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Abstract

This work explores the dimension reduction problem for Bayesian nonparametric regression
and density estimation. More precisely, we are interested in estimating a functional parameter f
over the unit ball in Rd, which depends only on a d0-dimensional subspace of Rd, with d0 < d.
It is well-known that rescaled Gaussian process priors over the function space achieve smoothness
adaptation and posterior contraction with near minimax-optimal rates. Moreover, hierarchical
extensions of this approach, equipped with subspace projection, can also adapt to the intrinsic
dimension d0 ([Tok11]). When the ambient dimension d does not vary with n, the minimax rate
remains of the order n−β/(2β+d0). However, this is up to multiplicative constants that can become
prohibitively large when d grows. The dependences between the contraction rate and the ambient
dimension have not been fully explored yet and this work provides a first insight: we let the
dimension d grow with n and, by combining the arguments of [Tok11] and [JT21], we derive a
growth rate for d that still leads to posterior consistency with minimax rate. The optimality of
this growth rate is then discussed. Additionally, we provide a set of assumptions under which
consistent estimation of f leads to a correct estimation of the subspace projection, assuming that
d0 is known.

1



Contraction rates and projection subspace estimation with GP priors in high dimension

1 Introduction

With the ever-increasing availability of high-dimensional data in various fields of science and technology,
dimension reduction methods have become more and more important, especially in non-parametric
estimation, to counteract the curse of dimensionality. Suppose we want to estimate an unknown
function f : Rd → R that depends only on a d0-dimensional linear subspace S ⊂ Rd, with d0 ≪ d. For
regression and density estimation problems, minimax rates without sparsity assumptions are both of
the order n−β/(2β+d) where β is the smoothness of f and n is the sample size ([Bir86], [Sto82]). The
aim of dimension reduction is to convert this d-dimensional problem into a d0-dimensional one in order
to obtain the way more attractive rate n−β/(2β+d0).

As the above rates are given up to a multiplicative constant, which may itself depend on the
ambient dimension d, another problem arises: determining if the number of available data is sufficient
in regard to the problem’s dimension. This is generally done by allowing the ambient dimension d to
grow with n, letting d = dn, and then observing which growth rate still permits minimax estimation
at rate n−β/(2β+d0). Note that the subspace S also depends on n, thus we write S = Sn.

For fixed intrinsic dimension d0, we distinguish two cases, whether the subspace Sn is parallel to
the axes or not. In the first case (when Sn is parallel to the axes), the dimension-reduction problem
is referred to as variable selection. In this context, it is known that for non-parametric regression,
the sparsity pattern can be consistently recovered when dn grows exponentially with the sample size
([CD12], [YT15]). More precisely, [CD12] show that there exist two constants c∗ < c∗ such that

• if log dn

n < c∗, there exists a consistent estimator of the sparsity pattern,

• if log dn

n > c∗, no such estimator exists.

This phase transition phenomenon seems to be similar in the linear regression framework (see [Ver12]
and [Wai09]).

In the second case (when nothing is assumed on Sn), the estimation of a minimal subspace which
contains all the information on f is sometimes referred to as sufficient dimension reduction ([Coo98]).
Among the various methods proposed for estimating Sn, sliced inverse regression (SIR) ([Li91]) is
one of the most studied. The first article including the framework of growing ambient dimension dn
shows the consistency of SIR only under dn = O(n1/2) ([ZMP06]). Later, [LZL18] show that the phase
transition phenomenon occurs at a growth rate dn in o(n). In other words, SIR-based estimators are
consistent only if dn/n −→

n→+∞
0 and this growth rate appears to be optimal ([Lin+21]).

The difference between growth rates encountered in variable selection and in sufficient dimension
reduction has led recently to the emergence of methods combining both approaches. If f depends on
a d0-dimensional subspace Sn which can be described by linear combination of only a small number
of variables, then we can perform both variable selection and sufficient dimension reduction over the
selected variables. This method is studied for example in [Lin+21], [LZL19], [TSY20], and [ZMZ22]
and allows a return to the exponential growth of the dimension dn.

The aim of this article is to perform both function and subspace estimation in the case where
no hypotheses are made on Sn and to derive the maximum dimension growth rate. Our analysis is
done in the nonparametric Bayesian framework introduced by [GGV00]. Among the advantages of
this approach, the use of very versatile priors, such as Gaussian processes [VV08a], allows to perform
smoothness and dimension adaptability at near minimax rates ([VV09], [TZG10], [JT21]) with a single
Bayesian procedure, and avoids the complications associated with kernel methods (see for example the
introduction of [STG13]).
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2 PROBLEM FORMULATION

The work of Tokdar, Zhu, and Ghosh [TZG10] is one of the first to include a hierarchical prior
with a parameter on the subspace.They use a uniform prior on the Grassmannian of dimension d0
and a logistic Gaussian process prior for the conditional density function. The authors are able to
derive posterior consistency for both the conditional density function and the subspace but they do
not provide contraction rates. Near minimax contraction rates are then derived in [Tok11] by extending
the framework introduced by [VV09]. Finally, [JT21] show that for variable selection, the estimation of
the regression function and that of the sparsity pattern can be realized simultaneously at near minimax
rates even with dimension dn growing exponentially with the sample size. The growth rate is linked
to the smoothness β of f via log(dn) = O(nd0/(2β+d0)).

The paper is organized as follows. In Section 2, we introduce a hierarchical Gaussian process-based
prior for both regression and density estimation models. This prior consists of a dimension parameter
for d0, an invariant prior over linear d0-dimensional subspaces of Rdn , a d0-dimensional Gaussian
process, and a rescaling parameter to ensure smoothness adaptability. Our first result (Theorem
3.1 in Section 3) shows that, for the estimation problem of f , near minimax contraction rates can
be achieved for dimensions dn growing not faster than nd0/(2β+d0) which is interestingly the already
mentioned growth rate where we drop out the exponential. We are not able to prove the optimality
of this result but some clues are given below (see Remark 5.2); notably, this growth rate is equivalent
to n when β → 0, which is known to be the breakpoint of the consistency of the SIR estimator. In
Section 4, we show that for fixed ambient dimension d, the hierarchical Bayes procedure contracts to a
subspace that contains S and we conjecture that this subspace is exactly S. Our estimation result of
f combines the standard arguments used in [Tok11] and [JT21], which are based on [VV09]. To prove
the contraction around the central subspace S, we show that an error on the estimation of S leads to
an error on the estimation of f from which we obtain a contradiction on the previously established
minimax estimation of f . The proofs of the main results (Theorems 3.1 and 4.1) are postponed to
Appendices 5.1 and 5.2 while Appendix 5.3 is dedicated to useful lemmas.

2 Problem formulation

2.1 Notation and definitions
The abundant technical notation used throughout this article make this section very useful. We begin
with the definition of standard functional spaces.

Let K be a bounded convex subset of Rd, with d ∈ N∗. For α > 0, write α = k + r with k a
nonnegative integer and r ∈ (0, 1]. The Hölder space Cα(K) is the space of all functions f : K → R that
are k-times differentiable and whose partial derivatives of order (k1, . . . , kd), with k1, . . . , kd nonnegative
integers such that k1 + · · ·+ kd = k, are Lipshitz functions of order r, that is, there exists a constant
D such that ∣∣∣∣∣ ∂k

∂k1
1 · · · ∂kd

d

(f(x)− f(y))

∣∣∣∣∣ ≤ D ∥x− y∥r ,

for all pairs x, y ∈ K2 and where ∥·∥ is the Euclidean norm.
We use the following asymptotic notation: if f and g are two real functions over an arbitrary set S,

then we write f ≲ g if there exists a constant c such that |f(s)| ≤ c · |g(s)| for all s ∈ S. The notation
≳ is defined in the same way and we write f ≍ g when both f ≲ g and f ≳ g hold.

To model the central subspace S, we will use isometries instead of the Grassmannian. For d ∈ N∗,
we denote by Od the space of linear isometries over Rd. In addition, the introduction of canonical
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subspaces and of “component filters” notation will be very convenient when dealing with the sparsity.
For x ∈ Rd and v ∈ {0, 1}d, we denote by |v| the number of ones in v, by xv := (xj : vj = 1, 1 ≤ j ≤
d) ∈ R|v| the sub-vector with components selected according to v, and for y ∈ R|v|, by yv := (ỹj)1≤j≤d

the vector in Rd with ỹj = 0 if vj = 0 and ỹj = yi if vj is the i-th one in v.
Moreover, for any integer b ∈ J1, dK, we denote by b the vector

∑b
i=1 ei, where {ei : 1 ≤ i ≤ d} is

the canonical basis on Rd. The dimension d of the ambient space is implicit in this notation.
Finally, for v ∈ {0, 1}d, we denote by Ev the linear span of {ei : vi = 1} and by E1−v the linear

span of {ei : vi = 0}. Clearly, E1−v is the orthogonal complement of Ev.

The proof of Theorem 3.1 involves measuring the complexity of the space where the prior puts its
mass. This measure is carried out via metric entropy. Given a subset B of a metric space (E, d) and
a radius ε > 0, we can define the following numbers:

• the ε-packing number D(ε,B, d) is the maximum number of points in B such that the distance
between every pair is at least ε,

• the ε-covering number N(ε,B, d) is the minimum number of balls of radius ε needed to cover B.

The logarithms of the packing and the covering number are called the entropy and the metric entropy
respectively.

2.2 Bayesian framework for density estimation and regression

Our main result will be stated for two statistical settings: density estimation and fixed or random
design regression with Gaussian error. As we will work with subspaces that are not orthogonal with
the axes, the usual support [0, 1]d for the density or the regression function will be replaced by the
unit ball Ud := {x ∈ Rd, ∥x∥ ≤ 1}. For a given number of observations n, the density or the regression
function will be characterized by a functional parameter f∗n : Udn

→ R. The ambient dimension dn is
allowed to grow with n but f∗n is supposed to depend only on a subspace Sn with fixed dimension d0. A
prior on d0 and on the subspace itself will be later introduced to ensure the dimension adaptability. The
prior on the true parameter f∗n will consist of a projected Gaussian random variable Wn with values
in the Banach space (C(Udn

), ∥·∥∞). Now let us describe the two previously introduced statistical
settings.

Density estimation. Suppose we observe an i.i.d. sample X1, . . . , Xn from a law P ∗
n over Udn

,
which admits a continuous density p∗n relative to the Lebesgue measure on Rdn . The prior Wn puts
its mass on a space that is far too large compared to the space of continuous densities. So to correctly
retrieve p∗n, we will work with the parametrized density pn,Wn

where, for w ∈ C(Udn
),

(2.1) pn,w(x) :=
ew(x)∫

Udn
ew(x)dx

.

Here the exponential forces the prior to charge only nonnegative functions while the renormalization
ensures that pn,w integrates to one. The true density p∗n will then be encoded by the parameter
f∗n ∈ C(Udn

) such that p∗n = pn,f∗
n
. In this way, all the assumptions on the true parameter f∗n can be

transferred to the density p∗n. That is, p∗n is supposed to depend only on the d0-dimensional subspace
Sn of Rdn .
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2 PROBLEM FORMULATION

The natural metric between two densities p and p′ is the Hellinger distance defined by h(p, p′) =∥∥√p−√
p′
∥∥
2
, where ∥·∥2 is the L2-norm with respect to the Lebesgue measure. Consequently, if the

parameter space is embedded with a prior Πn, we will say that the posterior contracts to p∗n at rate
(εn)n∈N if, for any sufficiently large constant M ,

(2.2) P∗
n [Πn (f ∈ C(Udn

) : h(pn,f , p
∗
n) > Mεn | X1, . . . , Xn)] −→

n→+∞
0,

where P∗
n is the joint law of (X1, . . . , Xn).

Regression with Gaussian error. In a regression problem, the covariates can be either predeter-
mined for each observation, this is the fixed design case, or can be part of the observation themselves.
In the later case, the covariates can be considered as random; this corresponds to the random de-
sign case. The notion of posterior contraction differs slightly between these two situations and some
clarifications are in order.

Fixed design. In this setting, we consider a sample of n real observations Y1, . . . , Yn satisfying the
model Yi = f∗n(xi) + ϵi, with ϵi ∼ N (0, σ2) where the xi ∈ Udn

for i ∈ J1, nK are n fixed covariates and
where the ϵi are n i.i.d. univariate Gaussian random variables with zero mean and standard deviation
σ. As previously, the regression function f∗n : {xi : i ∈ J1, nK} → R is supposed to depend only on a
d0-dimensional subspace of Rdn .

We will use Wn directly as a prior for the regression function because Wn can be viewed by
restriction as a Gaussian process over the space Xn := {xi : i ∈ J1, nK} of design points. To quantify
the posterior contraction, we introduce the design dependent semi-metric ∥·∥n defined as the L2(Px

n)-
norm for the empirical measure Px

n = n−1
∑n

i=1 δxi
of the design points. If the space of regression

functions over Xn is embedded with a prior Πn, we will say that the posterior contracts to f∗n at rate
(εn)n∈N if, for any sufficiently large constant M ,

(2.3) P∗
n [Πn (f ∈ C(Xn) : ∥f − f∗n∥n > Mεn | Y1, . . . , Yn)] −→

n→+∞
0,

where P∗
n is the joint law of (Y1, . . . , Yn).

Random design. Here, we observe n i.i.d. pairs (X1, Y1), . . . , (Xn, Yn) such that Yi = f∗n(Xi) + ϵi,
with i.i.d. ϵi ∼ N (0, σ2), σ ∈ [1, 2], and where the Xi’s are random covariates over Udn

independent
of the ϵi’s and admitting a common density Gn that is bounded away from zero. For the sake of
simplicity, the standard deviation σ is restricted to the interval [1, 2] but these bounds can be relaxed,
see Remark 5.1.1 for details. Again, the regression function f∗n : Udn

→ R is supposed to depend
only on a d0-dimensional subspace of Rdn . Moreover, we use Wn directly as a prior for the regression
function. The natural metric for this problem is the L2(Gn)-norm denoted by ∥·∥2,Gn

where Gn is
identified with the law of one covariate. This metric is not equivalent to the Hellinger metric, which is
used in the proof of Theorem 3.1, unless all regression functions are uniformly bounded by a constant
Q > 0. This condition can be fulfilled by projecting the prior on the space of all functions uniformly
bounded by Q, as proposed in [GN11], but this would force us to rewrite the proof of Theorem 3.1
only for this setting. Instead, we directly post-process the posterior to integrate this constraint as in
[YD16]. Then, the formulation of posterior consistency becomes as follows. Considering a prior Πn

over the regression functions, we will say that the posterior contracts to f∗n at rate (εn)n∈N if, for
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Q > 0 and any sufficiently large constants M ,

(2.4) P∗
n

[
Πn

(
f ∈ C(Udn) :

∥∥fQ − f∗n
Q
∥∥
2,Gn

> Mεn | (X1, Y1), . . . , (Xn, Yn)
)]

−→
n→+∞

0,

where P∗
n is the joint law of (X1, Y1), . . . , (Xn, Yn) and where fQ := (f ∨ −Q) ∧ Q is the truncated

version of f .

3 Main result for the functional parameter

In order for the true parameter f∗n to be recovered, we suppose that its restriction to the d0-dimensional
subspace Sn does not depend on the ambient dimension dn.

Assumption 3.1 (Sparsity of the true parameter). There exist n0, d0 ∈ N, f0 ∈ C(Ud0), and a
sequence of linear isometries q∗n ∈ Odn such that for all n ≥ n0, we have dn ≥ d0, and f∗n(x) =
f0 ((q

∗
n(x))d0), for all x ∈ Udn

.

In this way, each f∗n can be viewed as a sparse continuation in dimension dn of an underlying fixed
function f0 called the core function. The use of isometries instead of vector subspaces permits us to
avoid the manipulation of the Grassmannian. We will use instead the more convenient orthogonal
group Odn

. The next property is straightforward.

Property 3.1. For n ≥ n0, f∗n is constant on the intersection between Udn
and the affine subspaces

(q∗n)
−1(E1−d0) + x, for x ∈ Rdn .

In parallel to the dimension adaptability, the present setting allows the core function f0 to be
arbitrarily smooth (in a Hölder sense) while maintaining near-minimax contraction rates.

Assumption 3.2 (Smoothness of f0). There exists β > 0 such that f0 ∈ Cβ(Ud0
).

3.1 Prior specification

Here we specify the hierarchical prior on the parameter space. The true parameter f∗n is characterized
by a sparsity pattern (d0, q

∗
n), where the intrinsic dimension d0 is the one of the relevant subspace

and q∗n ∈ Odn
is an isometry for the orientation; its smoothness is modeled by a rescaling parameter,

and the core function f0 is modeled by a standard squared exponential Gaussian process which has
infinitely smooth sample paths. Indeed, this process has proven to be fruitful in combination with a
scale parameter and allows smoothness adaptation (see [VV09]).

For n > 0, let W = (W (x) : x ∈ Rdn) be a standard squared exponential Gaussian process on Rdn ;
that is, a centered Gaussian process with covariance kernel

E[W (s)W (t)] = exp
(
−∥s− t∥2

)
, for all s, t ∈ Rdn ,

where ∥·∥ is the Euclidean norm.
Let a > 0, b ∈ J1, dnK, and q ∈ Odn

. We defineW a,b,q
x :=W (aDiag(b)·q(x)) andW a,b,q := (W a,b,q

x :
x ∈ Rdn) a rescaled Gaussian process with sparsity pattern (b, q), where Diag(b) is the diagonal matrix
with diagonal vector b. Then, the process W a,b,q is constant on affine subspaces q−1(E1−b) + x, for
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3 MAIN RESULT FOR THE FUNCTIONAL PARAMETER

x ∈ Rdn (as in Property 3.1) and if R := q−1 Diag(b)q is the orthogonal projection onto q−1(Eb), then
W a,b,q

x =W a,b,q
Rx , for all x ∈ Rdn .

To work properly withW a,b,q, we have to verify that its law identifies with the law of a b-dimensional
standard squared exponential process. To do so, define

ϕ : Rb → q−1(Eb)

x 7→ 1

a
q−1(xb),

a bijection with inverse ϕ−1(t) = a(qt)b for t ∈ q−1(Eb). Then, W a,b,q
ϕ(x) =W (xb) for all x ∈ Rb.

Let us introduce W̃ := (W a,b,q
ϕ(x) , x ∈ Rb). Then, for all x, y ∈ Rb × Rb, we have

E[W̃ (x)W̃ (y)] = E[W (xb)W (yb)] = e−∥x
b−yb∥2

.

So W̃ is a standard squared exponential Gaussian process in dimension b that does not depend on a
nor q. Moreover, we have W a,b,q

t = W̃ (ϕ−1(Rt)).
From now on, W a,b,q will refer to the restriction on Udn of this process. Then, the hierarchical prior

on the parameter f ∈ C(Udn
) with stochastic subspace selection is defined as the law Πn of WA,Γ,Θ,

where A is the scaling parameter, Γ ∈ J1, dnK is the prior on the subspace dimension, and Θ is the
prior on the orientation.

Assumption 3.3. The intrinsic dimension d0 of the subspace is assumed to be bounded by a known
deterministic number dmax.

Consequently, Γ is defined by a probability vector (πΓ(d) : 1 ≤ d ≤ dmax) with πΓ(d) > 0 for all d.
Moreover, we define the scaling parameter A such that there exists a collection of probability measures
πn,d on (0,∞), 0 ≤ d ≤ dmax ∧ dn, with A | (Γ = d) ∼ πn,d. We require the law of the stochastic
isometry Θ to be translation invariant. That is, for all subset Q of Odn

and for all q ∈ Odn
, we need

P(Θ ∈ q ·Q) = P(Θ ∈ Q). Therefore, the law of Θ is taken as the unit Haar measure on Odn
, the only

probability measure that is translation invariant on Odn
. In addition, all A,Γ, and Θ are supposed to

be independent of W .
For convenience, the notation πn,d will refer to a probability measure as well as its density.

Assumption 3.4 (Rescaling measures). There exist constants D1, D2, C1, C2, and c > 1 such that
for all n ∈ N∗ and d < dmax ∧ dn, the density πn,d satisfies

1. for all sufficiently large a, πn,d(a) ≥ D1e
−C1a

d(log a)d+1

;

2. for all a > c, πn,d(a) ≤ D2e
−C2a

d(log a)d+1

;

3. πn,d([0, c]) = 0.

Assumptions similar to Assumption 3.4 are standard, see for instance Equation (3.4) in [VV09] or
Assumption 5 [JT21]. For example, this assumption is satisfied if, for all n ∈ N∗ and d < dmax ∧ dn,
Ad(logA)d+1 | (Γ = d) is the restriction to (c,+∞) of an exponential law with parameter independent
of d and n (indeed, if g(A) has density function f , with g differentiable and strictly increasing, then A
has density function (f ◦ g) · g′).

The next section gives some precision about the reproducing kernel Hilbert space (RKHS) of W a,b,q.
The content is a bit technical and can be skipped at first reading.
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3.2 Reproducing kernel Hilbert space of W a,b,q

One of the advantages of choosing a Gaussian process prior is that the contraction rate depends
explicitly on the small ball probability and on the relative position of the parameter with respect to
the RKHS associated with the process. This section is dedicated to the basic properties of this space.
For elementary definitions and for some precision about the link between the contraction rate and the
RKHS, we refer the reader to [VV08a] and [VV08b].

Notation. We denote by C(Ud | q−1(Eb)) the space of continuous functions on Ud which are constant
on affine subspaces q−1(E1−b) + x, for x ∈ Ud.

We introduce the operator

Λ :


C(Ub) → C(Ud | q−1(Eb))

f 7→ Λf :

{
Ud → R
x 7→ f((qx)b),

so that W a,b,q = Λ(W̃ a), where W̃ a = (W̃at, t ∈ Ub) is the process W̃ introduced above rescaled by a
and restricted to Ub. It is a bijective linear map and also an isometry if the domain and the codomain
are endowed with the uniform norm. In particular, the map Λ is continuous. According to Lemma 7.1
in [VV08b], if H̃a is the RKHS of W̃ a, then the RKHS Ha,b,q of W a,b,q is equal to Λ(H̃a). Let us detail
its elements. The stochastic process RKHS of W̃ a (as defined in [VV08b]) is composed of functions
h : Ub → R for which there exists ψ ∈ L2

C(µ
se
a,b) such that

(3.1) h(t) = Re

∫
Rb

e−iλ·tψ(λ)dµse
a,b(λ), t ∈ Ub,

where µse
a,b is the spectral measure of the a-rescaled squared exponential process in dimension b with

spectral density fsea,b : t 7→ (2a
√
π)−b exp(− 1

4∥t/a∥
2) (see Lemma 4.1 in [VV09], and the follow-

ing discussion). We can view W̃ a as a random Gaussian element with values in the Banach space
(C(Ub), ∥·∥∞). Thus, according to Theorem 2.1 in [VV08b], the stochastic process RKHS and the
Banach space RKHS coincide and we can apply Lemma 7.1 from the same reference. The space
Ha,b,q = Λ(H̃a) is then the set of functions

(3.2) h : x ∈ Ud 7→ Re

∫
Rb

e−i⟨λ,(qx)b⟩ψ(λ)dµse
a,b(λ),

where ψ runs through L2
C(µ

se
a,b) and the RKHS norm is

∥∥h∥∥Ha,b,q
= ∥ψ∥L2(µse

a,b)
.

We remark that functions of the RKHS of W a,b,q have the same sparsity-pattern as the trajectories
of W a,b,q.

Remark 3.1. Functions h ∈ Ha,b,q are constant on affine subspaces q−1(E1−b) + x for x ∈ Ud.

As mentioned at the beginning of this section, contraction rates under Gaussian process prior
depend on two quantities: the small ball probability and the relative position of the parameter with
respect to the RKHS. For a parameter f ∈ C(Ud | q−1(Eb)) and ε > 0, these two quantities define the
concentration function ϕa,b,qf , with

(3.3) ϕa,b,qf (ε) := inf
h∈Ha,b,q :∥h−f∥∞<ε

∥h∥2Ha,b,q
− logP

(∥∥W a,b,q
∥∥
∞ < ε

)
.
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4 SUBSPACE RECOVERY FOR THE DENSITY ESTIMATION PROBLEM

3.3 Posterior consistency
Before we state the theorem, we need a last assumption, which determines how the ambient dimension
dn is allowed to grow with the sample size n.

Assumption 3.5 (Growth of dn). The ambient dimension dn satisfies

dn ≤ CD · n
d0

2β+d0 · (log n)2κ−1,

for some small constant CD > 0 and where κ = (d0 + 1)β/(2β + d0).

An examination of κ shows that κ ≥ 1/2 if β ≥ 1/2 and that κ > β otherwise. Thereby, a standard
rate of order n1/2 for dn is achieved with parameter β = d0/2. The fastest rate tends to the order
n · (log n)−1 when β tends to zero. Although it is always possible to set β extremely close to zero in
order to obtain the best rate for dn, one should keep in mind that the contraction rate may then be
suboptimal, as discussed at the end of this section.

Theorem 3.1. Let εn = Cε · εn(log n)κ with εn = n−β/(2β+d0), Cε a large constant that depends
on f0, and κ as in Assumption 3.5. Then, if the parameter space is embedded with the prior Πn and
under Assumptions 3.1-3.5, the posterior contracts at rate (εn)n∈N for density estimation (as defined
in (2.2)) as well as for regression with fixed or random design (as defined in (2.3) and (2.4)).

An examination of εn shows that the contraction rate is improved as the smoothness β of f0 grows,
unlike dn. This highlights a trade-off between the contraction rate and the growth of the design
dimension: fast contraction rates imply slowly increasing dimension and conversely.

The proof of Theorem 3.1, postponed in the Appendix, in Section 5.1, combines the arguments of
[Tok11] and [JT21].

4 Subspace recovery for the density estimation problem

In this section, we propose to recover the central subspace for the density estimation problem. To avoid
identifiability issues caused by the spherical support, we suppose that the ambient dimension dn does
not depend on n. Hence, we denote the ambient dimension by d with d ≥ d0 and the central subspace
by S := (q∗)−1(Ed0) where q∗ corresponds to q∗n in Assumption 3.1. This assumption is justified by
the following considerations. If the ambient dimension grows with n, the Hellinger metric relative to
the Lebesgue measure on Udn

tends to give more importance to the center of the support, as n tends to
infinity. For example, consider a parameter f0 : U2 → R in dimension two that is everywhere constant
except in a small region on the border of U2, and such that the central subspace Sn is of dimension two.
The importance of this small region in the support Udn

, in the Hellinger sense, decreases exponentially
with n, way faster than the estimation of the true parameter f∗n in Theorem 3.1. Consequently, for
sufficiently large n, a constant function f0 : [0, 1] → R together with some one-dimensional subspace
S ′ characterize a density that is in the Hellinger ball of radius εn centered on f∗n; so we have no hope
of recovering the true subspace by simply using the posterior consistency.

As a consequence, the true density p∗, the parameter f∗, and the central subspace do not depend on
n anymore. The true density p∗ = pf∗ is characterized by f∗ via the transformation (2.1). Moreover,
f∗ is supposed to depend only on a d0-dimensional subspace of Rd and can be viewed as the sparse
continuation of an underlying function f0 ∈ C(Ud0

). In the same way, p∗ can be viewed as the sparse
continuation of a function p0 over Ud0 , except that the renormalisation of p∗ depends on d. Note that

9



Contraction rates and projection subspace estimation with GP priors in high dimension

p0 is not necessarily a density on Ud0
so the notation h(f, g) will designate from now on the L2-distance

between the square roots of f and g even if f and g are not densities.
Let us introduce a few more notation. Let Q∗ be the set of all optimal isometries:

Q∗ := {q ∈ Od : q−1(Ed0) = S},

and, for d′ > d0, let Q∗
d′ be the set of isometries that send the subspace Ed′ to a subspace containing

S:
Q∗

d′ := {q ∈ Od : q−1(Ed′) ⊃ S}.

Recovering S means the following: for some rate δn → 0,

P∗
n

[
Πn

(
Γ ̸= d0 or min

q∈Q∗
|||Θ− q||| ≥ δn | X1, . . . , Xn

)]
−→

n→+∞
0,

where |||·||| is the operator norm with respect to the Euclidean distance in Rd. However, under the
assumptions of Theorem 3.1, the only information we have on the true subspace is posterior consistency
to the density p∗ with rate εn. This will only allow us to recover a subspace of Rd containing S. A
crucial assumption to eliminate the subspaces of dimension smaller than d0 and the subspaces that
do not contain S is to suppose that p0 is non-constant in all directions. More precisely, the default of
constancy for each direction has to be detectable in Hellinger distance, as formalized in the following
assumption.

Assumption 4.1. There exist a constant D and a window size L < 1 such that for all vector line
∆ in Rd0 (directed by a unit vector ∆), there exists o ∈ Bd0

(1− L) such that for all 0 < l ≤ L, for all
t ∈ Bd0

(L/2) + o, and for all constant c > 0,

h2(p0|I ; c) ≥ D · l2,

where I := ]o+ t− l
2∆; o+ t+ l

2∆[.

Assumption 4.1 seems a bit technical at first glance but it can be shown that it is satisfied as
soon as p0 is differentiable over Ud0

with d0 points such that the gradients at these points are linearly
independent.

Theorem 4.1. Under Assumption 4.1 and the assumptions of Theorem 3.1, we have, for some rate
(δn)n tending to zero,

Πn (Γ < d0 | X1, . . . , Xn) −→
n→+∞

0, in P∗
n -probability,(4.1)

Πn

(
Γ = d0 and min

q∈Q∗
|||Θ− q||| ≥ δn | X1, . . . , Xn

)
−→

n→+∞
0, in P∗

n -probability,(4.2)

Πn

(
Γ > d0 and min

q∈Q∗
Γ

|||Θ− q||| ≥ δn | X1, . . . , Xn

)
−→

n→+∞
0, in P∗

n -probability.(4.3)

Theorem 4.1 ensures that the central subspace S can be recovered as soon as the intrinsic dimension
d0 is known. Subspaces of dimension smaller than d0 are also eliminated but the theorem does not
reject those of dimension greater than d0. We conjecture that the prior mass on those spaces tends
to vanish, for reasons similar to those exposed in [JT21]. Indeed, introducing a penalization on larger
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dimensions if necessary, it should be possible to show that the posterior cannot contract as fast as the
minimax rate for d0 if a subspace of greater dimension is chosen. As discussed in the introduction
of this section, the estimation of the central subspace is made under the assumption that d is fixed
with n mainly because of the identifiability issue caused by the ellipsoid support. We believe that this
restriction can be relaxed by extending the support Ud to the full ambient space Rd, as in [JT21].
In this case, the square over which we integrate the Hellinger distance in the proof of Theorem 4.1
can be taken as the product space of a square of side L in directions ∆ and Λ times Rd−2. Then,
the integrated error should no longer depend on d and consistency to the true subspace should follow.
Further investigations in this direction might be worthwhile.

The proof of Theorem 4.1 is postponed in Appendix 5.2.

Acknowledgments. We acknowledge the support of the French Agence Nationale de la Recherche
(ANR) under reference ANR-21-CE40-0007 (GAP Project).

5 Appendix

5.1 Proof of Theorem 3.1
As a reminder, we first exhibit some facts about the convergence rate:

(5.1) εn = Cε · n
− β

2β+d0 · (log n)κ, nε2n = C2
ε · n

d0

2β+d0 · (log n)2κ.

So εn is a large multiple of the minimax rate times a logarithm factor. The constant Cε is chosen to
be arbitrarily large in order to absorb undesired terms in the proof.

The proof of Theorem 3.1 is based on Theorem 2.1 in [GGV00]. The general outline is a combination
of the arguments of [Tok11] (itself derived from [VV09]) and [JT21]. Concretely, it suffices to show
that there exists a sequence of sets Bn ⊂ C(Udn) (referred to as a sieve), such that the following three
conditions hold for all sufficiently large n:

Πn

(∥∥WA,Γ,Θ − f∗n
∥∥
∞ ≤ 2εn

)
≥ exp(−nε2n),(5.2)

Πn

(
WA,Γ,Θ /∈ Bn

)
≤ exp(−5nε2n),(5.3)

logN (3εn,Bn, ∥·∥∞) ≤ nε2n.(5.4)

This is the purpose of the next sections. The first condition (5.2), referred to as prior mass condition,
ensures that the prior puts a sufficient amount of mass around the true parameter. Condition (5.3),
called sieve condition, forces the sieve Bn to capture most of the mass of the prior, while the entropy
condition (5.4) constrains its size. These three conditions map one to one with the conditions of
Theorem 2.1 in [GGV00], as showed in [VV08a] for density estimation and regression with fixed
design. For regression with random design, we recall in the next section some arguments spread out
in Bayesian literature.

5.1.1 Regression with random design

Here, we show that Theorem 2.1 in [GGV00] can be applied in the regression with random design
setting, as soon as Conditions (5.2), (5.3), and (5.4) are satisfied. The procedure consists in showing
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that the posterior contracts to the density of a pair (Xi, Yi) and then to retrieve f∗n from this density.
For a function f : Udn → R, we define Pf : Udn × R → R+, (x, y) 7→ Gn(x) · Φf(x),σ(y), where
Φµ,σ is the density of a univariate Gaussian variable with mean µ and standard deviation σ and Gn

is the density of one covariate. Then, the density of one observation (X,Y ) under regression with
random design is Pf∗

n
. We first prove that Condition (5.2) implies Condition (2.4) in [GGV00] with

C = 1. Detailed calculations can be found in [FS23], Section A.2. We have to compare the uniform
neighborhood of f∗n with the Kullback-Leibler neighborhood

B2(Pf∗
n
; ε) := {g : KL(Pf∗

n
, Pg) ≤ ε2, V2,0(Pf∗

n
, Pg) ≤ ε2},

where KL(Pf , Pg) := Pf [log(dPf/dPg)] is the Kullback-Leibler divergence between Pf and Pg and
V2,0(Pf , Pg) := Pf [log(dPf/dPg)−KL(Pf , Pg)]

2 is the Kullback-Leibler variation. Using the following
identities from [FS23]

KL(Pf , Pg) =
1

2σ2
∥f − g∥22,Gn

,

V2(Pf , Pg) := Pf

[
log

(
dPf

dPg

)2
]

=
1

σ2
∥f − g∥22,Gn

+

(
1

2σ2

∥∥(f − g)2
∥∥
2,Gn

)2

,

V2,0(Pf , Pg) = V2(Pf , Pg) − KL(Pf , Pg)
2,

we deduce that, if ∥f − g∥∞ ≤ 2ε with 2ε < 1, then

KL(Pf , Pg) ≤ 1

2σ2
∥f − g∥2∞ ≤ 2ε2

σ2
,

V2,0(Pf , Pg) ≤ 4C2
σ · ε2,

where Cσ :=
√
1/σ2 + 1/(4σ4). Consequently, according to (5.2), and multiplying εn by 4C2

σ if
necessary, we have

Πn

(
B2(Pf∗

n
; εn)

)
≥ exp

(
− 1

4C2
σ

nε2n

)
.

One can remark that for Condition (2.4) in [GGV00] to be satisfied, we must have (4C2
σ)

−1 ≤ 1 which
is the case as soon as σ ≤ 2.

Condition (2.3) in [GGV00] is immediately deduced from (5.3). For Condition (2.4), we use the
inequality

(5.5) h(Pf , Pg) ≤ 1

2σ
∥f − g∥∞ ,

see again [FS23] for details. Then, assuming that σ ≥ 1, we have, according to (5.4) and multiplying
εn by 3 if necessary,

D (εn,Bn, h) ≤ N
(εn
2
,Bn, h

)
≤ N

( εn
2σ
,Bn, h

)
≤ N (εn,Bn, ∥·∥∞) ≤ exp(nε2n),

where the first inequality comes from the definition of the packing number D and the covering number
N and where the third inequality follows from (5.5). Theorem 2.1 in [GGV00] then ensures posterior
consistency to Pf∗

n
at rate εn in Hellinger distance. Now, because we also have the converse inequality

h2(Pf , Pg) ≥ 1

4σ2
exp

(
− Q2

2σ2

)
· ∥f − g∥22,Gn

if ∥f∥∞ ≤ Q and ∥g∥∞ ≤ Q

12
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and that h(PfQ , PgQ) ≤ h(Pf , Pg) when nothing is assumed on f and g with fQ = (f ∨ −Q) ∧Q, we
obtain posterior contraction to f∗n at rate εn in the L2(Gn)-distance:

P∗
n

[
Πn

(
g ∈ C(Udn

) :
∥∥f∗nQ − gQ

∥∥
2,Gn

> DQ
σ · εn | (X1, Y1), . . . , (Xn, Yn)

)]
−→

n→+∞
0,

where DQ
σ :=M · 2σ · exp

(
Q2/(4σ2)

)
.

Remark 5.1. The restriction to [1, 2] for the standard deviation σ can be relaxed. In fact, if σ > 2,
then it suffices to consider Theorem 2.1 in [GGV00] with C = (4C2

σ)
−1. Condition (2.4) in [GGV00]

is then immediately satisfied and, for Condition (2.3), the proof of (5.3) can be adapted to replace 5
by 4 + C. On the contrary, if 0 < σ < 1, Condition (2.2) in [GGV00] can be satisfied by multiplying
εn by σ−1.

5.1.2 Prior mass condition (5.2)

We verify here that Πn

(∥∥WA,Γ,Θ − f∗n
∥∥
∞ ≤ 2εn

)
≥ exp(−nε2n). Let us introduce the following

notation.

Notation. For q ∈ Odn
, we denote by fn,q : Udn

→ R the function such that fn,q(x) = f0 ((qx)d0),
for all x ∈ Udn

. Hence, f∗n = fn,q∗n .

We first reduce the problem to deterministic dimension and direction by conditioning with Γ = d0
and integrating over Odn

:

Πn

(∥∥WA,Γ,Θ − f∗n
∥∥
∞ ≤ 2εn

)
≥ πΓ(d0)

∫
Odn

Πn

(∥∥WA,d0,q − f∗n
∥∥
∞ ≤ 2εn

)
dq.

Now, we want to bound from below the integrand on a significant subset of Odn
. We remark that if

q ∈ Odn
is such that ∥f∗n − fn,q∥∞ ≤ εn, then

Πn

(∥∥WA,d0,q − f∗n
∥∥
∞ ≤ 2εn

)
≥ Πn

(∥∥WA,d0,q − fn,q
∥∥
∞ ≤ εn

)
.

We show that the right-hand side is bounded from below by exp(− 1
2nε

2
n) and then, we bound from

below the measure of the set of q ∈ Odn satisfying ∥f∗n − fn,q∥∞ ≤ εn.
From now on, we use without specification the constants of Lemmas 5.5, 5.6, and 5.7 and we fix

a0 > 1. Let a ∈ [Kn, 2Kn] where Kn =
(

2Cf0

εn

)1/β
. We suppose n large enough so that εn/2 <

min(εa0,d0

0 ;Cf0 · a
−β
0 ; 1/2). Then,

(5.6) Kn >

(
Cf0

Cf0 · a
−β
0

)1/β

= a0,

and, because a ≥
(

2Cf0

εn

)1/β
, we have

(5.7)
εn
2

≥ Cf0 · a−β .

13
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According to Lemma 5.3 in [VV08b], for q ∈ Odn
, we can write

Πn

(∥∥WA,d0,q − fn,q
∥∥
∞ ≤ εn

)
≥
∫ 2Kn

Kn

Πn

(∥∥W a,d0,q − fn,q
∥∥
∞ ≤ εn

)
πn,d0(a)da

≥
∫ 2Kn

Kn

exp
(
−ϕa,d0,q

fn,q
(εn/2)

)
πn,d0

(a)da,

where ϕa,d0,q
fn,q

is the concentration function in (3.3). Now we want to control the concentration function
using Lemmas 5.5 and 5.7. The inequality (5.6) and the previous restriction on n ensure that the
conditions of Lemma 5.7 are satisfied with ε = εn/2, while (5.7) and Lemma 5.5 give

inf
{∥∥h∥∥2Ha,d0,q

: h ∈ Ha,d0,q,
∥∥h− fn,q

∥∥
∞ ≤ εn/2

}
≤ Df0 · ad0 .

Using the expression (3.3) of the concentration function, a combination of the two lemmas gives

ϕa,d0,q
fn,q

(εn/2) ≤ Df0 · ad0 + Ca0,d0 · ad0 log(2a/εn)
d0+1

=
(
Df0 log(2a/εn)

−d0−1 + Ca0,d0

)
ad0 log(2a/εn)

d0+1

≤
(
Df0 log(a0)

−d0−1 + Ca0,d0

)
ad0 log(2a/εn)

d0+1,

where the last inequality holds because a ≥ a0 and εn ≤ 1 for n large enough. Let us define the
constant Cf0,a0,d0

:= Df0 log(a0)
−d0−1+Ca0,d0

and note that there exists a constant C ′
f0

such that for

sufficiently large n, log(4Kn/εn) = log
(
4(2Cf0)

1/βε
−(1+1/β)
n

)
≤ C ′

f0
log(1/εn). Then, there exists a

constant C ′
f0,a0,d0

such that∫ 2Kn

Kn

exp
(
−ϕa,d0,q

fn,q
(εn/2)

)
πn,d0

(a)da ≥
∫ 2Kn

Kn

exp
(
−Cf0,a0,d0

· ad0 log(2a/εn)
d0+1

)
πn,d0

(a)da

≥ exp
(
−Cf0,a0,d0

(2Kn)
d0 log(4Kn/εn)

d0+1
)
πn,d0

(2Kn)

(Assumption 3.4) ≥ exp
(
−C ′

f0,a0,d0
· ε−d0/β

n log(1/εn)
d0+1

)
.

With the help of the reminder (5.1), we see that

ε
−d0

β
n = C

−d0

β
ε · n

d0

2β+d0 · (log n)−
(d0+1)d0

2β+d0 and
(
log

1

εn

)d0+1

< (log n)d0+1,

hence ε−d0/β
n log(1/εn)

d0+1 < C
−d0/β
ε nε2n. Then, by choosing Cε such that Cd0/β

ε ≥ 2C ′
f0,a0,d0

, we can
achieve

(5.8) Πn

(∥∥WA,d0,q − fn,q
∥∥
∞ ≤ εn

)
≥ exp

(
−
C ′

f0,a0,d0
· nε2n

C
d0/β
ε

)
≥ exp

(
−1

2
nε2n

)
.

At this point, the problem amount to bound from below the measure of the set of q ∈ Odn
satisfying

∥f∗n − fn,q∥∞ ≤ εn. We denote by Aεn this set. The core function f0 is continuous on the compact
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subset Ud0
, so there exists a constant D1 > 0 such that f0 is β-Hölder with Hölder constant D1. Then,

for all q, q′ ∈ Odn ,

∥fn,q′ − fn,q∥∞ = sup
x∈Udn

|f0 ((q′x)d0)− f0 ((qx)d0)| ≤ D1 · |||q′ − q|||β .

From now on, it is apparently sufficient to compute the measure of a ball in Odn with radius (εn/D1)
1/β .

In fact, BOdn

(
q∗n, (εn/D1)

1/β
)
⊂ Aεn . However, this leads to a design dimension dn not larger than

nd0/(4β+2d0). To obtain dn of order nd0/(2β+d0), we have to consider a larger subset.

Notation. Let F ⊂ Rdn be a linear subspace of Rdn . We denote by Odn(F ) the set of isometries
that fix F :

Odn
(F ) := {q′ ∈ Odn

: q′|F = Id}.

Then, for all q′ ∈ Odn
((q∗n)

−1(Ed0)), we have

fn,q∗nq′ = fn,q∗n ◦ q′ = fn,q∗n and ∥f∗n − fn,q∥∞ =
∥∥fn,q∗nq′ − fn,q

∥∥
∞ ≤ D1 · |||q∗nq′ − q|||β .

For ε > 0, we define

Qq∗n,ε
:= {q ∈ Odn

: ∃q′ ∈ Odn
((q∗n)

−1(Ed0)), |||q∗nq′ − q||| ≤ ε}.

Then, Qq∗n,(εn/D1)1/β ⊂ Aεn . Since the Haar measure is translation invariant, it is sufficient to cover
Odn

with translations of Qq∗n,ε
to obtain a lower bound on the measure of Qq∗n,ε

, that is, to cover Odn

with sets qQq∗n,ε
where q belongs to some net R ⊂ Odn

and then remark that P(Θ ∈ Qq∗n,ε
) ≥ 1/ |R|.

Lemma 5.1. We have,

P(Θ ∈ Qq∗n,ε
) ≥

(
2

πdn

)d0

2
·
(

ε

16
√
d0dn

)d0(dn−1)

.

Proof of Lemma 5.1. Let q′′ ∈ Odn
. The first step consists in constructing a net R ⊂ Odn

such that
there exist q ∈ R and q ∈ Qq∗n,ε

with q′′ = qq. Let (u1, . . . , ud0
, ud0+1, . . . , udn

) be an orthonormal

basis adapted to the direct sum Rdn = (q∗n)
−1(Ed0)

⊥⊕
(q∗n)

−1(E1−d0).
For all d0-tuple of orthonormal vectors g = (g1, . . . , gd0

), we fix rg ∈ Odn
an isometry such that

rg(q
∗
nui) = gi for all i ∈ J1, d0K. Moreover, we denote by G a set of d0-tuples of orthonormal vectors in

Rdn such that, for all d0-tuples f = (f1, . . . , fd0) of orthonormal vectors, there exists g ∈ G satisfying

sup
i∈J1,d0K

∥gi − fi∥ ≤ ε

2
√
d0dn

.

We claim that we can take R := {rg : g ∈ G}. Indeed, there exists g ∈ G such that

sup
i∈J1,d0K

∥gi − q′′(ui)∥ ≤ ε

2
√
d0dn

.

By Lemma 5.8, we can extend g in an orthonormal basis of Rdn such that

(5.9) sup
j∈J1,dnK

∥gj − q′′(uj)∥ ≤ ε√
dn
.
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Then, writing q = rg and taking q such that q(uj) = r−1
g (q′′uj) for all j ∈ J1, dnK, we have q′′ = qq.

Moreover, because r−1
g (gj) ∈ E1−d0 and (q∗n)

−1r−1
g (gj) ∈ (q∗n)

−1(E1−d0) for j ∈ Jd0 + 1, dnK, we can
define q′ such that {

q′(ui) = ui, if i ∈ J1, d0K,
q′(uj) = (q∗n)

−1r−1
g (gj), if j ∈ Jd0 + 1, dnK.

Then, we have q′ ∈ Odn((q
∗
n)

−1(Ed0)) and according to (5.9),

∥q∗nq′(ui)− q(ui)∥ =
∥∥q∗n(ui)− r−1

g (q′′ui)
∥∥ = ∥rgq∗n(ui)− q′′(ui)∥ ≤ ε√

dn
, for i ∈ J1, d0K,

and,

∥q∗nq′(uj)− q(uj)∥ =
∥∥r−1

g (gj)− q(uj)
∥∥ = ∥gj − rg(quj)∥ ≤ ε√

dn
, for j ∈ Jd0 + 1, dnK.

So |||q∗nq′ − q||| ≤ ε and the net R := {rg : g ∈ G} is appropriate. Finally, by taking G as in Lemma
5.10, we obtain

|R| ≤
(
πdn
2

)d0

2
·
(
16
√
d0dn
ε

)d0(dn−1)

,

hence the result.

Consequently, we have established that

P(Θ ∈ Aεn) ≥
(

2

πdn

)d0

2
·

((
εn
D1

) 1
β 1

16
√
d0dn

)d0(dn−1)

.

Recall that we have the following lower bound:

Πn

(∥∥WA,Γ,Θ − f∗n
∥∥
∞ ≤ 2εn

)
≥ πΓ(d0) · P(Θ ∈ Aεn) · exp

(
−1

2
nε2n

)
.

In order to establish the prior mass condition, it suffices to derive the greatest design dimension dn for
which we can reach

P(Θ ∈ Aεn) ≥ πΓ(d0)
−1 exp

(
−1

2
nε2n

)
.

For n large enough, a design dimension dn as specified in Assumption 3.5 is appropriate for sufficiently
small constant CD.

Remark 5.2. The exponent d0(dn − 1) in Lemma 5.1 is probably not far to be optimal. In fact,
ignoring the constants, changing this exponent to dαn with α < 1 would lead to a growth rate of
nd0/(α(2β+d0)) which, when β is close to zero, gives a growth rate with an order superior to n. The
breakpoint of some popular subspace estimators, such as SIR, being the order n, it would be surprising
to estimate a function faster than its central subspace.
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5.1.3 Sieve condition (5.3)

The second condition can be verified similarly as in [JT21]. As in the previous section, we will first
treat the case with deterministic rescaling parameter, dimension, and direction and then integrate
according to A, Γ, and Θ.

We suppose that n is large enough so that dn > dmax. We introduce the quantities Mn := CM

√
nε2n

for some large constant CM and, for 1 ≤ b ≤ dmax, the quantity rn,b such that rbn,b(log n)
b+1 = Crnε

2
n,

for a large constant Cr. The sieve Bn is defined as follows:

Bn :=
⋃

q∈Odn

Bn,q,

with

Bn,q :=

dmax⋃
b=1

Bn,b,q and Bn,b,q := Mn
√
rn,b ·H

rn,b,b,q
1 + εnB1,

where B1 is the unit ball in the Banach space (C0(Udn
), ∥·∥∞).

The nesting property of Lemma 4.7 in [VV09] remains true in the present setting, that is, for a ≤ a′,
√
a ·Ha,b,q

1 ⊆
√
a′ ·Ha′,b,q

1 .

Consequently, if 1 ≤ a ≤ rn,b, then

MnHa,b,q
1 + εnB1 ⊆ Mn

√
rn,b
a

·Hrn,b,b,q
1 + εnB1 ⊆ Bn,b,q.

By Borell’s inequality (see [VV08b], Theorem 5.1, or [Bor75]), for every a ∈ [1, rn,b],

Πn(W
a,b,q /∈ Bn) ≤ Πn(W

a,b,q /∈ Bn,b,q)

≤ Πn(W
a,b,q /∈MnHa,b,q

1 + εnB1)

≤ 1− Φ
(
Φ−1

(
Πn

(∥∥W a,b,q
∥∥
∞ ≤ εn

))
+Mn

)
,

where Φ is the cumulative distribution function of the standard normal distribution. Now, because

Πn

(∥∥W a,b,q
∥∥
∞ ≤ εn

)
≥ Πn

(∥∥W rn,b,b,q
∥∥
∞ ≤ εn

)
= exp

(
−ϕrn,b,b,q

0 (εn)
)
,

we have
Πn(W

a,b,q /∈ Bn) ≤ 1− Φ

(
Φ−1

(
e−ϕ

rn,b,b,q

0 (εn)

)
+Mn

)
.

For n large enough, we have εn ≤ min{εa0,b
0 : b ∈ J1, dmaxK} and rn,b ≥ a0, so according to Lemma 5.7

and because b ≤ dmax, we have

ϕ
rn,b,b,q
0 (εn) ≲ rbn,b log

(
rn,b
εn

)b+1

≲ rbn,b(log n)
b+1 ≲ nε2n,

for sufficiently large n. So by takingM2
n a very large multiple of nε2n, we can reachMn ≥ 4

√
ϕ
rn,b,b,q
0 (εn).

The second assertion of Lemma 4.10 in [VV09] gives Mn ≥ −2Φ−1
(
exp
(
−ϕrn,b,b,q

0 (εn)
))

which leads
to the upper bound

Πn(W
a,b,q /∈ Bn) ≤ 1− Φ(Mn/2) ≤ exp(−M2

n/8).
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Taking into account the random rescaling parameter A, we have, for sufficiently large n,

Πn(W
A,b,q /∈ Bn) ≤

∫ rn,b

c

Πn(W
a,b,q /∈ Bn)πn,b(a)da + πn,b(A ≥ rn,b)

(Assumption 3.4) ≤ exp(−M2
n/8) + D2

∫ ∞

rn,b

exp
(
−C2a

b(log a)b+1
)
da

≤ exp(−M2
n/8) + D2

∫ ∞

rn,b

C2a
b−1((b+ 1) logb a+ b logb+1 a) exp

(
−C2a

b(log a)b+1
)
da

≤ exp(−M2
n/8) + D2 exp

(
−C2r

b
n,b(log rn,b)

b+1
)

≤ 1

2
exp(−5nε2n) +

1

2
exp(−5nε2n)

= exp(−5nε2n),

where the last inequality holds because Cr and CM are supposed to be large enough.
Now considering the prior on the sparsity pattern, we obtain

Πn(W
A,Γ,Θ /∈ Bn) ≤

dmax∑
b=1

Πn(Γ = b)

∫
Odn

Πn(W
A,b,q /∈ Bn)dq ≤ exp(−5nε2n).

5.1.4 Entropy condition (5.4)

We use again the notation and quantities of the previous section. According to Lemma 5.6, for all
q ∈ Odn

and b ∈ J1, dmaxK, the metric entropy of Bn,b,q is bounded as:

logN
(
2εn,Mn

√
rn,bH

rn,b,b,q
1 + εnB1, ∥·∥∞

)
≤ logN

(
εn,Mn

√
rn,bH

rn,b,b,q
1 , ∥·∥∞

)
,

≲ rbn,b log
(
Mn

√
rn,bε

−1
n

)b+1
.

The simple estimation log
(
Mn

√
rn,bε

−1
n

)
≍ log n gives then

(5.10) logN (2εn,Bn,b,q, ∥·∥∞) ≲ nε2n.

The metric entropy of Bn,q is derived as follows:

N (2εn,Bn,q, ∥·∥∞) ≤
dmax∑
b=1

N (2εn,Bn,b,q, ∥·∥∞) ≤ dmax max
1≤b≤dmax

N (2εn,Bn,b,q, ∥·∥∞) .

To extend these inequalities to the full sieve, we need the following lemma from [Tok11].

Lemma 5.2 (Tokdar 2011, Lemma 1). Let a > 0, b < dn and q, q̃ ∈ Odn
. Then

Ha,b,q
1 ⊆ Ha,b,q̃

1 + a
√
2b · |||q − q̃|||B1,

where B1 is the unit ball in (C0(Udn
), ∥·∥∞).
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By examining the representation result in (3.2) for Ha,b,q, we see that, for all q′ ∈ Odn
(q−1(Eb)),

we have Ha,b,q = Ha,b,qq′ . Hence, Lemma 5.2 gives

Ha,b,q
1 ⊆ Ha,b,q̃q′

1 + a
√
2b · |||q − q̃|||B1.

If Rn is a net over Odn
such that for all q ∈ Odn

, there exist q′ ∈ Odn
(q−1(Ed0)) and q ∈ Rn with

|||qq′ − q||| ≤ ζn, where ζn is the minimum of εn/(Mnr
3/2
n,b

√
2dn) when b runs through J1, dmaxK, then

Mn
√
rn,b ·H

rn,b,b,q
1 ⊆ Mn

√
rn,b ·H

rn,b,b,q
1 + Mnr

3/2
n,b

√
2b · |||qq′ − q|||B1

⊆ Mn
√
rn,b ·H

rn,b,b,q
1 + εnB1

= Bn,b,q.

This clearly implies
Bn,q ⊆ Bn,q + εnB1,

and hence
Bn =

⋃
q∈Odn

Bn,q ⊆
⋃

q∈Rn

(Bn,q + εnB1) .

Consequently, the 3εn-entropy of Bn can be bounded by the cardinal of the net Rn times the maximal
2εn-entropy of sets Bn,b,q:

N (3εn,Bn, ∥·∥∞) ≤
∑
q∈Rn

N (3εn,Bn,q + εnB1, ∥·∥∞)

≤
∑
q∈Rn

N (2εn,Bn,q, ∥·∥∞)

≤ |Rn| · dmax max
1≤b≤dmax

q∈Rn

N (2εn,Bn,b,q, ∥·∥∞) .

It only remains to bound the cardinal of Rn.

Lemma 5.3. For ζ > 0, there exists a net R over Odn
such that⋃

q∈R
Aq = Odn

,

where
Aq := {q ∈ Odn

| ∃q′ ∈ Odn
(q−1(Ed0)), |||qq′ − q||| ≤ ζ},

and such that

|R| ≤
(
π
√
d0dn
2

)d0 (
16

√
d0dn
ζ

)d0(dn+d0−2)

.

Proof. Firstly, we remark that

Aq =
{
q ∈ Odn

| ∃q′′ ∈ Odn
, q′′|q−1(Ed0

) = q|q−1(Ed0
) and |||q′′ − q||| ≤ ζ

}
.

Thus, for q ∈ Odn , we search to construct q such that there exists q′′ ∈ Odn satisfying q′′|q−1(Ed0
) =

q|q−1(Ed0
) and |||q′′ − q||| ≤ ζ.
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Let (u1, . . . , ud0
, ud0+1, . . . , udn

) be an orthonormal basis adapted to the direct sum Rdn = (q)−1(Ed0)
⊥⊕

(q)−1(E1−d0). We introduce F a set of orthonormal basis of Ed0 such that, for all orthonormal
basis f ′ of Ed0 , there exists f ∈ F such that

sup
i∈J1,d0K

∥fi − f ′i∥ ≤ ζ

2
√
d0dn

,

and we reuse the set G of Lemma 5.1, replacing ε by ζ. For all g ∈ G and f ∈ F , we fix an isometry
rg,f ∈ Odn such that rg,f (gi) = fi, for all i ∈ J1, d0K.

By construction, there exist f ∈ F and g ∈ G such that

sup
i∈J1,d0K

∥fi − q(ui)∥ ≤ ζ

2
√
d0dn

and sup
i∈J1,d0K

∥gi − ui∥ ≤ ζ

2
√
d0dn

.

Then we choose q = rg,f . Using Lemma 5.8, we extend g to an orthonormal basis over Rdn such that
supj∈J1,dnK ∥gj − uj∥ ≤ ζ/

√
dn and we define fj := rg,f (gj) ∈ E⊥

d0
, for j ∈ Jd0 + 1, dnK. Now we

choose q′′ ∈ Odn such that {
q′′(ui) = q(ui) if i ∈ J1, d0K,
q′′(uj) = fj if j ∈ Jd0 + 1, dnK.

This leads to ∥q′′(uj)− q(uj)∥ ≤ ζ/
√
dn, for all j ∈ J1, dnK, hence |||q′′ − q||| ≤ ζ. We can thus define

the net R as the set of all isometries rg,f for g ∈ G and f ∈ F . According to Lemma 5.10, this yields
the upper bound

|R| = |G| · |F|

≤
(
πdn
2

)d0

2
(
16
√
d0dn
ζ

)d0(dn−1)(
πd0
2

)d0

2
(
16

√
d0dn
ζ

)d0(d0−1)

.

Observing that the upper bound in (5.10) does not hide a constant depending on q, we can write

max
1≤b≤dmax

q∈Rn

N (2εn,Bn,b,q, ∥·∥∞) ≲ nε2n.

Then, the lemma yields the following inequality:

N (3εn,Bn, ∥·∥∞) ≲

(
π
√
d0dn
2

)d0
(
16Mnr

3/2
n dn

√
2d0

εn

)d0(dn+d0−2)

dmax · nε2n,

where rn := max{rn,b : b ∈ J1, dmaxK}, which, with the logarithm and for sufficiently large n, gives the
desired result.

5.2 Proof of Theorem 4.1

5.2.1 Case Γ < d0

The idea of the proof is to show that the non-constancy of p0 in all directions results in a significant dif-
ference (in the Hellinger sense) between the true density p∗ and any density that is more parcimonious
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than p∗. If this difference can be bounded from below, then the set of over-parcimonious densities is
expected to have an almost-null posterior mass as soon as the contraction rate falls below the lower
bound.

Let q ∈ Od and let p̃ be a density that satisfies the model with parameters Γ and q. Then, p̃ is
constant on q−1(E1−Γ) + x, for any x ∈ Ud. Moreover, the intersection between S and q−1(E1−Γ)
is non-null so p̃|S is constant in at least one direction, say ∆ ∈ S. We will use Assumption 4.1 and
integrate the Hellinger distance over a small square inside the region where p∗ is non-constant in ∆.
As usual, we denote ∆ := Span(∆).

Let us introduce the operator

Ψ : Rd0 → S
x 7→ (q∗)−1(xd0).

In particular, we have p∗ ◦Ψ = p0. We use the notation of Assumption 4.1 with Ψ−1(∆) instead of ∆.
Let (∆, u1, . . . , ud0−1; v1, . . . , vd−d0) be an orthonormal basis adapted to the direct sum Rd =

∆ ⊕ (∆⊥ ∩ S) ⊕ S⊥ and let R be a solid square with edges parallel to this basis, of size L/
√
d and

centered on Ψ(o). Then, R ⊂ Bd(L/2)+Ψ(o) and the inequality of Assumption 4.1 is valid when t ∈ R.
Considering the basis previously introduced, integrating over R amounts to integrate with respect to
each variables. To simplify, we bundle these variables in three groups: a variable δ parallel to ∆, a
variable u parallel to ∆⊥ ∩ S and a variable v parallel to S⊥. In this coordinate system, we can write
Ψ(o) = (Ψ(o)1,Ψ(o)2, 0) and we have p∗(δ, u, v) = p0(Ψ

−1(δ, u, 0)).Then

h2(p∗|R ; p̃|R) =

∫∫∫
R

∣∣∣√p∗(δ, u, 0)−√p̃(0, u, v)∣∣∣2 dδ du dv
=

∫∫ (∫ ∣∣∣√p0(Ψ−1(δ, u, 0))−
√
p̃(0, u, v)

∣∣∣2 dδ) du dv
=

∫∫
h2
(
p0|Iu ; p̃(0, u, v)

)
du dv,

where Iu is the inverse image via Ψ of the range of the integral in δ. Hence

Ψ(Iu) = (Ψ(o)1, u, 0) +
]
− L

2
√
d
∆ ;

L

2
√
d
∆
[

with u ∈ Ψ(o)2 +
]
− L

2
√
d
;

L

2
√
d

[ d0−1

.

Then because Ψ−1(Ψ(o)1, u, 0) ∈ o+ Bd0(L/2), there exists t ∈ Bd0(L/2) such that

(5.11) Iu = o + t +
]
− L

2
√
d
Ψ−1(∆) ;

L

2
√
d
Ψ−1(∆)

[
.

Now we can use Assumption 4.1 and bound from below the Hellinger distance in the last integral,
which gives

h2(p∗|R ; p̃|R) ≥
∫∫

D · L
2

d
du dv = D ·

(
L√
d

)d+1

.

Finally, Πn(Γ < d0 | X1, . . . , Xn) = 0 as soon as the contraction rate achieves εn ≤
√
D
(

L√
d

) d+1
2

.
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5.2.2 Case Γ = d0

Case Γ = d0, with d = 2 and d0 = 1. To simplify the presentation, we first restrict ourselves to
the case d = 2 and d0 = 1. Assumption 4.1 specializes as follows: for all 0 < l ≤ L, there exists
o ∈ [−1 + L, 1− L] such that, for all t ∈ [−l/2, l/2] and all constant c > 0,

h2
(
p0|]o+t− l

2 ;o+t+ l
2 [
; c
)

=

∫ o+t+ l
2

o+t− l
2

∣∣∣√p0(λ)−√
c
∣∣∣2 dλ ≥ D · l2.

We use the fact that the non-constancy of p∗ over S induces a non-constancy over any one-
dimensional space not parallel to S⊥. It is then possible to set a lower bound on the Hellinger
distance between p∗ and any density that is constant on a space not parallel to S⊥. For q ∈ O2, we
denote E := q−1(Ed0) and F := E⊥. If q is not in Q∗, then there exists 0 < ϑ ≤ π/2 such that for all
q ∈ Q∗, we have |||q − q||| > ϑ. Then, the intersections of F and S⊥ with the unit circle are separated
by at least ϑ.

With this setting, any square of size L/
√
2 centered in Ψ(o) is included in U2. Let R be a solid

square of size L/
√
2, parallel to the line F and centered on Ψ(o). The line F + Ψ(o) intersects the

border of R at two points (see Figure 1), and using arguments from geometry on the two-dimensional
Euclidean space, we can show that the orthogonal projections of these points over S are at a distance
ζ ≥ Lϑ

4
√
2

√
4− ϑ2 from Ψ(o). Similarly, the line E+Ψ(o) intersects the border of R at two points whose

orthogonal projections on S are at a distance χ ≤ L
2
√
2

√
1− ϑ2 + ϑ4/4 from Ψ(o).

Let (u,v) be an orthogonal basis of R2 adapted to the decomposition E⊕F and such that prS(u) =
2
√
2

L χ ·Ψ(1) and prS(v) =
2
√
2

L ζ ·Ψ(1). In this system of coordinates, Ψ(o) can be written (o1, o2) and
for all u, v ∈ R2, we have

Ψ−1 (prS(u, v)) = χ · 2
√
2

L
u + ζ · 2

√
2

L
v.

We will also use the fact that p∗(u, v) = p0
(
Ψ−1 (prS(u, v))

)
. Then, for all density p̃ constant in the

direction F , we have

h2(p∗|R ; p̃|R) =

∫∫
R

|
√
p∗(u, v)−

√
p̃(u, 0)|2du dv

=

∫∫
R

|
√
p0 (Ψ−1 (prS(u, v)))−

√
p̃(u, 0)|2du dv

=

∫ o1+L/(2
√
2)

o1−L/(2
√
2)

∫ o2+L/(2
√
2)

o2−L/(2
√
2)

∣∣∣∣∣p0(χ · 2
√
2

L
u + ζ · 2

√
2

L
v
)1/2

−
√
p̃(u, 0)

∣∣∣∣∣
2

dv du

=

∫ L/(2
√
2)

−L/(2
√
2)

∫ L/(2
√
2)

−L/(2
√
2)

∣∣∣∣∣p0(o+ χ · 2
√
2

L
u + ζ · 2

√
2

L
v
)1/2

−
√
p̃(u, 0)

∣∣∣∣∣
2

dv du

=

∫ L/(2
√
2)

−L/(2
√
2)

L

2ζ ·
√
2

∫ ζ

−ζ

∣∣∣∣∣p0(o+ χ · 2
√
2

L
u + w

)1/2
−
√
p̃(u, 0)

∣∣∣∣∣
2

dw

 du

(Assumption 4.1) ≥
∫ L/(2

√
2)

−L/(2
√
2)

L

2ζ ·
√
2
·D · 4ζ2 du = DL2 · ζ ≥ D · L3

4
√
2
ϑ
√

4− ϑ2.
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0

1

1

F

S⊥

ϑ

S

E +Ψ(o)

Ψ(o)

F +Ψ(o)

R

L/
√
2

χ ζ

Figure 1: Illustration of the proof of Theorem 4.1 in the case Γ = d0 with d = 2 and d0 = 1.

Finally, Πn (Γ = d0 and minq∈Q∗ |||Θ− q||| ≥ ϑ | X1, . . . , Xn) = 0 as soon as εn <
√
DL2 · ζ.

Case Γ = d0, with arbitrary d > d0. Given a non-optimal isometry q, we need to quantify how
far from S⊥ the inverse image of the subspace E1−d0 via q is. This result, elementary when d = 2, is
stated for arbitrary d > d0 in the following lemma. A proof is given in Appendix 5.3.

Lemma 5.4. Let q ∈ Od. If for all q ∈ Q∗, we have |||q − q||| > ϑ, 0 < ϑ ≤ π/2, then there exists
r ∈ E1−d0 , ∥r∥ = 1, such that the distance between q−1(r) and S⊥ ∩ Sd is at least ϑ/2d =: ϑ, where
Sd := {x ∈ Rd : ∥x∥ = 1}.

Now we work under the assumptions of Lemma 5.4. Let G be the linear span of q−1(r) and its
orthogonal projection Λ on S⊥ (or any vector of S⊥ if the orthogonal projection is zero). Then G has
a non-zero intersection with S. Let ∆ be this one-dimensional intersection.

Let R be a solid hypercube centered on Ψ(o), with size L := L/
√
d, and aligned with an orthog-

onal basis (∆, u1, . . . , ud0−1,Λ, v1, . . . , vd−d0−1) adapted to the direct sum Rd = S ⊕ S⊥. With the
restrictions on o, R is included in Ud.

We will bound from below the quantity h2(p∗|R; p̃|R) by using the preceding two-dimensional case

on slices of R. For t ∈ {0}×
∏d0−1

i=1 [o−L/2 ·ui; o+L/2 ·ui]×{0}×
∏d−d0−1

j=1 [o−L/2 · vj ; o+L/2 · vj ],
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the plane G+ t contains one element parallel to S and one element parallel to S⊥, so the situation is

analogue to the previous case, replacing ζ by ζ := L
2 ϑ

√
4− ϑ

2
(Figure 2). With all this in mind, for

all density p̃ constant in the direction q−1(r), one has

h2(p∗|R ; p̃|R) =

∫
t

h2(p∗|R∩(G+t); p̃|R∩(G+t))dt ≥
∫
t

2DL
2
ζdt = 2DL

d
ζ,

which is sufficient to conclude.
The case Γ > d0 can be proven in a similar way.

G+ t

1

S⊥ + t

∆+ t

E + t

t

F + t

R

L/
√
d

χ ζ

Figure 2: Illustration of the proof of Theorem 4.1 in the case Γ = d0 for arbitrary d > d0.

5.3 Lemmas
The next three lemmas are related to Lemmas 4.3, 4.5, and 4.6 in [VV09], hence their proofs can be
omitted.

Lemma 5.5. Let n ∈ N∗ and β > 0. If f0 ∈ Cβ(Ud0
), then, for all a > 0 and qn ∈ Odn

, there exist
constants Cf0 and Df0 that depend only on f0 such that

inf
{∥∥h∥∥2Ha,d0,qn

: h ∈ Ha,d0,qn ,
∥∥h− fn,qn

∥∥
∞ ≤ Cf0 · a−β

}
≤ Df0 · ad0 .
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Lemma 5.6. Let n ∈ N∗, a > 0, b ≤ dmax and qn ∈ Odn
. Then, there exists a constant Lb that

depends only on b such that, for ε < 1/2,

logN(ε,Ha,b,qn
1 , ∥·∥∞) ≤ Lb · ab

(
log

1

ε

)b+1

.

Lemma 5.7. Let n ∈ N∗, b ≤ dmax and qn ∈ Odn
. Then, for a0 > 0, there exist constants Ca0,b and

εa0,b
0 that depends only on a0 and b such that, for all a ≥ a0 and ε < εa0,b

0 ,

− logP
(∥∥W a,b,qn

∥∥
∞ ≤ ε

)
≤ Ca0,b · ab

(
log

a

ε

)b+1

.

Lemma 5.8. Let n ∈ N∗ and let (e1, . . . , en) be an orthonormal basis of Rn. For d ≤ n, let
(g1, . . . , gd) ∈ Rn×d be a collection of orthonormal vectors in Rn such that

∥ei − gi∥ ≤ ε, for all i ∈ J1, dK.

Then we can complete this collection to obtain an orthonormal basis (g1, . . . , gn) of Rn satisfying

∥ej − gj∥ ≤ 2
√
d · ε, for all j ∈ J1, nK.

Proof of Lemma 5.8. We denote by F the subspace Span(g1, . . . , gd). Let us determine the distance
between a vector ej and its orthogonal projection on F⊥, for j ∈ Jd + 1, nK. By Cauchy-Schwartz
inequality, we have

|⟨ej , gi⟩| ≤ ∥ej∥ ∥gi − ei∥ ≤ ε,

for all i ∈ J1, dK. Then

(5.12) ∥ej − PF⊥(ej)∥ = ∥PF (ej)∥ =

(
d∑

i=1

⟨ej , gi⟩2 ∥gi∥2
)1/2

≤
√
d · ε.

Thus the problem reduces to find a family of n− d orthonormal vectors in F⊥ with elements as close
as possible to the vectors PF⊥(ej), for j ∈ Jd + 1, nK. This is related to what is known as procruste
problem. We denote by A the matrix A := (PF⊥(ed+1)| · · · |PF⊥(en)) ∈ Rn×n−d and we use Theorem
4.1 stated in [Hig89]:

Theorem 5.9 ([Hig89]). If A admits a polar decomposition A = UH, and if Q ∈ Rn×n−d has
orthonormal columns, then

|||A− U |||2 ≤ |||A−Q|||2.

Let us show that the columns of U can be chosen in F⊥. A singular value decomposition of A can be
written, A =WD tV , where W has orthonormal columns, V ∈ On−d, and D ∈ Rn−d×n−d is diagonal.
Therefore, A = (W tV )V D tV . Taking U :=W tV and H := V D tV , we have the polar decomposition
A = UH where U has orthonormal columns. Because Im(A) = Span (PF⊥(ej), j ∈ Jd+ 1, nK) ⊂ F⊥,
it is possible to choose W with columns in F⊥, whence the desired result.

Now, taking Q = (ed+1| · · · |en), we have, for all unit vector x ∈ Rn−d,

PF⊥(Qx) = Ax.
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Moreover, using that |⟨Qx, gi⟩| ≤ ∥Qx∥ ∥gi − ei∥ ≤ ε for all i ∈ J1, dK, we finally have

∥Qx−Ax∥2 = ∥Qx− PF⊥(Qx)∥2 ≤ dε2,

thus |||A−Q||| ≤
√
d ·ε. According to Theorem 5.9, the last inequality is also true if we replace Q by U .

Because the columns ud+1, . . . , un of U are in F⊥, the family (g1, . . . , gd, ud+1, . . . , un) is orthonormal
and moreover satisfies (5.12) by the triangle inequality.

Notation. Let d, n ∈ N∗ with d < n and let Bn
on(d) be the set of all d-tuples of orthonormal vectors

in Rn.

Lemma 5.10. Let d, n ∈ N∗ with d ≤ n and 0 < ε ≤ 1. Then there exists a set G ⊂ Bn
on(d) such that

for all e ∈ Bn
on(d), there exists g ∈ G such that

max
i∈J1,dK

∥ei − gi∥2 ≤ ε and |G| ≤
(πn

2

)d/2(8

ε

)d(n−1)

.

Proof of Lemma 5.10. Let us construct G. Let T be a set of balls in Rn with radius ε/2 which
cover Sn−1 and such that |T | = N(Sn−1, ε/2, ∥·∥2). We denote by T d

the set of d-tuples of balls
(B1, . . . , Bd) ∈ T d such that B1 × · · · × Bd contains at least one element of Bn

on(d). Then, for each
e ∈ Bn

on(d), there exists (B1, . . . , Bd) ∈ T d
such that e ∈ B1 × · · · × Bd. For each B ∈ T d

, choose
one particular d-tuple g ∈ Bn

on(d) such that g ∈ B and let G be the set of these d-tuples when B runs
through T d

. It is clear that G satisfy the first condition of the lemma. Moreover,

|G| =
∣∣T d∣∣ ≤

∣∣T d
∣∣ = N

(
ε/2,Sn−1, ∥·∥2

)d
.

Let us estimate the last quantity. We use the inequality

N
(
ε, Sn−1, ∥·∥2

)
≤ D

(
ε, Sn−1, ∥·∥2

)
,

where D
(
ε,Sn−1, ∥·∥2

)
is the maximum number of disjoint balls with radius ε/2 and with center in

Sn−1. Recall that

A
(
Sn−1

)
=

2πn/2

Γ(n/2)
and V (Bn−1(ε)) =

π
n−1
2 εn−1

Γ
(
n+1
2

) .
Consider the measure ν(ε/2) of the hyperspherical cap defined by the intersection of Sn−1 and a ball
with center in Sn−1 and with radius ε/2. The colatitude angle of the cap is ϕ = 2arcsin(ε/4) and,
according to [Li11],

ν(ε/2) =
(n− 1)π

n−1
2

Γ
(
n+1
2

) ∫ ϕ

0

sinn−2(θ)dθ.

Since ϕ ≥ ε/2,∫ ϕ

0

sinn−2(θ)dθ ≥
∫ ϕ

0

(
sinϕ

ϕ
· θ
)n−2

dθ =

(
sinϕ

ϕ

)n−2
ϕn−1

n− 1
≥
(
sinϕ

ϕ

)n−2
1

n− 1

(ε
2

)n−1

and, using the facts that ε ≤ 1, ϕ ≤ ε, and (sinϕ)/ϕ ≥ 1/2, we have
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D
(
ε,Sn−1, ∥·∥2

)
≤ A(Sn−1)

ν(ε/2)
<

A(Sn−1)

V (Bn−1(ε/2)) ·
(
1
2

)n−2 =
√
π ·
(
4

ε

)n−1

·
Γ
(
n+1
2

)
Γ(n/2)

.

The ratio of two Gamma functions can be bounded as follows√
x+ 1/4 <

Γ(x+ 1)

Γ(x+ 1/2)
<
√
x+ 1/2,

for x > −1/2 (see [Wat59] and [LQ12], Section 2.3). Choosing x = (n− 1)/2, we obtain

N
(
ε,Sn−1, ∥·∥2

)
<

√
πn

2
·
(
4

ε

)n−1

,

hence the result.

Proof of Lemma 5.4. Suppose that, for all r ∈ Ed0 , we have d(q−1(r),S ∩ Sd) < ϑ and, for all
r′ ∈ E1−d0 , d(q−1(r′),S⊥ ∩ Sd) < ϑ. Let us show that for all vectors ei of the canonical basis,∥∥q−1(ei)− q−1(ei)

∥∥ < 2
√
d · ϑ.

We begin with the first d0 vectors (e1, . . . , ed0
). Define pS an operator which maps r ∈ Ed0 to

argminu∈S∩Sd
∥∥q−1(r)− u

∥∥. Then, for i = 1, . . . , d0, we have
∥∥q−1(ei)− pS(q

−1(ei))
∥∥ < ϑ. Now,

we reuse the arguments of the proof of Lemma 5.8, with A :=
(
pS(q

−1(e1))| · · · |pS(q−1(ed0
))
)
. We

can write A = UH where U = (u1| · · · |ud0
) is a rectangular matrix with orthonormal columns in

S and where H is symmetric. Moreover, taking Q := (q−1(e1)| · · · |q−1(ed0
)), and x ∈ Ed0 ∩ Sd,

x =
∑d0

i=1 aiei, we have

∥Qx−Ax∥ =

∥∥∥∥∥
d0∑
i=1

ai ·
(
q−1(ei)− pS(q

−1(ei))
)∥∥∥∥∥ <

√
d · ϑ.

So, by Theorem 4.1 in [Hig89] (Theorem 5.9 in the present document), |||A− U ||| <
√
d · ϑ. Then,

(u1, . . . , ud0
) is an orthonormal basis of S such that

∥∥pS(q−1(ei))− ui
∥∥ < √

d ·ϑ, for i = 1, . . . , d0. Let
q ∈ Q∗ be an isometry such that q(ei) = ui, i = 1, . . . , d0. Then∥∥q−1(ei)− q−1(ei)

∥∥ ≤
∥∥q−1(ei)− pS(q

−1(ei))
∥∥+∥∥pS(q−1(ei))− q(ei)

∥∥ < 2
√
d·ϑ, i = 1, . . . , d0.

The same reasoning occurs with the remaining vectors, (ed0+1, . . . , ed), by replacing S by S⊥, and
taking A′ = U ′H ′, with U ′ = (ud0+1| · · · |ud). The isometry q ∈ Q∗ is now the one that maps ei to ui
for i = 1, . . . , d. As a result, for all x ∈ Sd, x =

∑d
i=1 aiei, we have

∥∥q−1(x)− q−1(x)
∥∥ =

∥∥∥∥∥
d∑

i=1

ai ·
(
q−1(ei)− q−1(ei)

)∥∥∥∥∥ < 2d · ϑ = ϑ,

which contradicts the fact that |||q − q||| > ϑ. Finally, d(q,Q∗) < ϑ.
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