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Abstract—This paper introduces a new conservative fusion
method to exploit the correlated components within the es-
timation errors. Fusion is the process of combining multiple
estimates of a given state to produce a new estimate with
a smaller MSE. To perform the optimal linear fusion, the
(centralized) covariance associated with the errors of all estimates
is required. If it is partially unknown, the optimal fusion cannot
be computed. Instead, a solution is to perform a conservative
fusion. A conservative fusion provides a gain and a bound on
the resulting MSE matrix which guarantees that the error is
not underestimated. A well-known conservative fusion is the
Covariance Intersection fusion. It has been modified to exploit
the uncorrelated components within the errors. In this paper,
it is further extended to exploit the correlated components as
well. The resulting fusion is integrated into standard distributed
algorithms where it allows exploiting the process noise observed
by all agents. The improvement is confirmed by simulations.

Index Terms—Conservative fusion, Covariance Intersection,
Distributed estimation, Linear fusion

I. INTRODUCTION

Distributed estimation is a recurrent problem in sensor

networks. It consists in estimating the state of a dynamical

system using a network of agents, i.e., nodes equipped with

sensors and with communication capabilities. Each agent is

performing independent measurements of the state, and shares

its estimate with its neighbors in the network. The fusion

of the estimates received by an agent is a complex task,

especially when the communication between the agents are

limited. To optimally fuse several estimates, i.e., with the

smallest resulting Mean Square Error (MSE) matrix, the agent

needs to know the covariances of the errors of each estimate

and their cross-covariances. For example, the optimal fusion of

two estimates is given by the Bar-Shalom-Campo’s formulas

[3]. However, in cooperating networks, each agent has only

local knowledge; it can estimate the covariance of its own error

but cannot estimate the cross-covariances with its neighbors’

errors, as this would require knowledge of the whole network

topology. Without these cross-covariances, the agent cannot

calculate the MSE matrix of the fused estimate and must use

conservative bounds. A conservative fusion provides a bound

on the MSE matrix which guarantees that the estimation error

is not underestimated. The first conservative fusion proposed

was the Covariance Intersection fusion (CI) [8]. CI provides

conservative bounds by considering that the estimation errors

may be correlated to any degree. Generally, this assumption is

very loose and tighter fusions have been derived when refined

assumptions can be made. When the errors contain indepen-

dent components, the Split CI (SCI) fusion provides tighter

bounds [7]. Furthermore, if the errors are partitioned into two

components with only the cross-covariances between the first

components unknown, another fusion rule called Partitioned

CI (PCI) was proposed in [14] and improved in [1]. Another

extension is the Inverse CI (ICI) which considers that the

estimates were all obtained by combining some initial estimate

with independent estimates [2], [13]. All these improvements

of the CI fusion use the structure of the errors to reduce the set

of admissible cross-covariances and tighten the bounds. They

have been applied to wide range of problems: e.g., SLAM [9],

cooperative localization [10], or cooperative perception [11].

In distributed estimation, the fusion of the estimates can be

performed using CI. However, two elements can be used to

produce tighter bounds. First, the independent measurements

induce independent components in the errors. They can be

exploited by the SCI fusion, as in [7]. If the measurements

are transmitted to the neighbors, the agents can optimally fuse

them with their estimate, this method is known as Diffusion

Kalman Filtering (DKF) with CI [4], [6]. The second element

is the process noise which is observed by all the agents. It

reduces as well the set of admissible covariances: e.g., the

errors cannot be perfectly negatively correlated. The current

fusions do not take advantage from such common noises as

they do not consider correlated components.

In this paper, an extension of the SCI fusion, called Ex-

tended SCI (ESCI), is introduced. It is motivated by the

distributed estimation problems in which it can exploit both

the uncorrelated components of the errors (induced by the

measurements) and their correlated components (induced by

the process noise). It is integrated into standard algorithms and



applied to an example inspired by Search-And-Rescue (SAR)

missions.

The rest of the paper is organized as follows. Section II

recalls the definitions of a conservative fusion and of the

SCI fusion. Then, Section III presents the new ESCI fusion.

Section IV details its integration into standard distributed esti-

mation algorithms. The application is presented in Section V.

Finally, Section VI concludes the paper.

Notation. In the sequel, vectors are denoted in lowercase

boldface letters e.g., x ∈ R
n, and matrices in uppercase

boldface variables e.g., M ∈ R
n×n. The notation E[·]

denotes the expected value. For two matrices A and B,

the notation A � B means that the difference B − A is

positive semi-definite. The unit simplex of R
n is denoted as

Kn , {x ∈ R
n | ∀i, xi ≥ 0, x⊺

1 = 1}.

II. BACKGROUND

Consider N unbiased estimates x̂i for i ∈ {1, . . . , N}
of a random variable x ∈ R

d. The estimation errors are

denoted as x̃i , x̂i − x and their covariances as P̃i ,

E [x̃ix̃
⊺

i ]. A linear fusion is defined by a matrix of gains

K =
[

K1 . . . KN

]

∈ R
d×Nd, with Ki ∈ R

d×d and
∑

iKi = Id, as:

x̂F (K) ,

N
∑

i=1

Kix̂i = Kx̂c, (1)

where x̂c ,
(

x̂
⊺

1 . . . x̂
⊺

N

)⊺

∈ R
Nd. The covariance of the

error of the fused estimate depends on the gain K and on the

covariance of the error of x̂c, P̃c:

P̃F (K, P̃c) = KP̃cK
⊺. (2)

If P̃c is not entirely known but is only assumed to belong

to some subset of admissible covariance matrices A, then

P̃F (K, P̃c) cannot be computed. In this case, an alternative

is to provide a conservative bound. A couple (K,BF ) is said

to generate a conservative fusion for the set A if:

∀Pc ∈ A, P̃F (K,Pc) � BF . (3)

In other words, fusing the estimates with the gain K ensures

that the covariance of the error is bounded by BF .

CI considers that the covariances of the errors P̃i are known

but not their cross-covariances P̃i,j , E
[

x̃ix̃
⊺

j

]

. For any ω ∈
KN , CI provides a conservative fusion defined as:

x̂F = BF

N
∑

i=1

ωiP̃
−1
i x̂i, B−1

F =
N
∑

i=1

ωiP̃
−1
i . (4)

CI considers that the errors may be completely correlated.

In distributed estimation, the estimators integrate independent

measurements zi and have the following structure:

x̂i = (I −KHi)x̂
−

i +Kzi.

Therefore, the errors x̃i cannot be perfectly correlated and SCI

produces tighter bounds. It considers that the estimation errors

are split into a correlated and an uncorrelated component as:

x̃i = x̃
(1)
i + x̃

(2)
i , (5)

where the components x̃
(1)
i are correlated to an unknown

degree while the components x̃
(2)
i are uncorrelated between

each other and with the x̃
(1)
i . The covariances of x̃

(1)
i and

x̃
(2)
i are denoted as P̃

(1)
i and P̃

(2)
i (and are assumed known).

For any ω ∈ KN , SCI provides a conservative fusion defined

as:

x̂F = BF

N
∑

i=1

ωi

(

P̃
(1)
i + ωiP̃

(2)
i

)

−1

x̂i, (6a)

B−1
F =

N
∑

i=1

ωi

(

P̃
(1)
i + ωiP̃

(2)
i

)

−1

. (6b)

The parameter ω must be chosen: optimized or empirically

tuned with e.g., the methods in [12] or [5].

III. EXTENDED SCI

A. Motivation: Limits of the SCI fusion

The CI fusion considers that the errors can be correlated to

any degree. In distributed estimation problems, the estimates

incorporate independent measurements, and therefore their

errors contain independent components. The SCI fusion has

been defined to exploit theses independent terms.

Moreover, the state to estimate is often disturbed by an

additive process noise w. This noise is added to all the

estimation errors during the prediction step. All the errors

share a common component, which also reduces the space of

admissible centralized covariance matrices A. For example,

the errors cannot be perfectly negatively correlated. However,

SCI cannot exploit this correlated component as it can only

handle uncorrelated components. The new ESCI fusion is

defined to overcome this limitation.

B. Definition of the ESCI fusion

Consider that the estimation errors are split into two com-

ponents as in (5). The first components x̃
(1)
i are still correlated

to an unknown degree. The second components x̃
(2)
i are not

assumed uncorrelated, but are assumed to have known second

moments. Introduce the centralized errors,

x̃(l)
c ,

(

x̃
(l)⊺
1 . . . x̃

(l)⊺
N

)⊺

, l ∈ {1, 2} ,

whose covariances and cross-covariances are denoted as

P̃
(l)
c , E

[

x̃
(l)
c x̃

(l)⊺
c

]

and P̃
(1,2)
c , E

[

x̃
(1)
c x̃

(2)⊺
c

]

. The

matrices P̃
(2)
c and P̃

(1,2)
c are known, but only the diagonal

blocks of P̃
(1)
c (corresponding to the covariances P̃

(1)
i ) are

known. If P̃
(1,2)
c 6= 0, the errors (5) are virtually re-splittable

to set P̃
(1,2)
c = 0 by letting:

x̃(1)
c ← x̃(1)

c − P̃ (1,2)
c (P̃ (2)

c )−1x̃(2)
c , (7a)

x̃(2)
c ← x̃(2)

c + P̃ (1,2)
c (P̃ (2)

c )−1x̃(2)
c . (7b)

The errors x̃
(1)
c and x̃

(2)
c satisfy the same properties: only the

off-diagonal blocks of P̃
(1)
c are unknown. We therefore assume

without loss of generality that P̃
(1,2)
c = 0. In this splitting,

x̃
(2)
i contains all known components. In distributed estimation,



it will contain the independent measurement noise plus the

common process noise as illustrated in the next section.

For any ω ∈ KN , the ESCI fusion is defined as:

x̂F = BFB
−1
c Hx̂c, B−1

F = H⊺B−1
c H , (8a)

with:

H = 1N ⊗ Id, (8b)

B(1)
c = diag

(

1

ω1
P̃

(1)
1 , . . . ,

1

ωN

P̃
(1)
N

)

, (8c)

Bc = B(1)
c + P̃ (2)

c . (8d)

The ESCI is a generalization of the SCI in the sense that if

P
(2)
c is block diagonal, then (8) and (6) define the same fusion.

Theorem 1. For any ω ∈ KN , the ESCI fusion defined in (8)

is conservative for the set:

AESCI ,

{

P (1)
c + P̃ (2)

c | P (1)
c � 0 and

∀i ∈ {1, . . . , N} , P
(1)
i = P̃

(1)
i

}

. (9)

Proof. The proof is the same as for the SCI fusion [7].

For any ω ∈ KN , the matrix B
(1)
c is a conservative bound

on the centralized covariance of x̃
(1)
c [7]. Therefore, Bc is

a conservative bound for the centralized covariance of x̃c.

The fusion is then obtained by applying the gain: K =
(

H⊺B−1
c H

)

−1
H⊺B−1

c .

C. Special case of a common noise

When the correlated components of the errors come from

a common noise w, the ESCI expressions can be simplified.

Consider that the estimation errors are split as :

x̃i = x̃
(1)
i + x̃

(ind)
i +Miw, (10)

where the components x̃
(1)
i are correlated to an unknown

degree, the components x̃
(ind)
i are uncorrelated between each

other, with the x̃
(1)
i and with w, the matrices Mi are known,

and w is a common independent noise. The covariances of

each component are known and denoted as P
(ind)
i for x̃

(ind)
i

and Q for w. In this case the fusion (8) becomes:

x̂F = BF

N
∑

i=1

ωi(Id − S1S
−1
0 M

⊺

i )P̃
′−1
i x̂i, (11a)

B−1
F =

N
∑

i=1

ωiP̃
′−1
i − S1S

−1
0 S

⊺

1 , (11b)

with P̃ ′

i , P̃
(1)
i + ωiP̃

(ind)
i and :

S0 =
N
∑

i=1

ωiM
⊺

i P̃
′−1
i Mi +Q−1, (11c)

S1 =
N
∑

i=1

ωiP̃
′−1
i Mi. (11d)

The advantage of (11) over (8) is that (11) requires to invert

N + 1 matrices of size d while (8) requires the inversion of

−4−2 0 2 4

−4

−2

0

2

4 P̃1

P̃2

(a) CI fusion.

−4 −2 0 2 4

−4

−2

0

2

4 P̃1

P̃2

(b) SCI fusion.

−4 −2 0 2 4

−4

−2

0

2

4 P̃1

P̃2

(c) ESCI fusion.

Fig. 1: Comparison of the bounds provided by CI, SCI

and ESCI. The dotted ellipses represent the covariances

P̃1 and P̃2, the grey ellipses are the bound obtained with

ω =
(

2k/10 1− 2k/10
)⊺

and k ∈ {0, . . . , 5}, and

the dark ellipse is the bound that minimizes the trace.

The numerical values used are: P̃
(1)
1 = [[1,−2], [−2, 5]],

P̃
(1)
2 = [[9,−1], [−1, 1]], P̃

(ind)
1 = [[2, 0], [0, 9]], P̃

(ind)
2 =

[[9, 3], [3, 2]], Q = [[2, 2], [2, 2]], and M1 = M2 = I.

one matrix of size Nd. As the cost of an inversion of a matrix

of size n is a O(n3), (11) is more efficient.

If all the matrices Mi = Id, then (11) simplifies further to:

x̂F = B0

N
∑

i=1

ωiP̃
′−1
i x̂i, BF = B0 +Q, (12)

where B−1
0 =

∑N

i=1 ωiP̃
′−1
i . This case is equivalent to first

fuse the uncorrupted estimates x̃
(1)
i + x̃

(ind)
i using SCI and

then add the noise.

To illustrate the interest of the ESCI fusion, consider the fu-

sion of two estimates whose errors are split according to (10).

Theses estimates can be split using CI (without considering the

splitting), using SCI (by grouping the correlated component

Miw with the first component), or using ESCI. Figure 1

compares the bounds obtained with the three fusions. It can

be observed that the ESCI bounds are tighter, as expected.

IV. DISTRIBUTED ESTIMATION ALGORITHMS

This section presents the integration of the ESCI fusion into

distributed estimation algorithms.

A. System model

Consider a system parameterized by a discrete-time state-

space model. The state at time k ∈ N is denoted as x(k) ∈ R
d.

It is assumed to follow the following linear dynamics:

x(0) ∼ N (x0, P̃0), (13a)

∀k ∈ N, x(k + 1) = Fx(k) +w(k + 1), (13b)

where x0 is the initial state, P̃0 the covariance matrix of the

initial uncertainty, F ∈ R
d×d the evolution matrix, and w(k)

the process noise at time k. The system is estimated by a

network of N agents. The agents are equipped with sensors

to observe the state, and have (limited) communication capa-

bilities with their neighbors in the network. As the estimation

algorithms are symmetrical between the agents, a focus is

made on one particular agent indexed by i ∈ {1, . . . , N}.
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