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We extend the theory of locally checkable labeling problems (LCLs) from the classical LOCAL model to a
number of other models that have been studied recently, including the quantum-LOCAL model, finitely-
dependent processes, non-signaling model, dynamic-LOCAL model, and online-LOCAL model [e.g. STOC
2024, ICALP 2023].

First, we demonstrate the advantage that finitely-dependent processes have over the classical LOCAL model.
We show that all LCL problems solvable with locality𝑂 (log∗ 𝑛) in the LOCALmodel admit a finitely-dependent
distribution (with constant locality). In particular, this gives a finitely-dependent coloring for regular trees,
answering an open question by Holroyd [2023]. This also introduces a new formal barrier for understanding
the distributed quantum advantage: it is not possible to exclude quantum advantage for any LCL in the
Θ(log∗ 𝑛) complexity class by using non-signaling arguments.

Second, we put limits on the capabilities of all of these models. To this end, we introduce a model called
randomized online-LOCAL, which is strong enough to simulate e.g. SLOCAL and dynamic-LOCAL, and we
show that it is also strong enough to simulate any non-signaling distribution and hence any quantum-LOCAL
algorithm. We prove the following result for trees: if we can solve an LCL problem with locality 𝑜 (log(5) 𝑛) in
the randomized online-LOCAL model, we can solve it with locality 𝑂 (log∗ 𝑛) in the classical deterministic
LOCAL model.

Put together, these results show that in trees the set of LCLs that can be solved with locality𝑂 (log∗ 𝑛) is the
same across all these models: locality 𝑂 (log∗ 𝑛) in quantum-LOCAL, non-signaling model, dynamic-LOCAL,
or online-LOCAL is not stronger than locality 𝑂 (log∗ 𝑛) in the classical deterministic LOCAL model.
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1 INTRODUCTION
In this work, we connect three distinct lines of research that have recently explored extensions of
the classical LOCAL model of distributed computing:

(1) Distributed quantum computing and non-signaling distributions [3, 24, 33].
(2) Finitely-dependent processes [40–42].
(3) Locality in online graph algorithms and dynamic graph algorithms [2, 20].

We prove new results on the capabilities and limitations of all of these models of computing, for
locally checkable labeling problems (LCLs). Our work implies limitations on the quantum advantage
in the distributed setting, and we also exhibit a new barrier for proving tighter bounds.

1.1 Classical models
Let us first recall the definitions of the classical models of distributed graph algorithms [50, 57] that
form the foundation for our work; we will give brief and informal definitions here and postpone
the formal definitions to Section 3:

• Deterministic LOCAL: Our input graph 𝐺 = (𝑉 , 𝐸) represents a computer network; each
node 𝑣 ∈ 𝑉 is a computer and each edge {𝑢, 𝑣} ∈ 𝐸 is a communication link between
two computers. Each node is labeled with a unique identifier from {1, 2, . . . , poly( |𝑉 |)}.
All nodes follow the same distributed algorithm. Initially each node is only aware of its
own identifier and its own degree. Computation proceeds in synchronous rounds, and in
each round each node can send a message to each neighbor, receive a message from each
neighbor, and update its own state. Eventually each node has to stop and announce its local
output (its own part of the solution, e.g. in graph coloring its own color). The running time,
round complexity, or locality of the algorithm is the (worst-case) number of rounds 𝑇 (𝑛)
until the algorithm stops in any 𝑛-node graph.

• Randomized LOCAL: As above, but each node has also access to its own private source
of random bits.

It will be also useful to explicitly distinguish the following variants (see e.g. [46] for discussion on
the knowledge of global information):

• Deterministic LOCAL (shared): Deterministic LOCAL with shared global information.
The set of nodes and their unique identifiers is globally known. In particular, we know the
value of 𝑛 = |𝑉 |.

• Randomized LOCAL (shared): Randomized LOCAL with shared global information and
shared randomness. The set of nodes and their unique identifiers is globally known, and in
addition to the private sources of random bits, there is also a shared source of random bits
that all nodes can access.

It may be helpful to interpret the shared versions of the models so that we get to see the set of
nodes 𝑉 and their unique identifiers in advance, and we can also initialize the nodes as we want
based on this information (and hence in the randomized model, we can also initialize all nodes with
the same shared random string), but the set of edges 𝐸 is only revealed later. This interpretation
will come useful when we switch to the quantum models.

1.2 Landscape of LCL problems
There has been more than three decades of work on understanding the capabilities and limitations of
the classical deterministic and randomized LOCALmodels, but for our purposes the most interesting
is the recent line of work that has studied distributed algorithms for locally checkable labeling
problems, or LCLs. This is a family of problems first introduced by Naor and Stockmeyer [53]. LCL
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problems are graph problems that can be defined by specifying a finite set of valid neighborhoods—for
example, the task of coloring graphs of maximum degree 5 with 7 colors is an example of an LCL
problem.
Since 2016, we have seen a large body of work dedicated to understanding the computational

complexity of LCL problems in the deterministic and randomized LOCAL models [4–8, 8–10, 15,
16, 18, 21, 32, 34, 35, 37, 58], and there are nowadays even algorithms and computer tools available
for exploring such questions [5, 22, 55]. As a result of this large international research effort, a
landscape of the distributed localities of LCL problems emerges [60]. We can now classify LCL
problems in discrete classes based on their locality, and we also understand very well how much
randomness can help in comparison with deterministic algorithms.
Our main goal in this work is to extend this understanding of LCL problems far beyond the

classical models, and especially explore what can be computed very fast in models that are much
stronger than deterministic or randomized LOCAL.

1.3 Quantum-LOCAL and finitely-dependent processes
Let us start our exploration of stronger models with distributed quantum computation. The key
question is understanding the distributed quantum advantage: what can we solve faster if our nodes
are quantum computers and our edges are quantum communication channels? There is a long line
of prior work that has explored variants of this theme in different models of distributed computing
[3, 17, 24, 31, 33, 44, 45, 47, 48, 51, 61–63], but for our purposes these are the models of interest:

• Quantum-LOCAL: Our model of computing is similar to the deterministic LOCAL model
above, but now with quantum computers and quantum communication links. More pre-
cisely, the quantum computers manipulate local states consisting of an unbounded number
of qubits with arbitrary unitary transformations, the communication links are quantum
communication channels (adjacent nodes can exchange any number of qubits), and the
local output can be the result of any quantum measurement.

• Quantum-LOCAL (shared): Quantum-LOCAL with shared global information and a
shared quantum state. As above, but now the algorithm gets to inspect and manipulate the
set of nodes (before seeing the set of edges). In particular, the algorithm can initialize the
quantum computers with a globally shared entangled state.

Note that as quantum theory intrinsically involves randomness, quantum-LOCAL is at least as
strong as randomized LOCAL.
It is known that there are some (artificial) problems that are known to be solvable much faster

in quantum-LOCAL than deterministic or randomized LOCAL [48]; however, whether any LCL
admits such a quantum advantage is a major open question in the field, and also one of the main
motivations of our work.

1.3.1 Finitely-dependent processes and non-signaling model. Directly analyzing quantum-LOCAL is
beyond the scope of current techniques. In essence, the only known technique for proving limitations
of quantum-LOCAL is sandwiching it between the classical randomized-LOCAL model and more
powerful models than quantum-LOCAL that do not explicitly refer to quantum information. These
more powerful models are based on the physical causality principle (a.k.a. non-signaling principle).
The idea is perhaps easiest to understand with the help of the following thought experiment:

Example 1.1. Fix a distributed algorithm A in the quantum-LOCAL model with shared global
information and quantum state that runs in 𝑇 rounds on graphs with 𝑛 nodes. Let 𝐺 = (𝑉 , 𝐸) be
some 𝑛-node input graph. Apply A repeatedly to 𝐺 to obtain some probability distribution 𝑌 (𝐺)
of outputs. Now fix some subset of nodes 𝑈 ⊆ 𝑉 , and consider the restriction of 𝑌 (𝐺) to 𝑈 , in
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notation 𝑌 (𝐺)↾𝑈 . Let𝐺 [𝑈 ,𝑇 ] be the radius-𝑇 neighborhood of set𝑈 in𝐺 . Now modify 𝐺 outside
𝐺 [𝑈 ,𝑇 ] to obtain a different 𝑛-node graph 𝐺 ′ with 𝐺 [𝑈 ,𝑇 ] = 𝐺 ′ [𝑈 ,𝑇 ]. Apply A to 𝐺 ′ repeatedly,
and we obtain another probability distribution 𝑌 (𝐺 ′) of outputs. If 𝑌 (𝐺)↾𝑈 ≠ 𝑌 (𝐺 ′)↾𝑈 , it would
be possible to use A to transmit information in 𝑇 time steps between two parties, Alice and Bob,
that are within distance 𝑇 + 1 from each other: Bob’s laboratory would hold all nodes of 𝑈 , and
he could, therefore, observe 𝑌 (𝐺)↾𝑈 , while Alice’s laboratory would control the graph outside
𝐺 [𝑈 ,𝑇 ] = 𝐺 ′ [𝑈 ,𝑇 ], and she could, therefore, instantiate either 𝐺 or 𝐺 ′. This would enable Alice
to send a signal to Bob even if no physical communication occurred from Alice’s lab to Bob’s lab
(as they are at distance 𝑇 + 1 from each other and only 𝑇 communication steps occurred), and thus
violate the non-signaling principle.

This thought experiment suggests the following definition, also known as the 𝜙-LOCAL model
and the causal model [3, 33]:

• Non-signaling model: We can produce an arbitrary output distribution as long as it
does not violate the non-signaling principle: if we fix any set of nodes 𝑈 , modifying the
structure of the input graph at more than a distance 𝑇 (𝑛) from𝑈 does not affect the output
distribution of𝑈 .

We also need to introduce the following definition to better connect our work with the study of
finitely-dependent processes and in particular finitely-dependent colorings [40–42]:

• Bounded-dependencemodel:We can produce an arbitrary output distribution as long as it
does not violate the non-signaling principle, and, furthermore, distant parts are independent:
if we fix any sets of nodes𝑈1 and𝑈2 such that their radius-𝑇 (𝑛) neighborhoods are disjoint,
then the output labels of𝑈1 are independent of the output labels of𝑈2.

Now if we set 𝑇 (𝑛) = 𝑂 (1), algorithms in the bounded-dependence model are in essence what is
usually called finitely-dependent processes.

1.3.2 Model hierarchy. Now we can connect all the above models with each others as follows,
sandwiching the two versions of the quantum-LOCALmodel between other models (see Appendix A
for detailed arguments; the connection with the non-signaling model is known [3, 33] but the
connection with the bounded-dependence model is to our knowledge new):

deterministic LOCAL deterministic LOCAL (shared)

randomized LOCAL randomized LOCAL (shared)

quantum-LOCAL quantum-LOCAL (shared)

bounded-dependence non-signaling

(1)

Here an arrow 𝑀1 → 𝑀2 indicates that the existence of an algorithm with locality (or round
complexity) 𝑇 (𝑛) in model 𝑀1 implies an algorithm with the same locality in 𝑀2. While it is
not surprising that we can indeed sandwich the quantum models between models that do not
explicitly refer to quantum information, it is remarkable that at least for some problems we can
prove near-tight lower bounds by using diagram (1). For example, a very recent work [24] used
these connections to prove limits for the distributed quantum advantage in approximate graph
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coloring: they proved an upper bound for the deterministic LOCAL model and a near-matching
lower bound for the non-signaling model.

1.4 Contribution 1: symmetry breaking with finitely-dependent processes
Now we are ready to state our first contribution. Recall the following gap result by Chang et al. [19]:
all LCL problems that can be solved with locality 𝑜 (log𝑛) in deterministic LOCAL or with locality
𝑜 (log log𝑛) in randomized LOCAL can also be solved with locality 𝑂 (log∗ 𝑛) in deterministic
LOCAL. The class of problems with locality Θ(log∗ 𝑛) contains in essence all symmetry-breaking
problems: these are problems that could be solved with constant locality if only we had some means
of breaking symmetry (e.g. distance-𝑘 coloring for some constant 𝑘 would suffice).

In Section 5 we show the following result:

Theorem 1.2. Let Π be any LCL problem with locality 𝑂 (log∗ 𝑛) in the deterministic LOCAL
model. Then Π can be also solved with locality 𝑂 (1) in the bounded-dependence model. Further-
more, the resulting finitely-dependent processes are invariant under subgraph isomorphism.

Put otherwise, there is a finitely-dependent distribution over valid solutions of Π. Here the in-
variance under subgraph isomorphisms implies that, for any two graphs 𝐺,𝐻 that share some
isomorphic subgraphs 𝐺 ′ and 𝐻 ′ such that their radius-𝑂 (1) neighborhoods are still isomorphic,
the finitely-dependent processes solving Π restricted to 𝐺 ′ and 𝐻 ′ are equal.
For any constant 𝑑 , the task of coloring 𝑑-regular trees with 𝑑 + 1 colors is an example of a

problem with locality 𝑂 (log∗ 𝑛) in the deterministic LOCAL model. Hence, we can answer the
open question by Holroyd [40]:

Theorem 1.3. For each 𝑑 ≥ 2, there is a finitely-dependent coloring with 𝑑 + 1 colors in 𝑑-regular
trees. Furthermore, the resulting process is invariant over subgraph isomorphisms.

More specifically, there exists a 3-coloring finitely-dependent distribution of the infinite 3-regular
tree that is invariant under automorphisms.
Theorem 1.2 also introduces a formal barrier for proving limitations on distributed quantum

advantage. Recall that all current quantum-LOCAL lower bounds are, in essence, lower bounds in
the non-signaling model. Before our work, there was a hope that we could discover a symmetry-
breaking problem Π with the following properties: (1) its locality is 𝑂 (log∗ 𝑛) in deterministic
LOCAL, and (2) we can show that its locality is Ω(log∗ 𝑛) in the non-signaling model, and therefore
(3) Π cannot admit any distributed quantum advantage. However, our work shows that no such
problem Π can exist. In particular, arguments related to non-signal distributions are not sufficient
to exclude distributed quantum advantage in this region.

1.5 Locality in online and dynamic settings
Let us now switch gears and consider a very different line of work. Ghaffari et al. [36] introduced a
sequential counterpart of the classical LOCAL model:

• Deterministic SLOCAL model: The nodes are processed in an adversarial order. When a
node 𝑣 is processed, the algorithm gets to see all information in its radius-𝑇 (𝑛) neighborhood.
The algorithm has to label 𝑣 with its local output, and the algorithm can also record other
information in 𝑣 , which it can exploit when other nodes near 𝑣 are later processed.

• Randomized SLOCAL model: As above, but the algorithm has also access to a source of
random bits.
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It is easy to see that SLOCAL is stronger than LOCAL. One key feature is that the processing
order of the nodes naturally breaks symmetry, and all symmetry-breaking LCLs can be solved with
𝑂 (1) locality in SLOCAL. One interpretation of our first contribution is that we also establish a
new, unexpected similarity between SLOCAL and the bounded-dependence model: both are strong
enough to solve any symmetry-breaking LCL with constant locality.

A recent work [2] introduced the following models that capture the notion of locality also in the
context of centralized dynamic graph algorithms and centralized online graph algorithms:

• Deterministic dynamic-LOCALmodel: The adversary constructs the graph one edge
at a time. The algorithm has a global view of the graph, but it has to maintain a feasible
solution after each update. The algorithm is restricted so that after a modification at node 𝑣 ,
it can only update the solution within distance 𝑇 (𝑛) from 𝑣 .

• Deterministic online-LOCALmodel: The adversary presents the input graph one node at
a time. When a node 𝑣 is presented, the adversary also reveals the radius-𝑇 (𝑛) neighborhood
of 𝑣 . The algorithm has to then choose the output label of 𝑣 .

It turns out that both SLOCAL and dynamic-LOCAL can be sandwiched between LOCAL and
online-LOCAL [2]:

deterministic LOCAL deterministic SLOCAL

deterministic dynamic-LOCAL deterministic online-LOCAL

(2)

There are also some problems in which deterministic online-LOCAL is much stronger than deter-
ministic LOCAL: for example, 3-coloring in bipartite graphs has locality Θ̃(√𝑛) in the deterministic
LOCALmodel [16, 24] but𝑂 (log𝑛) in the online-LOCALmodel [2]; very recently Chang et al. [20]
also showed that this is tight in online-LOCAL.

1.6 Contribution 2: connecting all models for LCLs in trees
At first sight, the models discussed in Sections 1.3 and 1.5 seem to have very little in common; they
seem to be orthogonal extensions of the classical deterministic LOCAL model. Furthermore, we
have already seen evidence that online-LOCAL can be much stronger than deterministic LOCAL.
Nevertheless, we can connect all these models in a unified manner, and prove strong limits on their
expressive power. To this end, we introduce yet another model:

• Randomized online-LOCALmodel: Like deterministic online-LOCAL, but the algorithm
has also access to a source of random bits. Crucially, we are playing against an oblivious
adversary (the adversary fixes the graph and the order in which the nodes are presented in
the beginning, before the algorithm starts to flip coins).

Trivially, this is at least as strong as all models in diagram (2). However, the big surprise is that it is
also at least as strong as all models in diagram (1). In Section 4 we prove:

Theorem 1.4. Any LCL that can be solved in the non-signal model with locality 𝑇 (𝑛) can also
be solved in the randomized online-LOCAL model with the same locality.

Then we zoom into the case of trees in Section 6 and prove:

Theorem 1.5. Any LCL on trees that can be solved in the randomized online-LOCAL model with
locality 𝑜 (log(5) 𝑛) can also be solved in the deterministic LOCAL model with locality𝑂 (log∗ 𝑛).
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Here log(1) 𝑛 = log𝑛 and log(𝑘+1) 𝑛 = log log(𝑘 ) 𝑛. Now together with Theorem 1.2 and previously-
known results, we also obtain the following corollaries:

Theorem 1.6. In trees, the following families of LCLs are the same:
• Problems that can be solved with locality 𝑂 (log∗ 𝑛) in any of these models: deterministic
and randomized LOCAL, and quantum-LOCAL

• Problems that can be solved with locality𝑂 (1) in any of these models: bounded-dependence
model, non-signaling model, deterministic and randomized SLOCAL, dynamic-LOCAL,
and deterministic and randomized online-LOCAL.

In trees, there is no LCL problem with locality between 𝜔 (log∗ 𝑛) and 𝑜 (log(5) 𝑛) in any of
these models: deterministic and randomized LOCAL, quantum-LOCAL, bounded-dependence
model, non-signaling model, deterministic and randomized SLOCAL, dynamic-LOCAL, and
deterministic and randomized online-LOCAL.

In particular, when we look at LCLs in trees, 𝑂 (log∗ 𝑛)-round quantum algorithms are not any
stronger than𝑂 (log∗ 𝑛)-round classical algorithms. (However, it is still possible that there are some
LCLs in trees that can be solved in 𝑂 (1) rounds in quantum-LOCAL and that require Θ(log∗ 𝑛)
rounds in deterministic LOCAL; recall the discussion in Section 1.4.)

This also implies a new lower bound for the widely-studied sinkless orientation problem [12, 15]
in a number of models—see Table 1 for more details on the complexity of sinkless orientation in
different models:

Theorem 1.7. Sinkless orientation has locality Ω(log(5) 𝑛) in all of these models: quantum-
LOCAL, bounded-dependence model, non-signaling model, dynamic-LOCAL, and deterministic
and randomized online-LOCAL.

1.7 Contribution 3: a new lower bound for coloring
So far we have connected randomized online-LOCAL with other models through simulation ar-
guments that only work in trees. Let us now put limitations on randomized online-LOCAL in a
broader setting. Recall that in deterministic online-LOCAL we can 3-color bipartite graphs with
locality𝑂 (log𝑛) [2], and this is tight [20]. In Section 7 we show that randomness does not help:

Theorem 1.8. 3-coloring in bipartite graphs is not possible with locality 𝑜 (log𝑛) in the random-
ized online-LOCAL model.

This demonstrates that even though randomized online-LOCAL is a very strong model, strong
enough to simulate e.g. any non-signaling distribution, it is nevertheless possible to prove strong
lower bounds in this model (which then imply lower bounds across the entire landscape of models).

1.8 Additional contributions
It is known that deterministic SLOCAL is strong enough to simulate randomized LOCAL. In Section 8
we show that the same holds also for dynamic-LOCAL:

Theorem 1.9. Deterministic dynamic-LOCAL can simulate randomized LOCAL.
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Fig. 1. Landscape of models and their relations for LCL problems. A black arrow 𝑋 → 𝑌 indicates that model
𝑌 is at least as strong as model 𝑋 and can simulate any algorithm designed there. A blue arrow 𝑋 → 𝑌
indicates that we additionally get symmetry-breaking for free: locality 𝑂 (log∗ 𝑛) in model 𝑋 implies locality
𝑂 (1) in model 𝑌 . An orange arrow 𝑋 → 𝑌 indicates that at least in trees we can simulate highly-localized
algorithms in model 𝑋 using the weaker model 𝑌 so that e.g. locality 𝑂 (log∗ 𝑛) in model 𝑋 implies locality
𝑂 (log∗ 𝑛) in model 𝑌 (see Theorems 6.1 and 6.2 and [36] for details).
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The new model that we introduced, randomized online-LOCAL, is defined using an oblivious
adversary. In Section 9 we show that this is also necessary: if we defined randomized online-LOCAL
with an adaptive adversary, it would be as weak as the deterministic online-LOCAL model.

1.9 Discussion and open questions
By putting together all our contributions, the landscape shown in Fig. 1 emerges. We can sandwich
all models between deterministic LOCAL and randomized online-LOCAL. Going downwards, we
get symmetry breaking for free (as indicated by the blue arrows). And in the case of trees, for the
low-locality region 𝑜 (log(5) 𝑛) we can also navigate upwards (as indicated by the orange arrows).

Table 1 gives an overview of the localities for three representative problems across the landscape
of models: 3-coloring in cycles (a classic symmetry-breaking problem), sinkless orientation (an
intermediate problem), and 3-coloring in bipartite graphs (a hard problem in which online-LOCAL
helps). As shown in the table, our work implies new results also for sinkless orientations (indirectly,
as implications of our general results) and for 3-coloring in bipartite graphs (directly).

Our work suggests a number of open questions; here are the most prominent ones:

Question 1.10. Is quantum-LOCAL stronger than randomized LOCAL for any LCL problem? In
particular, is there any LCL problem with constant locality in quantum-LOCAL but super-constant
locality in LOCAL? We conjecture that such a problem does not exist, but to show that, new proof
techniques are needed.

Question 1.11. Can we exclude quantum advantage for any concrete LCL problem that has
complexity Θ(log∗ 𝑛) in the classical LOCAL models? Again, we need new techniques to prove
that, as non-signaling arguments cannot be used. Nevertheless, this could be easier to tackle
than Question 1.10, as we can specifically engineer an LCL problem that would remain hard for
quantum-LOCAL.

Question 1.12. Does shared global information, shared randomness, or shared quantum state
ever help with any LCL problem? We conjecture that the answer is no.

Question 1.13. Is it possible to simulate deterministic or randomized online-LOCAL in SLOCAL
and LOCAL also in a broader graph class than trees? Section 10 shows that we can also handle the
case of a single cycle, but graphs with multiple cycles remain an open question. Here is a concrete
question: if we have an LCL problem with locality 𝑂 (1) in grids in the online-LOCAL models, does
that imply locality 𝑂 (1) in SLOCAL, or can we find a counterexample?

Table 1 also suggests a number of open questions, especially related to understanding the
complexity of the sinkless orientation problem in the stronger models. The complexity of 3-coloring
bipartite graphs in dynamic-LOCAL is yet another open question for future work.

2 OVERVIEW OF TECHNIQUES AND KEY IDEAS
In this section, we give an overview of the techniques and key ideas that we use to prove our main
results, and we also provide a roadmap to the rest of this paper. We note that our first contribution
is presented in Section 5, while the second contribution comes before it in Section 4—the proofs are
ordered this way, since Section 4 also develops definitions that will be useful in Section 5.

2.1 Bounded-dependence model can break symmetry (Section 5)
Let us first present an overview of the proofs of Theorems 1.2 and 1.3 from Section 1.4. We show
that the bounded-dependence model can break symmetry with constant locality; that is, there is a
finitely-dependent process for any symmetry-breaking LCL.
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Table 1. Localities of three representative problems.

Model 3-coloring in Sinkless 3-coloring in
cycles orientation bipartite graphs

Deterministic 𝑂 (log∗ 𝑛) [28] 𝑂 (log𝑛) [37] �̃� (√𝑛) [24]
LOCAL Ω(log∗ 𝑛) [50] Ω(log𝑛) [15, 19] Ω(√𝑛) [24]

Randomized 𝑂 (log∗ 𝑛) [28] 𝑂 (log log𝑛) [37] �̃� (√𝑛) [24]
LOCAL Ω(log∗ 𝑛) [52] Ω(log log𝑛) [15] Ω(√𝑛) [24]

Quantum 𝑂 (log∗ 𝑛) [28] 𝑂 (log log𝑛) [37] �̃� (√𝑛) [24]
LOCAL Ω(log(5) 𝑛) Theorem 6.2 Ω(√𝑛) [24]

Bounded- 𝑂 (1) [41, 42] 𝑂 (log log𝑛) [37] �̃� (√𝑛) [24]
dependence Ω(log(5) 𝑛) Theorem 6.2 Ω(√𝑛) [24]

Deterministic 𝑂 (1) trivial 𝑂 (log log𝑛) [34] �̃� (√𝑛) [24]
SLOCAL Ω(log log𝑛) [34] 𝑛Ω (1) [2, 24]

Randomized 𝑂 (1) trivial 𝑂 (log(3) 𝑛) [34] �̃� (√𝑛) [2, 24]
SLOCAL Ω(log(3) 𝑛) [34] 𝑛Ω (1) [24]

Deterministic 𝑂 (1) trivial 𝑂 (log log𝑛) Theorem 8.1 �̃� (√𝑛) [24]
dynamic-LOCAL Ω(log(3) 𝑛) Theorem 6.1 Ω(log𝑛) [20]
Deterministic 𝑂 (1) trivial 𝑂 (log log𝑛) [34] 𝑂 (log𝑛) [2]
online-LOCAL Ω(log(3) 𝑛) Theorem 6.1 Ω(log𝑛) [20]

Randomized 𝑂 (1) trivial 𝑂 (log(3) 𝑛) [34] 𝑂 (log𝑛) [2]
online-LOCAL Ω(log(5) 𝑛) Theorem 6.2 Ω(log𝑛) Theorem 7.1

It is well known that any LCL problem Π that has complexity𝑂 (log∗ 𝑛) in the LOCALmodel has
the following property: there exists a constant 𝑘 ∈ N+ (that depends only on the hidden constant
in 𝑂 (log∗ 𝑛)) such that, if the graph is given a distance-𝑘 coloring (with sufficiently small number
of colors) as an input, then Π is solvable in time 𝑂 (1) in the LOCAL model (using the distance-𝑘
coloring as a local assignment of identifiers) [18]. Furthermore, no knowledge of the size of the
input graph is required.

Finding a distance-𝑘 coloring in SLOCAL trivially requires locality exactly 𝑘 , implying the well
known fact that LCLs of complexity 𝑂 (log∗ 𝑛) in the LOCAL model have complexity 𝑂 (1) in
SLOCAL.
In a similar way, we prove that for each bounded-degree graph, there is a finitely-dependent

process providing a distance-𝑘 coloring for constant 𝑘 . Then, we can just combine such process with
the LOCAL algorithm that solves the problem (which has complexity 𝑂 (1) if given a distance-𝑘
coloring as an input) and prove that the resulting process is still a finitely-dependent distribution.
Furthermore, we also prove that all these processes are invariant under subgraph isomorphisms
(even those that do not preserve node identifiers), meaning that, for any two graphs 𝐺 and 𝐻
sharing two isomorphic subgraphs with isomorphic radius-𝑂 (1) neighborhoods, the restrictions of
the finitely-dependent processes solving Π over 𝐺 and 𝐻 restricted to 𝐺 ′ and 𝐻 ′ are equal in law.

One of the key observations that we use is that LOCAL algorithms that do not exploit the specific
assignment of node identifiers and do not depend on the size of the graph provide finitely-dependent
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distributions that are invariant under subgraph isomorphisms whenever the input labeling for the
graphs is invariant under subgraph isomorphisms.

Overview. The cornerstone of our proof is a surprising result by Holroyd and Liggett [42] and
its follow-up in [41], that state that there exist 𝑘-dependent distributions giving a 𝑞-coloring
of the infinite path and of cycles for (𝑘, 𝑞) ∈ {(1, 4), (2, 3)} that are invariant under subgraph
isomorphisms.

Recently, Holroyd has combined the finitely-dependent distributions of infinite paths to provide
a finitely-dependent 4-coloring of the 𝑑-dimensional lattice [40]. Getting a translation invariant
distribution is quite easy: First, use the distributions for the paths on each horizontal and vertical
path obtaining a distance-𝑘 coloring (with 𝑘 being a large enough constant) of the lattice with
constantly many colors as shown in [42, Corollary 20]. Second, apply some LOCAL algorithm
that starts from a distance-𝑘 coloring and reduces the number of colors to 4 while keeping the
resulting distribution symmetric (e.g., the algorithms from [11, 16]). The major contribution of [40]
is transforming such a distribution into a process that is invariant under subgraph isomorphisms.
However, this symmetrization phase is quite specific to the considered topology.
We come up with a new approach that obtains similar results in all bounded-degree graphs

through the following steps:
(1) We show that the finitely-dependent coloring of paths and cycles can be combined to obtain

finitely-dependent 3-coloring distributions of rooted pseudoforests of bounded-degree that
are invariant under subgraph isomorphisms.

(2) We observe that all graphs of bounded-degree admit a random decomposition in rooted
pseudoforests that satisfies some required symmetry properties.

(3) We prove that such random decomposition can be combined with the finitely-dependent
3-coloring of rooted pseudoforests to obtain finitely dependent distributions that give
a (Δ + 1)-coloring of graphs of maximum degree Δ that are invariant under subgraph
isomorphism.

(4) We show that we can use this finitely dependent (Δ + 1)-coloring distributions to provide a
distance-𝑘 coloring for graphs of maximum degree Δ which serves as an input for LOCAL
algorithms solving any LCL Π of complexity 𝑂 (log∗ 𝑛) in LOCAL. Such combination re-
sults in finitely-dependent processes that are invariant under subgraph-isomorphisms and
solve Π.

Notice that, in spirit, steps 1 to 3 are similar to the steps needed to produce a (Δ + 1)-coloring in
time 𝑂 (log∗ 𝑛) in the LOCAL model [39, 56]: however, the detailed way these steps are obtained in
the bounded-dependence model is quite different and requires a careful ad-hoc analysis.

1. Finitely-dependent 3-coloring distributions of rooted pseudoforests. A pseudotree is a tree that
contains at most one cycle. A rooted pseudotree is an oriented pseudotree in which each node as
outdegree at most 1. A rooted pseudoforest is just a collection of disjoint rooted pseudotrees. Let
us now fix any rooted pseudoforest of maximum degree Δ. Consider the following process: each
node 𝑣 colors its indegree neighbors with a uniformly sampled permutation of the elements of
{1, . . . , indeg(𝑣)}. The graph 𝐺𝑖 induced by nodes colored with color 𝑖 is just a disjoint union of
directed paths and cycles (see also Fig. 2 for an example) and, hence, admits a finitely-dependent
4-coloring given by [42] that is invariant under subgraph isomorphisms: if a node is isolated, it
can deterministically join any of the 𝐺𝑖s, say𝐺1. The sequence of graphs (𝐺1, . . . ,𝐺Δin ) is said to
be a random Δin-decomposition of the rooted pseudoforest. Furthermore, if two graphs 𝐺,𝐻 have
isomorphic subgraphs 𝐺 ′, 𝐻 ′ (together with some constant-radius neighborhoods), the decomposi-
tions in directed paths and cycles induced in 𝐺 ′ and 𝐻 ′ have the same distribution (because node
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colors are locally chosen uniformly). We prove that the combination of the random decomposition
and the finitely-dependent coloring yields a finitely-dependent 4Δ-coloring which is invariant
under subgraph isomorphisms: by further combining such distribution with the Cole–Vishkin color
reduction LOCAL algorithm [28, 39] (that has complexity 𝑂 (log∗ 𝑘) with 𝑘 being the size of the
input coloring), we can obtain a finitely-dependent 3-coloring distribution for rooted pseudoforests
of maximum degree Δ that is invariant under subgraph isomorphisms.

2–3. Finitely-dependent (Δ + 1)-coloring distribution of bounded-degree graphs. First, if the input
graph is undirected, make it a directed graph by duplicating all edges and assigning both orientations
to duplicated edges. Since a coloring of the nodes can be given in both cases equivalently, we focus
on the directed case for simplicity. Second, consider the following process: each node 𝑣 labels its
outdegree edges with a uniformly sampled permutation of the elements of {1, . . . , outdeg(𝑣)}. For
each 𝑖 , observe that edges labelled with 𝑖 form a rooted pseudoforest (see also Fig. 3 for an example)
that admits a finitely-dependent 3-coloring distribution (according to step 1) that is invariant under
subgraph isomorphisms, inducing a random decomposition of the graph. Furthermore, if two graphs
𝐺,𝐻 have isomorphic subgraphs 𝐺 ′, 𝐻 ′ (together with some constant-radius neighborhoods), the
decompositions induced in𝐺 ′ and 𝐻 ′ have the same distribution (because edge labelings are locally
chosen uniformly). We prove that the combination of the random decomposition and the finitely-
dependent coloring yields a finitely-dependent 3Δ-coloring of the bounded-degree graph which is
invariant under subgraph isomorphisms: by further combining such distribution with a variant
of the Cole–Vishkin color reduction LOCAL algorithm [56] (that has complexity 𝑂 (log∗ 𝑘) with 𝑘
being the size of the input coloring), we obtain a finitely-dependent (Δ + 1)-coloring distribution
for bounded-degree graphs of maximum degree Δ that is invariant under subgraph isomorphisms.

4. Finitely-dependent distribution solving Π. Consider any graph 𝐺 of maximum degree Δ, and its
𝑘-th power graph defined as follows: simply add edges to𝐺 between each pair of nodes at distance
at most 𝑘 , where 𝑘 is some large enough constant. Observe that 𝐺𝑘 is a graph of maximum degree
Δ𝑘 . Now, step 3 implies that there is a finitely-dependent (Δ𝑘 + 1)-coloring of 𝐺𝑘 that is invariant
under subgraph isomorphisms: such distribution yields a distance-𝑘 coloring of 𝐺 . For any LCL
Π that has complexity 𝑂 (1) in SLOCAL, we simply define a LOCAL algorithm A′ solving Π that
does not need node identifiers, does not depend on 𝑛, and has complexity𝑂 (1): the combination of
the input distance-𝑘 coloring of 𝐺 with such an algorithm yields a finitely-dependent distribution
solving Π that is invariant under subgraph isomorphisms. Basically, we take 𝑘 = 𝑇 where 𝑇 is the
locality of some constant-time SLOCAL algorithm A solving Π, and we define a LOCAL algorithm
A′ as follows: nodes colored with color 𝑖 perform 𝑇 rounds of communication between round
(𝑖 − 1)𝑇 and round 𝑖𝑇 − 1 simulating the behavior of A, while all other rounds of communications
are useless. We prove that A′ is correct and provides the desired properties.

Random decomposition of a graph. In steps 1 and 3 we proceed in an analogous way: First, we
construct a process that induces a random decomposition of a graph. Second, we consider finitely-
dependent distributions of output labelings over the outputs of the random decomposition. The
combination of the random decomposition and the finitely-dependent distributions gives rise to a
process over the whole graph. In Section 5, we derive a general result (Lemma 5.8) which gives
sufficient conditions that the random decomposition and the finitely-dependent distributions we
use must satisfy to ensure that the final process is still finitely-dependent (possibly with symmetry
properties). Lemma 5.8 is then the tool used in practice in steps 1 and 3.
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2.2 The non-signaling model can be simulated in randomized online-LOCAL (Section 4)
Let us now give the intuition behind the proof of Theorem 1.4 from Section 1.6: we show that the
non-signaling model model can be simulated in randomized online-LOCAL without any loss in the
locality.
A randomized online-LOCAL algorithm is given in input the size of the input graph, and a

distribution that is non-signaling beyond distance 𝑇 and that solves some problem Π over some
graph family F . When the adversary picks any node 𝑣1 and shows to the randomized online-LOCAL
algorithm its radius-𝑇 neighborhood, the randomized online-LOCAL algorithm simply goes over
all graphs of 𝑛 nodes in F until it finds one, say 𝐻1, that includes the radius-𝑇 neighborhood
of 𝑣1: then, it samples an output according to the restriction of the non-signaling distribution
in 𝐻1 to 𝑣1. Notice that such distribution does not change if the topology of the graph changes
outside the radius-𝑇 neighborhood of 𝑣1. Recursively, when the adversary picks the 𝑖-th node 𝑣𝑖 ,
the randomized online-LOCAL algorithm goes over all graphs of 𝑛 nodes in F until it finds one,
say 𝐻𝑖 , that includes the union of radius-𝑇 neighborhoods of 𝑣1, . . . , 𝑣𝑖 (it must necessarily exist as
the graph chosen by the adversary is a valid input): hence, it samples an output according to the
restriction of the non-signaling distributions in 𝐻𝑖 to 𝑣𝑖 conditional on the outputs of 𝑣1, . . . , 𝑣𝑖−1.
We prove that the non-signaling property ensures that the algorithm described above fails with at
most the same probability of failure of the non-signaling distribution.

2.3 Online-LOCAL can be simulated in SLOCAL for trees (Section 6)
Next, we give an overview of the proof of Theorem 1.5 from Section 1.6: we show that a randomized
online-LOCAL algorithm that solves an LCL problem in trees with locality 𝑜 (log(5) 𝑛) can be simu-
lated in the deterministic SLOCALmodel with locality𝑂 (1), and therefore also in the deterministic
LOCAL model with locality 𝑂 (log∗ 𝑛).
Online-LOCAL algorithms can be seen as SLOCAL algorithms with a global memory. The key

idea in the proof of Theorem 1.5 is to make this global memory useless by showing the algorithm
so many neighborhoods that it can no longer distinguish between them. In a sense, we make the
online-LOCAL algorithm amnesiac, i.e. to lose its memory and process each neighborhood as if it
was the first one it ever processed. We form a spectrum between (0,𝐶)-amnesiac algorithms that
are just regular online-LOCAL algorithms, and (𝑛,𝐶)-amnesiac algorithms, where 𝑛 is the size of
the input instance, that are very close to being SLOCAL.

Constructing amnesiac algorithms. To get some intuition on how we are going to do, start by
considering an LCL problem Π on forests and a deterministic online-LOCAL algorithmA solving Π
with locality 𝑇 (𝑛) in 𝑛-node graphs. Note that the output label A chooses for a node may depend
arbitrarily on the information the algorithm has seen so far. This is in contrast with SLOCAL
algorithms in which the output may depend only on the local information around the node.
We now show how to turn algorithm A into an algorithm whose output for isolated nodes

depends only on the local topology and inputs, not on any previously-processed nodes; we call
such algorithms (1,𝐶)-amnesiac. A node 𝑣 is isolated if all nodes withing ball 𝐵(𝑣,𝑇 ) are new for
algorithm A, that is it doesn’t know how 𝑣 connects to other nodes it has seen before. We defer
the general construction of (𝑎,𝐶)-amnesiac algorithms to Lemma 6.5 in Section 6.
Let G be the set of all possible 𝑛-node forests with inputs and ordering of nodes. We denote

𝑔 = |G| and remark that 𝑔 ≤ 2𝑛2 |Σin |𝑛 . Now consider the following experiment: Pick a natural
number 𝐶 and construct 𝑓 (𝐶) = |Σout | ·𝐶 copies of G. Then reveal the first node on each of those
graphs to A in an arbitrary order with locality 𝑇 that is to be determined later. Now for each type
of neighborhood T = 𝐵(𝑣,𝑇 ), there exists some output label 𝜎T that occurs at least 𝐶 times; we call
such neighborhoods good.
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We can now imagine a new online-LOCAL algorithm B that starts by running the above ex-
periment with algorithm A. Afterwards, B proceeds exactly like A, showing nodes to A as they
arrive and labeling them accordingly, except for nodes that are isolated.

Let node 𝑣 be such isolated node. Algorithm B starts by finding a good neighborhood matching
𝐵(𝑣,𝑇 ) in the experiment. It then takes that neighborhood, removes all edges just outside the
neighborhood, identifies all nodes with the revealed neighborhood, and then labels 𝑣 accordingly.
Given that the constant 𝐶 was selected to be sufficiently large, such neighborhood exists. In effect,
algorithm B cuts and pastes the neighborhood from the experiment to the actual graph without
algorithm A noticing.

The algorithmB we just described labels the graph correctly by the virtue ofA working correctly.
Moreover, when labeling an isolated node, it always labels it in a consistent way that depends
only on the local structure and inputs of the graph, as long as it has not seen more than 𝐶 isolated
neighborhoods that look exactly the same.

Randomized online-LOCAL. For deterministic online-LOCAL algorithms, we can adaptively pick
the good neighborhoods before processing further. As the randomized online-LOCAL model calls
for an oblivious adversary, we cannot do this. Instead, we repeat the experiment triply exponentially
many times to force the algorithm to produce good labelings with probability high enough. We
then extract a good set of labelings from this experiment and use those to produce a deterministic
SLOCAL algorithm.

2.4 Lower bound on 3-coloring in randomized online-LOCAL (Section 7)
Let us now look at the proof of Theorem 1.8 from Section 1.7. We present a lower bound for 3-
coloring in

√
𝑛 ×√

𝑛 grids, showing that it takes Ω(log𝑛) locality in the randomized online-LOCAL
model.
Here it is important to assume that the adversary is oblivious, i.e., it cannot see the random

decisions of the randomized algorithm. This lower bound complements a recent result of Chang
et al. [20] showing the same bound for the deterministic online-LOCAL model.
In this proof, we use the notion of a 𝑏-value defined in [20] as a measure of the number of

incompatible boundaries present in a region of a grid. We start with the assumption that a grid can
be 3-colored with locality 𝑜 (log𝑛) and derive a contradiction. The high level idea is to construct
two path segments below each other, where one path segment has a large count of incompatible
boundaries (a high 𝑏-value) and the other segment has a low boundary count (incompatible 𝑏-value
to the upper path). This forces an algorithm to make boundaries escape on the side between the
two segments. We show that the boundary count is, however, too large compared to the distance
between the two segments and thus the boundaries “cannot escape”.
Two difficulties arise in the randomized case compared to the deterministic lower bound: (i) In

order to create a path with a large 𝑏-value we have to use a probabilistic construction that produces
a segment with a large 𝑏-value with high probability; (ii) Since the first construction is probabilistic
and the adversary oblivious, we cannot “see” the large 𝑏-value segment constructed in (i), that
is, we can neither predict its position nor its size. We therefore need to use another probabilistic
construction that positions the segment in a position that forces a contradiction (and which succeeds
with constant probability).

2.5 Deterministic dynamic-LOCAL can derandomize randomized LOCAL (Section 8)
Let us now say a few words about the proof of Theorem 1.9 from Section 1.8: we show that
deterministic dynamic-LOCAL can simulate randomized LOCAL.
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The idea behind this result is the same as that for SLOCAL explained in Section 2.1. Any LCL
problem Π that has complexity 𝑂 (log∗ 𝑛) in the LOCAL model has the following property: there
exists a constant 𝑘 ∈ N+ (that depends only on the hidden constant in 𝑂 (log∗ 𝑛)) such that, if
the input graph is given a distance-𝑘 coloring in the input, then Π is solvable in time 𝑂 (1) in the
LOCAL model (using the distance-𝑘 coloring as a local assignment of identifiers) [18]. The proof
consists in showing that dynamic-LOCAL can indeed provide a distance-𝑘 coloring in constant
time.

2.6 Randomized online-LOCAL with adaptive adversary equals deterministic
online-LOCAL (Section 9)

As mentioned in Section 1.8, it is necessary to work with an oblivious adversary in randomized
online-LOCAL: we show that an algorithm that works against an adaptive adversary can be turned
into a deterministic algorithm.

We show that an adaptive adversary in randomized online-LOCAL is so strong that a succeeding
randomized randomized online-LOCAL algorithm of locality 𝑇 would admit a single random-bit
string that outputs a good solution for all possible graphs of a given size: hence, a correct determin-
istic randomized online-LOCAL algorithm exists. Since deterministic online-LOCAL algorithms of
locality 𝑇 for graphs of 𝑛 nodes are only finitely many, the deterministic online-LOCAL algorithm,
in the initialization phase, can go over all of them until it finds the one working for all graphs of 𝑛
nodes: it then uses that one.

2.7 Randomized online-LOCAL in paths and cycles (Section 10)
Our final technical part shows that LCL problems in paths and cycles have complexity either𝑂 (1) or
Θ(𝑛) in the randomized online-LOCAL model; moreover the locality is 𝑂 (1) in randomized online-
LOCAL if and only if it is 𝑂 (log∗ 𝑛) in the deterministic LOCAL model. Together with prior work,
this also shows that locality of an LCL problem in paths and cycles is decidable across all models
[4] (with the caveat that we cannot distinguish between 𝑂 (1) and Θ(log∗ 𝑛) for quantum-LOCAL).
The proof is a reworking of its deterministic variant from [2]. The main take-home message

of this result is the following: cycles are not a fundamental obstacle for simulating randomized
online-LOCAL in weaker models. Hence, there is hope for generalizing the simulation result of
Section 6 from trees to a broader class of graphs.

2.8 Quantum models vs. non-signaling and bounded-dependence models (Appendix A)
Appendix A aims at serving a dual purpose. First, it aims at formally introducing the non-signaling
model based on the non-signaling principle, and at explaining why it is more powerful than the
quantum-LOCAL model. This is not a new result, but included for completeness and to clarify the
early works of Gavoille et al. [33] and Arfaoui and Fraigniaud [3].
Second, it formally introduces the bounded-dependence model based on finitely-dependent

processes and argues why the relations in diagram (1) hold, and in particular why quantum-LOCAL
without shared quantum state is contained not only in the non-signaling model but also in the
bounded-dependence model. While all the ingredients are well-known, to our knowledge this
relation between the quantum-LOCAL model and the bounded-dependence model is not made
explicit in the literature before.

3 PRELIMINARIES
In this section we give some preliminaries.

We consider the set N of natural numbers to start with 0. We also define N+ = N \ {0}. For any
positive integer 𝑛 ∈ N+, we denote the set {1, . . . , 𝑛} by [𝑛].
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Graphs. In this work, a graph𝐺 = (𝑉 , 𝐸) can be either directed (𝐸 ⊆ 𝑉 2) or undirected (𝐸 ⊆ (𝑉
2
)
).

If the set of nodes and the set of edges are not specified, we refer to them by 𝑉 (𝐺) and 𝐸 (𝐺),
respectively. For any edge 𝑒 = (𝑢, 𝑣) ∈ 𝐸 (𝐺) we say that 𝑒 is directed from 𝑢 to 𝑣 and is incident to
𝑢 and to 𝑣 (the latter holds also for undirected edges). All graphs in this paper are simple graphs
without self-loops unless differently specified. The degree of a node 𝑣 is the number of edges that
are incident to 𝑣 and is denoted by deg𝐺 (𝑣), or simply by deg(𝑣) when 𝐺 is clear from the context.
The indegree of a node 𝑣 is the number of directed edges that are directed towards 𝑣 and is denoted
by indeg𝐺 (𝑣), while the outdegree of 𝑣 is the number of directed edges that are incident to 𝑣 but
directed to some other vertex and is denoted by outdeg𝐺 (𝑣). Again, we omit the suffix 𝐺 if the
graph is clear from the context.
If 𝐺 is a subgraph of 𝐻 , we write 𝐺 ⊆ 𝐻 . For any subset of nodes 𝐴 ⊆ 𝑉 , we denote by

𝐺 [𝐴] the subgraph induced by the nodes in 𝐴. For any nodes 𝑢, 𝑣 ∈ 𝑉 , dist𝐺 (𝑢, 𝑣) denotes the
distance between 𝑢 and 𝑣 in 𝐺 (i.e., the number of edges of any shortest path between 𝑢 and 𝑣
in 𝐺—it doesn’t need to be a directed path); if 𝑢 and 𝑣 are disconnected, then dist𝐺 (𝑢, 𝑣) = +∞.
If 𝐺 is clear from the context, we may also simply write dist(𝑢, 𝑣) = dist𝐺 (𝑢, 𝑣). Also, for subset
of nodes 𝐴, 𝐵 ⊆ 𝑉 and any node 𝑣 ∈ 𝑉 , we can define dist𝐺 (𝑣, 𝐴) = min𝑢∈𝐴 dist𝐺 (𝑢, 𝑣) and,
by extension, dist𝐺 (𝐴, 𝐵) = min𝑢∈𝐴 dist𝐺 (𝑢, 𝐵). We assume that dist𝐺 (𝐴, ∅) = +∞. Similarly, for
subgraphs 𝐺1,𝐺2 ⊆ 𝐺 , we define dist𝐺 (𝐺1,𝐺2) = dist𝐺 (𝑉 (𝐺1),𝑉 (𝐺2)): here, we also assume
dist𝐺 (𝐺1, ∅) = +∞ where ∅ is now the empty graph. For 𝑇 ∈ [𝑛], the 𝑇 -neighborhood of a node
𝑢 ∈ 𝑉 of a graph𝐺 is the setN𝑇 (𝑢,𝐺) = {𝑣 ∈ 𝑉 | dist𝐺 (𝑢, 𝑣) ≤ 𝑇 }. The𝑇 -neighborhood of a subset
𝐴 ⊆ 𝑉 is the setN𝑇 (𝐴,𝐺) = {𝑣 ∈ 𝑉 | ∃𝑢 ∈ 𝐴 : dist𝐺 (𝑢, 𝑣) ≤ 𝑇 }. Similarly, the𝑇 -neighborhood of a
subgraph𝐻 ⊆ 𝐺 is the setN𝑇 (𝐻,𝐺) = {𝑣 ∈ 𝑉 | ∃𝑢 ∈ 𝑉 (𝐻 ) : dist𝐺 (𝑢, 𝑣) ≤ 𝑇 }. If𝐺 is clear from the
context, we just write N𝑇 (𝑢), N𝑇 (𝐴), and N𝑇 (𝐻 ). If 𝑢 ∉ 𝑉 , 𝐴 ∩𝑉 = ∅, or 𝑉 (𝐻 ) ∩𝑉 (𝐺) = ∅, then
the neighborhoodN𝑇 (𝑢) = ∅,N𝑇 (𝐴) = ∅, orN𝑇 (𝐻 ) = ∅, respectively. We make use of some graph
operations: For any two graphs𝐺,𝐻 , we denote by𝐺 ∩𝐻 the intersection graph defined by𝐺 ∩𝐻 =

(𝑉 (𝐺) ∩𝑉 (𝐻 ), 𝐸 (𝐺) ∩𝐸 (𝐻 )). The graph union is defined by𝐺 ∪𝐻 = (𝑉 (𝐺) ∪𝑉 (𝐻 ), 𝐸 (𝐺) ∪𝐸 (𝐻 )).
Moreover, the graph difference is the graph 𝐺 \ 𝐻 = (𝑉 (𝐺) \𝑉 (𝐻 ), 𝐸 (𝐺) \ 𝐸 (𝐻 )).
Finally, for any two graphs 𝐺 and 𝐻 , we write 𝐺 ∼𝑓 𝐻 to denote that 𝐺 and 𝐻 are isomorphic

and 𝑓 : 𝑉 (𝐺) → 𝑉 (𝐻 ) is an isomorphism.

Labeling problems. We start with the notion of labeling problem.

Definition 3.1 (Labeling problem). Let Σin and Σout two sets of input and output labels, respectively.
A labeling problem Π is a mapping (𝐺, 𝜆in) ↦→ {𝜆 (out,𝑖 ) }𝑖∈𝐼 , with 𝐼 being a discrete set of indexes,
that assigns to every graph 𝐺 with any input labeling 𝜆in : 𝑉 (𝐺) → Σin a set of permissible
output vectors 𝜆 (out,𝑖 ) : 𝑉 (𝐺) → Σout that might depend on (𝐺, 𝜆in). The mapping must be closed
under graph isomorphism, i.e., if 𝜑 : 𝑉 (𝐺) → 𝑉 (𝐺 ′) is an isomorphism between 𝐺 and 𝐺 ′, and
𝜆 (out,𝑖 ) ∈ Π((𝐺 ′, 𝜆in)), then 𝜆 (out,𝑖 ) ◦ 𝜑 ∈ Π((𝐺, 𝜆in ◦ 𝜑)).
A labeling problem can be thought as defined for any input graph of any number of nodes. If

the set of permissible output vectors is empty for some input (𝐺, 𝜆in), we say that the problem
is not solvable on the input (𝐺, 𝜆in): accordingly, the problem is solvable on the input (𝐺, 𝜆in) if
Π(𝐺, 𝜆in) ≠ ∅.
One observation on the generality of definition of labeling problem follows: one can actually

consider problems that require to output labels on edges.
We actually focus on labeling problems where, for any input graph, an output vector 𝜆out is

permissible if and only if the restrictions of the problem on any local neighborhoods can be solved
and there exist compatible local permissible output vectors whose combination provides 𝜆out. This
concept is grasped by the notion of locally checkable labeling (LCL) problems, first introduced by
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Naor and Stockmeyer [53]. For any function 𝑓 : 𝐴 → 𝐵 and any subset 𝐴′ ⊆ 𝐴, let us denote the
restriction of 𝑓 to 𝐴′ by 𝑓 ↾𝐴′ . Furthermore, we define a centered graph to be a pair (𝐻, 𝑣𝐻 ) where
𝐻 is a graph and 𝑣𝐻 ∈ 𝑉 (𝐻 ) is a vertex of 𝐻 that we name the center of 𝐻 . The radius of a centered
graph is the maximum distance from 𝑣𝐻 to any other node in 𝐻 .

Definition 3.2 (Locally checkable labeling problem). Let 𝑟,Δ ∈ N. Let Σin and Σout two finite sets of
input and output labels, respectively, and Π a labeling problem. Π is locally checkable with checking
radius 𝑟 if there exists a family S = {((𝐻, 𝑣𝐻 ), 𝜆in, 𝜆out)𝑖 }𝑖∈𝐼 of tuples, where (𝐻, 𝑣𝐻 ) is a centered
graph of radius at most 𝑟 and maximum degree at most Δ, 𝜆in : 𝑉 (𝐻 ) → Σin is an input labeling
for 𝐻 , 𝜆out : 𝑉 (𝐻 ) → Σout is an output labeling for 𝐻 (which can depend on 𝜆in) with the following
property

• for any input (𝐺, 𝜆in) to Π with deg(𝐺) ≤ Δ, an output vector 𝜆out : 𝑉 (𝐺) → Σout is
permissible (i.e., 𝜆out ∈ Π((𝐺, 𝜆in))) if and only if, for each node 𝑣 ∈ 𝑉 (𝐺), the tuple
((𝐺 [N𝑟 (𝑣)]), 𝜆in ↾N𝑟 (𝑣) , 𝜆out ↾N𝑟 (𝑣) ) belongs to S (up to graph isomorphisms).

Notice that the family S can be always thought to be finite up to graph isomorphisms, as 𝑟 and
Δ are fixed and the set of input/output labels are finite. We now define the computational models
we work in.

The port-numbering model. A port-numbered network is a triple 𝑁 = (𝑉 , 𝑃, 𝑝) where 𝑉 is the set
of nodes, 𝑃 is the set of ports, and 𝑝 : 𝑃 → 𝑃 is a function specifying connections between ports.
Each element 𝑥 ∈ 𝑃 is a pair (𝑣, 𝑖) where 𝑣 ∈ 𝑉 , 𝑖 ∈ N+. The connection function 𝑝 between ports
is an involution, that is, 𝑝 (𝑝 (𝑥)) = 𝑥 for all 𝑥 ∈ 𝑃 . If (𝑣, 𝑖) ∈ 𝑃 , we say that (𝑣, 𝑖) is port number 𝑖
in node 𝑣 . The degree of a node 𝑣 in the network 𝑁 is deg𝑁 (𝑣) is the number of ports in 𝑣 , that
is, deg𝑁 (𝑣) = |{𝑖 ∈ N : (𝑣, 𝑖) ∈ 𝑃}|. Unless otherwise mentioned, we assume that port numbers are
consecutive, i.e., the ports of any node 𝑣 ∈ 𝑉 are (𝑣, 1), . . . , (𝑣, deg𝑁 (𝑣)). Clearly, a port-numbered
network identifies an underlying graph 𝐺 = (𝑉 , 𝐸) where, for any two nodes 𝑢, 𝑣 ∈ 𝑉 , {𝑢, 𝑣} ∈ 𝐸 if
and only if there exists ports 𝑥𝑢, 𝑥𝑣 ∈ 𝑃 such that 𝑝 (𝑥𝑢) = 𝑥𝑣 . Clearly, the degree of a node deg𝑁 (𝑣)
corresponds to deg𝐺 (𝑣).
In the port-numbering model we are given distributed system consisting of a port-numbered

network of |𝑉 | = 𝑛 processors (or nodes) that operates in a sequence of synchronous rounds. In
each round the processors may perform unbounded computations on their respective local state
variables and subsequently exchange of messages of arbitrary size along the links given by the
underlying input graph. Nodes identify their neighbors by using ports as defined before, where
port assignment may be done adversarially. Barring their degree, all nodes are identical and operate
according to the same local computation procedures. Initially all local state variables have the same
value for all processors; the sole exception is a distinguished local variable 𝑥 (𝑣) of each processor 𝑣
that encodes input data.

Let Σin be a set of input labels. The input of a problem is defined in the form of a labeled graph
(𝐺, 𝑥) where 𝐺 = (𝑉 , 𝐸) is the system graph, 𝑉 is the set of processors (hence it is specified as part
of the input), and 𝑥 : 𝑉 → Σin is an assignment of an input label 𝜆in (𝑣) ∈ Σin to each processor 𝑣 .
The output of the algorithm is given in the form of a vector of local output labels 𝜆out : 𝑉 → Σout,
and the algorithm is assumed to terminate once all labels 𝜆out (𝑣) are definitely fixed. We assume
that nodes and their links are fault-free. The local computation procedures may be randomized
by giving each processor access to its own set of random variables; in this case, we are in the
randomized port-numbering model as opposed to the deterministic port-numbering model.

The running time of an algorithm is the number of synchronous rounds required by all nodes to
produce output labels. If an algorithm running time is𝑇 , we also say that the algorithm has locality
𝑇 . Notice that 𝑇 can be a function of the size of the input graph. We say that a problem Π over
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some graph family F has complexity 𝑇 in the port-numbering model if there is a port-numbering
algorithm running in time 𝑇 that solves Π over F . If the algorithm is randomized, we also require
that the failure probability is at most 1/𝑛, where 𝑛 is the size of the input graph.
We remark that the notion of an (LCL) problem is a graph problem, and does not depend on

the specific model of computation we consider (hence, the problem cannot depend on, e.g., port
numbers).

The LOCAL model. The LOCAL model was first introduced by Linial [49]: it is just the port-
numbering model augmented with an assignment of unique identifiers to nodes. Let 𝑐 ≥ 1 be a
constant, and let Σin be a set of input labels. The input of a problem is defined in the form of a
labeled graph (𝐺, 𝑥) where 𝐺 = (𝑉 , 𝐸) is the system graph, 𝑉 is the set of processors (hence it
is specified as part of the input), and 𝑥 : 𝑉 → [𝑛𝑐 ] × Σin is an assignment of a unique identifier
id(𝑣) ∈ [𝑛𝑐 ] and of an input label 𝜆in (𝑣) ∈ Σin to each processor 𝑣 . The output of the algorithm is
given in the form of a vector of local output labels 𝜆out : 𝑉 → Σout, and the algorithm is assumed
to terminate once all labels 𝜆out (𝑣) are definitely fixed. We assume that nodes and their links are
fault-free. The local computation procedures may be randomized by giving each processor access to
its own set of random variables; in this case, we are in the randomized LOCAL (randomized LOCAL)
model as opposed to deterministic LOCAL (deterministic LOCAL). Notice that the knowledge of
𝑛 makes the randomized port-numbering model roughly equivalent to the randomized LOCAL
model, as unique identifiers can be produced with high probability. We say that a problem Π over
some graph family F has complexity𝑇 in the LOCALmodel if there is a LOCAL algorithm running
in time 𝑇 that solves Π over F . If the algorithm is randomized, we also require that the failure
probability is at most 1/𝑛, where 𝑛 is the size of the input graph.

The sequential LOCAL model. The sequential LOCAL model was first introduced by [36]: it is a
sequential version of the LOCAL model. Nodes are processed according to an adversarial order
𝜎 = 𝑣1, . . . , 𝑣𝑛 . When processing a node 𝑣𝑖 , a 𝑇 -round algorithm collects all inputs in the radius-𝑇
neighborhood of 𝑣𝑖 (including outputs of those 𝑣 𝑗 ∈ N𝑇 (𝑉𝑖 ) for 𝑗 < 𝑖): we say that such an algorithm
has complexity𝑇 . Note that the algorithm might store all inputs inN𝑇 (𝑣𝑖 ) in the output of 𝑣𝑖 : hence,
when processing 𝑣𝑖 , it can see the input of 𝑣 𝑗 , 𝑗 < 𝑖 , if and only if there is a subsequence of nodes
{𝑣ℎ𝑘 }𝑘∈[𝑚] with 𝑗 = ℎ𝑘 < ℎ𝑘+1 < · · · < ℎ𝑘𝑚 = 𝑖 such that 𝑣ℎ𝑘 ∈ N𝑇 (𝑣ℎ𝑘+1 ) for all 𝑘 ∈ [𝑚].
If the algorithm is given an infinite random bit string, we talk about the randomized SLOCAL

model, as opposed to the deterministic SLOCAL model. We assume that the adversarial order
according to which nodes are processed is oblivious to the random bit string, as in the original
definition of the model. We say that a problem Π over some graph family F has complexity 𝑇 in
the SLOCAL model if there is an SLOCAL algorithm running in time𝑇 that solves Π over F . If the
algorithm is randomized, we also require that the failure probability is at most 1/𝑛, where 𝑛 is the
size of the input graph.

The online-LOCAL model. The (deterministic) online-LOCAL model was introduced in [2]. This
is a centralized model where the algorithm initially knows only the set of nodes of the input graph
𝐺 . The nodes are processed with respect to an adversarial input sequence 𝜎 = 𝑣1, 𝑣2, . . . , 𝑣𝑛 , such
that the label of the 𝑣𝑖 depends on𝐺𝑖 = 𝐺 [⋃𝑖

𝑗=1 N𝑇 (𝑣 𝑗 )], i.e., the subgraph induced by the radius-𝑇
neighborhoods of 𝑣1, 𝑣2, . . . , 𝑣𝑖 (including all input data).
We define the randomized online-LOCAL model as a randomized variant of the online-LOCAL

model where the label assigned by the algorithm to 𝑣𝑖 is a random outcome. Note that this model is
oblivious to the randomness used by the algorithm. In particular this means that the graph𝐺 \𝐺𝑖
cannot be changed depending on the label assigned to 𝑣𝑖 . One could also define the randomized
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online-LOCAL model in an adaptive manner, but it turns out that this is equivalent to the deter-
ministic online-LOCAL model as we show in Section 9. We say that a problem Π over some graph
family F has complexity 𝑇 in the online-LOCAL (randomized online-LOCAL) model if there is an
online-LOCAL (randomized online-LOCAL) algorithm running in time 𝑇 that solves Π over F . If
the algorithm is randomized, we also require that the failure probability is at most 1/𝑛, where 𝑛 is
the size of the input graph.

4 SIMULATION OF THE NON-SIGNALING MODEL IN RANDOMIZED ONLINE-LOCAL
4.1 Framework
In this section we give the necessary framework to define the non-signaling model model and
is largely inspired by the definitions given in [24, 33]. Next definition introduces the concept of
outcome.

Definition 4.1 (Outcome). Let Σin and Σout be two sets of input and output labels, respectively,
and let F be a family of graphs. An outcome O over F is a mapping (𝐺, 𝑥) ↦→ {(𝜆 (out,𝑖 ) , 𝑝𝑖 )}𝑖∈𝐼 ,
with 𝐼 being a discrete set of indexes, assigning to every input graph 𝐺 ∈ F with any input data
𝑥 = (id : 𝑉 (𝐺) → [|𝑉 (𝐺) |𝑐 ], 𝜆in : 𝑉 (𝐺) → Σin), a discrete probability distribution {𝑝𝑖 }𝑖∈𝐼 over
output vectors 𝜆 (out,𝑖 ) : 𝑉 (𝐺) → Σout such that:

(1) for all 𝑖 ∈ 𝐼 , 𝑝𝑖 > 0;
(2)

∑
𝑖∈𝐼 𝑝𝑖 = 1;

(3) 𝑝𝑖 represents the probability of obtaining 𝜆 (out,𝑖 ) as the output vector of the distributed
system.

We say that an outcome O over some graph family F solves problem Π over F with probability
𝑝 if, for every 𝐺 ∈ F and any input data 𝑥 = (id, 𝜆in), it holds that∑︁

(𝜆(out,𝑖 ) ,𝑝𝑖 ) ∈O( (𝐺,𝑥 ) ) :
𝜆 (out,𝑖 ) ∈Π ( (𝐺,𝜆in ) )

𝑝𝑖 ≥ 𝑝.

When 𝑝 = 1, we will just say that O solves problem Π over the graph family F .
The next computational model tries to capture the fundamental properties of any physical

computational model (in which one can run either deterministic, random, or quantum algorithms)
that respects causality. The defining property of such a model is that, for any two (labeled) graphs
(𝐺1, 𝑥1) and (𝐺2, 𝑥2) that share some identical subgraph (𝐻,𝑦), every node 𝑢 in 𝐻 must exhibit
identical behavior in 𝐺1 and 𝐺2 as long as its local view, that is, the set of nodes up to distance 𝑇
away from 𝑢 together with input data and port numbering, is fully contained in 𝐻 . As the port
numbering can be computed with one round of communication through a fixed procedure (e.g.,
assigning port numbers 1, 2, . . . , deg(𝑣) based on neighbor identifiers in ascending order) and we
care about asymptotic bounds, we will omit port numbering from the definition of local view.
The model we consider has been introduced by [33]. In order to proceed, we first define the

non-signaling property of an outcome. Let 𝑇 ≥ 0 be an integer, and 𝐼 a set of indices. For any set of
nodes 𝑉 , subset 𝑆 ⊆ 𝑉 , and for any input (𝐺 = (𝑉 , 𝐸), 𝑥), we define its 𝑇 -local view as the set

v𝑇 (𝐺, 𝑥, 𝑆) = {(𝑢, 𝑥 (𝑢)) | ∃ 𝑢 ∈ 𝑉 , 𝑣 ∈ 𝑆 such that dist𝐺 (𝑢, 𝑣) ≤ 𝑇 } ,
where dist𝐺 (𝑢, 𝑣) is the distance in𝐺 . Furthermore, for any subset of nodes 𝑆 ⊆ 𝑉 and any output
distribution {𝜆 (out,𝑖 ) , 𝑝𝑖 }𝑖∈𝐼 , we define the marginal distribution of {𝜆 (out,𝑖 ) , 𝑝𝑖 }𝑖∈𝐼 on set 𝑆 as the
unique output distribution defined as follows: for any 𝜆out : 𝑉 (𝐺) → Σout, the probability of 𝜆out ↾𝑆
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on 𝑆 is given by
𝑝 (𝜆out, 𝑆) =

∑︁
𝑖∈𝐼 : 𝜆out↾𝑆=𝜆 (out,𝑖 )↾𝑆

𝑝𝑖 ,

where 𝜆out ↾𝑆 and 𝜆 (out,𝑖 ) ↾𝑆 are the restrictions of 𝜆out and 𝜆 (out,𝑖 ) on 𝑆 , respectively.

Definition 4.2 (Non-signaling outcome). Let F be a family of graphs. An outcome O : (𝐺, 𝑥) ↦→
{(𝜆 (out,𝑖 ) , 𝑝𝑖 )}𝑖∈𝐼 over F is non-signaling beyond distance 𝑇 = 𝑇 (𝐺, 𝑥) if for any pair of inputs
(𝐺1 = (𝑉1, 𝐸1), 𝑥1), (𝐺2 = (𝑉2, 𝐸2), 𝑥2), with the same number of nodes, such that v𝑇 (𝐺1,𝑥1 ) (𝐺1, 𝑥1, 𝑆)
is isomorphic to v𝑇 (𝐺1,𝑥1 ) (𝐺2, 𝑥2, 𝑆) and𝐺1,𝐺2 ∈ F , the output distributions corresponding to these
inputs have identical marginal distributions on the set 𝑆 .

Definition 4.2 is also the more general definition for the locality of an outcome: an outcome O
has locality 𝑇 if it is non-signaling beyond distance 𝑇 .

The𝜑-LOCALmodel. The𝜑-LOCALmodel is a computational model that produces non-signaling
outcomes over some family of graphs F . Let 𝑝 ∈ [0, 1]. A problem Π over some graph family F
has complexity 𝑇 (and success probability 𝑝) if there exists an outcome O that is non-signaling
beyond distance 𝑇 which solves Π over F (with probability at least 𝑝).

As every (deterministic or randomized) algorithm running in time at most𝑇 in the LOCALmodel
produces an outcome which has locality 𝑇 , we can provide lower bounds for the LOCAL model by
proving them in the 𝜑-LOCAL model.
Notice that algorithms in the LOCAL model can be always thought as producing outputs for

any input graph: when the computation at any round is not defined for some node, we can make
the node output some garbage label, say ⊥. If we require that also outcomes are defined for
every possible graph, then we are restricting the power of 𝜑-LOCAL because outcomes must be
defined accordingly. This gives rise to a slightly weaker model, the non-signaling model, which was
considered in other works such as [24] and is still stronger than any classical or quantum variation
of the LOCAL model.

Theorem 4.3. Let Π be any LCL problem over any family of graphs F . Let O : (𝐺, 𝜆in) ↦→
{(𝜆 (out,ℎ) , 𝑝𝑖 )}ℎ∈𝐻 be an outcome over F which solves Π with failure probability at most 𝜀 and is
non-signaling at distance greater than 𝑇 . There exists a randomized online-LOCAL algorithm A with
complexity 𝑇 that solves Π over F and has failure probability at most 𝜀.

We want to design a randomized online-LOCAL algorithm A with complexity 𝑇 that solves Π
over F and has failure probability at most 𝜀 that somehow simulates O. We need to assume that
the number of nodes of the input graph is known by A.
Fix any graph 𝐺 ∈ F of 𝑛 nodes and any input labeling 𝜆in, and fix any sequence of nodes

𝑣1, . . . , 𝑣𝑛 the adversary might choose to reveal to the algorithm.
The adversary initially shows to the algorithm𝐺 [N𝑇 (𝑣1)] (including input labels and identifiers)

and asks to label 𝑣1. For the algorithm, it is sufficient to find any graph 𝐻1 ∈ F of 𝑛 nodes that
contains a subgraph isomorphic to 𝐺 [N𝑇 (𝑣1)] (including input labels and identifiers): the non-
signaling property ensures that the restriction of the output distribution O(𝐻1, 𝜆in) over N𝑇 (𝑣1)
does not change if the topology of the graph outside 𝐺 [N𝑇 (𝑣1)] differs. Notice that 𝐻1 exists
necessarily as 𝐺 itself is such a graph.
For any 𝜆out : 𝑉 (𝐺) → Σout, the probability that A labels 𝑣1 with 𝜆out (𝑣1) is

𝑝 (𝜆out, 𝑣1) =
∑︁

𝑘 : 𝜆out↾{𝑣1}=𝜆(out,𝑘 )↾{𝑣1}

𝑝𝑘 ,

where {(𝜆 (out,𝑘 ) , 𝑝𝑘 )}𝑘∈𝐾1 = O(𝐻1, 𝜆in).
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Let Λ𝑖 be the random variable yielding the label assigned to 𝑣𝑖 by A. In general, for any 𝜆out :
𝑉 (𝐺) → Σout let 𝑝 (𝜆out, 𝑣𝑖 ) denote the probability that Λ𝑖 = 𝜆out (𝑣𝑖 ). Assume now that𝐺 [N𝑇 (𝑣𝑖+1)]
is shown to the algorithm. Conditional on Λ1, . . . ,Λ𝑖 , for any 𝜆out : 𝑉 (𝐺) → Σout such that
𝜆out (𝑣 𝑗 ) = Λ 𝑗 for all 𝑗 = 1, . . . , 𝑖 , the probability that Λ𝑖+1 = 𝜆out (𝑣𝑖+1) is

𝑝 (𝜆out, 𝑣𝑖+1) =
∑︁

𝑘 : 𝜆out↾{𝑣𝑗 }=𝜆(out,𝑘 )↾{𝑣𝑗 }
∀ 1≤ 𝑗≤𝑖+1

𝑝𝑘∏
1≤𝑙≤𝑖 𝑝 (𝜆out, 𝑣𝑙 )

,

where {(𝜆 (out,𝑘 ) , 𝑝𝑘 )}𝑘∈𝐾𝑖+1 = O(𝐻𝑖+1, 𝜆in) for any graph 𝐻𝑖+1 ∈ F of 𝑛 nodes that contains a
subgraph isomorphic to 𝐺 [∪𝑖+1

𝑖=1N𝑇 (𝑣 𝑗 )] (including input labels and identifiers). The specific choice
of𝐻𝑖+1 does not matter since the property of a non-signaling outcome is exactly that the probability
distribution of any output over any subset 𝑆 of nodes does not change if the topology of the graph
is modified “far enough” from 𝑆 : here, 𝑆 = {𝑣1, . . . , 𝑣𝑖+1}.
Now, consider O(𝐺, 𝜆in) = {(𝜆 (out,ℎ) , 𝑝ℎ)}ℎ∈𝐻 for the right input graph 𝐺 , and take any

(𝜆 (out,ℎ★) , 𝑝ℎ★) ∈ O(𝐺, 𝜆in).
The probability that the outcomes of Λ1, . . . ,Λ𝑛 give exactly 𝜆 (out,ℎ★) is

Pr
[
Λ1 = 𝜆 (out,ℎ★) (𝑣1), . . . ,Λ𝑛 = 𝜆 (out,ℎ★) (𝑣𝑛)

]
= Pr

[
Λ𝑛 = 𝜆 (out,ℎ★) (𝑣𝑛)

��Λ1 = 𝜆 (out,ℎ★) (𝑣1), . . . ,Λ𝑛−1 = 𝜆 (out,ℎ★) (𝑣𝑛−1)
]

· Pr [Λ𝑛−1 = 𝜆 (out,ℎ★) (𝑣𝑛−1)
��Λ1 = 𝜆 (out,ℎ★) (𝑣1), . . . ,Λ𝑛−2 = 𝜆 (out,ℎ★) (𝑣𝑛−2)

]
. . .

· Pr [Λ1 = 𝜆 (out,ℎ★) (𝑣1)
]

= 𝑝 (𝜆 (out,ℎ★) , 𝑣1) · . . . · 𝑝 (𝜆 (out,ℎ★) , 𝑣𝑛)
=

∏
1≤𝑙≤𝑛−1

𝑝 (𝜆out, 𝑣𝑙 ) ·
∑︁

𝑘𝑛 : 𝜆(out,ℎ★)↾{𝑣𝑗 }=𝜆(out,𝑘 𝑗 )↾{𝑣𝑗 }
∀ 1≤ 𝑗≤𝑛

𝑝𝑘𝑛∏
1≤𝑙≤𝑛−1 𝑝 (𝜆out, 𝑣𝑙 )

=
∑︁

𝑘𝑛 : 𝜆(out,ℎ★)↾{𝑣𝑗 }=𝜆(out,𝑘 𝑗 )↾{𝑣𝑗 }
∀ 1≤ 𝑗≤𝑛

𝑝𝑘𝑛 .

Notice that ∑︁
𝑘𝑛 : 𝜆(out,ℎ★)↾{𝑣𝑗 }=𝜆(out,𝑘 𝑗 )↾{𝑣𝑗 }

∀ 1≤ 𝑗≤𝑛

𝑝𝑘𝑛 = 𝑝ℎ★

as 𝐻𝑛 is necessarily isomorphic to 𝐺 . By the hypothesis,∑︁
ℎ: 𝜆 (out,ℎ) is valid for (𝐺,𝜆in )

𝑝ℎ ≥ 1 − 𝜀,

implying that A succeeds with probability at least 1 − 𝜀.

5 BOUNDED-DEPENDENCE MODEL CAN BREAK SYMMETRY
For any graph 𝐺 = (𝑉 , 𝐸), a random process (or distribution) on the vertices of 𝐺 is a family of
random variables {𝑋𝑣}𝑣∈𝑉 , indexed by 𝑉 , while a random process on the edges of 𝐺 is a family of
random variables {𝑋𝑒 }𝑒∈𝐸 indexed by 𝐸. More generally, a random process on 𝐺 is a family of
random variables {𝑋𝑦}𝑦∈𝑉∪𝐸 indexed by 𝑉 ∪ 𝐸. The variables of a random process live in the same
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probability space and take values in some label set Σ. In general, we will consider random processes
over vertices of graphs unless otherwise specified.
We now introduce the notion of 𝑇 -dependent distribution. To do so, we extend the definition

of distance to edges as follows: For any two edges 𝑒 = {𝑣1, 𝑣2}, 𝑒′ = {𝑢1, 𝑢2} ∈ 𝐸, dist𝐺 (𝑒, 𝑒′) =

min𝑖, 𝑗∈[2] dist𝐺 (𝑣𝑖 , 𝑢 𝑗 ). Similarly, the distance between any edge 𝑒 = (𝑣1, 𝑣2) and a vertex 𝑣 is
dist𝐺 (𝑒, 𝑣) = min𝑖∈[2] dist𝐺 (𝑣𝑖 , 𝑣). The definition extends easily to subsets containing vertices and
edges.

Definition 5.1 (𝑇 -dependent distribution). Let 𝑇 ∈ N be a natural number and𝐺 = (𝑉 , 𝐸) be any
graph. A random process {𝑋𝑣}𝑣∈𝑉 on the vertices 𝐺 is said to be a 𝑇 -dependent distribution if,
for all subsets 𝑆, 𝑆 ′ ⊆ 𝑉 such that dist𝐺 (𝑆, 𝑆 ′) > 𝑇 , the two processes {𝑋𝑣}𝑣∈𝑆 and {𝑋𝑣}𝑣∈𝑆 ′ are
independent. Analogous definitions hold for random processes on the edges of a graph and for
random processes on the whole graph.

A way to define 𝑇 -dependent distributions that uses the same notation of Section 4.1 is by
describing the output probability of global labelings: Let 𝐼 be a discrete set of indices, and𝐺 = (𝑉 , 𝐸)
some graph. A distribution {(𝜆𝑖 , 𝑝𝑖 )}𝑖∈𝐼 over output labelings, where 𝜆𝑖 : 𝑉 → Σ is an output
labeling, is 𝑇 -dependent if the following holds: for all output labelings 𝜆 in {(𝜆𝑖 , 𝑝𝑖 )}, for every two
subsets of nodes 𝑆1, 𝑆2 ⊆ 𝑉 (𝐺) such that dist𝐺 (𝑆1, 𝑆2) > 𝑇 , we have that

𝑝 (𝜆, 𝑆1 ∪ 𝑆2) = 𝑝 (𝜆, 𝑆1) · 𝑝 (𝜆, 𝑆2).
Notice that outcomes, as defined in Definition 4.1, output a random process for every input. Often,
we have a family of graphs of arbitrarily large size 𝑛 on which a 𝑇 (𝑛)-dependent distribution is
defined.1

Now we define the hypothetical computational model that outputs𝑇 -dependent distributions on
some input graph.

The bounded-dependence model. The bounded-dependence model is a computational model that,
for a given family of graphs F , produces an outcome (as defined in Definition 4.1) over F that
is non-signaling beyond distance 𝑇 = 𝑇 (𝐺, 𝑥) (as defined in Definition 4.2), where 𝐺 ∈ F and
𝑥 represents the input, which, in turn, produces 𝑇 (𝐺, 𝑥)-dependent distributions. The random
processes produced by an outcome are said to be finitely-dependent if 𝑇 = 𝑂 (1) for all graphs in
F and all input data. If an outcome with the aforementioned properties solves a problem Π over
a graph family F with probability at least 𝑝 , we say that the pair (Π, F ) has complexity 𝑇 (with
success probability 𝑝), and𝑇 is also called the locality or the complexity of the corresponding output
distributions.
We are particularly interested in 𝑇 -dependent distributions that satisfy invariance properties:

We say that a random process {𝑋𝑣}𝑣∈𝑉 over vertices of a graph 𝐺 = (𝑉 , 𝐸) is invariant under
automorphisms if, for all automorphisms 𝑓 : 𝑉 → 𝑉 of 𝐺 = (𝑉 , 𝐸), the two processes {𝑋𝑣}𝑣∈𝑉 and
{𝑌𝑣 = 𝑋𝑓 (𝑣) }𝑣∈𝑉 are equal in law. The definition is easily extendable to random processes on edges
and random processes on the whole graph.
A stronger requirement is the invariance under subgraph isomorphism: Suppose we have an

outcome O : (𝐺, 𝑥) ↦→ {𝑋𝑣}𝑣∈𝑉 (𝐺 ) that maps each input graph 𝐺 from family of graphs F and any
input data 𝑥 to a𝑇 = 𝑇 (𝐺, 𝑥)-dependent distribution over𝐺 from a family of random process R. We
say that the random process over vertices in R are invariant under subgraph isomorphisms if, given
any two graphs 𝐺1,𝐺2 ∈ F of size 𝑛1, 𝑛2 with associated process {𝑋 (1)

𝑣 }𝑣∈𝑉 (𝐺1 ) and {𝑋 (2)
𝑣 }𝑣∈𝑉 (𝐺2 ) ,

and any two subgraphs 𝐻1 ⊆ 𝐺1, 𝐻2 ⊆ 𝐺2 such that 𝐺1 [N𝑇 (𝑛1 ) (𝐻1)] and 𝐺2 [N𝑇 (𝑛2 ) (𝐻2)] are
1Note that the dependency 𝑇 might depend on other graph parameters such as the maximum degree Δ, the chromatic
number 𝜒 , etc.
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isomorphic (with the isomorphism that brings 𝐻1 into 𝐻2), then {𝑋 (1)
𝑣 }𝑣∈𝑉 (𝐻1 ) and {𝑋 (2)

𝑣 }𝑣∈𝑉 (𝐻2 )
are equal in law.2 Trivially, invariance under subgraph isomorphisms implies invariance under
automorphisms and the non-signaling property. This definition is again easily extendable to the
case of families of random processes over edges or over graphs in general.

The baseline of our result is a finitely-dependent distribution provided by [41, 42] on paths and
cycles.
Theorem 5.2 (Finitely-dependent coloring of the integers and of cycles [41, 42]). Let

𝐺 = (𝑉 , 𝐸) be a graph that is either a cycle with at least 3 nodes or has𝑉 = Z and 𝐸 = {{𝑖, 𝑖+1} : 𝑖 ∈ Z}.
For (𝑘, 𝑞) ∈ {(1, 4), (2, 3)}, there exists a𝑘-dependent distribution {𝑋 (𝐺 )

𝑣 }𝑣∈𝑉 (𝐺 ) that gives a𝑞-coloring
of 𝐺 . Furthermore, such distributions can be chosen to meet the following property: if {𝑋𝑖 }𝑖∈[𝑛] is the
𝑘-dependent 𝑞-coloring of the 𝑛-cycle and {𝑌𝑖 }𝑖∈Z is the 𝑘-dependent 𝑞-coloring of the integers, then
{𝑋𝑖 }𝑖∈[𝑛−𝑘 ] is equal in law to {𝑌𝑖 }𝑖∈[𝑛−𝑘 ] .
It is immediate that the disjoint union of any number of paths and cycles (even countably many)

admits such distributions as well.
Corollary 5.3. Let F be the family of graphs formed by the disjoint union (possibly uncountably

many) paths with countably many nodes and cycles of any finite length. For all 𝐺 ∈ F and for
(𝑘, 𝑞) ∈ {(1, 4), (2, 3)}, there exists a 𝑘-dependent distribution {𝑋 (𝐺 )

𝑣 }𝑣∈𝑉 (𝐺 ) that gives a 𝑞-coloring
of 𝐺 . Furthermore, such distributions can be chosen to meet all the following properties:

(1) On each connected component 𝐻 ⊆ 𝐺 , {𝑋 (𝐺 )
𝑣 }𝑣∈𝑉 (𝐻 ) is given by Theorem 5.2.

(2) {{𝑋 (𝐺 )
𝑣 }𝑣∈𝑉 (𝐺 ) }𝐺∈F is invariant under subgraph isomorphisms.

We will use this result to provide “fake local identifiers” to the nodes of the graph to simulate
SLOCAL through a random process with constant dependency. In order to do that, we introduce
some results on the composition of 𝑇 -dependent distributions.

Trivially, every 𝑇 -round (deterministic and randomized) port-numbering algorithm defines a 2𝑇 -
dependent distribution over the input graph. Furthermore, if the underlying port-numbering model
has access to random bits, the distribution can be made invariant under subgraph isomorphisms
(provided that, whenever a distribution over input labelings is given together with the input
graph, such distribution is also invariant under subgraph isomorphisms). The composition of the
𝑇2-dependent distribution obtained by a𝑇2-round port-numbering algorithm and any𝑇1-dependent
distribution yields a (2𝑇2 +𝑇1)-dependent distribution.

Lemma 5.4. Let Σ(1) and Σ(2) be two label sets with countably many labels. Let F be any family of
graphs, and let R = {{𝑋𝑣}𝑣∈𝑉 (𝐺 ) : 𝐺 ∈ F } be a family of 𝑇1-dependent distributions taking values in
Σ(1) , where 𝑇1 might depend on parameters of 𝐺 . Consider any 𝑇2-round port-numbering algorithm
A that takes as an input 𝐺 ∈ F labelled by {𝑋𝑣}𝑣∈𝑉 (𝐺 ) : it defines another distribution {𝑌𝑣}𝑣∈𝑉 (𝐺 )
taking values in some label set Σ(2) . Then, {𝑌𝑣}𝑣∈𝑉 (𝐺 ) is a (2𝑇2 + 𝑇1)-dependent distribution on 𝐺 .
Furthermore, the following property holds:

(1) If the processes in R are invariant under subgraph isomorphisms, 𝑇2 is constant, A does not
depend on the size of the input graph and permutes port numbers locally u.a.r. at round 0, then
the processes in {{𝑌𝑣}𝑣∈𝑉 (𝐺 ) : 𝐺 ∈ F } are invariant under subgraph isomorphisms.

Proof. Fix any 𝐺 = (𝑉 , 𝐸) ∈ F , and the corresponding 𝑇2-dependent distribution {𝑋𝑣}𝑣∈𝑉 ∈ R.
Fix any two subsets 𝑆, 𝑆 ′ ⊆ 𝑉 such that dist𝐺 (𝑆, 𝑆 ′) > 2𝑇2 + 𝑇1. Consider any output labeling
𝜆 (2) : 𝑉 → Σ(2) . Then,

Pr
[∩𝑣∈𝑆∪𝑆 ′ {𝑌𝑣 = 𝜆 (2) (𝑣)}]

2We remark that, as opposed to Definition 4.2, the isomorphism must preserve the input but not the node identifiers.
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=
∑︁

𝜆 (1) :𝑉→Σ(1)
Pr

[∩𝑣∈𝑆∪𝑆 ′ {𝑌𝑣 = 𝜆 (2) (𝑣)}���∩𝑣∈𝑉 {𝑋𝑣 = 𝜆 (1) (𝑣)}]
· Pr [∩𝑣∈𝑉 {𝑋𝑣 = 𝜆 (1) (𝑣)}]

=
∑︁

𝜆 (1) :𝑉→Σ(1)
Pr

[
∩𝑣∈𝑆∪𝑆 ′ {𝑌𝑣 = 𝜆 (2) (𝑣)}

���∩𝑣∈N𝑇2 (𝑆∪𝑆′ ) {𝑋𝑣 = 𝜆
(1) (𝑣)}

]
(3)

· Pr [∩𝑣∈𝑉 {𝑋𝑣 = 𝜆 (1) (𝑣)}]
=

∑︁
𝜆 (1) : N𝑇2 (𝑆∪𝑆 ′ )→Σ(1)

Pr
[
∩𝑣∈𝑆∪𝑆 ′ {𝑌𝑣 = 𝜆 (2) (𝑣)}

���∩𝑣∈N𝑇2 (𝑆∪𝑆′ ) {𝑋𝑣 = 𝜆
(1) (𝑣)}

]
· Pr [∩𝑣∈N𝑇2 (𝑆∪𝑆 ′ ) {𝑋𝑣 = 𝜆 (1) (𝑣)}

]
,

where Eq. (3) holds because the output of {𝑌𝑣}𝑣∈𝑆∪𝑆 ′ is independent of {𝑋𝑣}𝑣∉N𝑇2 (𝑆∪𝑆 ′ ) . Since
dist𝐺 (𝑆, 𝑆 ′) > 2𝑇2, ∑︁

𝜆 (1) : N𝑇2 (𝑆∪𝑆 ′ )→Σ(1)
Pr

[
∩𝑣∈𝑆∪𝑆 ′ {𝑌𝑣 = 𝜆 (2) (𝑣)}

���∩𝑣∈N𝑇2 (𝑆∪𝑆′ ) {𝑋𝑣 = 𝜆
(1) (𝑣)}

]
· Pr [∩𝑣∈N𝑇2 (𝑆∪𝑆 ′ ) {𝑋𝑣 = 𝜆 (1) (𝑣)}

]
=

∑︁
𝜆 (1) : N𝑇2 (𝑆∪𝑆 ′ )→Σ(1)

Pr
[
∩𝑣∈𝑆 {𝑌𝑣 = 𝜆 (2) (𝑣)}

���∩𝑣∈N𝑇2 (𝑆∪𝑆′ ) {𝑋𝑣 = 𝜆
(1) (𝑣)}

]
· Pr

[
∩𝑣∈𝑆 ′ {𝑌𝑣 = 𝜆 (2) (𝑣)}

���∩𝑣∈N𝑇2 (𝑆∪𝑆′ ) {𝑋𝑣 = 𝜆
(1) (𝑣)}

]
· Pr [∩𝑣∈N𝑇2 (𝑆∪𝑆 ′ ) {𝑋𝑣 = 𝜆 (1) (𝑣)}

]
=

∑︁
𝜆 (1) : N𝑇2 (𝑆∪𝑆 ′ )→Σ(1)

Pr
[
∩𝑣∈𝑆 {𝑌𝑣 = 𝜆 (2) (𝑣)}

���∩𝑣∈N𝑇2 (𝑆 ) {𝑋𝑣 = 𝜆
(1) (𝑣)}

]
· Pr

[
∩𝑣∈𝑆 ′ {𝑌𝑣 = 𝜆 (2) (𝑣)}

���∩𝑣∈N𝑇2 (𝑆′ ) {𝑋𝑣 = 𝜆
(1) (𝑣)}

]
· Pr [∩𝑣∈N𝑇2 (𝑆∪𝑆 ′ ) {𝑋𝑣 = 𝜆 (1) (𝑣)}

]
.

Now observe that dist𝐺 (N𝑇2 (𝑆),N𝑇2 (𝑆 ′)) > 𝑇1. Since {𝑋𝑣}𝑣∈𝑉 is a 𝑇1-dependent distribution, it
holds that ∑︁

𝜆 (1) : N𝑇2 (𝑆∪𝑆 ′ )→Σ(1)
Pr

[
∩𝑣∈𝑆 {𝑌𝑣 = 𝜆 (2) (𝑣)}

���∩𝑣∈N𝑇2 (𝑆 ) {𝑋𝑣 = 𝜆
(1) (𝑣)}

]
· Pr

[
∩𝑣∈𝑆 ′ {𝑌𝑣 = 𝜆 (2) (𝑣)}

���∩𝑣∈N𝑇2 (𝑆′ ) {𝑋𝑣 = 𝜆
(1) (𝑣)}

]
· Pr [∩𝑣∈N𝑇2 (𝑆∪𝑆 ′ ) {𝑋𝑣 = 𝜆 (1) (𝑣)}

]
=

∑︁
𝜆 (1) : N𝑇2 (𝑆∪𝑆 ′ )→Σ(1)

Pr
[
∩𝑣∈𝑆 {𝑌𝑣 = 𝜆 (2) (𝑣)}

���∩𝑣∈N𝑇2 (𝑆 ) {𝑋𝑣 = 𝜆
(1) (𝑣)}

]
· Pr

[
∩𝑣∈𝑆 ′ {𝑌𝑣 = 𝜆 (2) (𝑣)}

���∩𝑣∈N𝑇2 (𝑆′ ) {𝑋𝑣 = 𝜆
(1) (𝑣)}

]
· Pr [∩𝑣∈N𝑇2 (𝑆 ) {𝑋𝑣 = 𝜆 (1) (𝑣)}

]
Pr

[∩𝑣∈N𝑇2 (𝑆 ′ ) {𝑋𝑣 = 𝜆 (1) (𝑣)}
]

= Pr
[∩𝑣∈𝑆 {𝑌𝑣 = 𝜆 (2) (𝑣)}] · Pr [∩𝑣∈𝑆 ′ {𝑌𝑣 = 𝜆 (2) (𝑣)}] .

Now, given any𝐺,𝐻 ∈ F of size 𝑛𝐺 and 𝑛𝐻 , respectively, consider any subgraph isomorphism 𝑓 :
N2𝑇2+𝑇1 (𝑛𝐺 ) (𝐺 ′,𝐺) → N2𝑇2+𝑇1 (𝑛𝐻 ) (𝐻 ′, 𝐻 ) for any two𝐺 ′ ⊆ 𝐺,𝐻 ′ ⊆ 𝐻 such that 𝑓 restricted to𝐺 ′ is
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an isomorphism to 𝐻 ′. Let {𝑋 (𝐺 )
𝑣 }𝑣∈𝑉 (𝐺 ) and {𝑋 (𝐻 )

𝑣 }𝑣∈𝑉 (𝐻 ) , and {𝑌 (𝐺 )
𝑣 }𝑣∈𝑉 (𝐺 ) and {𝑌 (𝐻 )

𝑣 }𝑣∈𝑉 (𝐻 )
be the corresponding distributions of interest before and after the combination with the port-
numbering algorithm, respectively. Fix any subset of nodes𝑈 ⊆ 𝑉 (𝐺 ′) and consider any family of
labels {𝜆𝑢}𝑢∈𝑈 indexed by𝑈 . In order to prove property 1, it is sufficient to show that

Pr
[
∩𝑢∈𝑈 {𝑌 (𝐺 )

𝑢 = 𝜆𝑢}
]
= Pr

[
∩𝑢∈𝑈 {𝑌 (𝐻 )

𝑓 (𝑢 ) = 𝜆𝑢}
]
.

Notice that Pr [∩𝑢∈𝑈 {𝑌𝑢 = 𝜆𝑢}] depends solely on the graph 𝐺 [N𝑇2 (𝑈 ,𝐺)] = ∪𝑢∈𝑈𝐺 [N𝑇2 (𝑢,𝐺)],
the distribution of the port numbers in 𝐺 [N𝑇2 (𝑈 ,𝐺)], and the random process {𝑋𝑢}𝑢∈N𝑇2 (𝑈 ) . By
hypothesis, {𝑋 (𝐺 )

𝑢 }𝑢∈N𝑇2 (𝑈 ,𝐺 ) is equal in law to {𝑋 (𝐻 )
𝑓 (𝑢 ) }𝑢∈N𝑇2 (𝑈 ,𝐺 ) . Furthermore, the restriction

of 𝑓 to 𝐺 [N𝑇2 (𝑈 ,𝐺)] defines an isomorphism from 𝐺 [N𝑇2 (𝑈 ,𝐺)] to 𝐻 [N𝑇2 (𝑓 (𝑈 ), 𝐻 )], hence the
distribution of the port numbers in 𝐺 [N𝑇2 (𝑈 ,𝐺)] is the same as that in 𝐻 [N𝑇2 (𝑓 (𝑈 ), 𝐻 )] because
each node permutes the port numbers locally u.a.r. Thus, Pr

[
∩𝑢∈𝑈 {𝑌 (𝐺 )

𝑢 = 𝜆𝑢}
]
must be the same

as Pr
[
∩𝑢∈𝑈 {𝑌 (𝐻 )

𝑓 (𝑢 ) = 𝜆𝑢}
]
. □

𝑇 -dependent distributions over different graphs can be combined to obtain a 𝑇 -dependent
distribution over the graph union.

Lemma 5.5. Let {𝑋𝑣}𝑣∈𝑉1 and {𝑌𝑣}𝑣∈𝑉2 be a 𝑇1-dependent distribution over a graph 𝐺1 = (𝑉1, 𝐸1)
taking values in Σ(1) and a𝑇2-dependent distribution over a graph𝐺2 = (𝑉2, 𝐸2) taking values in Σ(2) ,
respectively. Assume {𝑋𝑣}𝑣∈𝑉1 and {𝑌𝑣}𝑣∈𝑉2 to be independent processes. Consider the graph 𝐻 = (𝑉 =

𝑉1∪𝑉2, 𝐸 = 𝐸1∪𝐸2) and a distribution {𝑍𝑣}𝑣∈𝑉 over𝐻 taking values in Σ = (Σ(1)∪{0})× (Σ(2)∪{0})
defined by

𝑍𝑣 =


(𝑋𝑣, 0) if 𝑣 ∈ 𝑉1 \𝑉2,

(𝑋𝑣, 𝑌𝑣) if 𝑣 ∈ 𝑉1 ∩𝑉2,

(0, 𝑌𝑣) if 𝑣 ∈ 𝑉2 \𝑉1.

Then, {𝑍𝑣}𝑣∈𝑉 is max(𝑇1,𝑇2)-dependent.
Proof. For any vector v ∈ Σ1 × · · · × Σ𝑛 , we write v[𝑖] to denote its 𝑖-th entry. Fix any output

labeling 𝜆 : 𝑉 → Σ such that 𝜆(𝑣) [2] = 0 for all 𝑣 ∈ 𝑉1 \ 𝑉2 and 𝜆(𝑣) [1] = 0 for all 𝑣 ∈ 𝑉2 \ 𝑉1.
Observe that for any subset 𝑆 ⊆ 𝑉 it holds that

Pr [∩𝑣∈𝑆 {𝑍𝑣 = 𝜆(𝑣)}]
= Pr

[ (∩𝑣∈𝑆∩𝑉1 {𝑋𝑣 = 𝜆(𝑣) [1]}
) ∩ (∩𝑣∈𝑆∩𝑉2 {𝑌𝑣 = 𝜆(𝑣) [2]}

) ]
= Pr

[∩𝑣∈𝑆∩𝑉1 {𝑋𝑣 = 𝜆(𝑣) [1]}
] · Pr [∩𝑣∈𝑆∩𝑉2 {𝑌𝑣 = 𝜆(𝑣) [2]}

]
, (4)

where the latter equality follows by independence between {𝑋𝑣}𝑣 𝑖𝑛𝑉1 and {𝑌𝑣}𝑣 𝑖𝑛𝑉2 . W.l.o.g.,
suppose𝑇1 ≥ 𝑇2. Consider two subsets 𝑆, 𝑆 ′ ⊆ 𝑉 such that dist𝐺 (𝑆, 𝑆 ′) > 𝑇1. Fix any output labeling
𝜆 : 𝑉 → Σ such that 𝜆(𝑣) [2] = 0 for all 𝑣 ∈ 𝑉1 \𝑉2 and 𝜆(𝑣) [1] = 0 for all 𝑣 ∈ 𝑉2 \𝑉1. Using Eq. (4),
we have that

Pr [∩𝑣∈𝑆∪𝑆 ′ {𝑍𝑣 = 𝜆(𝑣)}]
= Pr

[∩𝑣∈ (𝑆∪𝑆 ′ )∩𝑉1 {𝑋𝑣 = 𝜆(𝑣) [1]}
] · Pr [∩𝑣∈ (𝑆∪𝑆 ′ )∩𝑉2 {𝑌𝑣 = 𝜆(𝑣) [2]}

]
= Pr

[∩𝑣∈ (𝑆∩𝑉1 )∪(𝑆 ′∩𝑉1 ) {𝑋𝑣 = 𝜆(𝑣) [1]}
] · Pr [∩𝑣∈ (𝑆∩𝑉2 )∪(𝑆 ′∩𝑉2 ) {𝑌𝑣 = 𝜆(𝑣) [2]}

]
= Pr

[∩𝑆∩𝑉1 {𝑋𝑣 = 𝜆(𝑣) [1]}
] · Pr [∩𝑆 ′∩𝑉1 {𝑋𝑣 = 𝜆(𝑣) [1]}

]
(5)

· Pr [∩𝑆∩𝑉2 {𝑌𝑣 = 𝜆(𝑣) [2]}
] · Pr [∩𝑆 ′∩𝑉2 {𝑌𝑣 = 𝜆(𝑣) [2]}

]
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= Pr
[ (∩𝑣∈𝑆∩𝑉1 {𝑋𝑣 = 𝜆(𝑣) [1]}

) ∩ (∩𝑣∈𝑆∩𝑉2 {𝑌𝑣 = 𝜆(𝑣) [2]}
) ]

(6)
· Pr [ (∩𝑣∈𝑆 ′∩𝑉1 {𝑋𝑣 = 𝜆(𝑣) [1]}

) ∩ (∩𝑣∈𝑆 ′∩𝑉2 {𝑌𝑣 = 𝜆(𝑣) [2]}
) ]

= Pr [∩𝑣∈𝑆 {𝑍𝑣 = 𝜆(𝑣)}] · Pr [∩𝑣∈𝑆 ′ {𝑍𝑣 = 𝜆(𝑣)}] ,
where Eq. (5) holds because {𝑋𝑣}𝑣∈𝑉1 is 𝑇1-dependent and {𝑌𝑣}𝑣∈𝑉2 is 𝑇2-dependent, while Eq. (6)
holds because {𝑋𝑣}𝑣∈𝑉1 and {𝑌𝑣}𝑣∈𝑉2 are independent. □

Now we present a final lemma on the composition of random processes. To do so, we first
introduce the notation of random decomposition of a graph.

Definition 5.6 (Random decomposition). Let𝐺 = (𝑉 , 𝐸) be any graph and P a family of subgraphs
of 𝐺 . For any 𝑘 ∈ N, let Γ(𝐺) be a random variable taking values in P𝑘 that is sampled according
to any probability distribution. We say that Γ(𝐺) is a random 𝑘-decomposition of 𝐺 in P.

Given a random 𝑘-decomposition Γ(𝐺) of 𝐺 in P, for any 𝑦 ∈ 𝑉 ∪ 𝐸, we define the random
variable Γ(𝐺)𝑦 ∈ {0, 1}𝑘 as follows: Γ(𝐺)𝑦 [𝑖] = 1 if 𝑦 belongs to Γ(𝐺) [𝑖] and 0 otherwise. Notice
that {Γ(𝐺)𝑦}𝑦∈𝑉∪𝐸 is a random process on 𝐺 . If {Γ(𝐺)𝑦}𝑦∈𝑉∪𝐸 is invariant under automorphisms,
then we say that the random 𝑘-decomposition Γ(𝐺) is invariant under automorphisms. If, for a
family of graphs F and any graph 𝐺 ∈ F , {Γ(𝐺)𝑦}𝑦∈𝑉 (𝐺 )∪𝐸 (𝐺 ) is 𝑇 -dependent (with 𝑇 being a
function of the size of 𝐺) and the processes in {{Γ(𝐺)𝑦}𝑦∈𝑉 (𝐺 )∪𝐸 (𝐺 ) : 𝐺 ∈ F } are invariant under
subgraph isomorphisms, then we say that the random 𝑘-decompositions in {Γ(𝐺) : 𝐺 ∈ F } are
𝑇 -dependent and invariant under subgraph isomorphisms.

For a random decomposition, we define the notion of induced random process.

Definition 5.7 (Induced process). Let 𝐺 = (𝑉 , 𝐸) be a graph that admits a family of subgraphs P.
Suppose there exists a random process {𝑋𝑣}𝑣∈𝑉 (𝐻 (P) ) with 𝐻 (P) being the graph obtained by the
disjoint union of all elements of P. Let Γ(𝐺) be a random 𝑘-decomposition of𝐺 in P. For all 𝑣 ∈ 𝑉
and 𝐺 ′ ∈ P, define the random process {𝑋 (𝐺 ′ )

𝑣 }𝑣∈𝑉 by setting 𝑋 (𝐺 ′ )
𝑣 = 𝑋𝑓𝐺 ′ (𝑣) for all 𝑣 ∈ 𝑉 (𝐺 ′),

where 𝑓𝐺 ′ : 𝑉 (𝐺 ′) → 𝑉 (𝐻 (P)) is the natural immersion of 𝐺 ′ into 𝐻 (P) otherwise set 𝑋 (𝐺 ′ )
𝑣 = 0.

Let {𝑌 (Γ (𝐺 ) )
𝑣 }𝑣∈𝑉 be a random process that we define conditional on the output of Γ(𝐺): for all

G ∈ P𝑘 , conditional on Γ(𝐺) = G,

𝑌 (Γ (𝐺 ) )
𝑣 = 𝑌 (G)

𝑣 = (𝑋 (G[1] )
𝑣 , . . . , 𝑋 (G[𝑘 ] )

𝑣 ).

The random process {𝑌 (Γ (𝐺 ) )
𝑣 }𝑣∈𝑉 on 𝐺 is said to be induced by the action of {𝑋𝑣}𝑣∈𝑉 (𝐻 (P) ) over

the random 𝑘-decomposition Γ(𝐺).
Now we present a result on the induced random process whenever the random decomposition

and the family of random processes that acts on the random decomposition meet some invariance
properties.

Lemma 5.8. Let F be a family of graphs. For any 𝐺 = (𝑉 , 𝐸) ∈ F , let P𝐺 be any family of
subgraphs of 𝐺 that is closed under node removal and disjoint graph union, that is, if 𝐺1,𝐺2 ∈ P𝐺
and 𝑉 (𝐺1) ∩𝑉 (𝐺2) = ∅, then 𝐺1 ∪𝐺2 ∈ P𝐺 . Furthermore, suppose that, for each pair of isomorphic
subgraphs𝐺1,𝐺2 ⊆,𝐺1 ∈ P𝐺 =⇒ 𝐺2 ∈ P𝐺 . Moreover, let Γ(𝐺) be a random 𝑘-decomposition of𝐺 in
P𝐺 that is𝑇1-dependent, and suppose that the random decompositions in {Γ(𝐺) : 𝐺 ∈ F } are invariant
under subgraph isomorphism. Suppose there is𝑇2-dependent distribution {𝑋𝑣}𝑣∈𝑉 (𝐻 (P𝐺 ) ) , taking values
in a finite set Σ, such that {{𝑋𝑣}𝑣∈𝑉 (𝐻 (P𝐺 ) ) : 𝐺 ∈ F } is invariant under subgraph isomorphism,
where 𝐻 (P𝐺 ) is obtained by the disjoint union of a copy of each element of P𝐺 . Let {𝑌 (Γ (𝐺 ) )

𝑣 }𝑣∈𝑉 (𝐺 )
be the random process induced by the action of {𝑋𝑣}𝑣∈𝑉 (𝐻 (P𝐺 ) ) over Γ(𝐺). Then, {𝑌 (Γ (𝐺 ) )

𝑣 }𝑣∈𝑉 (𝐺 )
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is a (𝑇1 + 2𝑇2)-dependent distribution. Furthermore, the processes in {{𝑋𝑣}𝑣∈𝑉 (𝐻 (P𝐺 ) ) : 𝐺 ∈ F } are
invariant under subgraph isomorphism.

Proof. Fix 𝐺 ∈ F and let Γ = Γ(𝐺), P = P𝐺 . Since P𝑘 might be uncountable, we consider the
density function 𝑓Γ and the probability measure P associated to Γ. Consider two subsets of nodes
𝑆, 𝑆 ′ ⊆ 𝑉 at distance at least max(𝑇1,𝑇2) + 1. Fix any labeling 𝜆 : 𝑉 → Σ𝑘 . It holds that

Pr
[
∩𝑣∈𝑆∪𝑆 ′ {𝑌 (Γ)

𝑣 = 𝜆(𝑣)}
]

=

∫
P𝑘

Pr
[
∩𝑣∈𝑆∪𝑆 ′ {𝑌 (Γ)

𝑣 = 𝜆(𝑣)}
��� Γ = G

]
𝑓Γ (G) dP (7)

=

∫
P𝑘

Pr
[
∩𝑣∈𝑆∪𝑆 ′ {𝑌 (G)

𝑣 = 𝜆(𝑣)}
]
𝑓Γ (G) dP

=

∫
P𝑘

Pr
[∩𝑣∈𝑆 {𝑌G

𝑣 = 𝜆(𝑣)}] Pr [∩𝑣∈𝑆 ′ {𝑌G = 𝜆(𝑣)}] 𝑓Γ (G) dP (8)

=

∫
P𝑘

∏
𝑖∈[𝑘 ]

Pr
[
∩𝑣∈𝑆 {𝑋G[𝑖 ]

𝑣 = 𝜆(𝑣) [𝑖]}
]
Pr

[
∩𝑣∈𝑆 ′ {𝑋G[𝑖 ]

𝑣 = 𝜆(𝑣) [𝑖]}
]
𝑓Γ (G) dP , (9)

where Eq. (7) holds by the law of total probability, Eq. (8) holds since {𝑌 (G)
𝑣 }𝑣∈𝑉 is 𝑇2-dependent

for all G ∈ P𝑘 by Lemma 5.5, and Eq. (9) holds since {𝑋G[𝑖 ]
𝑣 }𝑣∈𝑉 and {𝑋G[ 𝑗 ]

𝑣 }𝑣∈𝑉 are independent
if 𝑖 ≠ 𝑗 . Notice that, for any set 𝑆 ⊆ 𝑉 , 𝐺 ′ = G[𝑖] [N𝑇2 (𝑆,G[𝑖])] ∈ P and the event ∩𝑣∈𝑆 {𝑋G[𝑖 ]

𝑣 =

𝜆(𝑣) [𝑖]} has the same probability as∩𝑣∈𝑆 {𝑋𝐺 ′
𝑣 = 𝜆(𝑣) [𝑖]} because {𝑋𝑣}𝑣∈𝑉 (𝐻 (P) ) is invariant under

subgraph isomorphisms.
For any subset𝑈 ⊆ 𝑉 and any integer 𝑇 ≥ 0, let

H(𝑇,𝑈 ) = {(G[1] [N𝑇 (𝑈 ,G[1])], . . . ,G[𝑘] [N𝑇 (𝑈 ,G[𝑘])])
���G ∈ P𝑘} ⊆ P𝑘 ,

and let P[H (𝑇,𝑈 )] be the restriction of P to H(𝑇,𝑈 ) defined as follows: for any event 𝐸,

P[H (𝑇,𝑈 )] (𝐸) = P(𝐸 ∩H(𝑇,𝑈 ))/P(H (𝑇,𝑈 )) .
Finally, define the random variable Γ (𝑇,𝑈 ) to be a 𝑘-dimensional vector, taking values in H(𝑇,𝑈 ),
whose 𝑖-th entry is Γ [𝑖] [N𝑇 (𝑈 , Γ [𝑖])], and let 𝑓Γ (𝑇 ,𝑈 ) be its density function. Define 𝑈 = 𝑆 ∪ 𝑆 ′:
Eq. (9) becomes∫

P𝑘

∏
𝑖∈[𝑘 ]

Pr
[
∩𝑣∈𝑆 {𝑋G[𝑖 ]

𝑣 = 𝜆(𝑣) [𝑖]}
]
Pr

[
∩𝑣∈𝑆 ′ {𝑋G[𝑖 ]

𝑣 = 𝜆(𝑣) [𝑖]}
]
𝑓Γ (G) dP (10)

=

∫
H(𝑇2,𝑈 )

∏
𝑖∈[𝑘 ]

Pr
[
∩𝑣∈𝑆 {𝑋H[𝑖 ]

𝑣 = 𝜆(𝑣) [𝑖]}
]
Pr

[
∩𝑣∈𝑆 ′ {𝑋H[𝑖 ]

𝑣 = 𝜆(𝑣) [𝑖]}
]
𝑓Γ (𝑇2,𝑈 ) (H) dP[H (𝑇2,𝑈 )] .

Now notice that, since the random decomposition Γ is 𝑇1-dependent and dist𝐺 (𝑆, 𝑆 ′) > 𝑇1 + 2𝑇2,
the probability space H(𝑇2,𝑈 ) (with measure P[H (𝑇2,𝑈 )]) is isomorphic to the product space
H(𝑇2, 𝑆) × H (𝑇2, 𝑆

′) (with product measure P[H (𝑇2, 𝑆)] × P[H (𝑇2, 𝑆
′)]). The isomorphism brings

any element
(G[1] [N𝑇2 (𝑈 ,G[1])], . . . ,G[𝑘] [N𝑇2 (𝑈 ,G[𝑘])])

ofH(𝑇2,𝑈 ) into((G[1] [N𝑇2 (𝑆,G[1])], . . . ,G[𝑘] [N𝑇2 (𝑆,G[𝑘])]), (G[1] [N𝑇2 (𝑆 ′,G[1])], . . . ,G[𝑘] [N𝑇2 (𝑆 ′,G[𝑘])]))
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which belongs toH(𝑇2, 𝑆) × H (𝑇2, 𝑆
′). Hence, we get∫

H(𝑇2,𝑈 )

∏
𝑖∈[𝑘 ]

Pr
[
∩𝑣∈𝑆 {𝑋H[𝑖 ]

𝑣 = 𝜆(𝑣) [𝑖]}
]
Pr

[
∩𝑣∈𝑆 ′ {𝑋H[𝑖 ]

𝑣 = 𝜆(𝑣) [𝑖]}
]
𝑓Γ (𝑇2,𝑈 ) (H) dP[H (𝑇2, 𝑆)]

=

∫
H(𝑇2,𝑆 )

∫
H(𝑇2,𝑆 ′ )

∏
𝑖∈[𝑘 ]

Pr
[
∩𝑣∈𝑆 {𝑋H[𝑖 ]

𝑣 = 𝜆(𝑣) [𝑖]}
]
Pr

[
∩𝑣∈𝑆 ′ {𝑋H[𝑖 ]

𝑣 = 𝜆(𝑣) [𝑖]}
]

· 𝑓Γ (𝑇2,𝑆 ) (H1) 𝑓Γ (𝑇2,𝑆′ ) (H2) dP[H (𝑇2, 𝑆)] dP[H (𝑇2, 𝑆
′)] .

The latter becomes∫
H(𝑇2,𝑆 )

∫
H(𝑇2,𝑆 ′ )

∏
𝑖∈[𝑘 ]

Pr
[
∩𝑣∈𝑆 {𝑋H[𝑖 ]

𝑣 = 𝜆(𝑣) [𝑖]}
]
Pr

[
∩𝑣∈𝑆 ′ {𝑋H[𝑖 ]

𝑣 = 𝜆(𝑣) [𝑖]}
]

· 𝑓Γ (𝑇2,𝑆 ) (H1) 𝑓Γ (𝑇2,𝑆′ ) (H2) dP[H (𝑇2, 𝑆)] dP[H (𝑇2, 𝑆
′)]

=

∫
H(𝑇2,𝑆 )

∏
𝑖∈[𝑘 ]

Pr
[
∩𝑣∈𝑆 {𝑋H[𝑖 ]

𝑣 = 𝜆(𝑣) [𝑖]}
]
𝑓Γ (𝑇2,𝑆 ) (H1) dP[H (𝑇2, 𝑆)]

·
∫
H(𝑇2,𝑆 ′ )

∏
𝑖∈[𝑘 ]

Pr
[
∩𝑣∈𝑆 ′ {𝑋H[𝑖 ]

𝑣 = 𝜆(𝑣) [𝑖]}
]
𝑓Γ (𝑇2,𝑆′ ) (H2) dP[H (𝑇2, 𝑆

′)]

=

∫
P𝑘

∏
𝑖∈[𝑘 ]

Pr
[
∩𝑣∈𝑆 {𝑋G[𝑖 ]

𝑣 = 𝜆(𝑣) [𝑖]}
]
𝑓Γ (G) dP (11)

·
∫
P𝑘

∏
𝑖∈[𝑘 ]

Pr
[
∩𝑣∈𝑆 ′ {𝑋G[𝑖 ]

𝑣 = 𝜆(𝑣) [𝑖]}
]
𝑓Γ (G) dP

= Pr
[
∩𝑣∈𝑆 {𝑌 (Γ (𝐺 ) )

𝑣 = 𝜆(𝑣)}
]
Pr

[
∩𝑣∈𝑆 ′ {𝑌 (Γ (𝐺 ) )

𝑣 = 𝜆(𝑣)}
]
,

where Eq. (11) follows by the same reasoning as for Eq. (10) but in reverse.
Now we want to prove that {{𝑌 (Γ (𝐺 ) )

𝑣 }𝑣∈𝑉 : 𝐺 ∈ F } is invariant under subgraph isomorphism.
Fix any two graphs 𝐺,𝐻 ∈ F of sizes 𝑛𝐺 and 𝑛𝐻 , respectively. Consider any isomorphism 𝛼
between the radius-(𝑇1 (𝑛𝐺 ) + 2𝑇2 (𝑛𝐺 )) neighborhoods of any subgraph 𝐺 ′ ⊆ 𝐺 and the radius-
(𝑇1 (𝑛𝐻 ) +2𝑇2 (𝑛𝐻 )) neighborhoods of any subgraph𝐻 ′ ⊆ 𝐻 , such that the restriction of 𝛼 to𝐺 ′ is an
isomorphism to 𝐻 ′. With an abuse of notation, for any subgraph 𝐾 ⊆ 𝐺 ′, let us denote 𝛼 (𝐾) ⊆ 𝐻 ′

its isomorphic image in 𝐻 ′ through 𝛼 . Let 𝑇𝐺 = 𝑇1 (𝑛𝐺 ) + 2𝑇2 (𝑛𝐺 ) and 𝑇𝐻 = 𝑇1 (𝑛𝐻 ) + 2𝑇2 (𝑛𝐻 ). Fix
any labeling 𝜆 : 𝑉 → Σ𝑘 . We have that

Pr
[
∩𝑣∈𝑉 (𝐺 ′ ) {𝑌 (Γ (𝐺 ) )

𝑣 = 𝜆(𝑣)}
]

=

∫
P𝑘
𝐺

Pr
[
∩𝑣∈𝑉 (𝐺 ′ ) {𝑌 (Γ (𝐺 ) )

𝑣 = 𝜆(𝑣)}
��� Γ(𝐺) = G

]
𝑓Γ (𝐺 ) (G) dP𝐺 .

=

∫
P𝑘
𝐺

Pr
[
∩𝑣∈𝑉 (𝐺 ′ ) {𝑌 (G)

𝑣 = 𝜆(𝑣)}
]
𝑓Γ (𝐺 ) (G) dP𝐺

=

∫
P𝑘
𝐺

∏
𝑖∈[𝑘 ]

Pr
[
∩𝑣∈𝑉 (𝐺 ′ ) {𝑋 (G[𝑖 ] )

𝑣 = 𝜆(𝑣) [𝑖]}
]
𝑓Γ (𝐺 ) (G) dP𝐺

=

∫
H𝐺 (𝑇𝐺 ,𝑉 (𝐺 ′ ) )

∏
𝑖∈[𝑘 ]

Pr
[
∩𝑣∈𝑉 (𝐺 ′ ) {𝑋 (H[𝑖 ] )

𝑣 = 𝜆(𝑣) [𝑖]}
]
𝑓Γ (𝐺 ) (𝑇𝐺 ,𝑉 (𝐺 ′ ) ) (H) dP𝐺 (H𝐺 (𝑇𝐺 ,𝑉 (𝐺 ′)))
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=

∫
H𝐺 (𝑇𝐺 ,𝑉 (𝐺 ′ ) )

∏
𝑖∈[𝑘 ]

Pr
[
∩𝑣∈𝑉 (𝐺 ′ ) {𝑋 (𝛼 (H[𝑖 ] ) )

𝛼 (𝑣) = 𝜆(𝑣) [𝑖]}
]
𝑓Γ (𝐺 ) (𝑇𝐺 ,𝑉 (𝐺 ′ ) ) (H) dP𝐺 (H𝐺 (𝑇𝐺 ,𝑉 (𝐺 ′))) ,

where the latter holds because

Pr
[
∩𝑣∈𝑉 (𝐺 ′ ) {𝑋 (H[𝑖 ] )

𝑣 = 𝜆(𝑣) [𝑖]}
]
= Pr

[
∩𝑣∈𝑉 (𝐺 ′ ) {𝑋 (𝛼 (H[𝑖 ] ) )

𝛼 (𝑣) = 𝜆(𝑣) [𝑖]}
]

as {{𝑋𝑣}𝑣∈𝑉 (𝐻 (P𝐺 ) ) : 𝐺 ∈ F } is 𝑇2-dependent and invariant under subgraph isomorphism. Fur-
thermore, since the processes in {Γ(𝐺) : 𝐺 ∈ F } are 𝑇1-dependent and invariant under sub-
graph isomorphism, we have that 𝑓Γ (𝐺 ) (𝑇𝐺 ,𝑉 (𝐺 ′ ) ) (H) = 𝑓Γ (𝐻 ) (𝑇𝐻 ,𝑉 (𝐻 ′ ) ) ((𝛼 (H[1]), . . . , 𝛼 (H[𝑘]))) al-
most everywhere inH𝐺 (𝑇𝐺 ,𝑉 (𝐺 ′)), and that the probability space H𝐺 (𝑇𝐺 ,𝑉 (𝐺 ′)) with measure
dP𝐺 (H𝐺 (𝑇𝐺 ,𝑉 (𝐺 ′))) is isomorphic toH𝐻 (𝑇𝐻 ,𝑉 (𝐻 ′)) with measure dP𝐻 (H𝐻 (𝑇𝐻 ,𝑉 (𝐻 ′))), where
the isomorphism brings H into (𝛼 (H[1]), . . . , 𝛼 (H[𝑘])). Hence,∫

H𝐺 (𝑇𝐺 ,𝑉 (𝐺 ′ ) )

∏
𝑖∈[𝑘 ]

Pr
[
∩𝑣∈𝑉 (𝐺 ′ ) {𝑋 (𝛼 (H[𝑖 ] ) )

𝛼 (𝑣) = 𝜆(𝑣) [𝑖]}
]
𝑓Γ (𝐺 ) (𝑇𝐺 ,𝑉 (𝐺 ′ ) ) (H) dP𝐺 (H𝐺 (𝑇𝐺 ,𝑉 (𝐺 ′)))

=

∫
H𝐻 (𝑇𝐻 ,𝑉 (𝐻 ′ ) )

∏
𝑖∈[𝑘 ]

Pr
[
∩𝑣∈𝑉 (𝐻 ′ ) {𝑋 (H[𝑖 ] )

𝑣 = 𝜆(𝑣) [𝑖]}
]
𝑓Γ (𝐻 ) (𝑇𝐻 ,𝑉 (𝐻 ′ ) ) (H) dP𝐻 (H𝐻 (𝑇𝐻 ,𝑉 (𝐻 ′)))

= Pr
[
∩𝑣∈𝑉 (𝐻 ′ ) {𝑌 (Γ (𝐻 ) )

𝑣 = 𝜆(𝑣)}
]
,

concluding the proof. □

Remark 5.9. When the underlying graph is a directed graph, Lemma 5.8 guarantees invariance
under subgraph isomorphisms that keep edge orientation.

We are going to work on rooted pseudotrees and pseudoforests. A pseudotree is a graph that
is connected and contains at most one cycle. A pseudoforest is a graph obtained by the disjoint
union of pseudotrees; an equivalent definition of pseudoforest is a graph in which each connected
component has no more edges than vertices. Note that a pseudotree might contain multiple edges:
however, we assume it does not contain self-loops as self-loops are useless communication links in
the LOCAL model. A rooted tree is a tree where each edge is oriented and all nodes have outdegree
at most 1: it follows that all but one node have outdegree exactly 1 and one node (the root) has
outdegree 0. Trivially, a tree can be rooted by selecting one node and orienting all edges towards it.
A rooted pseudotree is a pseudotree where each edge is oriented and each node has outdegree at
most 1: if the pseudotree contains a cycle, then all nodes necessarily have outdegree exactly 1. Any
pseudotree can be oriented so that it becomes rooted: just orient the cycle first (if it exists) in a
consistent way, then remove it, and make the remaining trees rooted at nodes that belonged to the
cycle. A rooted pseudoforest is the union of rooted pseudotrees.

We will show that pseudoforests of maximum degree Δ admit a 𝑂 (log∗ Δ)-dependent 3-coloring
distributions. In order to do so, we use a color reduction technique that follows by known revisions
of the Cole–Vishkin technique [28, 39].

Lemma 5.10 (port-numbering algorithm for color reduction in pseudoforests [28, 39]).
Let 𝐺 be a pseudoforest with countably many nodes. Assume 𝐺 is given as an input a 𝑘-coloring for
some 𝑘 ≥ 3. There exists a deterministic port-numbering algorithm that does not depend on the size of
𝐺 and outputs a 3-coloring of 𝐺 in time 𝑂 (log∗ 𝑘).

Now we are ready to prove our result on pseudoforests.

Lemma 5.11 (Finitely-dependent coloring of rooted pseudoforests). Let F be a family of
rooted pseudoforests of countably many nodes of maximum degree Δ. Then, there exists an outcome
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Fig. 2. A decomposition of rooted pseudoforests in directed paths and cycles: each node 𝑣 colors its indegree
neighbors with a uniformly sampled permutation of the elements in [indeg(𝑣)]. The graph induced by nodes
colored with color 𝑖 is a disjoint union of directed paths and cycles.

that associates to each graph𝐺 ∈ F a𝑂 (log∗ Δ)-dependent distribution on the vertices of𝐺 that gives
a 3-coloring of 𝐺 . Furthermore, the family of distributions outputted by the outcome are invariant
under subgraph isomorphisms.

Proof. Let us fix the rooted pseudoforest 𝐺 ∈ F . Let P𝐺 be the family of all subgraphs of
𝐺 formed by the disjoint union of directed paths and cycles. Notice that P𝐺 is closed under
node removal and disjoint graph union. Furthermore, for any two pair of isomorphic subgraphs
𝐺1,𝐺2 ⊆ 𝐺 , 𝐺1 ∈ P𝐺 =⇒ 𝐺2 ∈ P𝐺 . Let 𝐻 (P𝐺 ) be the graph formed by the disjoint union of a
copy of each element of P𝐺 . By Corollary 5.3, 𝐻 (P𝐺 ) admits a 1-dependent 4-coloring distribution
{𝑋𝑣}𝑣∈𝐻 (P𝐺 ) (with colors in [4]), such that {{𝑋𝑣}𝑣∈𝐻 (P𝐺 ) : 𝐺 ∈ F } is invariant under subgraph
isomorphism.
Consider now a (non-proper) coloring of the pseudoforest in which each node 𝑢 colors its

indegree neighbors with a permutation of {1, . . . , indeg(𝑢)} sampled uniformly at random: if a node
has outdegree zero, then it is deterministically colored with color 1. Such a coloring is described by
a 2-dependent distribution {𝑍𝑣}𝑣∈𝑉 that is (trivially) invariant under subgraph isomorphisms that
keep edge orientation. Also, {𝑍𝑣}𝑣∈𝑉 identifies Δin disjoint random subset of nodes V1, . . . ,VΔin ,
where nodes in V𝑖 are colored with the color 𝑖 , and Δin is the maximum indegree of the graph.
Let Γ(𝐺) = (𝐺 [V1], . . . ,𝐺 [VΔin ]), where Γ(𝐺) [𝑖] is the random graph induced by V𝑖 . Furthermore,
observe that, the output of Γ(𝐺) [𝑖] is the disjoint union of oriented paths and/or oriented cycles,
with Γ(𝐺) [𝑖] being the 𝑖-th entry of the Δin-tuple Γ(𝐺) (see Fig. 2). Notice that process Γ(𝐺) is
2-dependent and is a random Δin-decomposition of𝐺 in P𝐺 (according to Definition 5.6), such that
the random decompositions in {Γ(𝐺) : 𝐺 ∈ F } are invariant under subgraph isomorphism. By
Lemma 5.8, the random process {𝑌 (Γ (𝐺 ) )

𝑣 }𝑣∈𝑉 , that is induced by the action of {𝑋𝑣}𝑣∈𝐻 (P𝐺 ) over
the random Δin-decomposition Γ(𝐺) (according to Definition 5.7), is a 4-dependent distribution
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(a) Each node 𝑣 rearranges its port numbers uniformly at random.
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(b) The Δ = 5 rooted pseudoforests that we take by considering port numbers 𝑖 ∈ [Δ].

Fig. 3. A decomposition of a graph of maximum degree Δ = 5 in rooted pseudoforests: for the sake of image
clarity, we focus on the undirected case. In Fig. 3a, each node 𝑣 rearranges its port-numbers with a uniformly
sampled permutation of the elements in [deg(𝑣)]. As shown in Fig. 3b, edges hosting port number 𝑖 at some
endpoint are oriented away from that port (in case both endpoints host port number 𝑖 , the edge is duplicated)
and form a rooted pseudoforest.
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that gives a 4Δin-coloring of 𝐺 : in fact, Γ(𝐺) [𝑖] and Γ(𝐺) [ 𝑗] are disjoint if 𝑖 ≠ 𝑗 , hence only one
entry of 𝑌 (Γ (𝐺 ) )

𝑣 is non-zero, for all 𝑣 ∈ 𝑉 .
We then combine {𝑌 (Γ (𝐺 ) )

𝑣 }𝑣∈𝑉 and a modified version of the port-numbering algorithm from
Lemma 5.10 where at round 0 each node permutes port numbers locally u.a.r.: by Lemma 5.4, we
obtain an 𝑂 (log∗ Δ)-dependent 3-coloring distribution {𝑄 (𝐺 )

𝑣 }𝑣∈𝑉 (𝐺 ) of𝐺 such that processes in
{{𝑄 (𝐺 )

𝑣 }𝑣∈𝑉 (𝐺 ) : 𝐺 ∈ F } are invariant under subgraph isomorphisms. □

Our finitely-dependent coloring of pseudoforests can be used as a baseline to provide a (Δ + 1)-
coloring of graphs with maximum degree Δ. The tool we use is again an application of the Cole–
Vishkin color reduction technique [56].

Lemma 5.12 (port-numbering algorithm for color reduction of general graphs [56]).
Let 𝐺 = (𝑉 , 𝐸) be a graph with maximum degree Δ and countably many nodes. Suppose 𝐺 is given in
input a 𝑘-coloring for some 𝑘 ≥ Δ + 1. There exists a deterministic port-numbering algorithm that does
not depend on the size of the input graph and outputs a (Δ + 1)-coloring of 𝐺 in time 𝑂

(
log∗ 𝑘 + Δ2) .

Lemma 5.13 (Finitely-dependent coloring of bounded-degree graphs). Let F be a family of
graphs of countably many nodes and maximum degree Δ. Then, there exists an outcome that associates
to each graph𝐺 ∈ F a𝑂

(
Δ2)-dependent distribution on the vertices of𝐺 that gives a (Δ + 1)-coloring

of 𝐺 . Furthermore, the family of distributions outputted by the outcome are invariant under subgraph
isomorphisms.

Proof. Let us fix 𝐺 = (𝑉 , 𝐸) ∈ F First, if 𝐺 is not directed, then duplicate each edge and give
to each pair of duplicates different orientations. Since a coloring of the original graph is a proper
coloring if and only if the same coloring is proper in the directed version, w.l.o.g., we can assume
𝐺 to be directed.

LetP𝐺 be a family of all subgraphs of𝐺 formed by rooted pseudotrees and disjoint union of rooted
pseudotrees. Notice that P𝐺 is closed under node removal and disjoint graph union. Furthermore,
for any two pair of isomorphic subgraphs 𝐺1,𝐺2 ⊆ 𝐺 , 𝐺1 ∈ P𝐺 =⇒ 𝐺2 ∈ P𝐺 . The graph 𝐻 (P𝐺 )
that is the disjoint union of all elements of copies of each P𝐺 is a rooted pseudoforest of maximum
degree Δ and, by Lemma 5.11, admits a 3-coloring 𝑂 (log∗ Δ)-dependent distribution {𝑋𝑣}𝑣∈𝐻 (P𝐺 )
such that processes in {{𝑋𝑣}𝑣∈𝐻 (P𝐺 ) : 𝐺 ∈ F } are invariant under subgraph isomorphism.

Now, consider a process in which each node 𝑣 samples uniformly at random a permutation of a
port numbering from {1, . . . , outdeg(𝑣)} for its outdegree edges. For each 𝑖 ∈ [Δout], consider the
graph𝐺𝑖 induced by edges that host port 𝑖: notice that𝐺𝑖 is a rooted pseudoforest as each node has
at most one outdegree edge with port 𝑖 . If a node has degree 0, it deterministically joins 𝐺1, which
remains a pseudoforest. The random choice of port numbering defines a random variable Γ ∈ P𝑘𝐺 ,
where Γ [𝑖] is the graph induced by port number 𝑖: according to Definition 5.6, we obtain a random
Δout -decomposition Γ(𝐺) of 𝐺 in P𝐺 which is 2-dependent (by construction): also, the random
decompositions in {Γ(𝐺) : 𝐺 ∈ F } are invariant under subgraph isomorphisms. For an example of
a possible output of the random decomposition, see Fig. 3.
Hence, the random process {𝑌 (Γ (𝐺 ) )

𝑣 }𝑣∈𝑉 from Definition 5.7 is well defined, and provides a
proper 3Δ-coloring of 𝐺 . By Lemma 5.8, the random process {𝑌 (Γ (𝐺 ) )

𝑣 }𝑣∈𝑉 is 𝑂 (log∗)-dependent
and, when 𝐺 ∈ F varies, the processes {𝑌 (Γ (𝐺 ) )

𝑣 }𝑣∈𝑉 are invariant under subgraph isomorphisms.
We then combine {𝑌 (Γ (𝐺 ) )

𝑣 }𝑣∈𝑉 and a modified version of the port-numbering algorithm from
Lemma 5.12 where at round 0 each node permutes port numbers locally u.a.r.: by Lemma 5.4, we
obtain an 𝑂

(
Δ2)-dependent (Δ + 1)-coloring distribution of 𝐺 that is invariant under subgraph

isomorphisms (as 𝐺 ∈ F varies). □
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Consider any graph 𝐺 = (𝑉 , 𝐸). For any 𝑘 ∈ N+, a distance-𝑘 coloring of 𝐺 is an assignment of
colors 𝑐 : 𝑉 → Σ such that, for each node 𝑣 ∈ 𝑉 , all nodes in N𝑘 (𝑣) \ {𝑣} = {𝑢 ∈ 𝑉 : dist𝐺 (𝑢, 𝑣) ≤
𝑘} \ {𝑣} have colors that are different from 𝑐 (𝑣).

It is well known that any LCL problem Π that has complexity𝑂 (log∗ 𝑛) in the LOCALmodel has
the following property: there exists a constant 𝑘 ∈ N+ (that depends only on the hidden constant
in 𝑂 (log∗ 𝑛)) such that, if the input graph is given a distance-𝑘 coloring, then Π is solvable in time
𝑂 (1) in the port-numbering model [18]. Furthermore, no knowledge of the size of the input graph
is required.

Finding a distance-𝑘 coloring in SLOCAL trivially requires locality exactly 𝑘 , implying the well
known fact that LCLs of complexity 𝑂 (log∗ 𝑛) in the LOCAL model have complexity 𝑂 (1) in
SLOCAL. In SLOCAL is indeed easier to address the case of infinite graphs for such problems.

Theorem 5.14. Consider any LCL problem Π with checking radius 𝑟 that has complexity 𝑇 ≥ 𝑟 in
the SLOCAL model over a family F of graphs with maximum degree Δ, where𝑇 = 𝑂 (1) is a constant.
For each 𝐺 ∈ F , there exists an 𝑂

(
𝑇 2Δ2𝑇 )-dependent distribution {𝑌 (𝐺 )

𝑣 }𝑣∈𝑉 (𝐺 ) that solves Π over 𝐺 .
Furthermore, the processes in {{𝑌 (𝐺 )

𝑣 }𝑣∈𝑉 (𝐺 ) : 𝐺 ∈ F } are invariant under subgraph isomorphisms.

Proof. Fix𝐺 ∈ F of size 𝑛. Consider the power graph𝐺𝑘 , where 𝑘 ≥ 𝑇 , defined by𝐺𝑘 = {𝑉 , 𝐸𝑘 }
with 𝐸𝑘 = {{𝑢, 𝑣} : 𝑢, 𝑣 ∈ 𝑉 , dist𝐺 (𝑢, 𝑣) ≤ 𝑘}. The maximum degree of 𝐺𝑘 is Δ𝑘 . By Lemma 5.13,
𝐺𝑘 admits an 𝑂

(
Δ2𝑘 )-dependent (Δ𝑘 + 1)-coloring distribution {𝑋𝑣}𝑣∈𝑉 that is invariant under

subgraph isomorphisms (as 𝐺 ∈ F varies). Notice that such a coloring provides a distance-𝑘
coloring for 𝐺 .

LetA be the algorithm in SLOCAL that solves Π in time𝑇 . Consider a port-numbering algorithm
A′ that simulates A and is defined as follows: At round 0, A′ permutes ports locally u.a.r. Then,
nodes colored with color 𝑖 perform𝑇 rounds of communication from round (𝑖 − 1)𝑇 + 1 to round 𝑖𝑇
and output a label as if they were the 𝑖-th node shown by the adversary to the SLOCAL algorithm
and had identifier 𝑖: all other communications are useless for such nodes. Notice that, for each
𝑣 ∈ 𝑉 (𝐺), identifiers in N𝑇 (𝑣) are unique and belong to {1, . . . ,Δ𝑘 }. The running time of A′ is 𝑘𝑇 .
Now we prove that the A′ outputs a correct labeling by induction on the colors of the nodes.
Let us focus on nodes colored with color 1 and, by contradiction, suppose one of such nodes

(node 𝑢) fails: a failure means that 𝐺 [N𝑟 (𝑢)] contains a non-valid labeling. Notice that no node
other than 𝑢 outputs anything in 𝐺 [N𝑟 (𝑢)], as nodes in N𝑟 (𝑢) \ {𝑢} have color greater than 1.
Then A fails in 𝐺 where the adversary picks 𝑢 as the first node in 𝐺 , reaching a contradiction.

Suppose 𝑐 > 1 and that nodes with color 𝑖 < 𝑐 output a correct label. Let us focus on nodes with
color 𝑐 and assume, by contradiction, that one of such nodes (node 𝑢) fails: a failure means that
𝐺 [N𝑟 (𝑢)] contains a non-valid labeling. Notice that in 𝐺 [N𝑟 (𝑢)] only nodes with colors strictly
smaller than 𝑐 have already outputted a label, and such a label is correct by the inductive hypothesis.
Furthermore, colors inN𝑟 (𝑢) are all different as 𝑟 ≤ 𝑘 . ThenA fails in𝐺 where the adversary picks
nodes in N𝑘 (𝑢) according to the order given by the coloring, and then continues outside N𝑘 (𝑢)
following any arbitrary order, reaching a contradiction.

Notice that {𝑌𝑣}𝑣∈𝑉 , the random process induced by combining {𝑋𝑣}𝑣∈𝑉 and A′ is a 𝑂
(
𝑘𝑇Δ2𝑘 )-

dependent distribution on 𝐺 by Lemma 5.4 with the required invariance properties, and we get the
thesis by choosing 𝑘 = 𝑇 . □

Theorem 5.14 answers an open question formulated by Holroyd [40].

Corollary 5.15. Let𝐺 = (𝑉 , 𝐸) be the infinite 𝑑-regular trees. There exists a finitely-dependent
distribution giving a (𝑑 + 1)-coloring of 𝐺 that is invariant under automorphisms.
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Proof. Finding a (𝑑 + 1)-coloring of any 𝑑-regular trees has complexity 𝑂 (1) in SLOCAL: the
coloring can just be performed greedily. Theorem 5.14 yields the desired result. □

6 SIMULATION OF ONLINE-LOCAL IN SLOCAL FOR TREES
In this section, we show how to turn an online-LOCAL algorithm solving an LCL problem in forests
into a deterministic SLOCAL algorithm solving the same problem. More concretely, we prove the
following two theorems:

Theorem 6.1. Let Π be an LCL problem with degree constraint Δ, input label set Σin and output
label set Σout. Let A be a deterministic online-LOCAL algorithm solving Π with locality 𝑇 (𝑛) on
forests. Then there exists an SLOCAL algorithm solving Π with locality 𝑇 (𝑂 (2𝑛4 )).
Theorem 6.2. Let Π be an LCL problem with degree constraint Δ, input label set Σin and output

label set Σout. LetA be a randomized online-LOCAL algorithm solving Π with locality𝑇 (𝑛) on forests.
Then there exists an SLOCAL algorithm solving Π with locality 𝑇 (𝑂 ((2|Σout |)22𝑛 )).

Theorem 1.5 follows as a simple corollary of Theorem 6.2, along with the fact that an algorithm
with locality 𝑜 (log log𝑛) in the SLOCALmodel implies the existence of a locality 𝑜 (log𝑛) algorithm
in the LOCAL model [34].

6.1 Amnesiac algorithms
We start by formalizing what an online-LOCAL algorithm sees when run for a fixed number of
steps on a graph. We then define formally what we mean by (𝑎,𝐶)-amnesiac algorithms:

Definition 6.3 (Partial online-LOCAL run of length ℓ). Let𝐺 be a graph with an ordering of nodes
𝑣1, 𝑣2, . . . , 𝑣𝑛 . Consider the subgraph 𝐺ℓ ⊆ 𝐺 induced by the radius-𝑇 neighborhoods of the first ℓ
nodes 𝑣1, . . . , 𝑣ℓ . We call (𝐺ℓ , (𝑣1, . . . , 𝑣ℓ )) the partial online-LOCAL run of length ℓ of 𝐺 as this is
exactly the information that an online-LOCAL algorithm would know about 𝐺 when deciding the
output for node 𝑣ℓ . We denote by 𝐺−

ℓ the partial online-LOCAL run formed by 𝑣1, . . . , 𝑣ℓ−1, that is,
one step shorter than 𝐺ℓ .

If𝐺ℓ contains only one connected component, we call (𝐺ℓ , (𝑣1, . . . , 𝑣ℓ )) a partial one-component
online-LOCAL run of length ℓ of 𝐺 .

We denote by Gℓ the set of all partial one-component online-LOCAL runs of length ℓ .

Definition 6.4 (Amnesiac algorithm). Let A be an online-LOCAL algorithm, and let 𝑎,𝐶 ∈ N be
constants.

Let 𝑣 be a node such that the connected component of nodes thatA has seen around 𝑣 corresponds
to some partial online-LOCAL run (𝐺𝑎, (𝑣1, . . . , 𝑣𝑎)). We say that algorithm A is (𝑎,𝐶)-amnesiac
if the output of A for node 𝑣 depends only on this local connected component and not anything
else the algorithm has seen. For technical reasons, we relax this a little by allowing the output of
algorithm A depend on anything after it has seen 𝐶 identical neighborhoods.
Intuitively, algorithm A is (𝑎,𝐶)-amnesiac if its output for the components in which it has

labeled at most 𝑎 − 1 nodes depends only on the component and nothing else. In a sense, the
algorithm forgets about all other components it has seen. After 𝐶 isomorphic components, the
output can have arbitrary dependencies on the input.

We say that every online-LOCAL algorithm is (0,𝐶)-amnesiac for every 𝐶 ∈ N.

6.2 Online to amnesiac
We are now ready to generalize the intuition we provided in Section 2.3 for turning online-LOCAL
algorithm to (1,𝐶)-amnesiac algorithms into a way to turn any online-LOCAL algorithm into an
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(𝑎,𝐶)-amnesiac algorithm. We later show how this can be used to construct an SLOCAL algorithm
in the proof of Theorem 6.1:

Lemma 6.5. Let Π be an LCL problem with degree constraint Δ, input label set Σin and output label
set Σout. LetA be an online-LOCAL algorithm solving Π with locality𝑇 (𝑛) on 𝑛-node forests. Then for
every 𝑎,𝐶 ∈ N there exists an (𝑎,𝐶)-amnesiac online-LOCAL algorithm A′ that Π on 𝑛-node forests
with locality 𝑇 (𝐶2𝑂 (𝑛2𝑎) ).
Proof. Let 𝑇 = 𝑇 (𝑁 ) be the locality of the following experiment; we determine the size 𝑁 of

the experiment graph later. Let Gℓ be the set of all partial one-component online-LOCAL runs
of length ℓ for 𝑛-node forests. We denote 𝑔ℓ = |Gℓ | and remark that 𝑔ℓ ≤ 𝑔 = 2𝑛2 |Σin |𝑛 . We set
𝑁ℓ = (3|Σout |𝑛𝑔)𝑎−ℓ+1𝐶 .
We now adaptively construct an experiment graph 𝐻 in 𝑎 phases. In the first phase, we construct

𝑁1 copies of G1, that is we construct 𝑁1𝑔1 disjoint components describing all possible isolated
neighborhoods an online-LOCAL algorithm might see. We then show the centers of these regions
to A and let it label them. As there are 𝑁ℓ copies of each neighborhood, for each neighborhood T
there exists a label 𝜎T that appears at least 𝑁1/|Σout | times, by the pigeonhole principle. We say
that such neighborhoods are good, and ignore the rest.

In each subsequent phase ℓ , we again construct 𝑁ℓ copies of Gℓ , with the catch that for each graph
(𝐺, (𝑣1, . . . , 𝑣ℓ )) ∈ Gℓ , we take the components of𝐺− from the good graphs of previous phases. We
defer arguing why such good neighborhoods exist for later. Then we show node 𝑣ℓ to algorithm A
and let it label the node. Finally, again by the pigeonhole principle, for each neighborhood T we
find a canonical label 𝜎T that appears at least 𝑁ℓ/|Σout | times, and mark those neighborhoods as
good.
Now our new online-LOCAL algorithm B works as follows: Before even processing the first

node of the input, algorithm B runs the above-described experiment with graph 𝐻 on algorithm A
with locality 𝑇 .

When processing node 𝑣 , algorithm B first checks whether the connected component formed by
nodes seen by B correspond to a good, unused, neighborhood in the experiment graph 𝐻 . This is
the case especially when the neighborhood contains at most 𝑎 − 1 previously-processed nodes. In
this case, algorithm B identifies this good neighborhood with the input nodes and marks it used.
Note that if the neighborhood contains previously-processed nodes, those must have corresponded
to a good neighborhood, too, and hence they also must use the good, canonical label, and the
identification must succeed. Otherwise, algorithm B shows the new node and the neighborhood
around it to algorithm A and copies the output from A. This construction ensures that B is
(𝑎,𝐶)-amnesiac.
The only things left to do is to argue that we can always find a good neighborhood in the

construction and to compute the final size of the experiment graph, and hence the locality of B.
We start with the former: Consider phase ℓ . All subsequent phases contain

∑𝑎
𝑘=ℓ+1 𝑁𝑘𝑔𝑘 graphs, the

simulation uses at most𝐶 graphs, and each of those may use at most 𝑛 previously-used components.
Hence, nodes from phase ℓ can be used at most

𝐶 + 𝑛
𝑎∑︁

𝑘=ℓ+1
𝑁𝑘𝑔𝑘 ≤ 𝐶 + 𝑛𝑔

𝑎∑︁
𝑘=ℓ+1

𝑁𝑘 ≤ 𝐶 + 𝑁ℓ
2|Σout |

Assuming that 𝐶 ≪ 𝑁ℓ , we get that

𝑁ℓ
|Σout | ≥ 𝐶 + 𝑛

𝑎∑︁
𝑘=ℓ+1

𝑁𝑘𝑔𝑘 ,
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that is the future phases won’t run out of components.
Finally, the size of the experiment graph is

𝑁 = 𝑛
𝑎∑︁
ℓ=1

𝑁ℓ𝑔ℓ ≤ 𝑁0 = 𝐶 (3|Σout |𝑔𝑛)𝑎+1 = 𝐶2𝑂 (𝑛2𝑎) . □

6.3 Deterministic online-LOCAL
We can now prove Theorem 6.1:

Proof. Let Π be an LCL problem with degree constraint Δ, input label set Σin and output label
set Σout. Let A be a deterministic online-LOCAL algorithm solving Π with locality 𝑇 (𝑛) on forests.
We can apply Lemma 6.5 to get an (𝑛, 𝑛)-amnesiac algorithm A′ that solves Π with locality

𝑇 = 𝑇 (𝑛2𝑂 (𝑛3 ) ) = 𝑇 (𝑂 (2𝑛4 )).
We can now turnA′ into an SLOCAL algorithmB with locality 2𝑇 as follows: AlgorithmB stores

in each node everything it knows. When processing node 𝑣 , algorithm B gets to see a connected
component of the graph, possibly with some nodes that have been previously processed. Now B
simulates algorithm A′ locally on this component in the same order. As A′ is (𝑛, 𝑛)-amnesiac, its
output depends only on the structure and processing order of nodes in this component. Moreover,
as A′ solves problem Π correctly, the produced output must be locally correct. As Π is an LCL
problem, this also ensures that the solution is globally correct.
The factor 2 in the locality comes from the fact that an online-LOCAL algorithm with locality 𝑇

that sees two nodes within distance 2𝑇 sees how they connect while an SLOCAL algorithm requires
locality 2𝑇 . □

6.4 Randomized online-LOCAL
We now modify the construction from the proof of Lemma 6.5 to prove Theorem 6.2:

Proof. We start by considering what would happen if we used the construction from the proof
of Lemma 6.5 with a randomized online-LOCAL algorithm? The obstacle turns out to be the fact
that the adversary needs to be oblivious while the previous construction was highly adaptive: only
1/|Σout | = 𝑞′ fraction of components in each phase are good, and we cannot adaptively choose to
use only those.
To combat this, instead of adaptively choosing only the good components and discarding the rest,

we sample the components from the previous phases uniformly at random without replacement.
We later show that the sampled component is good with probability at least 𝑞 = 𝑞′/2. In the worst
case, each component may use up to 𝑛 graph from the previous layers, each of which is sampled to
be good with probability only 𝑞. As the construction is 𝑛 levels deep, and this needs to succeed for
all up to 𝑔 = 2𝑛2 |Σin |𝑛 different graphs, the total probability of finding a good label in each layer is
at least 𝑞Ω (𝑔𝑛2 ) .
This probability is minuscule, but we can boost it higher by repeating the construction 𝑘 times. As

each of the constructions is independent of other, they succeed independently and the probability
that all of them fail is (1−𝑞𝑂 (𝑔𝑛2 ) )𝑘 . If we can make this probability lower than 1− 1/𝑛, the success
probability of the randomized online-LOCAL algorithm, then the algorithm must succeed to label at
least one good construction correctly. In particular, this guarantees that there exists a good label for
each neighborhood which the deterministic SLOCAL algorithm can use to label the neighborhood.
We can now do the following approximation:

(1 − 𝑞𝑂 (𝑔𝑛2 ) )𝑘 ≤ 𝑒−𝑘𝑞𝑂 (𝑔𝑛2 ) ≤ 𝑒−𝑘𝑞2𝑛
2
𝑛2

≤ 𝑒−𝑘𝑞22𝑛

≤ 1 − 1
𝑛
.
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Taking natural logarithm on both sides gives us

−𝑘𝑞22𝑛 ≤ ln(1 − 1/𝑛) ≤ −1/𝑛
and reorganizing then gives us

𝑘 ≥ 1
𝑛𝑞22𝑛 .

Clearly this holds if

𝑘 ≥ 1
𝑞22𝑛 = (2|Σout |)22𝑛

holds. We can now pick 𝑘 = (2|Σout |)22𝑛 to satisfy this equation. Hence, the size of our final
experiment is

𝑁 = 𝑘𝑂 (2𝑛4 ) = 𝑂 ((2|Σout |)22𝑛 ).
Now this experiment succeeds with positive probability. In particular, there exists a run where at

least one of the constructions succeed to find a good labeling for each component in each layer. We
take such run and use the labeling for that component as the base for our SLOCAL algorithm. We
now proceed as in the proof of Theorem 6.1 and construct an SLOCAL algorithm that has locality
𝑇 (𝑂 ((2|Σout |)22𝑛 )).

Finally, we show that the probability of sampling a good component is indeed at least 𝑞 =

1/(2|Σout |). Consider components in phase ℓ . For each component type, there are at least 𝑁ℓ/|Σout |
that are good. By calculations in proof of Lemma 6.5, future layers will use at most 𝑁ℓ/(2|Σout |) of
them. Hence, after each step, at least 1/(2|Σout |) = 𝑞 fraction of the components are still good and
unused. □

7 LOWER BOUND FOR 3-COLORING GRIDS IN RANDOMIZED ONLINE-LOCAL
In this section, we will show that 3-coloring (√𝑛×√

𝑛)-grids in randomized online-LOCAL requires
Ω(log𝑛)-locality:
Theorem 7.1. The locality of a randomized online-LOCAL algorithm for solving 3-coloring in

(√𝑛 × √
𝑛)-grids is Ω(log𝑛).

We will base our proof on the recent result of Chang et al. [20], where the authors show a similar
lower bound for the deterministic online-LOCAL model. We will start with a brief overview of the
techniques used in [20].

7.1 Relevant ideas from Chang et al. [20]
The lower bound in [20] is based on the idea that any coloring of a grid 𝐺 with the three colors
{1, 2, 3} can be partitioned into regions with colors 1 and 2 that are separated by boundaries of color
3. Formally, a region is a maximal connected component that is colored only with colors 1 and 2,
while a boundary is a maximal connected component in 𝐺2 that is colored only with color 3. It
is crucial to observe that the boundaries of color 3 are not always compatible and that they have
parities of their own (see Fig. 4). Indeed, the core idea of the proof is to constrict many incompatible
boundaries of color 3 to a small space, thus requiring a view of Ω(log𝑛) to resolve them.

Using the same terminology as [20], we count incompatible boundaries between two points by
using so-called 𝑎- and 𝑏-values. The 𝑎-value is defined as an edge weight between any two nodes
and captures the change of colors 1 and 2.
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𝐵1

𝐵2

1

1 1

1

1

2 2

2 2

2 2

2 2

3

3 3

3

3

𝑢 𝑣

Fig. 4. Example of a 3-colored grid with two boundaries 𝐵1 and 𝐵2 that have different parities. As one can
see, 𝑏 (𝑢, 𝑣) = 2: No matter if we take the blue or the red path from 𝑢 to 𝑣 , we always cross 𝐵1 and then 𝐵2.

Definition 7.2 (𝑎-value [20]). Given a directed edge (𝑢, 𝑣) and a 3-coloring of the nodes 𝑐 : 𝑉 ↦→
{1, 2, 3}, we define

𝑎(𝑢, 𝑣) =
{
𝑐 (𝑢) − 𝑐 (𝑣), if 𝑐 (𝑢) ≠ 3 and 𝑐 (𝑣) ≠ 3
0, otherwise.

Observe that the 𝑎-value of any directed 4-cycle in a grid is equal to 0. Using the 𝑎-value, we
define the 𝑏-value of a path.

Definition 7.3 (𝑏-value [20]). For a directed path 𝑃 , its 𝑏-value is defined as

𝑏 (𝑃) =
∑︁

(𝑢,𝑣) ∈𝐻
𝑎(𝑢, 𝑣).

On a high level, the 𝑏-value of a path describes the cumulative total of incompatible boundaries
along this path. Note we say “cumulative” because in this count boundaries of the same parity
cancel each other out. Indeed, if we consider the 𝑏-value of a simple directed cycle in a grid, then it
must be equal to 0:
Lemma 7.4 (𝑏-value of a cycle is zero [20]). Let 𝐶 be a directed cycle in 𝐺 . Then 𝑏 (𝐶) = 0.
As an example, observe that a path that starts and ends with color 3 and otherwise is colored

with colors 1 and 2 always has a 𝑏-value of 0 or 1. In particular, the 𝑏-value is 1 if the distance
between the nodes of color 3 is even (and thus the boundaries are incompatible). Meanwhile, a path
that goes through two incompatible regions has a total 𝑏-value of 2. Nevertheless, a path going
through two boundaries that are compatible has a total 𝑏-value of 0.

Lemma 7.5 (Parity of the 𝑏-value [20]). Let 𝑃 denote any directed path of length ℓ that starts in
node 𝑢 and ends in node 𝑣 in a grid. Then, the parity of 𝑏 (𝑃) is

𝑏 (𝑃) ≡ 𝛽 (𝑢) + 𝛽 (𝑣) + ℓ (mod 2)
where 𝛽 is an indicator variable stating whether a node is of color 3 or not:

𝛽 (𝑢) =
{

1, if 𝑐 (𝑢) = 3
0, otherwise.

Observe that the parity of the 𝑏-value of a path is determined by the colors of the endpoints of
this path.
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7.2 From deterministic to randomized online-LOCAL
Suppose that we are given a randomized online-LOCAL algorithmwith visibility radius𝑇 = 𝑜 (log𝑛).
Our goal is to prove the algorithm fails to solve the 3-coloring problem. Using Yao’s minimax
principle, we show how to construct an (oblivious) adversarial distribution of inputs so that any
deterministic online-LOCAL algorithm fails with noticeable probability.

As in [20], the lower bound consists of two main steps:
(1) First we show how to force paths to have an arbitrarily large 𝑏-value. Generally we cannot

force a large 𝑏-value between the path’s endpoints (or in fact between any two fixed nodes),
but we do get the guarantee that it contains two nodes 𝑣1 and 𝑣2 where 𝑏 (𝑣1, 𝑣2) is large.
Note the location of 𝑣1 and 𝑣2 is completely unknown to us since we are working with an
oblivious adversary. The construction is inductive: Given a procedure that generates a path
with 𝑏-value ≥ 𝑘 − 1 with probability ≥ 1/2, we show how to generate a path with 𝑏-value
≥ 𝑘 also with probability ≥ 1/2. (Cf. the construction in [20] with an adaptive adversary,
which succeeds every time.) Since we invoke the construction for 𝑘 − 1 a constant number
of times, we are able to obtain any desired 𝑏-value of 𝑘 = 𝑜 (log𝑛) with high probability.
Note it is logical that we cannot do much better than this as it would contradict the existing
𝑂 (log𝑛) deterministic online-LOCAL algorithm.

(2) The second step is to actually obtain a contradiction. (See Fig. 5.) First we construct a path
𝑃1 with large 𝑏-value, say≫ 4𝑇 , between nodes 𝑢𝑠 and 𝑣𝑡 . To get the contradiction, we wish
to place two nodes𝑤𝑠 and𝑤𝑡 next to 𝑢𝑠 and 𝑣𝑡 , respectively, so that the four node cycle has
positive 𝑏-value (which is impossible due to Lemma 7.4). If we had an adaptive adversary as
in [20], this would be relatively simple: Since the adaptive adversary knows the location of
𝑢𝑠 and 𝑣𝑡 , it just constructs an arbitrary path 𝑃2 with the same size as 𝑃1, picks any two𝑤𝑠
and𝑤𝑡 that are at the same distance from each other as 𝑢𝑠 and 𝑣𝑡 , mirrors 𝑃2 if needed to
obtain a non-negative 𝑏-value, and then places this at minimal distance to 𝑃1. We show that,
allowing for some failure probability, we do not need any information about 𝑢𝑠 and 𝑣𝑡 (i.e.,
nor their location nor the distance between them) in order to obtain the same contradiction.

We now proceed with the proof as outlined above. Accordingly, the first step is the following:

Lemma 7.6. Given any 𝑘 = 𝑜 (log𝑛), there is an adversarial strategy to construct a directed path of
length𝑛𝑜 (1) with a𝑏-value of at least𝑘 against any online-LOCAL algorithmwith locality𝑇 = 𝑜 (log𝑛).
Moreover, this strategy succeeds with high probability.

Proof. Consider the following recursive construction:
• If 𝑘 = 0, create a single node with previously unrevealed nodes all around it (inside the
visibility radius 𝑇 ).

• Otherwise, repeat the following steps four times in total:
– Create four distinct paths 𝑃1, 𝑃2, 𝑃3, 𝑃4 by following the procedure for 𝑘 − 1.
– Toss independent fair coins 𝑐1, 𝑐2, 𝑐3 ∈ {0, 1}.
– Connect the 𝑃𝑖 ’s horizontally aligned and in order while placing 𝑐𝑖 + 1 nodes between

paths 𝑃𝑖 and 𝑃𝑖+1.
Let 𝑄1, 𝑄2, 𝑄3, 𝑄4 be the four paths created by this procedure (each having their own four
𝑃𝑖 ’s coming from the procedure in the previous iteration 𝑘 − 1). Next, we connect the 𝑄𝑖 ’s
horizontally aligned with each other and in arbitrary order. Note that we need to place an
additional node between each pair of 𝑄𝑖 ’s. Otherwise, we would have to have revealed the
edge between the two endpoints too early to the algorithm.

Thus, for 𝑘 ≥ 1 we have 16 invocations of the procedure for 𝑘 − 1 in total. We argue that, with
probability at least 1/2, the path yielded by this procedure contains a segment with 𝑏-value at least
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𝑘 . By repeating this procedure 𝑂 (log𝑛) times independently, we obtain at least one path with the
desired property with high probability.

To prove that the recursive construction works, we proceed by induction. Fix 𝑘 ≥ 1 and suppose
that the procedure for 𝑘 − 1 succeeds with probability 𝑝 ≥ 1/2 at yielding a segment with 𝑏-value
at least 𝑘 − 1. Let us first consider 𝑄1. Let 𝑋𝑖 be a random variable that is 1 if this occurs for path 𝑃𝑖
and 0 otherwise. Then we have

Pr
[ 4∑︁
𝑖=1

𝑋𝑖 < 2
]
= Pr

[ 4∑︁
𝑖=1

𝑋𝑖 = 0
]
+ Pr

[ 4∑︁
𝑖=1

𝑋𝑖 = 1
]

= (1 − 𝑝)4 + 4𝑝 (1 − 𝑝)3

= (1 − 𝑝)3 (1 + 3𝑝)

≤ 1
2 .

Hence, with probability at least 1/2 there are at least two paths 𝑃𝑖 and 𝑃 𝑗 , 𝑖 < 𝑗 , for which the
construction succeeds.

Since we are dealing with paths, we may simplify the notation and write 𝑏 (𝑢, 𝑣) for the 𝑏-value
of the (unique) segment that starts at 𝑢 and ends at 𝑣 . Let thus 𝑢𝑖 , 𝑣𝑖 , 𝑢 𝑗 , 𝑣 𝑗 appear in this order in
𝑄1 and |𝑏 (𝑢𝑖 , 𝑣𝑖 ) |,

��𝑏 (𝑢 𝑗 , 𝑣 𝑗 )�� ≥ 𝑘 − 1. Next we will show that, conditioned on this assumption, the
probability that 𝑄1 contains a segment with 𝑏-value at least 𝑘 is at least 1/2. Hence, a priori, 𝑄1
contains such a segment with probability at least 1/4. Since all 𝑄𝑖 ’s are constructed the in the same
way and independently of one another, the probability that at least one of the 𝑄𝑖 ’s contains such a
segment is at least 1 − (1 − 1/4)4 > 1 − 1/𝑒 > 1/2.
Let us write 𝜎 (𝑥) for the sign function of 𝑥 (i.e., 𝜎 (𝑥) = 1 if 𝑥 > 0, 𝜎 (𝑥) = −1 if 𝑥 < 0, and

𝜎 (0) = 0). To see why the above holds for 𝑄1, consider the two following cases:
𝜎 (𝑏 (𝑢𝑖 , 𝑣𝑖 )) = 𝜎 (𝑏 (𝑢 𝑗 , 𝑣 𝑗 )). Using Lemma 7.5, we have that 𝑏 (𝑣𝑖 , 𝑢 𝑗 ) ≡ 𝛽 (𝑣𝑖 ) + 𝛽 (𝑢 𝑗 ) +𝑐𝑖 + · · · +
𝑐 𝑗−1 (mod 2). Since 𝛽 (𝑣𝑖 ) and 𝛽 (𝑢 𝑗 ) are fixed, and the coin tosses are independent, we
have

��𝑏 (𝑣𝑖 , 𝑢 𝑗 )�� . 𝑘 − 1 (mod 2) with probability 1/2. Assuming this holds, we have either��𝑏 (𝑣𝑖 , 𝑢 𝑗 )�� ≥ 𝑘 , in which case we are done, or
��𝑏 (𝑣𝑖 , 𝑢 𝑗 )�� ≤ 𝑘 − 2. Since 𝑏 (𝑢𝑖 , 𝑣𝑖 ) and 𝑏 (𝑢 𝑗 , 𝑣 𝑗 )

have the same sign, we have��𝑏 (𝑢𝑖 , 𝑣 𝑗 )�� = ��𝑏 (𝑢𝑖 , 𝑣𝑖 ) + 𝑏 (𝑣𝑖 , 𝑢 𝑗 ) + 𝑏 (𝑢 𝑗 , 𝑣 𝑗 )��
≥
��𝑏 (𝑢𝑖 , 𝑣𝑖 ) + 𝑏 (𝑢 𝑗 , 𝑣 𝑗 )�� − ��𝑏 (𝑣𝑖 , 𝑢 𝑗 )��

≥ 2(𝑘 − 1) − (𝑘 − 2)
= 𝑘.

𝜎 (𝑏 (𝑢𝑖 , 𝑣𝑖 )) ≠ 𝜎 (𝑏 (𝑢 𝑗 , 𝑣 𝑗 )). Arguing by using Lemma 7.5 as before, we obtain that
��𝑏 (𝑣𝑖 , 𝑢 𝑗 )�� .

0 (mod 2) holds with probability 1/2. Assuming this is the case, we have thus
��𝑏 (𝑣𝑖 , 𝑢 𝑗 )�� ≥ 1.

Without restriction, let 𝜎 (𝑏 (𝑢𝑖 , 𝑣𝑖 )) = 𝜎 (𝑏 (𝑣𝑖 , 𝑢 𝑗 )). Then��𝑏 (𝑢𝑖 , 𝑢 𝑗 )�� = ��𝑏 (𝑢𝑖 , 𝑣𝑖 ) + 𝑏 (𝑣𝑖 , 𝑢 𝑗 )�� ≥ 𝑘 − 1 + 1 = 𝑘.

Finally, let us confirm that the construction fits into the (√𝑛 × √
𝑛)-grid. We only reveal at most

2𝑇 + 1 = 𝑜 (√𝑛) in a column, so we need to only consider nodes along a row. The initial path
contains𝑚0 = 2𝑇 + 1 visible nodes and in the 𝑖-th recursive step we have𝑚𝑖 ≤ 16𝑝𝑖−1 + 27 visible
nodes in total for 𝑖 ≥ 1. (Inside each 𝑄𝑖 we need at most 2(4 − 1) = 6 additional nodes to join the
four 𝑃𝑖 ’s, and to join the four 𝑄𝑖 ’s we need an additional 3 nodes.) Solving the recursion, in the
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𝑘-th step we have thus

𝑚𝑘 =
1
5

(
24𝑘+1 (5𝑇 + 7) − 9

)
= 𝑛𝑜 (1)

visible nodes along the path since 𝑘,𝑇 = 𝑜 (log𝑛). □

We now illustrate the idea for getting the contradiction previously described. (See Fig. 5.) Invoking
Lemma 7.6, we obtain a path 𝑃1 with a 𝑏-value of 4𝑇 + 4 between two nodes 𝑢𝑠 and 𝑣𝑡 (whose
positions are unknown to us). Letting 𝐿 be the length of 𝑃1, we (arbitrarily) create a second path 𝑃2
of length 10𝐿 and then randomly choose how to align 𝑃1 and 𝑃2. More specifically, letting 𝑢 be the
first node in 𝑃1, we choose some node 𝑤 of 𝑃2 uniformly at random and align 𝑢 and 𝑤 ; then we
mirror 𝑃2 with probability 1/2 and reveal it at distance 2𝑇 + 2 to 𝑃1 (which is consistent with all
previously revealed nodes).

The reason why this works is the following: Since 𝑃1 has length 𝐿 and 𝑃2 length 10𝐿, with at least
4/5 we align the paths so that each node in 𝑃1 has a matching node underneath it in 𝑃2. Let𝑤𝑠 and
𝑤𝑡 be the nodes matching 𝑢𝑠 and 𝑣𝑡 , respectively. Then because we mirror 𝑃2 with probability 1/2,
we get that 𝑏 (𝑤𝑠 , . . . ,𝑤𝑡 ) is at least zero in expectation (conditioned on having properly aligned the
two paths). Hence, with probability at least 2/5 we obtain a cycle (𝑢𝑠 , . . . , 𝑣𝑡 , . . . ,𝑤𝑡 , . . . ,𝑤𝑠 , . . . , 𝑢𝑠 )
where 𝑏 (𝑢𝑠 , . . . , 𝑣𝑡 ) > 4𝑇 + 4, 𝑏 (𝑤𝑡 , . . . ,𝑤𝑠 ) ≥ 0, and 𝑏 (𝑣𝑡 , . . . ,𝑤𝑡 ), 𝑏 (𝑤𝑠 , . . . , 𝑢𝑠 ) ≥ −2𝑇 − 2 (due to
the distance between the two paths).

Proof of Theorem 7.1. Observe that, using Lemma 7.6, we can construct a path 𝑃1 = (𝑢0, . . . , 𝑢𝐿)
of length 𝐿 = 𝑛𝑜 (1) where some segment (𝑢𝑠 , . . . , 𝑢𝑡 ) of 𝑃1 has a 𝑏-value of 𝑘 > 4𝑇 + 4. Next we
construct a path 𝑃2 = (𝑣0, . . . , 𝑣10𝐿) of length 10𝐿 that will be placed below 𝑃1. We assume that the
points of the path are revealed to the algorithm in some predefined order.
The position and orientation of 𝑃2 are chosen as follows:
(1) Choose a node 𝑣𝑟 ∈ [𝐿, 9𝐿] of 𝑃2 uniformly at random. This node is placed below the node

𝑢0 of 𝑃1 at 2𝑇 + 2 distance from it.
(2) Throw a fair coin𝑚 ∈ {0, 1}. If𝑚 = 1, mirror 𝑃2 along the vertical axis that goes through 𝑢0

and 𝑣𝑟 .
The nodes of 𝑃2 are revealed to the algorithm in the same predefined and possibly mirrored order.
See Fig. 5 for an example.

We next prove that we obtain the desired lower bound. First notice that, since we pick 𝑣𝑟 ∈ [𝐿, 9𝐿],
every node in 𝑃1 has a counterpart in 𝑃2 whether we mirror 𝑃2 or not. Let (𝑤𝑠 , . . . ,𝑤𝑡 ) denote the
segment matched to (𝑢𝑠 , . . . , 𝑢𝑡 ). Consider the case where either of the following is true:

• 𝑚 = 0 and 𝑟 ∈ [𝐿, 9𝐿 − 𝑠 − 𝑡]
• 𝑚 = 1 and 𝑟 ∈ [𝐿 + 𝑠 + 𝑡, 9𝐿]

Denoting by 𝐸 the event in which this occurs, note we have

Pr[𝐸] = 1
2 Pr[𝑟 ∈ [𝐿, 9𝐿 − 𝑠 − 𝑡]] + 1

2 Pr[𝑟 ∈ [𝐿 + 𝑠 + 𝑡, 9𝐿]] = 8𝐿 − 𝑠 − 𝑡 + 1
9𝐿 + 1 ≥ 6𝐿 + 1

9𝐿 + 1 >
2
3 .

Now conditioned on 𝐸, notice that every segment (𝑣𝑥 , . . . , 𝑣𝑦) where 𝑥 ∈ [𝐿 + 𝑠, 9𝐿 − 𝑠] and
𝑦 ∈ [𝐿 + 𝑡, 9𝐿 − 𝑡] has equal probability of being matched with (𝑢𝑠 , . . . , 𝑢𝑡 ) either in the same
direction (i.e.,𝑤𝑠 = 𝑣𝑥 and 𝑢𝑡 = 𝑣𝑦) or reversed (i.e.,𝑤𝑠 = 𝑣𝑦 and𝑤𝑡 = 𝑣𝑥 ). Hence,

Pr[𝑏 (𝑤𝑡 , . . . ,𝑤𝑠 ) ≥ 0 | 𝐸] ≥ 1
2 .

(In fact, the probability is exactly 1/2 if 𝑏 (𝑤𝑡 , . . . ,𝑤𝑠 ) > 0 and 1 if 𝑏 (𝑤𝑡 , . . . ,𝑤𝑠 ) = 0.) Thus, the
probability that 𝑏 (𝑤𝑡 , . . . ,𝑤𝑠 ) ≥ 0 is > (2/3) · (1/2) = 1/3.
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𝑣0 𝑣𝑟 𝑤𝑠 𝑤𝑡 𝑣10𝐿

𝑢0 𝑢𝑠 𝑢𝑡 𝑢𝐿

𝑃2

𝑃1

𝑏 (𝑢𝑠 , . . . ,𝑢𝑡 ) ≥ 𝑘

𝑏 (𝑤𝑡 , . . . , 𝑤𝑠 ) ≥ 0

𝑇

𝑇

2𝑇 + 1

Fig. 5. How to turn paths with large 𝑏-value into a contradiction. Here the blue area includes the nodes
revealed so far around the path segments (𝑢0, . . . , 𝑢𝐿) and the corresponding part of 𝑃2 underneath it. The
green segments are the two segments we consider in the proof. A cycle going through both paths leads to a
contradiction.

From here on, we proceed as in [20]. By Lemma 7.4, the cycle (𝑢𝑠 , . . . , 𝑢𝑡 , . . . ,𝑤𝑡 , . . . ,𝑤𝑠 , . . . , 𝑢𝑠 )
must have a 𝑏-value of 0. However, recall that the 𝑏-value of a path is bounded by its length by
definition. In our case, −2𝑇 − 2 < 𝑏 (𝑢𝑡 , . . . ,𝑤𝑡 ) < 2𝑇 + 2, −2𝑇 − 2 < 𝑏 (𝑤𝑠 , . . . , 𝑢𝑠 ) < 2𝑇 + 2,
𝑏 (𝑢𝑠 , . . . , 𝑢𝑡 ) ≥ 𝑘 , and 𝑏 (𝑤𝑡 , . . . ,𝑤𝑠 ) ≥ 0. In order for the 𝑏-value of the cycle to be 0, we would
need to have 2(2𝑇 + 2) ≥ 𝑘 , which is a contradiction. Since this occurs with noticeable probability
(i.e., > 1/3), the claim follows. □

8 DYNAMIC-LOCAL DERANDOMIZES LOCAL AND BREAKS SYMMETRY
This section presents a derandomization result for the dynamic-LOCAL model: we show that
not only dynamic-LOCAL can simulate randomized LOCAL with no overhead in the locality, but
actually it brings the complexity class 𝑂 (log∗ 𝑛) in randomized LOCAL down to 𝑂 (1).

We make use of the method of conditional expectations from [34] to derandomize the model of
dynamic-LOCAL computation. We note that while the following theorems are proven for the class
of all graphs, they can be extended to any subclass of graphs.

Theorem 8.1. Let Π be an LCL problem, and let A be a randomized LOCAL algorithm solving Π
with locality 𝑇 (𝑛) and probability 𝑝 > 1 − 1/𝑛. Then there exists a deterministic dynamic-LOCAL
algorithm A′ solving Π with locality 𝑂 (𝑇 (𝑛)).
Proof. The randomized LOCAL algorithmA can be viewed as a deterministic LOCAL algorithm

which is given i.i.d. random variables𝑅𝑣 locally for each node 𝑣 . We show that there exists a dynamic-
LOCAL algorithm with locality 𝑂 (𝑇 (𝑛)) that assigns fixed values 𝜌𝑣 for each 𝑅𝑣 such that when
A is run on these values as 𝑅𝑣 , it produces a correct output for problem Π. Such dynamic-LOCAL
clearly implies an 𝑂 (𝑇 (𝑛))-locality dynamic-LOCAL algorithm for problem Π as one can compose
it with A. The proof uses a technique similar to that of derandomizing LOCAL algorithms in
SLOCAL [34].
We use the method of conditional expectation. Let 𝐹𝑣 be a flag that is 1 when the output around

node 𝑣 is invalid, and 0 otherwise. Note that 𝐹𝑣 depends only on the radius-𝑟 neighborhood of
node 𝑣 . Let 𝐹 =

∑
𝑣∈𝑉 𝐹𝑣 . As Π is an LCL problem, 𝐹 = 0 iff the labeling is correct for the whole

graph, and otherwise 𝐹 ≥ 1. By definition, E[𝐹 ] = ∑
𝑣∈𝑉 E[𝐹𝑣] ≤ 𝑛(1 − 𝑝) < 1.
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Let 𝜎 = 𝑒1, 𝑒2, . . . , 𝑒𝑚 be the order of edges in which the adversary dynamically modifies the
graph, and let𝐺𝑖 be the graph after modification 𝑖 . Note that any edge can appear multiple times in
the sequence if the adversary also removes edges.

Now algorithm A′ sets the randomness as follows: In step 𝑖 , algorithm A′ first clears 𝜌𝑢 for all
nodes 𝑢 with dist(𝑢, 𝑒𝑖 ) ≤ 𝑇 (𝑛) + 𝑟 . Then

E[𝐹 |
∧

𝑢,dist(𝑢,𝑒𝑖 )>𝑇 (𝑛)+𝑟
𝑅𝑢 = 𝜌𝑢] < 1

as
E[𝐹 |

∧
𝑢

𝑅𝑢 = 𝜌𝑢] < 1

in the previous step. Hence, there exists some concrete values for 𝜌𝑢 for dist(𝑢, 𝑒𝑖 ) ≤ 𝑇 (𝑛) + 𝑟
such that E[𝐹 | ∧𝑢 𝑅𝑢 = 𝜌𝑢] < 1. Algorithm A′ sets all 𝜌𝑢 to such values. Finally, algorithm A′

simulates A for all nodes within radius 𝑇 (𝑛) + 𝑟 from 𝑒𝑖 with randomness fixed at 𝜌 .
This produces a correct labeling for all nodes as E[𝐹 | ∧𝑢 𝑅𝑢 = 𝜌𝑢] < 1, and hence E[𝐹 | ∧𝑢 𝑅𝑢 =

𝜌𝑢] = 0. □

Theorem 8.2. Let Π be an LCL problem, and let there exist a randomized LOCAL algorithm solving
it with locality𝑂 (log∗ 𝑛). Then there exists a dynamic-LOCAL algorithm solving Π with locality𝑂 (1).

Proof. Using [19], a randomized LOCAL algorithm for solving Π with locality𝑂 (log∗ 𝑛) implies
the existence of a deterministic LOCAL algorithm solving Π with locality 𝑂 (log∗ 𝑛). Moreover, the
deterministic LOCAL algorithm can be normalized into an algorithm that first finds a distance-𝑘
coloring with𝑂 (Δ𝑘 ) colors for some constant𝑘 , and then applies an𝑂 (𝑘)-locality LOCAL algorithm
A on this coloring.
The dynamic-LOCAL algorithm for solving Π maintains a distance-𝑘 coloring with𝑂 (Δ𝑘 ) colors

on the graph, and then appliesA on these colors. When the dynamic-LOCAL algorithm encounters
an update, it first clears the colors of all nodes within distance 𝑘 from the update, and greedily
assigns new colors for those nodes. The greedy assignment always succeeds since each node can
have at most Δ𝑘 neighbors within distance 𝑘 hence they can use at most Δ𝑘 of the available colors.
Finally, the algorithm appliesA on all nodes of the graph. AsA is a deterministic LOCAL algorithm
with locality 𝑂 (𝑘), and only the colors of nodes within distance 𝑘 of the update have changed, we
have that only the output of nodes within distance 𝑂 (𝑘) = 𝑂 (1) from the update change. □

9 RANDOMIZED ONLINE-LOCALWITH AN ADAPTIVE ADVERSARY EQUALS
DETERMINISTIC ONLINE-LOCAL

This section aims at showing that randomized online-LOCAL with an adaptive adversary is as
strong as its deterministic counterpart. The proof is very similar to the proof of Theorem 8.1 and
uses, again, the method of conditional expectations. Also, as in the previous section, the results can
be extended to any subclass of graphs.

Theorem 9.1. Let Π be an LCL problem, and letA be an online-LOCAL algorithm with an adaptive
adversary solving Π with locality 𝑇 (𝑛) and probability 𝑝 > 1 − 1/𝑛. Then there exists a deterministic
online-LOCAL algorithm A′ solving Π with locality 𝑇 (𝑛).
Proof. Let A be an algorithm in the online-LOCAL model with an adaptive adversary and with

round complexity 𝑇 (𝑛). We construct a deterministic online-LOCAL algorithm A′ with the same
round complexity 𝑇 (𝑛) as follows: The algorithm A′ simulates A with certain fixed random-bit-
strings. In particular, whenever new nodes arrive at the input, the algorithm A′ fixes the random
bits in all newly arrived nodes in the way we describe below.
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We view a run of an online-LOCAL algorithm with an adaptive adversary as a game between an
algorithm A and an adversary. In each step of that game, first the adversary chooses a set of nodes
that arrive at the input (one special node and its neighborhood). Then the algorithm A samples
the random bits of the newly arrived nodes and fixes the label of the arrived node. After 𝑖 steps of
this game, we use F to denote the event that the adversary wins the game, that is algorithm A
produces an invalid output according to problem Π. By definition, we have Pr [F ] ≤ 1/𝑛. Here and
from now on, the probability expressions assume that the adversary maximizes the probability of
F happening.
Our algorithm A′ in each 𝑖-th step fixes the random bits of the newly arrived nodes in a way

that guarantees that
Pr [F |𝐵1 = 𝑏1, . . . , 𝐵𝑖 = 𝑏𝑖 ] ≤ Pr [F |𝐵1 = 𝑏1, . . . , 𝐵𝑖−1 = 𝑏𝑖−1] .

Here, 𝐵 𝑗 = 𝑏 𝑗 stands for fixing the values of random bits of nodes that arrived in the 𝑗-th step to 𝑏 𝑗 .
We note that this can always be done since, by definition, we have

Pr [F |𝐵1 = 𝑏1, . . . , 𝐵𝑖−1 = 𝑏𝑖−1] = E𝐵𝑖 [Pr [F |𝐵1 = 𝑏1, . . . , 𝐵𝑖 = 𝑏𝑖 ]] .
Moreover, the online-LOCAL algorithm importantly both knows all the past arrived nodes and
their randomness, and can also consider all the different choices of the adversary in the future, and
hence can compute the above conditional probabilities.
At the end of the simulation of A, we have Pr [F |𝐵1 = 𝑏1, . . . , 𝐵𝑛 = 𝑏𝑛] < 1, and hence the bad

event F does not occur. This implies that the algorithm A′ is always correct. □

Remark 9.2. This proof assumes that we have white-box access to the randomized online-LOCAL
algorithm and that it uses finitely many random bits. If either of these assumptions does not hold,
we can use a more inefficient derandomization along the lines of [29]. Here, we just observe that an
online-LOCAL algorithm working against an adaptive adversary implies the existence of a function
𝑓 that maps all possible input sequences on all possible 𝑛-node graphs that can be produced by
the adversary to a valid output of the problem Π. The deterministic online-LOCAL algorithm finds
such a function 𝑓 at the beginning of its execution and produces the output according to 𝑓 .

10 COMPLEXITY OF LCL PROBLEMS IN PATHS AND CYCLES IN RANDOMIZED
ONLINE-LOCAL

In this section, we show that the complexity of LCLs in paths and cycles is either 𝑂 (1) or Θ(𝑛) in
randomized online-LOCAL (with an oblivious adversary).

Theorem 10.1. Let Π be an LCL problem on paths and cycles (possibly with inputs). If the locality
of Π is 𝑇 in the randomized online-LOCAL model, then its locality is 𝑂 (𝑇 + log∗ 𝑛) in the LOCAL
model.

This theorem is a simple corollary of the following two lemmas:

Lemma 10.2. Let Π be an LCL problem on paths and cycles (possibly with inputs), and let A be a
randomized online-LOCAL algorithm solving Π with locality 𝑜 (𝑛). Then there exists a randomized
online-LOCAL algorithm A′ solving Π with locality 𝑂 (1).
Lemma 10.3. Let Π be an LCL problem on paths and cycles (possibly with inputs), and let A be

a randomized online-LOCAL algorithm solving Π with locality 𝑂 (1). Then there exists a LOCAL
algorithm A′ solving Π with locality 𝑂 (log∗ 𝑛).
By previous results [2], it is known that, in the case of paths and cycles, any (deterministic)

online-LOCAL algorithm with sublinear locality can be sped up to an online-LOCAL algorithm
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with constant locality. We show how to extend [2, Lemma 5.5]. We start by constructing a large
virtual graph 𝑃 ′ such that, when the original algorithm runs on the virtual graph 𝑃 ′, the labeling
produced by the algorithm is locally compatible with the labeling in the original graph 𝑃 .

Proof of Lemma 10.2. Let Π be an LCL problem in paths or cycles with checking-radius 𝑟 , let 𝑃
be a path or a cycle with 𝑛 nodes, and let A be a randomized online-LOCAL algorithm solving Π
with locality 𝑇 (𝑛) = 𝑜 (𝑛). In the proof of [2, Lemma 5.5], the authors use three phases to speed
up (deterministic) online-LOCAL with sublinear locality to only constant locality. We use the
same strategy to construct a randomized online-LOCAL algorithm A′ for solving Π with constant
locality. The phases for constructing randomized online-LOCAL algorithm A′ are as follows:

(1) In the first phase, the algorithm deterministically creates an (𝛼, 𝛼)-ruling set 𝑅 for the path
𝑃 , mirroring the approach outlined in the proof of [2, Lemma 5.5].

(2) In the second phase, the algorithm constructs a larger virtual path 𝑃 ′ with 𝑁 nodes and
simulates algorithm A on 𝑃 ′ in the neighborhoods of nodes in 𝑅. Intuitively this path 𝑃 ′ is
constructed based on the pumping-lemma-style argument on LCL problems presented by
Chang and Pettie [21], and it only relies on (the definition of) problem Π, not the algorithm
A. During this simulation, the algorithm encounters a failure only if A fails within specific
neighborhoods of 𝑃 ′. Consequently, the algorithm’s success in this phase aligns with the
success rate of A, ensuring a high probability of success.

(3) The third phase is also as in [2, Lemma 5.5]: The algorithm extends the fixed labels around
𝑅 to the entire path 𝑃 by applying brute force for nodes outside the neighborhood of 𝑅.
Note that this extending is feasible because of the way the path 𝑃 ′ is created and the
pumping-lemma-style argument as discussed in [2].

In the end, we compose these three phases together to obtain the randomized online-LOCAL
algorithm A′ for solving Π with constant locality. □

Proof of Lemma 10.3. This proof closely follows the argument presented in [2, Lemma 5.6]. Let
Π denote an LCL problem with a constant checking-radius 𝑟 , and supposeA is a randomized online-
LOCAL algorithm solving Π with constant locality 𝑇 . Define 𝛽 = 𝑇 + 𝑟 + 1. As in [2, Lemma 5.6],
we consider an input-labeled graph 𝑃 formed by many copies of all feasible input neighborhoods
with a radius of 𝛽 . We can depict 𝑃 as a collection of disjoint path fragments that we later connect
to each other and create a long path with. Each of these path fragments has size 2𝛽 + 1, so the node
in the center of each segment (i.e., the (𝛽 + 1)-th node in the segment) has the same view (up to
radius 𝛽) as in the final path. Let 𝑉 be the set of central nodes within these fragments.
We apply A to each node within the radius-𝑟 neighborhood of the nodes in 𝑉 following an

arbitrary order and then terminate. These nodes have the same view as in the final path because
their distance to the endpoints is at most 𝛽 − 𝑟 = 𝑇 + 1. We iterate the process multiple times,
yielding a distribution of output labels around the central nodes. Given that the size of 𝑃 is constant,
there exists an output labeling 𝐿 of the nodes occurring with probability 𝑝 = Ω(1). If needed, we
can augment 𝑃 with (constantly many) additional nodes such that |𝑃 | > 1/𝑝 .
We set this labeling 𝐿 as the deterministic output for graph 𝑃 and proceed similarly to the

deterministic case by constructing the canonical labeling 𝑓 from 𝐿. Then, we use the function 𝑓
to construct a LOCAL algorithm with 𝑂 (log∗ 𝑛) locality following the same steps as in the proof
of [2, Lemma 5.6]. It is important to highlight that it is feasible to fill any gap of sufficient length
between parts labeled with the canonical labeling: If the algorithm A would never produce a valid
labeling for this gap, then the algorithm would fail to label 𝑃 with probability at least 𝑝 and, since
𝑝 ≥ 1/|𝑃 |, the algorithm A would not succeed with high probability. □
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Fig. 6. An example of a lifebuoy-shaped graph 𝐺 . The lifebuoy-shaped graphs are defined by the set G of
graphs that are isomorphic to the above. Notice that their chromatic number is 2. In our case, the node labels
required by the LOCAL model are unique and go from 1 to 12. Granting this extra power is not restrictive as
we are proving a lower bound.

A THE NON-SIGNALING AND BOUNDED-DEPENDENCE MODELS OF DISTRIBUTED
COMPUTING

This appendix introduces both the non-signaling model and the bounded-dependence model, which
are the most powerful models that satisfy physical causality, and thus they generalize the quantum-
LOCAL model. The distinction between the non-signaling model and the bounded-dependence
depends on whether shared states are available (in the non-signaling model) or not (in the bounded-
dependence model). We illustrate the difference between these models by analyzing the problem of
𝑐 = 2-coloring a lifebuoy-shaped graph (see Fig. 6 and Fig. 7b) with locality 𝑇 = 2.

We first introduce a circuit formalism which allows us to clarify the early works of Arfaoui and
Fraigniaud [3], and Gavoille et al. [33], by re-expressing the Randomized-LOCAL and Quantum-
LOCAL models in this formalism (see Appendix A.1). Second, we introduce the concept of light-
cones and the principle of non-signaling, explaining how (together with the symmetries of the
graph) they define the non-signaling model (see Appendices A.1.3 and A.1.4). Third, we show in
Appendix A.2 that lifebuoy-shaped graphs are not 2-colorable in the non-signaling model with
locality 𝑇 = 2 through a reduction from the 2-colorability of the cheating graph 𝐻 shown in
Fig. 7a. At last, we define the bounded-dependence model based on our circuit formalism and on
the following three principles: device replication; non-signaling and independence [13, 26, 27, 38];
and invariance under symmetries of the graph (see Appendix A.3). We stress its connection to the
concept of finitely dependent distributions [1, 40–42, 59].

A.1 Randomized-LOCAL, quantum-LOCAL, and non-signaling models
In the next two sections, we re-introduce the Randomized-LOCALmodel and the Quantum-LOCAL
model for coloring lifebuoy-shaped graphs in a circuit formalism. This will later enable us to clarify
the definitions of the non-signaling and bounded-dependence models.

A.1.1 Randomized-LOCAL model. We consider twelve nodes with unique identifiers ranging from
1 to 12 and that are connected in a lifebuoy-shaped graph that is a priori unknown to the nodes3
(an example of such graph is the labeled graph𝐺0 ∈ G illustrated in Fig. 7b). The nodes try to color
this graph in the randomized-LOCAL model within 𝑇 = 2 steps of synchronous communication.
The most general (𝑇 = 2)-round strategy for the node 1 consists of the following procedure, which
alternates between randomized processing steps and communication steps (the computational
power and size of exchanged messages are unbounded):
3A reader used to standard quantum nonlocality should see the graph — 𝐻 or𝐺 ∈ G — as an input of the problem, split
and distributed among the local parties.
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(a) 𝐻 has chromatic number 3. (b) A distributed algorithm that finds a
2-coloring of the lifebuoy-shaped graphs
𝐺 ∈ G would by definition 2-color the par-
ticular instance 𝐺 = 𝐺0.

Fig. 7. The joint view of the couple of nodes 𝑢, 𝑣 = 1, 2 after 𝑇 = 2 rounds of communication is limited to
the gray area. In this region the graphs 𝐺0 and 𝐻 are identical. The non-signaling principle implies that the
outputs (𝑐1, 𝑐2) must therefore be identically distributed in both 𝐺0 and 𝐻 .

Processing 0: Sample a random real number and store it locally.
Communication 1: Send all stored information, including the sampled random number, to

all neighbors. Receive information from all neighbors and store it for subsequent rounds (in
𝐺0, the neighbors are 2, 3, 5).

Processing 1: Process all stored information (possibly in a randomized way) and store the
result.4

Communication 2: Send all stored information, including all received messages and the
outputs of processing steps, to all neighbors. Receive information from neighbors and store
it.

Processing 2: Process all stored information (possibly in a randomized way) to output a color.
Such 𝑇 -round strategy on the graph 𝐺 can be represented formally as a circuit 𝐶𝐺,𝑇 , such as in

Fig. 8a where semicircles, line wires, and squares respectively represent the sampling of a random
number, the transfer (or storage) of information, and the processing of information. Once the
concrete operations performed by the nodes (i.e. randomness sampling and processing) are made
explicit, it is possible to compute (using classical information theory) the exact output distribution
of the strategy on graph 𝐺 , that is, the probability distribution Pr

[
𝑐1, . . . , 𝑐𝑛

�� 𝐶𝐺,𝑇 ] of observing
that the set of nodes {1, . . . , 𝑛} outputs the colors {𝑐1, . . . , 𝑐𝑛} when connected as per one of the
lifebuoy-shaped graphs 𝐺 ∈ G. Importantly, in our model, the operations performed by the nodes
cannot depend on the connection graph 𝐺 .

A generic classical strategy with shared randomness can be in the same way represented by the
general circuit of Fig. 8b, by initializing the circuit with a source of randomness common to all
nodes (the large semicircle).

A.1.2 Quantum-LOCAL model. Any quantum strategy can also be represented by the circuit
formalism of Fig. 8 by using resources and processing operations that are quantum rather than
classical. Quantum information theory provides a concrete mathematical formalism (based on the
4In classical information theory, it is known that intermediate processing gates can be taken as identity gates, that is,
any strategy can be simulated by a two-layer circuit where the parties send their first random number to all parties up
to a distance 𝑇 , and then make a unique processing step after all the communication has taken place. In quantum and
non-signaling theories, this is not the case anymore [25].
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(a) Circuit representation of a
non-signaling strategy on graph
𝐺0 of Fig. 7b, without a shared
resource. Note the cyclicity of
the circuit. Highlighted in red is
the past-light-cone of the joint
output (𝑐1, 𝑐2), that is the set of
gates which connects to the out-
put gates producing (𝑐1, 𝑐2).
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(b) Circuit representation of a
non-signaling strategy on graph
𝐺0 of Fig. 7b, with an arbitrary
shared resource. The joint out-
put (𝑐1, 𝑐2) remain, after 𝑇 = 2
rounds of communication, inde-
pendent of the graph structure
around nodes 11 and 12, because
the difference lies outside their
joint past light-cones.
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(c) Circuit representation of a
non-signaling strategy on graph
𝐻 of Fig. 7a, with an arbitrary
shared resource. Note the differ-
ence between this circuit and the
one of Fig. 8b (namely, the differ-
ent connections between the top
layer and bottom layer of the cir-
cuit) is only manifested outside
the joint past light-cone of the
outputs (𝑐1, 𝑐2).

Fig. 8. The above circuits represent non-signaling strategies (it includes as special cases the classical strategies
and quantum strategies) executed by the nodes 1 and 2 in various scenarios. The semicircles represent private
(Fig. 8a) or shared (Fig. 8b and Fig. 8c) arbitrary-but-non-signaling resources; the wires depict communication
(or storage), and the squares are local operations (using possibly private resources). The last layer of gates (or
measurements) outputs the individual colors of the nodes (i.e. classical variables). Since the nodes start with
no knowledge about the identity of their neighbors, the operations of the gates are a priori independent of the
graph structure (as long as the nodes have the right degree). For the special cases of classical and quantum
strategies, the output distribution can be computed directly from those circuits, which define it uniquely.

tensor product of Hilbert spaces) with rules to represent the potential operations performed by
each of the gates of the circuit. Semicircles, line wires, and squares now respectively represent the
creation of a quantum state (a density matrix), the transfer (or storage) of quantum information,
and the processing of quantum information with quantum channels (or quantum measurements
in the last layer) represented by completely positive operators. Once the quantum states and
channels are made explicit, the Born rule of quantum information theory [14, 54] allows computing
Pr

[
𝑐1, . . . , 𝑐𝑛

��𝐶𝐺,𝑇 ] , the output distribution of the strategy on graph 𝐺 .
However, analyzing the quantum-LOCAL model directly is complicated. Instead, we employ the

fact that it is possible to bound the time complexity of the quantum-LOCAL model by analyzing
models that do not depend on the mathematical formalism of quantum information theory (and
which are, therefore, arguably simpler). In the present appendix, we utilize the fact that quantum-
LOCAL is sandwiched between the randomized-LOCALmodel (less powerful) and the non-signaling
model (the most powerful model satisfying the information-theoretic principles of non-signaling,
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independence and device replication we introduce bellow). We next introduce the non-signaling
model.

A.1.3 The non-signaling model (with unique identifiers). The non-signaling model is the most
powerful model of synchronous distributed computing that does not violate physical causality,
when a pre-established shared resource exists.

The formulation of the non-signaling model is radically different from the randomized LOCAL
and quantum-LOCAL models. The randomized LOCAL and quantum-LOCAL models are based
on classical (randomized) and quantum information theory which both provide a mathematical
formalism to describe information processing gates and to compute the probability distribution
of outputs when these gates are placed in a circuit. To show that some probability distribution is
feasible in these models, one needs to propose a valid strategy in these mathematical formalisms.
The non-signaling model does not rely on any underlying mathematical formalism, but on some
information-theoretical principles which should not be violated. More precisely, to show that some
probability distribution is feasible in the non-signaling model, one needs to explain how to obtain
it, but only to make sure that this probability distribution is compatible with the non-signaling
principle in a way we now explain.

Before introducing this principle, we state the following definition of light-cones:

Definition A.1 (Past light-cone). Consider a circuit. Consider a subset of gates 𝑅, and another gate
𝑠 ∉ 𝑅 in that circuit. We say that 𝑠 is in the past light-cone of 𝑅 if starting from 𝑠 , one can reach a
gate in 𝑅 by traveling down the circuit. For instance, in Fig. 8b, the past light-cone of the second
processing gates of nodes {1, 2} is composed of all gates in red.

Remark A.2. Light-cones allow to formalize the fact that, in a circuit, the precise time ordering in
which the gates process information has no influence over the result, as long as physical causality
(that is, information can be transferred only through communication) is preserved. For instance, in
Fig. 8a, our drawing of the circuit represents the processing-1 gate of node 8 as being in the past of
the processing-2 gate of node 2. However, by stretching the communication lines, another drawing
in which this time ordering is exchanged exists, and this is possible as long as one node is not in
the past light cone of another. The name “light-cone” refers to relativity, where physical causality
is bounded by the speed of light. Circuits provide an abstracted representation of physical causality
that is not based on any notion of spacetime.

We now state the non-signaling principle5, which is essentially the only constraint in the non-
signaling model.

Definition A.3 (Non-signaling principle). Consider a set of gates, two different circuits 𝐶,𝐶′

connecting them, and corresponding distributions Pr [𝑐1, . . . , 𝑐𝑛 | 𝐶], Pr [𝑐1, . . . , 𝑐𝑛 | 𝐶′]. Let 𝑈 be a
subset of measurement gates whose past light-cones in 𝐶 and 𝐶′ coincide (i.e. they are composed
of the same gates which are connected in the same way). Then Pr [{𝑐𝑖 }𝑖∈𝑈 | 𝐶] = Pr [{𝑐𝑖 }𝑖∈𝑈 |𝐶′].

Implicitly, a non-signaling theory assumes that, given a set of gates and a valid way to connect
them in a circuit 𝐶 , one obtains a corresponding distribution Pr [𝑐1, . . . , 𝑐𝑛 | 𝐶]6 (here the alphabet
of the outputs 𝑐𝑖 is not limited: e.g., in case of unexpected circuits, the measurement gates can
produce failure outputs).

5Chiribella and Spekkens [23] call this principle no-signaling from the future.
6Note that the gates have “types” and can only be connected to other gates of matching types: For instance, in our case, the
inputs of gates from the second processing step must correspond to the outputs of gates from the first processing step. The
theory of circuits can be formalized using category theory — see, e.g. [30].
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We are now ready to define the non-signaling model, which is associated to circuits with a
pre-shared non-signaling resource such as in Fig. 8b:

Definition A.4 (Non-signaling model, with unique identifiers). The distribution

Pr
[
𝑐1, . . . , 𝑐𝑛

�� 𝐶𝐺,𝑇 ]
is feasible in the non-signaling model (with unique identifiers) with locality 𝑇 on graph 𝐺 if and
only if, for all possible alternative connecting graphs 𝐻 of the nodes, there exists a distribution
𝑃 = Pr

[
𝑐1, . . . , 𝑐𝑛

�� 𝐶𝐻,𝑇 ] such that the no-signaling principle is respected.7

Note that 𝐻 might not be a lifebuoy-shaped graph: in the case a gate ‘discovers’ this unexpected
situation, it has the possibility to produce a new output from a set of error outputs (i.e. it crashes
and no further useful constraint can be derived).

A.1.4 The non-signaling model without unique identifiers. We have up until now considered 𝑁 = 12
nodes with unique identifiers ranging from 1 to 𝑁 = 12. When the nodes do not start with unique
identifiers, the situation is slightly more complicated. In that case, the resulting distribution should
be invariant under subgraph isomorphism, as all nodes are running identical programs and the
circuit is thus completely symmetric under permutations of nodes8. For instance, if the nodes were
to color the graph of Fig. 7b without being a priori assigned unique identifiers, the resulting circuit
𝐶𝐺,𝑇 would have some symmetries (as all processing gates would be the same in any layer of the
respective steps 0, 1 and 2), implying that the distribution should be invariant by several non-trivial
graph isomorphisms cyclically permuting the nodes, or inverting the inner and outer cycle of 6
nodes.

Definition A.5 (Non-signaling model, without unique identifiers). The distribution

Pr
[
𝑐1, . . . , 𝑐𝑛

�� 𝐶𝐺,𝑇 ]
is feasible in the non-signaling model (without unique identifiers) in 𝑇 communication steps on
graph 𝐺 if and only if the following two conditions are respected: for all possible alternative
connecting graphs 𝐻 of the nodes, there exists a distribution 𝑃 = Pr

[
𝑐1, . . . , 𝑐𝑛

�� 𝐶𝐻,𝑇 ] such that the
no-signaling principle is respected; and the distributions in 𝐺 and 𝐻 are invariant under subgraph
isomorphism.

This definition can also be generalized to the case where several nodes with the same identifiers
are present in 𝐺 , or were the number of identifiers ranges from 1 to𝑀 ≠ 𝑁 .

A.2 𝑮 is not 2-colorable in 𝑻 = 2 rounds
We now show by contradiction that the nodes 1, . . . , 12 cannot 2-color the set𝐺 of lifebuoy-shaped
graphs with a non-signaling strategy (including pre-shared non-signaling resources) in 𝑇 = 2
rounds of communication. More precisely, we prove that if there existed such a non-signaling
algorithm, then the same algorithm would also color the cheating graph 𝐻 with 2 colors, which is
impossible.

7Note that considering scenarios with more than one copies of each node does not allow us to derive additional constraints,
since the pre-shared non-signaling resource cannot by definition be cloned and extended to more than one copy of each of
its original recipient.
8Note that while a shared classical resource is inherently symmetric, because it can be without a loss of generality taken to
be distributed identically to each party, a non-signaling resource is not a priori symmetric under permutation of the parties
that it connects. The absence of identifiers thus forces the non-signaling model to pre-share only a subset of all possible
non-signaling resources, namely the subset that respects such symmetry.
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Proof. Assume by contradiction that there exists such a non-signaling algorithm, that is, there
exist gates as in Fig. 8b such that the resulting probability distribution Pr

[
𝑐1, . . . , 𝑐12

�� 𝐶𝐺,𝑇 ] is a
proper coloring for all lifebuoy-shaped graphs 𝐺 ∈ G. Such proper coloring means that for all
𝐺 ∈ G, and for all nodes 𝑢, 𝑣 that are neighbors in 𝐺 , it holds that Pr

[
𝑐𝑢 ≠ 𝑐𝑣

�� 𝐶𝐺,𝑇 ] = 1.
We consider the same nodes performing the same gates, but we change the edges so that the

connected nodes now form the graph 𝐻 in Fig. 7b. Let Pr
[
𝑐1, . . . , 𝑐12

�� 𝐶𝐻,𝑇 ] be the distribution
of output colors in that new configuration9. Consider two nodes connected by an edge in 𝐻 : by
symmetry of 𝐻 , we can without a loss of generality assume that these are nodes 1 and 2. We
introduce the lifebuoy-shaped graph 𝐺0 of Fig. 7b (𝐺0 ∈ 𝐺 depends on our choice of nodes, here
1, 2, in 𝐻 ). Then, we observe that the common past light-cones of the two nodes is the same when
connected through 𝐻 or through 𝐺0 (compare the circuit of Fig. 8b with the circuit of Fig. 8c). It
hence holds that Pr

[
𝑐1 ≠ 𝑐2

�� 𝐶𝐻,𝑇 ] = 1 = Pr
[
𝑐1 ≠ 𝑐2

�� 𝐶𝐺0,𝑇

]
due to the non-signaling principle.

We conclude that the non-signaling distributed algorithm outputs a 2-coloring for 𝐻 , which is
impossible. □

A.3 Bounded-dependence model
A.3.1 The bounded-dependence model. The bounded-dependence model is similar to the non-
signaling model, but the former does not allow pre-shared non-signaling resources between the
nodes. The following two new principles are needed to define feasible distributions in the bounded-
dependence model.

Definition A.6 (Independence principle). Consider a set of gates connected in a circuit 𝐶 , and
the corresponding distribution Pr [𝑐1, . . . , 𝑐𝑛 | 𝐶]. Let 𝑈 ,𝑉 be two subsets of measurement gates
producing the outputs {𝑐𝑢}𝑢∈𝑈 and {𝑐𝑣}𝑣∈𝑉 , respectively. If the past light-cones of 𝑈 and 𝑉 do
not intersect, then Pr [{𝑐𝑤}𝑤∈𝑈∪𝑉 | 𝐶] = Pr [{𝑐𝑢}𝑢∈𝑈 | 𝐶] · Pr [{𝑐𝑣}𝑣∈𝑉 | 𝐶], that is their output
distributions are independent.

Definition A.7 (Device-replication principle). Identical and independent copies of non-signaling
gates and non-signaling resources can be prepared10.

Then, we obtain the following definition:

Definition A.8 (Bounded-dependence model, with unique identifiers). The distribution
Pr

[
𝑐1, . . . , 𝑐𝑛

�� 𝐶𝐺,𝑇 ]
with unique identifiers has bounded dependence with locality 𝑇 on graph 𝐺 (without pre-shared
non-signaling resources) if and only if for all possible alternative connecting graph 𝐻 of the nodes
and their replicates, there exists a distribution Pr

[
𝑐1, . . . , 𝑐𝑚

�� 𝐶𝐻,𝑇 ] such as the non-signaling and
independence principles are respected, and such that the distribution is invariant under subgraph
isomorphisms.

Note a subtlety related to subgraph isomorphisms in the bounded-dependence model. There
is the variant where the nodes have identifiers in 𝐺 , and the one where they do not. When the
nodes do not have any identifiers, the class of subgraph isomorphisms of all alternative graphs 𝐻
created out of the nodes in𝐺 and their replicates is obviously larger than with identifiers, because
9While we are deceiving the nodes by promising a lifebuoy-shaped connecting graph but imposing instead 𝐻 , the nodes
cannot locally detect the fraud in𝑇 = 2 communication steps or less. (More formally, the past light-cone in 𝐻 of any node
is then compatible with a lifebuoy-shaped graph — an individual node cannot detect the difference and must therefore,
according to the non-signaling principle, output a color as if it were in a lifebuoy-shaped graph.)
10Note that this principle does not imply that one can duplicate unknown non-signaling resources: device-replication
compatible with the quantum no-cloning theorem.
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the subgraph isomorphisms must respect the identifiers. However, even if the nodes of 𝐺 do have
distinct identifiers, as 𝐻 is created out of possibly many copies of the original nodes of 𝐺 , 𝐻 might
contain several nodes with the same identifiers. Hence, the group of subgraph isomorphism of 𝐻
might be nontrivial even if all nodes in𝐺 have distinct identifiers. For instance, in lifebuoy-shaped
graphs, one could consider the case represented in Fig. 9, which starts from the graph 𝐺0 in Fig. 7b,
duplicates all nodes, and constructs a new graph 𝐻 of 24 nodes with identifiers ranging from 1 to
12 with one non-trivial graph isomorphism cyclically permuting the nodes.

Fig. 9. In the bounded-dependence model, one can find non-trivial subgraph isomorphisms even when the
nodes are provided with unique identifiers.

A.3.2 Relation with finitely dependent distributions. Our bounded-dependence model is directly
connected to the concept of finitely dependent distributions introduced in mathematics [1, 40–
43, 59]. In this framework, in a graph𝐻 , the color 𝑐𝑖 produced by each node 𝑖 is seen as the result of a
random process𝐶𝑖 . The set of all random processes {𝐶𝑖 }𝑖 is said to be 𝑘-dependent in graph𝐻 if, for
any two subsets𝑈 ,𝑉 of the nodes of 𝐻 which are at least at distance 𝑘 + 1, the two sets of processes
{𝐶𝑢}𝑢∈𝑈 and 𝐶𝑣𝑣∈𝑉 are independent. In our notation, assuming even 𝑘 and taking 𝑇 = 𝑘/2, this is
equivalent to asking that Pr

[{𝑐𝑤}𝑤∈𝑈∪𝑉
�� 𝐶𝐻,𝑇 ] = Pr [{𝑐𝑢}𝑢∈𝑈 | 𝐶] · Pr [{𝑐𝑣}𝑣∈𝑉 �� 𝐶𝐻,𝑇 ] .

Hence, the question of the existence of distributions with bounded dependence that solve some
problem can directly be formulated in terms of the existence of finitely dependent distributions over
a family of graphs that satisfy additional constraints of compatibility (to satisfy the non-signaling
principle) and symmetries (to cope with subgraph isomorphisms).
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