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Abstract. The quantification of emissions of greenhouse
gases and air pollutants through the inversion of plumes
in satellite images remains a complex problem that current
methods can only assess with significant uncertainties. The
anticipated launch of the CO2M (Copernicus Anthropogenic
Carbon Dioxide Monitoring) satellite constellation in 2026
is expected to provide high-resolution images of CO2 (car-
bon dioxide) column-averaged mole fractions (XCO2), open-
ing up new possibilities. However, the inversion of future
CO2 plumes from CO2M will encounter various obstacles.
A challenge is the low CO2 plume signal-to-noise ratio due
to the variability in the background and instrumental errors in
satellite measurements. Moreover, uncertainties in the trans-
port and dispersion processes further complicate the inver-
sion task.

To address these challenges, deep learning techniques,
such as neural networks, offer promising solutions for re-
trieving emissions from plumes in XCO2 images. Deep
learning models can be trained to identify emissions from
plume dynamics simulated using a transport model. It then
becomes possible to extract relevant information from new
plumes and predict their emissions.

In this paper, we develop a strategy employing convo-
lutional neural networks (CNNs) to estimate the emission
fluxes from a plume in a pseudo-XCO2 image. Our dataset
used to train and test such methods includes pseudo-images
based on simulations of hourly XCO2, NO2 (nitrogen diox-
ide), and wind fields near various power plants in eastern
Germany, tracing plumes from anthropogenic and biogenic

sources. CNN models are trained to predict emissions from
three power plants that exhibit diverse characteristics. The
power plants used to assess the deep learning model’s per-
formance are not used to train the model. We find that the
CNN model outperforms state-of-the-art plume inversion ap-
proaches, achieving highly accurate results with an absolute
error about half of that of the cross-sectional flux method and
an absolute relative error of∼ 20 % when only the XCO2 and
wind fields are used as inputs. Furthermore, we show that
our estimations are only slightly affected by the absence of
NO2 fields or a detection mechanism as additional informa-
tion. Finally, interpretability techniques applied to our mod-
els confirm that the CNN automatically learns to identify the
XCO2 plume and to assess emissions from the plume con-
centrations. These promising results suggest a high potential
of CNNs in estimating local CO2 emissions from satellite
images.

1 Introduction

The burning of fossil fuels, such as coal and oil, in power
plants (PPs), is a primary source of anthropogenic CO2 (car-
bon dioxide) emissions. Approximately 50 % of worldwide
fossil fuel CO2 emissions originate from large facilities,
which encompass PPs (IEA, 2019; Nassar et al., 2022). As a
result, maintaining regular monitoring of these emissions and
possessing the capacity to control their reporting are crucial.
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Observations from satellites like OCO-2 provide valuable
data that can be utilised to estimate CO2 emissions (Nas-
sar et al., 2017; Reuter et al., 2019; Chevallier et al., 2019;
Wu et al., 2020; Zheng et al., 2020; Nassar et al., 2022;
Chevallier et al., 2022). Specifically, satellite observations
of CO2 plumes, such as the plume transects obtained from
OCO-2 and OCO-3 satellites, offer a direct means of quan-
tifying their source and complement other estimations (Cus-
worth et al., 2021). The upcoming launch of the Copernicus
Anthropogenic Carbon Dioxide Monitoring (CO2M) satel-
lites in 2026 is anticipated to capture high-resolution images
of CO2 column-averaged mole fractions (XCO2), aiming to
have a much larger swath and more accurate CO2 estimations
and further advancing our capabilities in this area. Leverag-
ing these images, however, will present significant challenges
(Wang et al., 2020).

CO2 plumes are notoriously difficult to invert due to var-
ious factors, including (1) image integrity issues caused by
cloud cover or satellite overpasses, which result in missing
data in the images used for analysis. Additionally, the esti-
mation of the emissions associated with a plume is further
complicated by (2) the low signal-to-noise ratio (SNR) of the
measurements. The noise component encompasses variations
in the background as well as errors in the satellite measure-
ments. The SNR problem stands as the main hurdle in the
detection of the plume, a crucial step for inversion. Recent
research conducted by Dumont Le Brazidec et al. (2023a)
has illustrated the remarkable ability of convolutional neu-
ral networks (CNNs) to effectively overcome this obstacle.
Lastly, another challenge stems from (3) the uncertainties in
the transport and dispersion processes, specifically, when it
comes to estimating the effective wind driving the plume and
determining its shape (Kuhlmann et al., 2019).

This paper addresses the second and third problems (ex-
cept for the errors in the satellite measurements) by employ-
ing deep learning techniques to perform inverse modelling
of CO2 plumes. In particular, we focus on developing tech-
niques for inverting CO2 plumes from PPs of different emis-
sion levels.

To assert the effectiveness of the method, the predic-
tions of the deep learning model are compared against state-
of-the-art techniques. Plume inversion methods include ap-
proaches that use an atmospheric transport model to sim-
ulate the plume and compare it to observations (e.g. Pil-
lai et al., 2016; Broquet et al., 2018). They also include
techniques that quantify emissions from a hotspot based on
plume detection in satellite observations (Koene et al., 2021).
These methods can be based on time-averaged plumes, such
as the divergence method (Beirle et al., 2019; Hakkarainen
et al., 2022), or on instantaneous images. Varon et al. (2018)
compared several of these approaches, namely the Gaus-
sian plume inversion, the integrated mass enhancement, and
the cross-sectional flux method. In the CoCO2 project, sev-
eral of these methods were compared using synthetic CO2M
CO2 and NO2 (nitrogen dioxide) observations (Hakkarainen

et al., 2023). Here, we use the cross-sectional flux (CSF)
method for comparison, which showed similar accuracy to
other well-performing methods such as Gaussian plume in-
version and the light cross-sectional flux (LCSF) method. Fi-
nally, it should be noted that the CoCO2 project identified
several potential improvements of these methods that may
yield superior performance in the future (Hakkarainen et al.,
2023; Santaren et al., 2024).

In this paper, the proposed plume inversion approach is
based on convolutional neural networks. This research builds
on earlier work in the field of remote sensing image analysis
leveraging machine learning techniques (Lary et al., 2016;
Finch et al., 2022; Jongaramrungruang et al., 2021; Joyce
et al., 2023; Kumar et al., 2023). Here, plume inversion in-
volves the analysis of an image to extract a scalar or a vector
of emissions at different time steps. Therefore, this task can
be framed as an image regression problem, where relying
on CNNs can offer significant advantages (Chollet, 2017).
CNNs can be trained on a comprehensive dataset, where all
input variables (images) and associated output variables (like
emissions) are known. Once trained, these CNNs can effec-
tively process and draw conclusions from unseen observa-
tional imagery. CNNs employ convolutional layers to extract
essential features from images. Each filter is automatically
trained to detect specific patterns, such as edges, corners, or
other shapes within the image. By stacking multiple con-
volutional layers, CNNs become capable of learning intri-
cate patterns, enabling them to capture increasingly complex
features. The ability of CNNs to capture and learn spatial
features in images makes them a popular choice for various
image-related tasks, including image recognition, classifica-
tion, and regression. Given the nature of our plume inversion
task, they are particularly well-suited due to their ability to
identify spatial features in images, such as plume shapes or
intensity, that correspond to specific emissions. This feature
extraction approach effectively harnesses the knowledge em-
bedded in transport models, enabling this automatic capture
of plumes dynamics. This ability to capture such features has
already been demonstrated by Finch et al. (2022) or Dumont
Le Brazidec et al. (2023a), who studied the segmentation of
plumes in CO2 images.

To train and test the CNN models, this paper relies on a
synthetic dataset as CO2M data will not be available until
2026. This dataset has been designed to possess similar key
features to the forthcoming CO2M satellite, such as resolu-
tion and the availability of NO2 data. However, the influence
of clouds or systematic error patterns is not considered in the
analysis.

Before introducing the inversion methodology and results,
we briefly describe the physical fields used to train and evalu-
ate the CNNs. This includes the presentation of the simulated
satellite fields in Sect. 2 and of the model used to produce
segmentation masks of the plumes used as inputs of the inver-
sion model in Sect. 3. The inversion methodology using CNN
is described in Sect. 4, specifying the problem statement, the
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Figure 1. Examples of inputs used by the CNN model. Panels (a)–(d) represent the XCO2 images, NO2 images, and vertically averaged
u and v winds, respectively.

model, the training process, and the alternative method em-
ployed for comparison. The subsequent Sect. 5 delves into
the application of the model to three specific PPs. In partic-
ular, Sect. 5.3 places special emphasis on the interpretability
of the trained CNNs. Discussions on the limitations and fu-
ture directions of this study can be found in Sect. 6, while the
conclusions are outlined in Sect. 7.

2 Dataset of XCO2, winds, and NO2 images

XCO2 and NO2 images are taken from the concentration
fields simulated for the SMARTCARB project (Brunner
et al., 2019). Using the COSMO-GHG model, the SMART-
CARB simulations were performed in a region centred on
Berlin and covering several nearby coal-fired PPs. These
simulations were used to produce synthetic observations
of CO2M and to evaluate various plume detection and in-
version approaches (Kuhlmann et al., 2019, 2020a, 2021;
Hakkarainen et al., 2021, 2023). The data are hourly and
cover an entire year. Their spatial resolution is 0.01°, and
60 vertical layers ranging spanning from an altitude of 0 to
24 km are used. More information can be found in Dumont
Le Brazidec et al. (2023a), who presented more extensively
a dataset very similar to the one used in this study.

Images used to train and evaluate the CNN inversion mod-
els consist of 64× 64 pixels, with each pixel covering an area
of 2 km× 2 km. Each image is extracted from the SMART-
CARB COSMO-GHG simulated fields so that one hotspot
is located in the centre. In addition, the selected size guaran-
tees the inclusion of the majority of the central hotspot plume
within the image. The mapping from the original SMART-
CARB fields’ resolution to the 2 km resolution is performed
by cubic spline interpolation (Virtanen et al., 2020). The 2 km
resolution was chosen to be consistent with the resolution ex-
pected for CO2M observations.

It is necessary to take into account the expected noise asso-
ciated with the satellite instruments. For this, Gaussian ran-
dom noise of standard deviation 0.7ppm, characteristic of the
CO2M (Meijer, 2020), is added to the XCO2 images.

In addition to XCO2, ancillary data can be used to assist
in the inversion of XCO2 plumes. Considering that CO2M
will provide measurements of NO2 and the observed strong
correlation between NO2 and CO2 plumes, noisy NO2 fields
are used in this study. The noise associated with a NO2 field
is implemented as the standard normal distribution multi-
plied by the NO2 field values. The median standard value
for NO2 fields surpasses 1×1015 molec.cm−2, leading to an
average noise level in the NO2 field that exceeds the CO2M
NO2 requirement (less than 1× 1015 molec.cm−2). Further-
more, ERA5 winds are used: the original resolution of 28 km
is mapped to 2 km to be consistent with the CO2 and NO2
images. To overcome the circular data limitation of statistical
methods, the u and v wind fields are used instead of the direc-
tion and magnitude components. This limitation corresponds
to the statistical model’s inability to correctly interpret wind
directions where the value of 360 ° is equivalent to 0°. More
precisely, we use 2D u and v wind fields which are calcu-
lated as the average of the zonal and meridional wind fields
over the 37 lower ERA5 vertical levels, respectively, which
correspond roughly to the lowest 4000 km of the atmosphere.
Figure 1 presents a series of potential inputs to the CNN.

This paper only addresses the retrieval of PP emissions,
although the training dataset includes the city of Berlin.
More precisely, depending on the PP evaluated, the train-
ing dataset might be composed of any hotspot in Berlin, Jän-
schwalde, Schwarze Pumpe, Boxberg, Turów, Pątnów, Lip-
pendorf, Opole, or Dolna Odra. The primary rationale behind
prioritising the training of the model on PPs is the scarcity of
cities in the dataset, which poses a challenge for the model
to effectively learn and generalise for cities. However, Berlin
is included in the training dataset as supplementary data to
aid the model in its learning process. In the SMARTCARB
dataset, the modelling of anthropogenic emissions, incorpo-
rating fixed diurnal, weekly, and seasonal cycles, was per-
formed using the TNO-MACC III inventory (Kuenen et al.,
2014). The emissions range, mean, and standard deviation of
each hotspot are given in Table 1, and locations of considered
PPs and Berlin are described in Table 2. Moreover, data aug-
mentation techniques are employed to expand the database,
as detailed in Sect. 4.2.1.
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Figure 2. XCO2 concentration map with the locations of Berlin and each considered PP within the complete SMARTCARB domain. The
map consists only of the concentrations stemming from the major anthropogenic sources. Furthermore, to enhance plume visibility, as fluxes
of power plants such as Jänschwalde are vastly superior to other fluxes, concentrations exceeding 2 ppmv have been capped at 2 ppmv.

Table 1. Emission statistics for the PPs considered and the city of
Berlin. Fluxes are in MtCO2 yr−1.

Hotspot Min Max Mean SD

Berlin 4.8 34.7 16.8 7.2
Jänschwalde 16.4 52.7 33.3 7.7
Boxberg 9.4 30.1 19.0 4.4
Lippendorf 7.5 24.1 15.2 3.5
Turów 4.3 13.8 8.7 2.0
Schwarze Pumpe 4.0 13.0 8.2 1.9
Dolna Odra 3.7 12.5 7.9 1.9
Opole 3.5 11.8 7.5 1.8
Pątnów 2.9 9.2 5.8 1.3

3 Application of the segmentation model

Utilising a segmentation algorithm to incorporate plume con-
tours as additional prior information in plume inversion may
yield significant benefits. In this section, we provide a brief
description and application of the CNN-based method de-
veloped in Dumont Le Brazidec et al. (2023a) that pre-
dicts plume contours in XCO2 images. The methodology of
Dumont Le Brazidec et al. (2023a) involves employing an
image-to-image U-Net model, which generates images that
are subsequently used as inputs for the CNN inversion model,
as outlined in Sect. 4.

Apart from a few specific points, the training and model
choices are similar to those of Dumont Le Brazidec et al.
(2023a). A simpler encoder, with fewer neurons, is chosen,
since the NO2 fields are used as inputs to the CNN. This
simplification of the problem reduces the need for a com-
plex encoder. In addition to NO2 and XCO2 fields, winds are
also used to assist in the XCO2 plume contour prediction,
although experiments show that the addition of these data
has very little influence on the predictions. Finally, the U-Net
models were designed to make predictions beyond the geo-
graphical region of their training data. Specifically, the model
that learns to predict the mask of the Boxberg PP plume from
an image centred at the Boxberg PP is trained on a dataset ex-
cluding the images centred at Boxberg.

In Fig. 3, we show the application of a model trained to
predict the positions of Turów plumes. It was trained on
pairs of fields in the regions of Boxberg, Berlin, Lippen-
dorf, Pątnów, Jänschwalde, Dolna Odra, Schwarze Pumpe,
and Opole. The first and second columns of the figure show
the XCO2 and NO2 fields, inputs to the CNN. The third col-
umn shows the target plume as a reference point, while the
fourth column shows the output of the CNN.

Geosci. Model Dev., 17, 1995–2014, 2024 https://doi.org/10.5194/gmd-17-1995-2024
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Figure 3. Examples of the U-Net CNN model application on images from the test dataset centred at Turów. The columns from left to right
represent the XCO2 images (a, e, i), NO2 images (b, f, j), weighted Boolean plumes (c, g, k), and U-Net predictions (d, h, l) as probability
maps, respectively. All times are in UTC.

Figure 4. Various fields – XCO2, winds, NO2, and segmentation results – and the emissions are used by a CNN that learns to estimate the
emissions associated with the central plume concealed under the background. Note that the combination of NO2 and segmentation results as
inputs is never assessed in this paper.

https://doi.org/10.5194/gmd-17-1995-2024 Geosci. Model Dev., 17, 1995–2014, 2024
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4 Deep learning method for the inversion of XCO2

4.1 Inversion based on supervised learning

The inverse problem addressed here is the estimation of the
CO2 emissions accountable for the central hotspot plume ob-
served in a given XCO2 field image. To do so, a CNN is used,
processing as input a given XCO2 field and other additional
fields and resulting in a scalar output representing the emis-
sion rate of CO2 in MtCO2 yr−1 at the hour corresponding to
the image. The choice of representing the flux as a scalar was
made for the sake of simplification, as the quality of the re-
sults is minimally impacted by the choice between targeting
average, instantaneous fluxes or targeting a vector of instan-
taneous fluxes over the last N hours. This is due to the rela-
tively slow hourly variation in the CO2 emission rate of the
PP. All future flux quantities are expressed in Mtyr−1. The
image-to-scalar, or image regression, problem is depicted in
Fig. 4. The CNN is trained using XCO2 fields, ancillary data
fields (winds, segmentation results, and NO2), and associated
emission fluxes ranging from 3 to 53 Mtyr−1 across various
times and targets.

4.2 CNN model and training parametrisation

In this section, we present and discuss the architecture of the
model, the hyperparameters, and the learning methodology
for the inversion task. In particular, the model is built from
preprocessing layers and a core model. The preprocessing
layers are used to augment/transform, construct, add noise,
and normalise the input data before feeding them into the
core model. The core model is designed to extract features
from these transformed input data.

4.2.1 Description of the preprocessing layers

The preprocessing layers consist of a six-step sequence, as
presented in Fig. 5. The purpose of steps 1, 2, and 3 is to
extend the initial database, thereby enhancing the model’s
ability to generalise to unseen data. A pair of input–output
data items for training is constituted in the following way.

1. A target CO2 plume corresponding to a PP at a time t

is chosen randomly. A background must be constructed
to form the XCO2 image with this plume. This back-
ground is chosen randomly and therefore does not nec-
essarily correspond (geographically and temporally) to
the chosen target plume. It may correspond to another
PP as well as to another time. Furthermore, in SMART-
CARB, the background is partitioned into multiple seg-
ments. In our case, the background is constructed from
two randomly and independently drawn fields: a field
containing the major part of the fluxes including the
biogenic fluxes and a field containing a part of the an-
thropogenic fluxes of the SMARTCARB domain. Fi-
nally, potential additional fields (wind, NO2, segmenta-

tions) corresponding geographically and temporally to
the chosen CO2 plume are selected.

2. Then the following occurs.

– The target XCO2 plume is multiplied by a ran-
dom uniform scaling factor p ∼ U(0.25,2). The
corresponding true emissions are also multiplied:
y

scaled plume
truth = p× y

plume
truth .

– A random number b ∼ U(−3.5,3.5) (in ppmv) is
added uniformly to the main background. Extrema
of this uniform distribution are chosen as approxi-
mately the standard deviation of an average XCO2
background.

– A random uniform scaling factor a ∼ U(0.33,3) is
applied to multiply the field containing a part of the
alternate anthropogenic fluxes.

Anthropogenic flux scaling factors p and a are chosen
so that the resultant emissions still correspond to rea-
sonable anthropogenic fluxes.

3. The XCO2 field is built as the sum of the target plume,
background, and alternate anthropogenic fluxes field
components.

4. A Gaussian noise matrix of shape 64× 64 (equal to the
image shape) GNx×Ny ∼N(0,0.7) (in ppmv) is added
to the XCO2 field to simulate the satellite observational
noise.

5. The noisy XCO2 field is concatenated with the addi-
tional fields. If added, the NO2 field is noised before-
hand.

6. Standardisation (i.e. Z-score normalisation) is applied
independently to each channel (each physical field) of
the concatenated input data.

These steps are carried out exclusively during the model
training phase. The different operations in this process are
performed to create a more robust and diverse training
dataset. To ensure an accurate assessment of the performance
of the trained model, the test dataset used for the evaluation
consists only of pre-constructed, physically consistent sim-
ulated data. Specifically, no scaling factors are applied and
the XCO2 fields used for testing are always constructed from
geographically and temporally consistent plume and back-
ground components.

4.2.2 Description of the core model

The chosen core CNN model, depicted in Fig. 6, is designed
for image regression. It was chosen by comparing its per-
formance with state-of-the-art models such as EfficientNet
or SqueezeNet (Tan and Le, 2020). These two models are
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Figure 5. Description of the preprocessing layers as a sequence of six steps: (1) random choice of the XCO2 field components, (2) scaling
transformation of the components, (3) sum of the components, (4) satellite noise simulation, (5) concatenation with the additional data, and
(6) normalisation.

deep neural networks designed primarily for image classi-
fication tasks. They incorporate modified versions of CNN,
including features such as residual connections and depth-
separable convolutions, in order to improve efficiency, speed,
and ease of implementation. As their initial implementation
tended to overfit, we considered a smaller version with a re-
duced number of neurons in each layer. But even after tuning,
the simpler model depicted below outperformed these more
advanced models.

The chosen model takes three to four images of 64× 64
pixels as input (which correspond to the XCO2 field and an-
cillary data such as the winds). The model is constructed as a
succession of convolutional, max pooling, batch normalisa-
tion, and dropout layers where the following applies:

– Convolutional layers aim to identify and extract relevant
features by applying a set of learnable filters to the pre-
vious feature map. The 2D convolutional operations are
applied with a filter size of 32 and a kernel size of 3× 3.

https://doi.org/10.5194/gmd-17-1995-2024 Geosci. Model Dev., 17, 1995–2014, 2024
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Figure 6. Description of the core CNN model, designed to extract features from the input data. The resolution given for each sequence of
layers is approximate, as convolutional layers also slightly reduce the resolution.

– Max pooling layers play a key role in reducing the res-
olution of feature maps while retaining the essential in-
formation. This reduces the computational complexity
of the network and leads to the extraction of more com-
plex features.

– Batch normalisation layers are used to improve the sta-
bility of the network and speed up its learning process.

– Dropout layers randomly exclude a certain percentage
of the neurons in the previous layer at each iteration to
reduce overfitting. They are only activated during the
training phase.

The output of the core model is flattened and fed into a
fully connected final dense layer with a single output unit,
which is activated by a leaking rectified linear unit (ReLU).
In total, the CNN has approximately ∼ 186 000 parameters.

4.2.3 Training parametrisation

The training hyperparameters, such as the optimiser, learn-
ing rate, and batch size, have been determined through a
combination of experimental investigation and adherence to
standard practice. In accordance with customary practices,
Adam’s optimiser was employed with a fixed learning rate of
10−3 and a dropout rate of 0.2 was applied. The batch size,
or number of samples before the model updates its weights,
was set to 32. After analysis, to ensure model convergence,
the epoch count was set to 500, which yields a total train-
ing time of approximately 4 h using an NVIDIA Quadro
RTX 5000 16 GB GPU. Furthermore, the default choice of

loss function employed is the mean absolute percentage er-
ror (MAPE), which emphasises proportionate deviations be-
tween emissions predictions and ground truth. This loss func-
tion is equivalent to an absolute relative error between the
truth and the predictions. It should be noted that the mean
absolute error (MAE) metric was used to train roughly half
of the ensemble models (detailed in the subsequent section,
Sect. 4.2.4) in the Lippendorf case (Sect. 5.1.1). MAE and
MAPE metrics generally yielded similar performances.

4.2.4 Model ensembling

In many cases, deep learning models suffer from high lev-
els of volatility due to their reliance on random initialisations
of parameters and hyperparameter optimisation algorithms.
To overcome these limitations and increase the stability of
our predictions, we employed the technique of model en-
sembling. Specifically, for each considered configuration, we
trained multiple instances of the same model architecture and
parameters. This approach enabled us to produce a range of
predictions that were subsequently averaged into a single es-
timate. To ensure sufficient convergence of these estimates, a
minimum of five individual models were used for each con-
sidered configuration. Through these steps, we significantly
reduced the variability observed across multiple models runs,
thereby improving the accuracy and confidence in our sys-
tem.

Geosci. Model Dev., 17, 1995–2014, 2024 https://doi.org/10.5194/gmd-17-1995-2024
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4.3 Geographical separation between the training and
test datasets

We consider a strict geographical separation between the PPs
of the training/validation and those of the test dataset. For
example, to train a model to predict emissions from Boxberg
plumes, we consider a training dataset consisting of images
centred at all other available PPs except Boxberg. In this way,
the model predicting Boxberg emissions never had access to
the Boxberg emissions inventory.

During the training phase, to avoid overfitting or under-
fitting, a separate validation dataset is used to follow the
model’s performance using new data. In our case, the vali-
dation dataset is chosen as unseen data from the same geo-
graphical area as the training dataset.

Three distinct models are created and trained to predict
emissions from three specific PPs. The target PPs are Lippen-
dorf, Boxberg, and Turów and are selected for the following
reasons:

– to obtain a diverse range of emission rates – between
7 and 24 Mtyr−1, with a mean of 15 Mtyr−1 and an SD
of 3 Mtyr−1 for Lippendorf; between 4 and 13 Mtyr−1,
with a mean of 9 Mtyr−1 and an SD of 2 Mtyr−1 for
Turów; and between 9 and 30 Mtyr−1, with a mean of
19 Mtyr−1 and an SD of 4 Mtyr−1 for Boxberg;

– to account for the potential presence of multiple plumes
in the same image – the images centred at Boxberg also
include plumes from Jänschwalde, Schwarze Pumpe,
and Turów, which sometimes overlap;

– because their emission rates are at neither the highest
nor the lowest extremes (Boxberg was selected over
Jänschwalde because Jänschwalde has the highest emis-
sion levels in our dataset, potentially placing it outside
the training distribution);

– due to their positioning away from the boundaries of the
SMARTCARB domain. These PPs are less affected by
border conditions – as shown in Fig. 1, Pątnów or Opole
are close to the borders and are influenced by border
conditions.

Although these models differ in terms of the training
datasets used, they all share the same architectural frame-
work, including hyperparameters, CNN structure, and pre-
processing layers. The objective behind creating these mod-
els is to demonstrate the effectiveness of the architectural
framework, laying the groundwork for a universal model
based on this architecture and capable of generalising across
future PPs. It is important to note that while the test dataset
from one experiment appears in the training dataset of an-
other, each experiment was conducted independently. The
model tuning was not influenced by the results obtained with
the test datasets. In particular, the selection of the hyperpa-
rameters such as the learning rate was made before the model
training.

4.4 Alternative method for comparison

The accuracy of our inversion method is compared to
the cross-sectional flux (CSF) method implemented in
the Python library for data-driven emission quantification
(ddeq1). The CSF method was recently compared with other
state-of-the-art methods and shows similar accuracy than
other well-performing methods (Hakkarainen et al., 2023).
This method consists in

– detecting the plume and extracting it from the back-
ground, whereby NO2 fields are used to help in the de-
tection;

– dividing the plume into a series of horizontal slices of
known areas and heights;

– estimating the line densities of CO2 by fitting Gaussian
curves to the CO2 and NO2 concentrations within each
slice;

– inferring the CO2 fluxes as the product of the line den-
sities and the wind speed at the sources;

– deriving the total emission rate by multiplying the flux
estimation and the area of each slice and then averaging
all downstream fluxes.

The CSF method is limited by the need for accurate esti-
mation of the effective wind (Kuhlmann et al., 2020a). Two
separate wind estimates have been considered: the first de-
rived from an average of the 37 lower levels of ERA5 data
and the second corresponding to the wind at 100 m. The first
estimate was chosen because of its superior performance.

5 Application: inversion of three power plants and
model interpretation

In this section, we study the performance of a trained CNN
under the conditions exposed in Sect. 4:

– Firstly, various ensembles of models with different sets
of inputs are evaluated using the Lippendorf PP in
Sect. 5.1.1, the Turów PP in Sect. 5.1.2, and the Boxberg
PP in Sect. 5.1.3. In each configuration, the training, val-
idation, and test datasets involve 25 152, 4608, and 6289
images, respectively.

– Secondly, we investigate how the assimilation of seg-
mentation fields or NO2 affects the CNNs. Afterwards,
since overfitting arises in certain configurations, discus-
sions and partial solutions to this issue are proposed.

– Thirdly, we propose to interpret the CNNs using a
gradient-based technique and by permuting the input
features.

1https://gitlab.com/empa503/remote-sensing/ddeq (last access:
19 February 2024).
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5.1 Inversion of plumes’ performance

We study the performance of various CNN model ensem-
bles in predicting the emissions of the Lippendorf, Turów, or
Boxberg PPs. More precisely the following applies:

– Three model ensembles are trained on Berlin, Jän-
schwalde, Schwarze Pumpe, Boxberg, Turów, Pątnów,
Opole, and Dolna Odra and are tested on Lippendorf.

– Three model ensembles are trained on Berlin, Jän-
schwalde, Schwarze Pumpe, Boxberg, Lippendorf, Pąt-
nów, Opole, and Dolna Odra and are tested on Turów.

– Three model ensembles are trained on Berlin, Jän-
schwalde, Schwarze Pumpe, Turów, Lippendorf, Pąt-
nów, Opole, and Dolna Odra and are tested on Boxberg.

Lippendorf typical emissions fall between those of low-
emission PPs (such as Dolna Odra or Turów) and those
of high-emission PPs (Boxberg, Jänschwalde). Turów emis-
sions range between 4 and 14 Mtyr−1, which is similar to
PPs like Opole. This implies that most Turów CO2 plumes
are hidden under the background. The last-studied PP is
Boxberg, which is characterised by high emissions and the
presence of other PPs in the vicinity, which entails the pres-
ence of other high-SNR plumes.

For each of the three target PPs, three model ensembles are
trained. The input data for the first model ensemble are the
XCO2 field and the wind fields u and v. The second and third
model ensembles use the same three base fields and the out-
put of the segmentation model or the NO2 field, respectively,
as fourth input. In the following, for simplicity, these ensem-
bles of CNN models will be referred to simply as “models”.

Kernel density estimation (KDE) plots over the 6289 im-
ages of the test dataset are drawn in Fig. 7, comparing with
relative and absolute metrics the true emission rates and the
predictions of the four models for each PP. While Fig. 7
employs signed relative error to assess prediction bias in
the CNNs, Table 2 and the majority of the analysis rely on
absolute relative error. KDE is a non-parametric statistical
technique that estimates the probability density function of a
continuous random variable by smoothing its observed data
points using a kernel function. The three first ensembles of
predictions consist of those of the trained CNNs, and the
fourth corresponds to the CSF method application. The main
statistics corresponding to these KDE plots are summarised
in Table 2.

5.1.1 Lippendorf plumes’ inversion

As reported in Table 2, the utilisation of the CNN approach
yields remarkably accurate predictions of Lippendorf emis-
sions compared to the CSF method. The performance of
all three CNN models shows a median absolute relative er-
ror of approximately 20 % and a median absolute error of
around 3 Mtyr−1 (the average emissions for Lippendorf are

15.2 Mtyr−1). In comparison, the CSF method exhibits a
higher median absolute relative error performance of around
40 %, and the absolute error performance is approximately
double, at 6 Mtyr−1. The CNN results are reliable, as the ma-
jority of errors are concentrated below 10 Mtyr−1 or 50 %,
with very few exceeding 100 %. This indicates that the mod-
els provide trustworthy estimates, with a relatively small
margin of error.

5.1.2 Turów plumes’ inversion

The CNN approach produces highly accurate predictions for
the low-SNR Turów plumes, exhibiting similar performance
to the results obtained in the Lippendorf case. The three mod-
els yield a median absolute relative error performance of ap-
proximately 25 % and a median absolute error performance
of around 2 Mtyr−1. The results can be considered reliable:
75 % of the results fall below a threshold of 4 Mtyr−1. By
contrast, the CSF method exhibits a median absolute relative
error performance of approximately 50 %–55 % and an abso-
lute error more than 2 times larger. The inclusion of segmen-
tation or NO2 fields has a noticeable, albeit not significant,
impact on the model’s performance, resulting in an improve-
ment on the order of a 10th of 1 Mtyr−1. Notably, the addi-
tion of the NO2 field appears to have a slightly greater impact
compared to the inclusion of segmentation fields. This im-
plies that when applying the model that assimilates the seg-
mented XCO2 fields (with the assistance of the NO2 fields),
there is a potential loss of information for the NO2 fields
compared to using the model directly assimilating the NO2
fields. The observed phenomenon could be a result of poten-
tial overfitting when employing the segmentation model, as it
is trained on the same dataset as the inversion model. Conse-
quently, the segmentation predictions on the training dataset
are typically superior to those on the test dataset. This dis-
crepancy can lead to an over-reliance on the segmentation
fields, subsequently causing overfitting.

5.1.3 Boxberg plumes’ inversion

In contrast to the inversion results obtained for Lippendorf
and Turów PPs, there is a significant variation in Boxberg
plume inversion performance. A CNN only trained with
XCO2 and u and v winds demonstrates strong performance,
comparable to that of the models estimating Lippendorf and
Turów emissions. The median absolute relative error perfor-
mance is approximately 20 %–25 %, and the median absolute
error performance is around 4 Mtyr−1. The CSF method ex-
hibits a median absolute relative error performance of around
40 % and an absolute error performance close to 8 Mtyr−1.
But both models with segmentation or NO2 fields show a
significant decline in performance, which contradicts our ex-
pectations. This phenomenon can be attributed to overfitting
and is examined in detail in Sect. 5.2.2.
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Figure 7. Density plots of the signed relative and absolute error between the predicted and the true Lippendorf emissions. Four sets of
predictions are considered, corresponding to the three CNN models with three different sets of inputs and the CSF method. Each CNN
model is trained with the XCO2 field and the winds as inputs. Two of the models additionally assimilate the NO2 field or the predictions
of the segmentation model. Predictions with absolute relative errors greater than 150 % or absolute errors greater than 30 Mtyr−1 were set
to ± 150 or 30 to increase visibility. Of the CSF method predictions, 3 % are missing. Those predictions correspond to Lippendorf plumes
superimposed onto other plumes, where the CSF method cannot be applied.

5.1.4 Cross-sectional flux method results

The CSF results align with the findings reported in
Kuhlmann et al. (2021) and Hakkarainen et al. (2023). Other
methods, such as the light cross-sectional fluxes technique,
might yield predictions with absolute relative errors reduced
by 5 % to 10 % (Hakkarainen et al., 2023). A notable con-
straint of the CSF method is that it hinges on the estimation
of the effective wind speed inside the plume. Under ideal
circumstances, the effective wind speed should be estimated
using the wind profile, weighted by the CO2 concentration
profile, but in practical applications, estimating this profile

presents a substantial challenge. In a separate experiment, the
CSF method was utilised based on a reduced dataset (com-
pared with that used to study the CNN results). Among other
changes, this dataset considers only the CO2M overpass, or
excludes the plume overlaps processed by the CNN. In this
experiment, the exact emission profile used to simulate the
COSMO-GHG fields of SMARTCARB was used to compute
the effective wind. This methodology resulted in a median
absolute error of around 4 Mtyr−1, thereby indicating that
the effective wind estimation significantly contributes to the
errors associated with the CSF method.
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Table 2. Absolute relative and absolute error statistics between predicted and true emissions for CNN models with various inputs and applied
to various target PPs and the CSF method.

Absolute relative error [%] Absolute error [Mtyr−1]

25 % Median 75 % 25 % Median 75 %

Lippendorf
CNN with no additional input 9.8 21.3 35.6 1.4 3.1 5.2
CNN with segmentation 11.4 23.3 36.5 1.6 3.4 5.6
CNN with NO2 8.6 18.1 30.3 1.3 2.7 4.5
CSF 21.0 42.8 70.1 3.1 6.3 10.5

Turów
CNN with no additional input 12.3 25.9 43.2 1.0 2.2 3.8
CNN with segmentation 11.0 23.7 41.3 0.9 2.0 3.5
CNN with NO2 10.9 22.9 38.0 0.9 1.9 3.2
CSF 26.3 52.1 92.0 2.2 4.5 8.1

Boxberg
CNN with no additional input 11.7 23.5 37.2 2.1 4.4 7.1
CNN with segmentation 24.2 36.9 48.2 4.2 6.8 9.4
CNN with NO2 26.4 36.9 45.4 4.5 6.8 9.3
CSF 21.7 41.5 63.5 3.9 7.7 12.3

5.2 Result analysis

This section presents an analysis of the results from the pre-
ceding section, Sect. 5.1. It involves examining the trained
models, or new models trained under the same configuration,
across various datasets, including the test dataset. It is impor-
tant to note that these analyses were conducted after obtain-
ing the previous section’s results and thus did not influence,
for example, the choice of model architecture or hyperparam-
eters.

5.2.1 Study of the addition of the segmentation and
NO2 fields

Interestingly, the model designed to invert the Lippendorf
plumes does not yield more accurate emission estimates
when using segmentations as inputs, compared to the model
without segmentations. One possible reason for this lack of
improvement is that the Lippendorf segmentation fields are
inadequate. The segmentation model assimilates NO2 fields
to segment the CO2 fields, and the presence of multiple al-
ternative NO2 plumes in the NO2 fields hinders the segmen-
tation model’s ability to accurately delineate the contour of
the Lippendorf CO2 plume. However, the incorporation of
the NO2 field as inputs slightly increases the quality of the
predictions made by the new CNN model. One hypothesis
to explain the error discrepancy between the model utilis-
ing NO2 and the one using segmentation fields is the seg-
mentation model not capturing NO2 or CO2 plume ampli-
tude variations. Precisely, the segmentation model does not
discriminate between plume pixels with high amplitude and
those with low amplitude. Consequently, if the NO2 images

are of poor quality due to the presence of numerous alter-
native NO2 plumes, the segmentation model will struggle to
distinguish the main plume accurately. Taking into account
these segmentation fields that do not distinguish the back-
ground plumes in the test dataset results in a degradation of
the predictions.

Regarding the benefits brought by the integration of NO2
fields, their essential contribution is their facilitation of the
plume segmentation, rather than a direct enabling of inver-
sion based on the NO2 levels alone. Indeed, as stated in
Sect. 4.2.1, the NO2 plumes are not scaled like CO2 plumes.
To further investigate this, it is possible to verify this hypoth-
esis by modifying the scaling of the plume in the NO2 fields.
In Fig. 8 we draw the relative absolute error of the model at
testing stage when taking as inputs scaled NO2 fields by a
constant factor in [0,3]. The CNN model exhibits its high-
est performance within the scaling range of 1.0 to 1.3. As
expected, performances gradually decrease for scaling be-
low 1 and above 1.3. However, intriguingly, the model still
achieves remarkably satisfactory scores for scalings ranging
from 0.5 to 1.75. Notably, these scores outperform those of
the CNN models without the NO2 field as input. If the model
were utilising the amplitude of the NO2 field as a predic-
tor, deeply inaccurate results could be expected for scalings
of 0.5 or 1.5. However, the graph contradicts this assumption,
strongly suggesting that the amplitude of the NO2 field is not
employed as a predictor by the model. Instead, it is likely that
only the contour of the NO2 plume and the ratios between
different parts of the plume serve as predictors. In essence,
the model’s reliance on the NO2 field for predictions appears
to be based on the contour of the plume and the relative pro-
portions of its various components, rather than on the abso-
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Figure 8. Effect of scaling the NO2 plume of Lippendorf inputs
on the performance of the CNN model. The x axis corresponds to
the scaling of the NO2 plume: 1 corresponds to the original plume
and 0 to no plume. The y axis corresponds to the median abso-
lute relative error of the CNN model evaluated for the given scaling
of the NO2 plumes. The CNN model is the same for each scaling
(each tick of the x axis) and corresponds to the CNN model having
obtained the best absolute relative error score. The dotted red line
approximately corresponds to the median absolute relative error of
a model not learning with NO2 fields.

lute amplitude of the NO2 field values. Finally, the model’s
inability to accurately estimate emissions for scaling factors
exceeding 2 can be attributed to the unprecedented and ex-
treme values that NO2 plumes can reach, which lie beyond
the range of what the model has been trained on.

5.2.2 Overfitting investigation

To understand the reasons behind the deviations between pre-
dictions and actual values, we conducted an analysis of the
residuals in Fig. 9. This examination, which focuses on the
disparities between predicted and true emissions, reveals a
substantial underestimation of the actual Boxberg emissions
by the model incorporating NO2 or segmentation fields.

This observation suggests an overfitting issue (Zhang
et al., 2022), since the majority of PPs used to train the model
exhibit lower emission rates compared to Boxberg (six out of
seven: Schwarze Pumpe, Lippendorf, Turów, Pątnów, Opole,
and Dolna Odra). The low absolute relative error observed in
the training dataset of the models with NO2 or segmentation
fields, as depicted in Fig. 10, further substantiates concerns
regarding overfitting. An overfitted model tends to learn fea-
tures that are overly tailored to the specifics of the training
dataset. Consequently, when presented with images from the
test dataset with slightly different features, the model strug-
gles to generate accurate predictions.

Our hypothesis is that the model specifically overfits the
low-emission PPs, which can be attributed to the information
gained through the use of NO2 or segmentation fields. When

Figure 9. Residual density between the true emissions of the
Boxberg PP and the predictions of the CNNs.

Figure 10. Evolution during training of the validation and test rel-
ative errors between the true emissions of Boxberg and the predic-
tions of the CNNs. Specifically, for the needs of this experiment,
new models are trained and employed to predict the emissions cor-
responding to the validation and test fields at each epoch. Three
models are considered: each is trained with the XCO2 field and the
winds as inputs. Two of the models additionally assimilate the NO2
field or the predictions of the segmentation model. The validation
error decreases monotonically with the number of epochs, while the
test error does not, which suggests overfitting of the model.

provided with new images, the model fails to recognise the
new features and consequently yields predictions that align
more closely with the training dataset, which predominantly
consists of emissions from the low-emission PPs. The failure
to recognise new features is due to the incorporation of the
NO2 field as inputs. The model’s ability to learn highly spe-
cific features is limited when no additional input is provided.
Conversely, when the model incorporates the NO2 field, it
gains access to more information and can acquire more in-
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Figure 11. Density plots of the relative and absolute error between the predicted and the true emissions. Four sets of predictions are consid-
ered, corresponding to the three CNN models with three different sets of inputs and the CSF method. Each CNN model is trained with the
XCO2 field and the winds as inputs to a dataset composed of Berlin, Jänschwalde, Lippendorf, Turów, and Opole. Two of the models addi-
tionally assimilate the NO2 field or the predictions of the segmentation model. Predictions with absolute relative errors greater than 150 % or
absolute errors greater than 30 Mtyr−1 were set to 150 or 30 to increase visibility. Of the CSF method predictions, 15 % are missing. Those
predictions correspond to Boxberg plumes superimposed onto other plumes, where the CSF method cannot be applied. A modified dataset is
used to avoid overfitting.

Table 3. Relative and absolute error statistics between predicted and true Boxberg emissions for three CNN models (assimilating three
different sets of inputs) and the CSF method. A modified dataset is used to avoid overfitting.

Absolute relative error [%] Absolute error [Mtyr−1]

25 % Median 75 % 25 % Median 75 %

CNN with no additional input 9.5 20.4 33.8 1.8 3.7 6.3
CNN with segmentation 14.1 26.6 40.6 2.5 4.8 7.6
CNN with NO2 13.2 23.8 34.2 2.3 4.4 6.6
CSF 21.7 41.5 63.5 3.9 7.7 12.3

tricate features. Consequently, the model’s capacity to gener-
alise worsens in the latter case.

Next, we examine the performance of a new ensemble
of models trained on a more balanced dataset, achieved by
removing three out of the five low-emission PPs from the
original dataset. The new dataset is composed of Berlin,
Jänschwalde, Lippendorf, Turów, and Opole, i.e. of two
medium- or high-emission PPs and two low-emission PPs
and Berlin. Furthermore, the choice of the factor scaling the
plumes during training (see Sect. 4.2.1) varies depending on
the ensemble member considered (see Sect. 4.2.4). Specif-
ically, the uniform distribution is defined with a minimum
scaling factor of 0.25 or 0.5 and a maximum scaling factor
of 2 or 3. Once more, we examine the outcomes for three
models obtained from ensembling, as depicted in Fig. 11, and
summarise them in Table 3.

The three CNN models demonstrate very good perfor-
mance, although the inclusion of NO2 or segmentation fields
still leads to a degradation in results, albeit to a lesser extent
than in Sect. 5.1.3. For example, the median absolute relative
error for the CNN with NO2 as additional input is 23.8 %,
compared to 36.9 % in Sect. 5.1.3. On the one hand, the me-

dian absolute relative error of the CNN model trained on NO2
and wind fields stands at approximately 20 %, while the me-
dian absolute error remains below 4 Mtyr−1. On the other
hand, the degradation of the results when adding the NO2 or
segmentation fields can still be regarded as overfitting. The
model learns features from NO2 or segmentation fields that
are not general enough to cover the case of Boxberg. Fur-
thermore, it fails to acquire compensatory generalisable fea-
tures such as in the case of Turów, where the model proba-
bly gains information about the plume contour from the NO2
field, which is not straightforwardly apparent in the Turów
XCO2 field.

5.3 Interpretation of the CNN inversion models

In the two following sections, we introduce and apply two
methods to gain a deeper understanding of the behaviour and
decision-making processes of the CNNs discussed in this pa-
per. These methods offer valuable insights into the signifi-
cance of input features in the predictions made by the CNNs:

– The integrated-gradient method allows us to examine
the importance of individual pixels across channels.
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– The feature permutation method enables us to assess the
importance of the channels, i.e. the fields used as inputs.

5.3.1 Gradient-based study of the pixels

The integrated gradients method is a gradient-based method
for the interpretability of neural networks that enables the
assessment of pixel importance in CNN prediction. The
method calculates the sensitivity of a model’s predictions
to input features (here pixels), assigning relevance scores to
them. By analysing how changes in the input pixels affect the
model’s output, the method provides insights into the impor-
tance of each pixel in the decision-making process.

One unique aspect of this gradient-based method is that
the scores it assigns are relative to a baseline. More precisely,
these scores are computed as integrated gradients along a lin-
ear interpolation from a blank image to the input.

In Fig. 12, we apply the integrated-gradient approach to
study four different models specific to various sources. The
first and second models are built to invert the emissions
from Lippendorf (see Sect. 5.1.1) and Boxberg plumes (see
Sect. 5.1.3), respectively, whereas the last two models tar-
get Turów plumes (see Sect. 5.1.2). The first three models
only use the XCO2 field and the winds as inputs, whereas the
fourth model considers an additional input, the NO2 field. To
apply the integrated-gradient method, a random plume from
the target PP is selected for each model. Columns of Fig. 12
represent the XCO2 field, the corresponding XCO2 plume,
and the integrated gradient between the model predictions
and the inputs.

In order to simplify the analysis, we choose the model that
exhibits the best performance using the test dataset, rather
than using the ensemble of models. It is worth noting that
such a model yields similar performances to the ensemble of
models.

The integrated-gradient technique reveals that the CNN
model learns to estimate the emissions of a source based on
the pixels of the plume from this source. In the first row,
we examine a plume from Lippendorf PP. The integrated-
gradient technique identifies the most important pixels,
which correspond to the plume pixels. This indicates that if
the pixels associated with the plume were to deviate, the esti-
mated flux rate would be significantly affected. This demon-
strates that the CNN model effectively makes inferences
from the crucial parts of the image. In the second row, we fo-
cus on an image centred at Boxberg. The gradients reveal that
the model concentrates exclusively on the Boxberg plume in
the centre, disregarding the other plumes when inferring the
emissions of the Boxberg PP. In the third row of the figure,
we examine a plume from the Turów PP. Although the preci-
sion is lower compared to the Lippendorf or Boxberg cases,
the pixels in the general direction of the Turów plume are
the main ones used to estimate the emissions. In the fourth
row, we display the gradients associated with the same Turów
image but for a model trained with NO2 fields as additional

inputs. In this case, the model clearly identifies the pixels
corresponding to the plume as critical, as indicated by the
amplitude and contour of the gradients. This reinforces the
hypothesis that the improved estimation of Turów emissions
when the model is trained with NO2 fields can be attributed
to the enhanced assessment of the plumes.

In conclusion, the model consistently identifies the target
emission plume situated at the image’s centre, indicating it
implicitly understands the relationship between the plume
and targeted emissions.

5.3.2 Feature permutation analysis

Feature permutation is a technique used to determine the im-
portance of input channels used in a model (Molnar, 2022).
As input variables used here are not independent, the in-
terpretation of the following permutation analysis should be
taken with caution. The principle is to (i) permute the values
of a feature (e.g. exchange the u wind field corresponding
to an XCO2 image with another random u wind field) and
(ii) use the model to predict emissions for the given input,
which includes the XCO2 field, other associated inputs, and
the random u wind field. By comparing the performance of
the model using the original dataset with the performance on
the permuted dataset, we can measure the impact of each fea-
ture on the performance of the model. The more the permu-
tation of a feature affects the performance of the model, the
more important that feature is. In Table 4, we present the out-
comes of the permutation of the features for nine ensembles
of models (for each PP and each ensemble of inputs consid-
ered). Each entry in the table represents the degradation in
the average absolute relative error of the model (associated
with a specific column) when the corresponding feature is
permuted (related to the respective row).

We can formulate hypotheses regarding several groups of
cells in Table 4.

– Comparison of the first row with the others shows that
the XCO2 feature consistently holds (or shares) the
highest importance among other features.

– Examining the second and third rows reveals a pat-
tern where the u wind seems to have a more signifi-
cant influence on the inversion process compared to the
v wind. This might be due to the bigger variance of u

(∼ 51 m2 s−2) comparing to v (∼ 19 m2 s−2): u is the
dominant wind in this situation.

– The XCO2 field input permutation seems to have a
lower impact for the CNN targeting Turów (12.6 % in
absolute relative error degradation compared to 18.3 %
and 19.6 % for Lippendorf and Boxberg).

– The importance of the XCO2 feature differs for models
with different inputs: specifically, the XCO2 feature im-
portance increases when additional data are used. For
example, the XCO2 feature permutation degrades the
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Figure 12. Evaluation of four CNN models using the integrated-gradient method with four input sets. Columns 1, 2, and 3 represent the
XCO2 field, the corresponding XCO2 plume, and the integrated gradient between the model predictions and the inputs, in that order. The
rows represent the four models and corresponding test fields.
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Table 4. Evaluation of the degradation in the average absolute relative error of the model when the corresponding feature is permuted. Each
column corresponds to a model, and each row corresponds to a permuted feature. For example, we estimate the emissions corresponding to
Boxberg plumes with the CNN model trained with the XCO2 field, the winds, and no additional input. We then estimate the degradation of
the predictions of this model on the test dataset with the u wind fields permuted: the degradation in the absolute relative error is 12.4 %. Seg.
is for segmentation. Add. input corresponds to either the “None”, “NO2”, or “Seg.” fields depending on the column considered.

PP Lippendorf Boxberg Turów

Feature None Seg. NO2 None Seg. NO2 None Seg. NO2

XCO2 18.3 27.6 32.7 19.6 29.5 34.5 12.6 9.8 22.7
u wind 11.6 10.4 3.3 12.4 9.7 4.2 6.6 5.4 0.9
v wind 4.9 3.7 1.8 5.3 4.9 3.0 3.6 1.7 0.6
Add. input n/a 22.7 30.3 n/a 28.9 34.6 n/a 6.9 21.0

n/a: not applicable.

performance of the model by 32.7 % when NO2 is used
and by 18.3 % when no additional input is used. This
observation is consistent with the overfitting tendency
of the CNN models when trained with NO2 fields. When
confronted with inconsistent data (non-corresponding
XCO2 and NO2 fields), the acquired complex features
of the model exhibit a total absence of correspondence
with these inputs. As a consequence, the model predicts
nonsensical emissions.

– The wind inputs systematically hold greater importance
in the model without additional input, followed by a rel-
atively diminished importance in the model with seg-
mentation fields, and finally, it exhibits the least signif-
icance in the model with NO2 fields. This suggests that
the inclusion of NO2 fields is more advantageous for in-
version compared to segmentation fields. Furthermore,
it indicates that the winds compensate for the absence
of additional data.

6 Discussions and limitations

The approach developed in this paper carries certain limita-
tions: firstly, it focuses exclusively on European PPs, which
raises questions about its generalisability to PPs in other re-
gions with different climatic conditions. Secondly, the study
emphasises the importance of a balanced dataset, as high-
lighted by Sect. 5.2.2, and the need to be able to identify and
address potential overfitting issues. It should also be noted
that the study did not specifically investigate outliers such as
PPs with exceptionally high emission rates. Despite incor-
porating plume scaling strategies, the model may struggle to
generalise to such outliers. A last limitation is the absence
of a zero-emission source in the dataset. However, the in-
clusion in the training dataset of very low-emission power
plants and of a plume scaling approach generating near-zero-
emission plumes indicates that incorporating zero-emission
cases would likely not markedly change the outcomes.

In terms of future research, several areas should be ex-
plored such as the challenge posed by clouds. In this respect,
CNNs can be trained to ignore missing data caused by cloud
cover and to make effective use of the available data. Another
aspect to consider is the presence of noise in CO2M data.
While Gaussian noise may not pose significant issues if the
satellite noise exhibits structured patterns, it would become
crucial to develop robust noise modelling techniques to en-
able CNNs to accurately distinguish and remove such noise.
Furthermore, in real-world applications, models trained on
synthetic datasets may face challenges when applied to real
datasets due to differences in data distribution. Strategies
such as importance weighting, specific data augmentation
techniques, transfer learning, or active learning methods may
be necessary to account for these differences and ensure re-
liable performance. Finally, the method could be modified to
extract CO2 emissions from plume imagery at more detailed
scales, necessitating the use of resource-intensive large-eddy
simulation (LES) models.

7 Conclusions and perspectives

The future availability of CO2 satellite imagery, through mis-
sions such as the Copernicus CO2 Monitoring (CO2M) mis-
sion, heralds new opportunities and challenges for the eval-
uation of local CO2 emissions. Emissions can certainly be
retrieved from CO2 plumes of hotspots in the satellite im-
ages. But the emission estimation is hindered by two primary
obstacles: plumes with a low signal-to-noise ratio which can-
not be extracted straightforwardly from the background and
uncertainties in the transport or dispersion processes which
hampers the assessment of the emissions from the plumes.

In this work, we assess the ability of convolutional neural
networks (CNNs) to invert a plume from satellite imagery
using simulated XCO2, NO2, and wind fields with similar
characteristics to the future CO2M images. The fields used to
train and evaluate the CNNs are based on the SMARTCARB
dataset and possess the same resolution, satellite noise level
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and ancillary data availability as the future CO2M images.
Each synthetic XCO2 image encompasses the anthropogenic
plume from at least one power plant, a background aris-
ing from other biogenic and anthropogenic fluxes, and ran-
dom Gaussian noise intended to simulate the errors inherent
in satellite instruments. But the model evaluation was con-
ducted using simulated data. This approach does not account
for all the challenges that real satellite images present, specif-
ically issues related to cloud cover and systematic error pat-
terns due to surface reflectance and the aerosol dependency
of retrievals.

Our source emission estimation model is an image-to-
scalar CNN model, which infers from the full XCO2 field
a flux rate estimation of the anthropogenic emission corre-
sponding to the plume. The first layers of the model consist
of preprocessing steps which transform the input data dur-
ing the training time, in particular by adding noise and by
scaling the plume and emission rate. The core model is a
CNN composed of approximately 200 000 neurons divided
into convolutional, max pooling, dropout, and batch normal-
isation layers.

We strongly suggest that the design of a “universal” CNN,
trained on a small power plant subset and highly accurate
when applied to all of them, is possible. To do so, we eval-
uate the model’s ability to generalise to unobserved images
from another region. Explicitly, three CNN models trained on
different datasets but sharing the exact same structure (hy-
perparametrisation, architecture, etc.) are tested on plumes
from three sources: Boxberg, Lippendorf, and Turów. The
training/validation dataset for each CNN is restricted to a
dataset consisting of all other power plants except their tar-
get. The CNNs are highly accurate in each case, and the ad-
dition of NO2 fields often improves the results slightly. Pre-
cisely, the median absolute relative errors for the CNN mod-
els are on average close to 20 %–25 %. Moreover, the median
absolute error is generally half that obtained with the CSF
method, which is an alternative and state-of-the-art inversion
approach. This strongly suggests that it is possible to build a
universal neural network (which can generalise to all targets)
using this methodology.

Using interpretability tools, we demonstrate that the pre-
dictions made by the CNNs are grounded in the physi-
cally meaningful components of the features. The integrated-
gradient method shows that the CNNs learn to predict the
emissions corresponding to a plume from the pixels making
up the plume. The feature permutation technique highlighted
several aspects of the models, such as the expected high im-
portance of the XCO2 fields compared to the ancillary data
used.

Future prospects of the CNN plume inversion method from
satellite images encompass the challenges of clouds, cities,
and real satellite images. Concretely, the method should be
able to handle missing data caused by clouds. Additionally,
the CNN approach should incorporate the second important

category of hotspots: cities. Finally, the method should be
tested on real satellite data once they become available.

Code and data availability. The datasets used in this
paper are available in a compliant repository at
https://doi.org/10.5281/zenodo.8096616 (Dumont Le Brazidec,
2023) and originate from https://doi.org/10.5281/zenodo.4048228
(Kuhlmann et al., 2020b). The weights of the CNNs are
available at https://doi.org/10.5281/zenodo.8095487 (Du-
mont Le Brazidec et al., 2023b). The algorithms are avail-
able on Zenodo (https://doi.org/10.5281/zenodo.10100338,
Dumont Le Brazidec et al., 2023c) and GitHub at
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