle sensor must be carefully used to 

estimate the behavior of all vehicles traversing. 

However, both of them have some inherent flaws. 

For loop detectors, one major critic on the data is the 

high probability of error, for instance, due to equipment 

failure. Thus, it is necessary to verify the accuracy of 

data collected by loop detectors before the data can be 

used. For probe vehicles, the two main drawbacks are 

poor statistical representation and errors in the 

map-matching process. 

The properties of these two data sources are 

complementary and redundant. Hence, they can be 

harnessed by developing a solution to merge 

multi-sensor data for the problem of estimating travel 

time in urban areas. 

In this context, several methods have been presented 

in order to estimate the travel time in urban areas using 

the fusion of these multi-sources data. El Faouzi and 

Lefevre [3] employ evidence theory (ET), which is a 

strong tool when dealing with incomplete or inaccurate 

information. Qing-Jie Kong and al. [4] integrate the 

federated Kalman filter and ET, which has brought more 

advantages to the real-time fusion of heterogeneous 

traffic information. However, these methods have not 

dealt with traffic signals, which affect link travel time of 

probe vehicles, neither with the flow between links and 

their neighbors (as a congested link has direct effects on 

its neighboring links). Ashish Bhaskar [5, 6] in his thesis 

answered to these problems by estimating the 

cumulative number of vehicles plots on the upstream 

and downstream of a link. These numbers (or cumulative 

plots) are deterministically corrected by adding the data 

from the probe vehicles. This method is based on a 

hypothesis that errors in the map-matching process are 

null. 

While some research investigations use loop 

detectors and probe vehicles, others use wireless 

magnetic sensors. The system of Kwong and al. [7] 

relies on these sensors that provide time when a vehicle 

passes by the sensors. Therefore a re-identification of the 

vehicle signature at two locations gives the 

corresponding travel time of this vehicle. Although this 

method is quite interesting, it requires some advanced 

type of sensors not yet so commonly used as loop 

detectors. 

In order to estimate the travel time in urban areas, 

we propose the unscented Kalman filter. One important 

drawback of the Kalman filter is its limitation to a linear 
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assumption. However, the process model or the 

observation model or both can be nonlinear. One can use 

the extended Kalman filter (EKF) instead of the Kalman 

filter, but unfortunately, the most important handicap of 

the EKF is the derivation of the Jacobian matrices, 

which for complex functions can be a difficult task in 

itself. In order to over-come the drawbacks of the EKF, 

the unscented Kalman filter (UKF) can be a suitable 

replacement for the EKF. Using the UKF, we remove the 

requirement to explicitly calculate Jacobian matrices, 

and in result this filter captures more accurately the true 

mean and covariance. 

In this article we will use the UKF to estimate link 

travel time in urban areas. This paper is organized as 

follows: the cumulative plot method is drawn in the first 

paragraph. The second paragraph proposes a link travel 

time estimation method. The third paragraph explains 

briefly the UKF. 

 

CUMULATIVE PLOT FOR TRAVEL TIME 

ESTIMATION 

The cumulative plot is the graph of the cumulative 

number of vehicles passing by an observer (or detector) 

in a given place over time t from an arbitrary initial 

number. The points obtained are discrete because in 

practice the sensors are read every 1 minute (or 6 

minutes) (there is no moment of passage of all 

vehicles...). These points must be interpolated and it is 

not trivial: this will be discussed later on in this section. 

The cumulative function is monotonically increasing 

and we can assume it is differentiable with respect to 

time. The slope of the curve at time t is the instant flow 

of traffic at time t. The value of the cumulative function 

at time t is CP (t). This flow is equal to: 

( ) ( )( )CP t t CP t t+ ∆ − ∆ .  (1) 

Assuming that: 

a) First-In-First-Out (FIFO) discipline is respected 

for all vehicles passing through upstream (u/s) and 

downstream (d/s) (no overtaking vehicle); 

b) Vehicles are kept (for example, there is no loss or 

gain of vehicles in the segment); 

Bhaskar interpolates between measurements applying a 

flow model that propagates counter values from one link 

to the next with the assumption of free flow. Hence, the 

interpolation for link k depends on that made previously 

for link k-1. 

Fig.1 (from [5, 6]) describes two cumulative curves 

U(t) and D(t) obtained respectively in the scene (u/s) and 

(d/s) of a given link. 

The vertical distance (along the Y axis) between the 

two curves at time t defines the instant counting gap (n) 

between the two locations. The horizontal distance 

(along the X axis) for the counter i that defines the travel 

time (TTi) for the ith vehicle. When a probe vehicle is 

available on a link at d/s, Bhaskar suggests a 

deterministic correction of the u/s cumulative plot that 

fits the instantaneous TTi measured. The estimated 

average travel time is defined by the total time for all 

vehicles N for the range of estimates of travel time (TEI) 

(from the location d/s), i.e. the area (A) between the two 

cumulative curves. The average travel time per vehicle is 

the ratio A/N. We suggest a stochastic correction of the 

cumulative plot, which has led to the formulation 

discussed in next section. 

 
Fig. 1: Cumulative counts at upstream and downstream of an 

urban link 

 

TRAVEL TIME ESTIMATION 

Accurate travel time estimation is an important 

element for advanced traveler information systems and 

advanced traffic management systems as well for all 

transport users. In urban networks, travel time 

estimation is challenging due to many reasons such as 

the fluctuations in traffic flow due to traffic signals. 

The traffic data from probe vehicles and loop 

detectors sources have different levels of accuracy, 

which may result in inconsistency and sometimes even 

contradictory estimates. Data fusion is the processing 

tool that takes into account the quality of the data 

provided by each source with the aim of increasing the 

accuracy, reliability and robustness of the estimation. 

While this method is an extension to Bhaskar’s one, it 

highlights the errors from both sources of data, i.e. loop 

detectors as well as probe vehicles considered null by 

Bhaskar’s modeling. Therefore, we propose a filter that 

fuses the data from probe vehicles and from detectors: 

we present the process model that we would like to use 

in order to achieve this operation.  

We assume we have only one lane (in a more 

complete modeling, we will assume no lane change and 

one detector per lane). Therefore, the First in First out 

(FIFO) model applies, i.e. the overtaking on the road 

network is neglected. Moreover, we consider that each 

link is correlated with it neighbors links.  

 

State vector 

Suppose that we have a loop detector at the end of 

each link, and that we would like to estimate the travel 

time of link k at time t. The state vector contains: 

- the travel time TT: this TT is an important element in 

order to be able to find )( TTtqu −  for state evolution 



2nd International Conference on  
Models and Technologies for Intelligent Transportation Systems 

22-24 June, 2011, Leuven, Belgium 

 

- the cumulative count of vehicles at the downstream of 

link Nd 

- the flow at the downstream of link qd 

- the cumulative count of vehicles at the upstream of 

link Nu 

- the history of the flow at the upstream of the link k: qu, 

which is also the flow at the downstream of the link k-1. 

This history tabulates a fixed number n of past flows, 

this number being an a priori parameter of our modeling. 

Therefore the state vector resumes as follows: 

( )
( )
( )
( )

( )
( )
( )
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( )
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Evolution 

We suppose that state at time t evolves around the 

state at time t-TS (typically at TS = 1 second sample 

time) as follows:  

• The travel time at time t is equal to the travel time at 

time t-TS; 

• The cumulative number at the downstream at time t 

is the cumulative number at the downstream at time t-TS 

plus the flow at the downstream multiplied by the 

sample time; 

• The flow at the downstream at time t is the flow at 

the upstream (i.e. at the downstream of link k-1) at time 

t-TT (this is actually the flow model through link k): 

TT/TS is rounded to the nearest integer; 

• The cumulative number at the upstream at time t is 

the cumulative number at the upstream at time t-TS plus 

the flow at the downstream multiplied by TS; 

• The flow at the upstream at time t is the flow at time 

t-TS. 

To resume the evolution of the state vector is as follows: 

ttTt wFxx
S

+=+    (2) 

where: 

• tw is the process noise assumed to be drawn from a 

zero mean normal distribution with covariance tQ  

• F is the state transition model applied to previous 

state tx . 
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We can notice that F contains a Jordan matrix in the 

lower right bloc. Moreover, the key point in this 

evolution model is that it depends on the state vector 

itself (the 1 at lane 3 is placed at column t-TT), which 

justifies the use of an UKF. The problem of 

quantification (i.e. the rounding of TT/TS) will be 

properly addressed by the UKF. 

 

Observations 

Our observations are the travel time from probe 

vehicles and the number of vehicles as well as the 

occupancy from loop detectors. The observation of 

travel time from probe vehicles is obtained by a 

map-matching method. The data from the GPS probe 

vehicles contain vehicle ID, position coordinates, time, 

and eventually velocity, moving direction, etc. To 

estimate the travel time a map-matching process need to 

be made. This is the most important step in the 

estimating process; its accuracy will directly affect the 

final results. Map-matching algorithms generally adopt 

either a geometric or a probability statistical approach. 

For further detail refer to [8]. 

Therefore, at time t an observation or 

measurement tz of the true state tx  is either: 

 

Case 1: probe vehicle TT or loop counter: 

ttt vHxz +=  (linear model)   (3) 

where: 

• H is the observation model. In our case this model is: 

for TT (probe vehicles): [ ]0...0001  

for respectively d/s or u/s counters: 

[ ]0...0010  or [ ]0...1000  

• tv is the observation noise assumed to be zero mean 

Gaussian white noise with covariance tR . This 

covariance is obviously different whether one considers 

TT or counters. As for TT, it should characterize 

possible errors in the process of map-matching GPS 

position. GPS errors, and the consecutive map-matching 

errors, will be fixed depending on the location of the 

link: in a dense city center, the order of magnitude of 

those errors is some tens of meters, whereas in an open 

area, it is only a few meters. In a very first 

approximation, we will classify links that way: city 

center / open area, fixing travel time observation errors 

to a maximum of 10 seconds down to few seconds. 
 

Case 2: loop occupancy: 

( ) ttt vxhz +=  (nonlinear model)  (4) 

where the observation model h  is the following 

equation: q
L

TT

L

O

k

=    (5) 

withO  being the occupancy, L  sum of vehicle length 

(assumed to be a fix value of 5m) and the loop detector 

length and kL  length of the link k. 
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UNSCENTED KALMAN FILTER 

The Kalman filter is a statistical approach used to 

estimate the state of a system from a priori information 

on the evolution of this state (model) and on the actual 

measurements. The basic Kalman filter is limited to a 

linear assumption. The most common way of applying 

the KF to a nonlinear system is in the form of the 

extended Kalman filter (EKF). Unfortunately, the most 

important drawback of the EKF is the derivation of the 

Jacobian matrices. In the EKF, the probability 

distribution function is propagated through a linear 

approximation of the system around the operating point 

at each instant of time. In doing so, the EKF needs the 

Jacobian matrices. However, this matrix can be 

sometimes difficult and complicated to obtain. Further, 

the linear approximation of the system at a given time 

instant may introduce errors in the state, which may lead 

the state to diverge over time. In other words, the linear 

approximation may not be appropriate for some systems. 

In order to overcome the drawbacks of the EKF, other 

nonlinear state estimators have been developed such as 

the unscented Kalman filter (UKF). The unscented 

Kalman filter (UKF) uses a deterministic sampling 

technique known as the unscented transform to pick a 

minimal set of sample points (called sigma points) 

around the mean. These sigma points are then 

propagated through the non-linear functions, from which 

the mean and covariance of the estimate are then 

recovered. In addition, this technique removes the 

requirement to explicitly calculate Jacobian matrices, 

which for complex functions can be a difficult task in 

itself. More details can be found in [9] & [10]. 

Given the state vector at step t, we compute a 

collection of sigma point, stored in the columns of the 

( )12 +× LL  sigma point matrix tx  where L is the 

dimension of the state vector. The columns of tx  are 

computed and weighted by: 

( ) tt xx ˆ
0

=     (6)

( ) ( )( ) LiPLxx
ittit ....1,ˆ =++= λ   (7) 

( ) ( )( ) LLiPLxx
Littit 2....1,ˆ +=+−= −λ  (8) 

where ( )( )
itPL λ+  is the ith column of the matrix 

square root, λ  is a parameter to determine, and tP  is 

the a posteriori estimate of the error covariance. 

After the generation of the sigma points (eq. (7) and (8)), 

the transformed set is given by instantiating each point 

through the process model: ( ) ( )( )
itit xf −− =ξ  (9) 

The step that follows is to initiate each of the prediction 

points through observation model: 

( ) ( )( )
itit hz −− = ξ     (10) 

Finally, we update the filter using the Kalman gain tK : 

1−= yyxzt PPK     (11) 

( )−− −+= ttttt zzKxx ˆˆˆ    (12) 

T

kyyttt KPKPP −= −
   (13) 

where xzP  and yyP  are respectively the cross 

covariance and the innovation covariance, both 

computed from the updated sigma points. 

 

CONCLUSION 

The unscented Kalman filter uses an underlying 

process model to make an estimate of the current state of 

a nonlinear system and then corrects the estimate using 

any available sensor measurements. In addition to the 

reasons mentioned in the previous section, the choice of 

a filter to estimate the link travel time in urban areas lays 

on the UKF since the evolution model here depends on 

the state vector itself. Using this filter we have the 

possibility to introduce the error due to the 

map-matching process as well as the loop detectors, and 

the flow model through the studied link.  

The next step in this work will consist in a test of the 

efficiency of this filter: first by simulating a link of 600 

meters with three loops (one at the entry, one at the exit, 

and one at the 2/3 of the link), limiting the speed to 36 

km/h and the flow to 1008 veh/h (calculation based on 

the fundamental diagram in the center of Nantes 

Metropole) with three scenarios (flow equal to 500 veh/h, 

900 veh/h, and 2000 veh/h) such that 10% of the 

vehicles are considered as probe vehicles. Each scenario 

is simulated 100 times using the simulation software 

“AIMSUM”. Second we will test this filter through an 

experiment with real data. Furthermore this method will 

be extended in order to be applied to a network with 

several lanes and crossroads. In addition, we will discuss 

the minimum number of probe vehicles required for a 

relevant estimation. 
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