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A B S T R A C T

Purpose: To investigate the potential of texture parameters from opportunistic MRI and CT for the detection of 
patients with vertebral fragility fracture, to design a decision tree and to compute a Random Forest analysis for 
the prediction of fracture risk. 
Methods: One hundred and eighty vertebrae of sixty patients with at least one (30) or without (30) a fragility 
fracture were retrospectively assessed. Patients had a DXA, an MRI and a CT scan from the three first lumbar 
vertebrae. Vertebrae texture analysis was performed in routine abdominal or lumbar CT and lumbar MRI using 
1st and 2nd order texture parameters. Hounsfield Unit Bone density (HU BD) was also measured on CT-scan 
images. 
Results: Twelve texture parameters, Z-score and HU BD were significantly different between the two groups 
whereas T score and BMD were not. The inter observer reproducibility was good to excellent. Decision tree 
showed that age and HU BD were the most relevant factors to predict the fracture risk with a 93 % sensitivity and 
56 % specificity. AUC was 0.91 in MRI and 0.92 in CT-scan using the Random Forest analysis. The corresponding 
sensitivity and specificity were 72 % and 93 % in MRI and 83 and 89 % in CT. 
Conclusions: This study is the first to compare texture indices computed from opportunistic CT and MR images. 
Age and HU-BD together with selected texture parameters could be used to assess risk fracture. Machine learning 
algorithm can detect fracture risk in opportunistic CT and MR imaging and might be of high interest for the 
diagnosis of osteoporosis.   

1. Introduction

Osteoporosis results from a combined alteration of bone density
mineralization and bone trabeculae micro-structure and is related to an 
increased risk of fragility fractures [1]. In 2017, 2.7 million fragility 
fractures have been reported in Europe with almost twice as many 
fractures in women (66 %) as compared to men. Hip, vertebral and distal 
forearm fractures accounted for 19.6, 15.5 and 17.9 % of all fractures, 

respectively [1]. Vertebral fragility fractures lead to significant over- 
morbidity and mortality with severe back pain, height loss and 
kyphosis responsible for cardiovascular and respiratory disease [2]. 

Osteoporosis is most widely diagnosed on the basis of bone mineral 
density (BMD) measurements performed using dual-energy X-ray ab
sorptiometry (DXA). However, it has been largely recognized that BMD 
alone is not a good predictor of fracture risk [3,4]. The corresponding T 
score which is based on a − 2.5 standard deviation threshold has been 
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analysis using this whole set of parameters and quantify the potential for 
fracture risk prediction. 

2. Patients and methods

2.1. Patients

This retrospective study was approved by the local ethic committee 
(2019_120). Due to the retrospective nature of the study, the need for an 
informed consent was waived. As illustrated in Fig. 1, data were 
retrieved from our local database for patients who had DXA, lumbar MRI 
and thoraco-abdominal or lumbar CT between May 2018 and January 
2020. DXA was available for at least 2 vertebrae among L1, L2, L3. CT 
scans were obtained without the use of intravenous contrast agent and 
had to cover entirely L1, L2 and L3. Lumbar MRI had at least a sagittal 
T1-weighted acquisition. The time between DXA, CT and MRI was no 
longer than 6 months. 

Exclusion criteria were bone tumoral pathology (hematologic ma
lignancies, solid tumor with bone metastasis, hemangioma, enostosis), 
high energy traumatism and low-quality exams (due to arthrodesis or 
cement in the lumbar spine). 

Overall, sixty patients were included and divided in 2 groups 
regarding the presence or not of collapsed vertebrae, using the Genant 
semi-quantitative classification [12]. One or multiple osteoporotic 
vertebral fractures at the L1, L2 or L3 level was identified in thirty pa
tients (Group 1: G1). The diagnosis of fractures was confirmed as a 
consensus between radiologists with an expertise ranging from 2 to 12 
years (FP and DG). In the control group, the first thirty consecutive 
patients without vertebral fracture were selected to have the same 
number of patients in each group (Group 2: G2) (Fig. 1). 

2.2. MRI acquisition and volume of interest (VOI) 

Subjects were positioned supine, head first in the magnet bore with 
their lumbar region over the spine matrix coil. An MRI whole body 

Fig. 1. Design and inclusion flow chart of the case-control study.  

criticized as a diagnostic index given that osteoporosis-related fractures 
can occur in patients with a normal DXA [3,4]. Despite the recognized 
limits of DXA, it is still the reference method for the diagnosis of 
osteoporosis. 

Alternative methods targeting bone microarchitecture or images 
texture have been developed. For instance, Trabecular Bone Score (TBS) 
can be computed from DXA measurements but this index has been barely 
used for clinical applications. Yet, data regarding trabecular bone might 
be of interest [5]. Quantitative computed tomography (qCT) can be used 
to assess the 3D bone mineral density on conventional body scanner. 
Yet, for cost and irradiation reasons qCT is barely used [6]. Furthermore, 
it cannot provide additional information about bone texture or micro-
architecture. Finite element analysis and biomechanical features have 
been used to improve the prediction of fracture risk but this type of 
approach is not usable in clinical routine [7]. 

Recently, mathematical algorithms have been growingly used in 
order to assess the inherent texture of biomedical images [8]. Texture 
analysis has been used to analyse the distribution and relationship of 
pixel or voxel grey levels within an image [9] and could be used for an 
opportunistic assessment of MRI and CT-scan images in osteoporosis 
[10]. 

In the field of lumbo-radicular pain, lumbar MRI is the reference 
method. While a large amount of patients with various pathologies are 
undergoing computed tomography (CT) of the lumbar spine, it could be 
of interest to use the corresponding images for an opportunistic osteo-
porosis screening. Given that dozens of parameters are provided by 
texture analysis, the challenge is to identify those of interest for a given 
application. If so, texture tool could be integrated into machine learning 
algorithms such as Random Forest analysis [11]. 

The main objective of the present study was to identify the texture 
parameters, if any, measured in opportunistic MRI and CT scans, and 
radiodensity measured in opportunistic CT scans that would be able to 
distinguish patients with and without a vertebral fragility fracture. The 
second objective was to propose a decision tree for the assessment of the 
fracture risk. The third objective was to perform a Random Forest 



We used a bone dedicated acquisition. 
ROI was manually delineated by the two radiologists as an elliptic 

zone of 2 cm2 in the anterior region of the vertebrae L1, L2 and L3, in the 
upper third, excluding cortical bone and the basivertebral vein. In the 
pathological group, the fractured vertebras (detected in both MRI and 
CT) were excluded from the measurements (Fig. 3). 

Hounsfield Unit Bone density (HU BD) and texture parameters were 
quantified in axial sections as previously described [15]. 

Given the retrospective nature of the study, phantom calibration was 
not used. 

2.4. DXA measurements 

DXA measurements were performed using a Lunar iDXATM. 

T-score, Z-score and aBMD were computed for the L1, L2, L3 verte
bras and the corresponding values were averaged over the L1 to L3 
region. 

2.5. Texture analysis 

First and second-order texture parameters were computed. First 
order parameters (Energy, Entropy, Mean and Median) are related to 
statistics computed from original images without considering the 

relationships among pixels. We computed Energy, Entropy, Mean and 
Median. Second order parameters refer to parameters which take into 
account relationships between pairs of pixels in the original image. We 
chose the Gray Level Co-occurrence Matrix (GLCM) [18–20] and Gray 
Level Run Length Matrix (GLRLM) [21–22]. 

The GLCM matrix computes the combinations of pixel brightness 
values (grey levels) in an image. A GLCM of size Ng × Ng describes the 
second-order joint probability function of an image region constrained 
by the mask and is defined as P(i,j|δ,θ). The (i,j)th element of this matrix 
represents the number of times the combination of levels i and j occur in 
two pixels in the image, that are separated by a distance of δ pixels along 
angle θ. The distance δ from the center voxel is defined as the distance 
according to the infinity norm. For δ = 1, this results in 2 neighbors for 
each of 13 angles in 3D (26-connectivity) and for δ = 2 a 98-connectivity 
(49 unique angles). The GLCM analysis was performed to extract 
Contrast, Correlation (Corr), Joint Energy (JEnergy), Joint Entropy 
(JEntropy), Inverse difference moment (IDM), Maximum probability 
(MP), Sum average (SA) and Sum of squares (SOS) [18–20]. 

The GLRLM quantifies grey level runs defined as the number of 
consecutive pixels having the same grey level value. In a grey level run 
length matrix P(i,j|θ), the (i,j)th element describes the number of runs 
with grey level i and length j which occurs in the image (ROI) along an 
angle θ. We computed Short run emphasis (SRE), Long run emphasis 
(LRE), Grey level non uniformity (GLNU), Run length non uniformity 
(RLNU), Run percentage (RP), Low gray level run emphasis (LGLRE) and 
High grey level run emphasis (HGLRE) [21,22]. 

2.6. Statistical analyses 

Measurements were obtained independently by 2 radiology research 
fellows (FP and PK) with both 5 years of experience. Comparisons of the 
two groups were performed using generalized linear model (with logit 
function) with subject as a random variable to take into account corre
lation of data (multiple measures per patient) within patients. We also 
performed ROC curve (receiver operating characteristic curve) to pro
duce Area Under The Curve as a measure of performance of the feature 
to distinguish between the two groups. We also provided a threshold 
value of the feature associated with the Youden index maximum as with 
its linked sensitivity and specificity. 

2.7. Decision tree 

The subgroup of patients with osteoporotic fractures was also iden
tified by a decision tree model based on the Classification And Fig. 2. MRI VOI on sagittal T1 acquisition.  

Fig. 3. CT ROI on axial section.  

antenna was positioned on the top of the patient. 
T1-weighted images [13,14] were recorded at 1.5 T (Philips® 

Ingenia) in the sagittal plane using a spin echo sequence (TR = 599 ms, 
TE = 8 ms, slice thickness = 4 mm, F0V = 325 × 325 × 66 mm). The 
total acquisition time was 3.5 min. 

VOIs were selected as 4 mm thickness cylinders with a volume of 
450 mm3 (Fig. 2). 

Onto mid-sagittal image, a circular VOIs (1 cm2) were positioned in 
the antero-superior edge of each vertebra (L1, L2, L3) by the two radi-
ologists as recommended previously [15–17]. All fractured vertebras 
were excluded from the measurements. 

2.3. CT scan acquisition and region of interest (ROI) 

CT scans were recorded using a Lightspeed CT (General Electrics®) 
in both abdominal (120 kV. 550 mA) and lumbar (120 kV, 450 mA) 
regions. In both cases, slice thickness was 1.3 mm and slice interval was 
1 and 0.6 mm respectively. Acquisition time was 4 and 10 s for the 
abdominal and lumbar protocol respectively. A daily calibration was 
performed. 



– Random Forest algorithm

Random forest analysis refers to the computation of multiple
different decision trees built on random subsets of subjects with a final 
aim of classification. The computation of multiple decision trees pro
vides a higher robustness to noise and a higher generalization as 
compared to a single decision tree [10,23].  

– Measurements reproducibility

Both raters (FP and PK) computed texture parameters and CT
Hounsfield Bone Density in a sample of 20 patients from group 1 and 20 
patients from group 2. The intraclass correlation coefficients (ICC) were 
computed for each parameter using a two-way mixed method of abso
lute agreement. ICC values were ranked according to Koo and Li [24]. 
An ICC value<0.5 was considered as indicative of a poor reliability 
while an ICC value between 0.5 and 0.75 indicated a moderate reli
ability. Good and excellent reliability were related to ICC values be
tween 0.75 and 0.9 and larger than 0.90 respectively [24,25]. 

Statistical analyses were performed using SPSS®. 

3. Results

3.1. Groups description

G1 was composed of 23 women and 7 men and G2 of 22 women and 
8 men. Patients from G1 (mean: 74.6 ± 12.1 years old, median: 79.5, 
Q1: 68, Q3: 83) were significantly older than those in G2 (mean: 56.1 ±
12.1 years old, median: 53.5, Q1: 47, Q3: 62). Among the 180 vertebrae 
analyzed, 42 were fractured (L1 = 16, L2 = 12, L3 = 14) and 12 patients 
had multiple fractures. The average percentage of collapse was 44 % 
(Genant grade 1, n = 10; Genant grade 2, n = 12; Genant grade 3, n =
19). In G1, 17 patients had no history of bone stock interest, 8 had in
flammatory rheumatic diseases (4 of them were treated with long-term 
corticosteroids), 4 had an history of cancer without bone extension (2 
breast cancers, 1 lung cancer, 1 vesical cancer) and 1 had a chronic 
obstructive pulmonary disease which needed long-term corticosteroids. 

In G2, 8 patients had no history of bone stock interest, 21 had chronic 
rheumatic disease (1 of them was treated with long-term corticoste
roids), 1 had a severe acute asthma requiring long-term corticosteroids, 
1 had a chronic respiratory failure also requiring long-term 
corticosteroids. 

CT acquisition protocols were heterogeneous in both groups. In G1, 
slice thickness was 0.6 mm for 20 subjects and 1.3 mm for the remaining 

10. In G2, slice thickness was 0.6 mm for 13 subjects and 1.3 mm for 17
subjects. In G1, 4 patients did not have a reliable spinal DXA data on L1
due to interpositions, excessive collapse or arthrosis rearrangements
that distorted the results. In G2, 4 patients did not have L1 consistent
bone densitometry data for the same reasons.

The mean parameters values of the most relevant parameters for 
both groups together with the independent p values, the threshold with 
the best sensibility and specificity, and the Area Under the Curve (AUC) 
are summarized in Table 1 and Fig. 4. Maximum, Minimum and centiles 
values of all parameters are reported in table A. 1. 

The inter observer reproducibility was good to excellent, with an 
intra-class correlation (ICC) between 0.90 and 0.98. Mean aBMD was 
similar in G1 (1.01 ± 0.23 g/cm2) and G2 (1.03 ± 0.15 g/cm2). T-score 
was also similar in G1 (-1.40) and G2 (-1.16). 

On the contrary, twelve 1st and 2nd orders parameters differed 
significantly between the two groups (p < 0.05). More specifically, for 
CT images, Mean, Median and HGLRE were significantly different be
tween the two groups. Regarding MR images, Contrast, Corr, Jentropy, 
JEnergy, IDM, LRE, GLNU, RP and LGLRE significantly differed between 
the groups. 

Also, Hounsfield Unit Bone Density (p < 0.001) and Z-score (p =
0.004) were significantly different between the 2 groups. 

3.2. R-PARt 

Age and sex were systematically identified by the Boruta algorithm 
as indices of interest. 

3.2.1. CT scan parameters 
The Boruta algorithm identified Energy, Mean, Median, Sum 

Average, High Gray Level Run Emphasis, Hounsfield Unit Bone Density 
as the most interesting parameters for a decision tree (Fig. 5). Age and 
HU BD were selected by the RPART algorithm as the most relevant pa
rameters for a decision tree (Fig. 6). The corresponding performance 
metrics were 82 % (accuracy), 73 % (sensibility), 86% (specificity), 76 
% (positive predictable value) and 87 % (negative predictive value). 

3.2.2. MRI parameters 
The MRI texture parameters selected by Boruta were Joint Entropy, 

Joint Energy, Inverse Different Moment, Gray Level Non-Uniformity, 
Low Gray Level Run Emphasis. At this stage, the RPART algorithm 
identified age and Joint Entropy as the most relevant parameters for a 
decision tree (Fig. 7 and Fig. 8). The corresponding performance metrics 
were similar to those computed from the CT data i.e 82 % (accuracy), 73 
% (sensitivity), 86 % (specificity), 80 % (positive predictable value) and 
86 % (negative predictive value) (see Fig. 9) 

3.3. Random Forest 

The random Forest analysis computed using MRI texture parameters 
provided the following performance parameters: AUC = 0.909, Accu
racy = 0.85 (0.79; 0.91), Sensitivity = 0.72 (0.55; 0.89), Specificity =
0.93 (0.86; 0.99), VPP = 0.85 (0.73; 0.97), VPN = 0.86 (0.78; 0.94). 

When using CT-Scan texture parameters, the performance parame
ters were comparable AUC = 0.924, Accuracy = 0.89 (0.85; 0.92), 
Sensibility = 0.83 (0.67; 0.98), Specificity = 0.89 (0.76; 1.05), VPP =
0.80 (0.58; 1.01), VPN = 0.86 (0.76; 0.96). 

4. Discussion

In this study we aimed at determining whether texture parameters
computed from opportunistic CT and MRI could be used for the detec
tion of vertebral fracture risk. We also intended to determine which 
parameters could be of most interest for a classification paradigm. We 
assessed 180 vertebrae of 60 patients divided in two groups: 30 patients 
had at least one vertebral fracture and in the control group 30 patients 

Regression Tree method (CART). This method is a machine learning 
model, composed of hierarchical decision rules involving optimal cutoff 
values that recursively split independent factors into different groups. 
The CART algorithm was performed on the entire sample, without 
splitting into a train and a test sample, given of the low number of pa-
tients included in the study. It was based on the Gini impurity index 
using the Recursive Partitioning And Regression Trees (RPART) func-
tion. The method of “cost-complexity” pruning with a complexity 
parameter (α) equal to 0.01 was used in order to identify the most ac-
curate tree and the optimal number of splits. This complexity parameter 
is a measure of how much additional accuracy a split must add to the 
entire tree to warrant additional complexity. The accuracy, sensitivity, 
and specificity of the CART model were calculated using the repeated K- 
Fold cross validation. 

The most interesting parameters were initially identified by the 
Boruta package. Boruta is a feature selection algorithm which works as a 
wrapper algorithm around Random Forest. The Boruta package follows 
an all-relevant feature selection method and captures the whole set of 
features which are relevant to the outcome variable. As a second step, 
these parameters were introduced in the CART analysis to obtain the 
final decisional tree.  



Table 1 
Mean, Standard Deviation (SD), P-value, threshold, sensibility (Se), specificity (Spe) and area under the curve (AUC) for the significant parameters in both groups.  

Parameters Imaging Modality G1 ¼ 30 
Vertebrae ¼ 48 

G2 ¼ 30 
Vertebrae ¼ 90 

p value Threshold Se Spe AUC 

Age  74.6 ± 12.1 56.1 ± 12.1  <0.0001  73.4  0.72  0.92  0.83 
HU BD CT 98.06 ± 31.49 148.4 ± 45.56  <0.0001  145.5  0.93  0.56  0.80 
Median CT 74.70 ± 59.26 135.2 ± 50.14  <0.0001  88.5  0.78  0.82  0.82 
Mean CT 78.11 ± 59.53 135.7 ± 49.20  <0.0001  92.9  0.83  0.79  0.81 
GLNU MRI 5.86 ± 3.17 8.91 ± 3.24  0.0003  5.8  0.65  0.86  0.79 
Jentropy MRI 7.88 ± 0.67 8.41 ± 0.50  0.0004  8.28  0.78  0.81  0.81 
ZS DXA 0.15 ± 1.71 − 0.62 ± 1.11  0.0023  − 0.65  0.37  0.90  0.65 
Contrast MRI 68.93 ± 44.87 45.88 ± 27.89  0.0062  46.04  0.67  0.66  0.67 
Jenergy MRI 0.01 ± 0.00 0.00 ± 0.00  0.0065  0.00  0.74  0.81  0.81 
LGLRE MRI 0.01 ± 0.01 0.01 ± 0.00  0.0110  0.01  0.78  0.61  0.73 
IDM MRI 0.16 ± 0.05 0.19 ± 0.04  0.0117  0.16  0.63  0.78  0.67 
Corr MRI 0.81 ± 0.11 0.86 ± 0.08  0.0179  0.79  0.41  0.91  0.63 
HGLRE CT 1015 ± 235.4 1120 ± 245.7  0.0239  1131.4  0.74  0.51  0.62 
LRE MRI 1.19 ± 0.10 1.25 ± 0.11  0.0348  1.16  0.50  0.90  0.68 
RP MRI 0.94 ± 0.02 0.93 ± 0.02  0.0373  0.95  0.52  0.84  0.67 
Mean MRI 951.7 ± 328.6 924.6 ± 397.2  0.7732  427.9  0.98  0.15  0.50  

Fig. 4. ROC curves of the most relevant parameters used in the decision trees. (A) Age, (B) HU BD, (C) Jentropy-MRI, (D) Mean-MRI.  



had no vertebral fracture. In the fractured group we had 30 % men 
which correspond to the prevalence of osteoporosis in men previously 
described [26,27]. 

We found that a significant number of 1st and 2nd orders texture 
parameters, four in CT and twelve in MRI, could discriminate subjects 
with a high risk of fragility vertebral fractures as compared to subjects 
with no vertebral fractures. 

Surprisingly, T-score and aBMD were not able to distinguish the two 
groups. This reduced sensitivity had already been reported for DXA 
measurements. Bone fractures have been reported in 12.6 % to 17.9 % of 
subjects with a normal BMD [3] and a similar number of false negative 
subjects (14 %) has been reported for vertebral fractures [4]. Of interest, 
the rate of false negative subjects is much larger i.e. 47 % for mild 
vertebral fractures [4]. On the contrary, Z-score differed between the 
two groups and so likely as result of the significant age difference. 

Of importance, the inter-rater reliability was good to excellent 
thereby indicating no bias related to manual measurements. 

4.1. Opportunistic CT 

Two first order texture parameters (Mean and Median) and one 2nd 
order parameters (HGLRE) were significantly different between the 
groups. Such a finding is in agreement with measurements reported 

previously in CT-scan [9]. Among the second order parameters, only one 
GLRM parameter (HGLRE) was found as of interest in the detection of 
vertebral fracture. A similar result has not been reported previously 
[9,28]. 

In opportunistic CT-scan, Hounsfield Unit Bone Density was signifi
cantly different between the groups (p < 0.001) and was identified as a 
parameter of high importance for patients’ classification. The decision 
tree computed using the RPART algorithm showed that when patients 
were older than 73 the fracture risk was 85 %. In patients younger than 
73, a HU BD larger than 120 HU was indicative of a very low risk (0.04 
%) of fracture. 

A similar threshold has been previously reported by Fang et al. who 
showed that a 150 HU threshold for a single measurement in L5 pro
vided a 70 % sensitivity and 77 % specificity [15]. For a larger threshold 
i.e. 180 HU for measurements in L4, it rose respectively to 90 % and 43
% [15].

Using a Random Forest analysis including age, aBMD, HU BD and 
texture parameters, a very high AUC (0.924) was obtained and the 
corresponding sensitivity and specificity were 0.83 and 0.89 respec
tively. This value is larger than the AUC (0.88) reported by Valentinitsh 
et al who calculated vBMD and 3D texture features of the complete 
vertebral body [10] and also larger than the AUC value provided by the 

Fig. 5. CT Boruta package. Boruta package selecting the most relevant pa
rameters obtained by CT-scan). 11 attributes confirmed important (in green): 
Age, Mean, Median, Correlation, Hounsfield density (HD), Energy, Inverse 
difference moment (IDM), Joint entropy, Z-Score, Maximum Probability (MP), 
Joint energy (Jentropy). 

Age<73

70%
Fracture probability= 13%

DH>=112

30%
Fracture probability = 85%

56%
Fracture probability=0,04%

14%
Fracture probability=50%

Age>=61

7%
FP=40%

7%
FP=60%

yes no

Fig. 6. CT decision tree. Probability to have a fracture (fracture probability: FP) according to age and Hounsfield Bone Density on opportunistic CT-scan.  

Fig. 7. MRI Boruta package. Boruta package selecting the most revelant pa
rameters obtained by MRI (in green). 13 attributes confirmed important: Age, 
Mean, Median, Z-score (ZS), Energy, Joint Entropy (Jentropy), Correlation 
(Corr), Inverse difference moment (IDM), Joint energy (Jentropy), Maximum 
Probability (MP), Bone mineral density (BMD), Gray level non uniformity 
(GLNU), Heigh Gray Level Run Emphasis (HGLRE). 



RPART analysis thereby reinforcing the idea that combining multiple 
parameters can be beneficial for the fracture risk prediction. 

4.2. Opportunistic MRI 

Texture parameters were computed from lumbar sagittal T1- 
weigthed MR images offering a a good signal/noise ratio and a good 
visibility of trabecular bone. According to previous studies, we did not 
attempt to assess bone marrow but trabecular architecture [11,14,28]. 

Nine texture parameters were significantly different between the two 
groups. The decision tree of fracture risk prediction was computed using 
age, Joint Entropy, and Mean texture parameter. On that basis, the 
fracture risk was 100 % for a patient older than 73 and with a mean MRI 
lower than 1228. The corresponding risk was very low (0.04 %) if the 
patient was younger than 73 and the Joint entropy was higher than 8.1. 
Of interest, although mean MRI was not significantly different between 
the two groups, this parameter provided the largest sensitivity for 
detecting fracture risks. 

Using Random Forest algorithm, the AUC computed with CT-scan 

parameters was 0.924 and it was slightly lower when the MRI parame
ters were used (0.909). The corresponding sensitivity was 72 % and the 
specificity was 93 % thereby indicating that opportunistic MRI texture 
analysis is of interest for the detection of patients at risk of fragility 
fracture, even if the sensitivity is lower than the value obtained with CT. 
The lower sensitivity might be explained by the thinner slice thickness 
for CT (1.3 mm) as compared to MR images (4 mm). 

The superiority of the Random Forest algorithm for the detection of 
patients with a high risk of fractures is in agreement with the study of 
Parmar et al. indicating that Random Forest analysis provided a higher 
predictive performance than decision tree [11]. Overall, texture analysis 
of opportunistic CT and MR images could be very sensitive to the 
detection of risk fracture when combined to machine learning 
algorithms. 

Several limitations have to be acknowledged for the present study. In 
this preliminary study, the cohort of 60 patients might appear as small 
and the inclusion of additional subjects could be expected to be linked to 
a higher potential of fracture risk prediction. The age difference between 
the two groups was identified as a very important factor for the fracture 
risk detection. This difference can be explained by the late occurrence of 
vertebral osteoporotic fractures and the lack of associated pain. 

This preliminary study is the very first to compare texture indices 
computed from on opportunistic CT and MR images. The corresponding 
results clearly indicate that age, HU-BD together with selected texture 
parameters could be used to assess risk fracture with a high sensitivity 
and specificity. The potential of fracture risk prediction might be 
enhanced with additional indices such as Z-scores and clinical risk fac
tors [29]. Machine learning could be combined to deep learning ap
proaches so as to provide a sensitive and specific tool of fracture risk 
prediction without additional examinations, radiation, patient’s, and 
physician’s time. 
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