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ABSTRACT
Objectives  Based on genetic associations, 
McGonagle and McDermott suggested a classification 
of autoimmune and autoinflammatory diseases as a 
continuum ranging from purely autoimmune to purely 
autoinflammatory diseases and comprising diseases with 
both components. We used deep immunophenotyping to 
identify immune cell populations and molecular targets 
characterising this continuum.
Methods  We collected blood from 443 patients with 
one of 15 autoimmune or autoinflammatory diseases 
and 71 healthy volunteers. Deep phenotyping was 
performed using 13 flow cytometry panels characterising 
over 600 innate and adaptive cell populations. 
Unsupervised and supervised analyses were conducted to 
identify disease clusters with their common and specific 
cell parameters.
Results  Unsupervised clustering categorised these 
diseases into five clusters. Principal component analysis 
deconvoluted this clustering into two immunological 
axes. The first axis was driven by the ratio of LAG3+ 
to ICOS+ in regulatory T lymphocytes (Tregs), and 
segregated diseases based on their inflammation levels. 
The second axis was driven by activated Tregs and type 
3 innate lymphoid cells (ILC3s), and segregated diseases 
based on their types of affected tissues. We identified 
a signature of 23 cell populations that accurately 
characterised the five disease clusters.
Conclusions  We have refined the monodimensional 
continuum of autoimmune and autoinflammatory 
diseases as a continuum characterised by both 
disease inflammation levels and targeted tissues. Such 
classification should be helpful for defining therapies. 
Our results call for further investigations into the role of 
the LAG3+/ICOS+ balance in Tregs and the contribution 
of ILC3s in autoimmune and autoinflammatory diseases.
Trial registration number  NCT02466217.

INTRODUCTION
Autoimmune diseases (AD) and autoinflammatory 
diseases (AIF) are pathological conditions arising 

WHAT IS ALREADY KNOWN ON THIS TOPIC
	⇒ Autoimmune and autoinflammatory diseases 
represent a heterogeneous group of disorders 
whose nosology is unclear, and for which there 
are no curative treatments.

	⇒ It has been proposed that these disorders are 
spread along a continuum ranging from purely 
autoimmune to purely autoinflammatory 
diseases.

	⇒ We evaluated this hypothesis by conducting 
deep immunophenotyping of blood cells from 
patients with one of 15 autoimmune and 
autoinflammatory diseases.

WHAT THIS STUDY ADDS
	⇒ Using unsupervised clustering, we found that 
diseases were categorised into five clusters.

	⇒ Using principal component analysis, we 
identified two immunological axes associated 
with disease inflammation and disease type/
localisation rather than a monodimensional 
continuum of diseases.

	⇒ The ratio of LAG3+ and ICOS+ in regulatory 
T lymphocytes (Tregs) was associated with 
disease inflammation levels.

	⇒ Activated Treg subsets and type 3 innate 
lymphoid cells (ILC3s) were associated with the 
types/localisations of diseases.

HOW THIS STUDY MIGHT AFFECT RESEARCH, 
PRACTICE OR POLICY

	⇒ We reveal a novel nosology of autoimmune 
and autoinflammatory diseases based on deep 
immunophenotyping.

	⇒ These results call for further investigations into 
the LAG3+/ICOS+ balance in Tregs as well as 
activated Tregs and ILC3s in autoimmune and 
autoinflammatory diseases.

	⇒ This raises the question of whether patients 
from the same identified clusters may benefit 
from the same therapies.
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from the imbalance between immune tolerance and activation.1 
AD and AIF represent more than 80 different heterogeneous 
disorders affecting up to 8% of the world’s population.2 Despite 
the prevalence and heterogeneity of these diseases, the patho-
physiology and the nosology of these diseases remain largely 
elusive, and despite numerous treatment option we currently 
lack curative ones.3

AD and AIF can be classified according to several criteria,4 
and are mostly classified according to a combination of clinical 
and biological feature sets. A generally accepted notion is that 
AD predominantly stems from dysregulations of adaptive immu-
nity and that AIF arises primarily from dysregulations of innate 
immunity. However, it has been proposed that AD and AIF could 
rather lie on a continuum ranging from autoimmune to auto-
inflammatory, with different contributions of both the innate 
and the adaptive immune responses.5–8 Additionally, these disor-
ders can be classified based on their types/localisations (such 
as joint, blood vessel, bowel, metabolism, or muscle), which 
suggest a contribution of tissue-specific factors in the proposed 
continuum.4 7 9

Only few studies have evaluated the differences between AD 
and AIF in a systematic manner, limiting the validation of the 
continuum hypothesis and the identification of immunological 
components that could be responsible for their similarities or 
differences. To revisit the nosology of AD and AIF, we initi-
ated the Transimmunom observational clinical trial involving 
443 patients with one or more of 15 disorders ranging from 
pure AD to pure AIF.10 Patients’ medical history and status were 
recorded, and deep phenotyping performed. We report here the 
results of the deep cytometry immunophenotyping that anal-
ysed more than 600 innate and adaptive immune cell parame-
ters (both absolute cell counts and percentages) from patient’s 

blood. Unsupervised and supervised analyses were conducted 
with the purpose of: (1) evaluating the hypothesis of an AD to 
AIF continuum, (2) identifying clusters of diseases along with 
their shared and specific cell parameters and (3) characterising 
potential biomarkers.

MATERIALS AND METHODS
Study design and participants
Building on on the Transimmunom clinical trial,10 we collected 
peripheral blood from 443 patients (enrolled from 2015 to 
2022) who were affected by 15 distinct ADs or AIFs or related 
conditions, as well as blood from 71 healthy volunteers (HV) to 
serve as a reference condition (figure 1). Our screened disorders 
ranged from pure AIF to pure AD and included different types 
of disorder activities without any threshold of disease activity. 
These disorders included arthritis disorders as Behçet’s disease 
(BD; n=38), knee osteoarthritis (OA; n=45), rheumatoid 
arthritis (RA; n=91), spondyloarthritis (SA; n=58) and systemic 
lupus erythematosus (SLE; n=33); blood vessel disorders as anti-
phospholipid syndrome (APLS; n=23), Churg-Strauss disease 
(CS; n=6), granulomatosis with polyangiitis (GPA; n=14) and 
Takayasu arteritis (TA; n=22); metabolic disorders as type 1 
diabetes (T1D; n=60) and type 2 diabetes (T2D; n=27); muscle 
disorder as myositis (MY; n=4); inflammatory bowel diseases 
(IBD) as Crohn’s disease (CD; n=10) and ulcerative colitis (UC; 
n=5); and IBD-like diseases as familial Mediterranean fever 
(FMF; n=7). OA and T2D were primarily included in this disease 
spectrum as ‘benchmarks’ for RA and T1D, but also considering 
the recent observations that suggest that these diseases have 
autoimmune and autoinflammatory components.11–15 Criteria 
used for disease diagnostics are indicated in online supplemental 
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Figure 1  Experimental design of the Transimmunom observational clinical trial. We standardly collected whole blood from 447 patients having 
15 autoimmune or autoinflammatory diseases enrolled in the Transimmunom observational clinical trial, and from 71 healthy volunteers. Disorders 
ranged from pure autoinflammatory to pure autoimmune diseases. The abbreviation and the number of patients associated with each disease are 
indicated. After quality control, samples were profiled using 13 flow cytometry panels quantifying a total of 66 unique cell markers to characterise 
more than 600 cell parameters (ie, absolute cell counts and percentages of cell populations). AID, autoimmune disease; AIF, autoinflammatory disease.
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table S1. Main treatments associated with diseases are indicated 
in online supplemental table S2. These treatments included clas-
sical therapies provided to patients with AD and AIF, such as 
insulin for patients with T1D, oral antidiabetics for patients with 
T2D, hydroxychloroquine for patients with SLE, non-steroidal 
anti-inflammatory drugs (NSAIDs) for patients with AS, gluco-
corticosteroids for patients with BD, CS, GPA and TA, along 
with synthetic disease-modifying antirheumatic drugs, biological 
disease-modifying antirheumatic drugs and NSAIDs.

Deep immunophenotyping
Cytometry profiling of patient blood samples was performed 
using 12 flow cytometry panels of 10 cell markers each, as 
previously described.16 An additional cytometry panel targeting 
innate lymphoid cells (ILC) was used. In detail, these panels 
were designed to perform advanced analysis of T cells, B cells, 
natural killer (NK) cells, mucosal-associated invariant T (MAIT) 
cells, myeloid cells, monocytes and dendritic cells (DC). A set 
of three panels was specifically created to analyse the activa-
tion, migration and memory phenotype of T cells. One panel 
was specifically designed for investigating CD4+ T cell polari-
sation, whereas two panels primarily concentrated on studying 
the phenotype of regulatory T cells. Other panels were designed 
to explore B cells, NK cells, monocytes, dendritic cells, MAIT 
cells and myeloid-derived suppressor cells. We also developed an 
extra panel to identify the main immune cell populations. This 
panel included numeration beads, allowing to determine the 
absolute counts of all populations, while serving as a reference 
tube that allows the calculations of absolute counts in all other 
panels by extrapolation from shared populations. All acquisi-
tions were performed on a Gallios cytometer (Beckman Coulter) 
maintained daily according to the manufacturer’s recommen-
dations with Flow Check Pro and Flow Set Pro fluorospheres. 
Cell parameters were defined as previously described,16 and 
were obtained using manual gating using Kaluza V.1.3 software 
(Beckman Coulter). Regulatory T lymphocytes (Tregs) were 
defined as CD25+/CD127− cells among T cells. The expres-
sion of FoxP3 was also measured in one cytometry panel. ILCs 
were defined as CD127+ cells and based on a negative linage 
comprising CD4, CD3, CD14, CD19, CD34, TCRγδ, CD1a, 
TCRαβ, CD11c, CD94, CD123, FcεR1a and CD303. ILC1s 
were defined as CD294−/CD117−, ILC2s were defined as 
CD294+ and ILC3s were defined as CD294−/CD117+. More 
than 600 cell parameters were quantified using such deep 
immunophenotyping of innate and adaptive cell populations.

As previously described, Duraclone technology was used to 
standardise the staining procedures, which provides the possi-
bility to use custom-designed panels of antibodies that are dried 
and precoated in individual tubes for direct labelling of blood. 
Moreover, we evaluated the coefficient of variability of measure-
ments of populations that are shared by different panels. For 
validation of the regulatory T cell measurements, we assessed 
the correlation between the values obtained with or without the 
FoxP3 marker.16

Univariate analyses
Due to the unbalanced nature of the number of patients per 
biological condition, both Cliff ’s Delta effect size and two-way 
non-parametric Wilcoxon test were used to identify cell param-
eters that were significantly differentially abundant between 
conditions. Cliff ’s Delta is a non-parametric measure of effect 
size that is used in statistics to quantify the magnitude of the 
difference between two groups or conditions.17 Cliff ’s Delta 

ranges from −1 to +1, where values closer to −1 indicate a 
large effect size in favour of the first group, values closer to 
+1 indicate a large effect size in favour of the second group 
and values close to 0 indicate a small or negligible effect size. 
Cell parameters with an absolute value of Cliff ’s Delta effect 
size higher than 0.33—corresponding to a medium magnitude 
change—and with a p value lower than 0.05 were considered 
statistically significant.

Multivariate analyses
Hierarchical agglomerative clustering and dendrogram represen-
tations represented with heatmaps were constructed based on 
the Euclidean distances and using the Ward’s linkage method. 
Principal component analyses (PCA) were generated using the 
FactoMineR R package using unscaled Cliff ’s Delta effect size 
values of cell parameters in each disease relative to HV. Cell 
parameters with an eigenvalue lower threshold than −0.5 or 
higher than 0.5 in one axis were considered to be associated with 
PCA axes. The identification of disease clusters along PCA axes 
was performed using k-means clustering. The optimal number 
of clusters was determined using the NbClust R package. Multi-
dimensional scaling (MDS) representation was generated using 
the MASS R package based on Cliff ’s Delta effect size values 
of cell parameters in each disease relative to HV. The coexpres-
sion network was constructed using the Spearman coefficient 
of correlation using an absolute threshold of 0.6. Classification 
decision trees were generated using the partykit R package based 
on all available cell parameters, using a maximal depth param-
eter of 5 and a minimal bucket size parameter of 10.

Patient and public involvement
Patients or the public were not involved in the design, conduct, 
reporting or dissemination plans of our research.

Data availability
The relative percentage or absolute count of the 224 cell param-
eters differentially abundant in at least one disease relative to 
HV is available on the Zenodo open repository through DOI: 
10.5281/zenodo.10364382.

RESULTS
Experimental design and patient demographic characteristics
We included in this study all the 443 patients and 71 HVs from 
the Transimmunom trial from which blood samples were avail-
able (figure  1). The list of diseases included in this study and 
patient demographics are presented in table 1. Diseases ranged 
from purely AD to purely AIF. We also included diseases such 
as OA and T2D that were primarily used as ‘benchmaks’ for 
RA and T1D, respectively, and for which accumulating obser-
vations suggest autoimmune or autoinflammatory components 
in their aetiologies.11–15 Across all diseases, the mean age was 
44.42±15.30 years, the mean body mass index (BMI) was 
25.82±9.68 and the sex ratio was 57.70% towards females. 
There were no differences in age, BMI or sex ratio of patients 
relative to HV, except when expected (female bias for RA, SLE 
and TA; high BMI for APLS, OA, TA, T2D and UC; age bias 
for APLS, CS, GPA, MY, TA, OA, RA and T2D). The average 
time from diagnosis was 5.11±6.91 years (table 1). More than 
600 innate and adaptive immune cell populations from patient’s 
blood were characterised using multiple flow cytometry panels 
that were designed to perform advanced analysis of T cells, B 
cells, NK cells, MAIT cells, myeloid cells, monocytes, dendritic 
cells and ILCs.16
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Identification of five clusters of AD or AIF
We first identified cell parameters (absolute cell counts or 
percentages) differentially abundant in each disease relative to 
HV (online supplemental figure S1A). Based on our panels, we 
observed that the diseases had a stronger impact on adaptive 
immunity than on innate immunity (online supplemental figure 
S1B,C).

Unsupervised hierarchical clustering classified the 15 diseases 
into five clusters based on the set of 224 cell parameters signifi-
cantly different relative to HV (figure 2A). The first cluster (C1) 
included BD, OA, SA, RA, T1D and T2D. The second cluster 
(C2) consisted solely of MY. The third cluster (C3) encompassed 
APLS, CS, GPA, SLE and TA. The fourth cluster (C4) contained 
only FMF. Lastly, the fifth cluster (C5) included CD and UC.

We identified a set of 23 cell populations that were impacted by 
at least seven diseases relative to HV (figure 2B). These cell popu-
lations were mainly associated with Tregs, effector T lympho-
cytes (Teffs), B cells and ILCs. Remarkably, Treg subsets were 
consistently upregulated in all diseases relative to HV, except for 
the percentages of Inducible T-cell Costimulator (ICOS)+ Tregs 
among Tregs that were downregulated in 10 diseases (APLS, CD, 
CS, FMF, GPA, OA, RA, SLE, TA, and UC). The absolute counts 
of ICOS+ Tregs were downregulated in eight diseases (APLS, 
CD, FMF, GPA, RA, SLE, TA, and UC). Teff subsets were mainly 
downregulated in almost all diseases relative to HV, except for 
Th17-associated Teff cell parameters that were upregulated in 
seven diseases (BD, FMF, GPA, T1D, T2D, TA, and SA). The 
percentages of CD32− cells and transitional cells among B cells 

were downregulated in seven diseases (CD, CS, GPA, OA, SLE, 
TA, and UC). The percentage of ILC3 among ILCs was found to 
be consistently downregulated in eight diseases (APLS, BD, GPA, 
OA, RA, SLE, T2D, and TA).

To deconvolute the identified disease clustering, and to under-
stand its driving components, we used PCA. This unsupervised 
analysis captured around 34% of the variance information in its 
first component (PC1) and around 25% of the variance infor-
mation in its second component (PC2). The PCA confirmed the 
hierarchical clustering (figure 2C). A set of 39 cell parameters, 
which mainly involved Teffs, Tregs, B cells with a few innate cell 
populations such as ILC3s, type 1 natural killer T (NKT) cells 
and DC, was captured by this analysis and explained the disease 
clustering (figure  2D). Noteworthy, multidimensional scaling 
representation also confirmed the good separation of the five 
identified clusters of diseases (online supplemental figure S2).

The ICOS+/LAG3+ Treg ratio clusters AD and AIF according to 
their inflammatory status
We determined that disorders were spread into three clusters 
along the first axis (PC1) of the PCA (figure 3A). This clustering 
appears to be associated with the disease inflammatory levels. 
The first cluster (PC1-C1) comprised HV, T1D and T2D that 
are associated with no inflammation. Additionally, this cluster 
contained BD, SA, OA, MY and RA diseases that are disorders 
with low inflammatory levels. The second cluster (PC1-C2) 
comprised APLS, GPA, CS and TA diseases that are disorders 

Table 1  Characteristics of groups of individuals included in the study

Condition Abbreviation Patients (n) Age mean±SD (P value) BMI mean±SD (P value) Sex F/M (P value)

Years since 
disease 
onset 
mean±SD

Healthy volunteers HV 71 37.23±12.18 23.90±3.29 36/35

Antiphospholipid syndrome APLS 23 57.23±12.42 (<0.0001) 26.66±4.75 (<0.0150) 9/13 (NS) 4.67+4.10

Behçet’s disease BD 38 36.08±11.64 (NS) 23.89±3.97 (NS) 12/25 (NS) 2.84+2.91

Crohn’s disease CD 10 27.70±7.65 (NS) 22.51±3.31 (NS) 4/6 (NS) 3.60+2.59

Churg-Strauss disease CS 6 61.00±8.94
(0.0140)

22.46±5.57 (NS) 5/1 (NS) 5.17+4.17

Familial Mediterranean fever FMF 7 36.43±16.15 (NS) 24.93±3.03 (NS) 4/3 (NS) 24.83+8.33

Granulomatosis with 
polyangiitis

GPA 14 49.86±14.78 (0.0045) 26.39±5.64 (NS) 8/6 (NS) 2.71+2.61

Myositis MY 4 58.00±1.83 (<0.0023) 23.52±3.76 (NS) 3/1 (NS) 1.00+0.82

Osteoarthritis OA 45 64.60±9.68 (<0.0001) 29.38±7.11
(<0.0001)

28/15 (NS) 7.53+7.77

Rheumatoid arthritis RA 91 49.11±13.43 (<0.0001) 27.78±20.31 (NS) 72/17 (<0.0001) 4.95+7.14

Spondyloarthritis SA 58 39.54±12.03 (NS) 24.95±4.49 (NS) 25/32 (NS) 5.09+7.63

Systemic lupus erythematosus SLE 33 40.81±10.50 (NS) 23.36±4.05 (NS) 29/3
(<0.0001)

5.72+5.98

Type 1 diabetes T1D 60 34.25±11.26 (NS) 23.76±3.18 (NS) 26/34
(NS)

2.70+2.36

Type 2 diabetes T2D 27 51.30±12.93 (<0.0001) 32.41±6.42 (<0.0001) 11/16
(NS)

2.22+2.87

Takayasu arteritis TA 22 48.05±13.47 (0.0015) 26.95±4.82 (<0.0025) 18/4
(<0.0128)

4.73+3.69

Ulcerative colitis UC 5 34.80±19.89 (NS) 20.95±2.06 (0.0343) 2/3 (NS) 3.40+1.95

For each group of patients included in the study or for healthy individuals, the abbreviation of the biological condition, the number of corresponding patients, the average 
age, the average body mass index (BMI), the sex ratio and the average number of years since the disease onset are indicated. Significant differences in age, BMI or sex ratio 
compared with healthy individuals are indicated with their p values computed using the Student’s t-test or the Fisher’s exact test.
APLS, antiphospholipid syndrome; BD, Behçet’s disease; CD, Crohn’s disease; CS, Churg-Strauss disease; FMF, familial Mediterranean fever; GPA, granulomatosis with polyangiitis; 
HV, healthy volunteer; MY, myositis; OA, osteoarthritis; RA, rheumatoid arthritis; SA, spondyloarthritis; SLE, systemic lupus erythematosus; TA, Takayasu arteritis; T1D, type 1 
diabetes; T2D, type 2 diabetes; UC, ulcerative colitis.
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Figure 2  Disorders are gathered into five distinct clusters having each shared and specific immunological contributions. (A) Heatmap representation 
of Cliff’s Delta effect size measurements of cell parameters statistically different in at least one disease relative to healthy volunteers. Cliff’s Delta 
is a non-parametric effect size measure that quantifies the difference between two groups, with a range from −1 (all values in one group are 
lower than those in the other group) to 1 (all values in one group are larger than those in the other group), and 0 indicating no difference between 
the groups. Effect sizes are represented using a coloured gradient scale ranging from −0.8 to 0.8. Cell parameters downregulated in disease are 
represented in orange, and cell parameters upregulated in diseases are represented in blue. Unsupervised hierarchical clustering was used to 
automatically gather diseases and cell populations. Diseases are coloured based on the five disease clusters identified by the hierarchical clustering. 
(B) Dot plot representation showing the cell parameters found to be significantly impacted in at least seven diseases relative to healthy volunteers. 
Cell parameters are gathered by main immunological families (ie, Teffs, Tregs, B cells and ILCs). Diseases are ordered and coloured based on the 
five identified disease clusters. Significantly downregulated cell parameters are indicated in orange, and significantly upregulated cell parameters 
are indicated in blue. (C) Principal component analysis based on Cliff’s Delta values of each group of patients relative to the healthy condition. The 
percentages of variance information captured by the two first components are indicated along each axis. Conditions are coloured based on the 
five disease clusters identified by the hierarchical clustering. (D) Correlation circle showing cell parameters associated with the two first principal 
components (PC1). Selected parameters are coloured based on their immunological families (ie, Teffs, Tregs, B cells and innate). In such representation, 
each variable is represented by a dot and an arrow, with its coordinates corresponding to its correlation with PC1 (x-axis) and PC2 (y-axis). The 
closer the point is to the edge of the circle, the stronger its contribution to the respective principal components. Variables with arrows pointing 
in the same direction (acute angle between them) have a positive correlation. The closer the angle is to 0 degree, the stronger the correlation is. 
APLS, antiphospholipid syndrome; BD, Behçet’s disease; CD, Crohn’s disease; CS, Churg-Strauss disease; FMF, familial Mediterranean fever; GPA, 
granulomatosis with polyangiitis; HV, healthy volunteer; ILC, innate lymphoid cell; MY, myositis; OA, osteoarthritis; PCA, principal component analysis; 
RA, rheumatoid arthritis; SA, spondyloarthritis; SLE, systemic lupus erythematosus; T1D, type 1 diabetes; T2D, type 2 diabetes; TA, Takayasu arteritis; 
UC, ulcerative colitis.
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with moderate inflammatory levels. Finally, the third cluster 
(PC1-C3) comprised CD, FMF and UC that are disorders with 
high inflammatory levels. Of note, SLE was classified in the 
second cluster (PC1-C2) associated with moderate inflammatory 
levels.

This first axis was specifically associated with 13 cell param-
eters (figure 3A,B). Four parameters positively correlated with 
this PC1 axis—and drove diseases on the right part of the PCA. 
These parameters consisted of the percentages of LAP+ cells 
among Tregs, LAG3+ cells among Tregs, CD32− cells among B 

Figure 3  Disorders are spread along a first immunological axis that is mainly driven by an LAG3/ICOS balance in Tregs. (A) Principal component 
analysis constructed based on Cliff’s Delta values of each group of patients relative to the healthy condition along with the correlation circle of 
cell parameters exclusively associated with the first principal component (PC1). Conditions are coloured based on the three clusters of diseases 
identified along the PC1 axis. Selected parameters are coloured based on their immunological families. (B) Bar chart representation showing the 
eigenvalues of cell parameters exclusively associated with the PC1. Cell parameters with negative eigenvalues are driving the disease on the left 
of the PCA representation. Cell parameters with positive eigenvalues are driving the disease on the right part of the PCA representation. (C and D) 
Heatmap representation showing the Cliff’s Delta measures in each disease relative to healthy volunteers for selected cell parameters at the disease 
or cluster levels. Diseases or clusters of diseases are ordered as projected on the PC1 axis. Parameters significantly dysregulated in one condition are 
indicated with a red dot. Cell parameters are ordered according to their eigenvalues. (E and F) Boxplot and jitter representations showing the log2 fold 
change between the percentage of ICOS+ cells within Tregs and the percentage of LAG3+ cells within Tregs at the disease or cluster disease levels. 
Significant comparisons to healthy volunteers are indicated with their p values (**p<0.01, ***p<0.001) and Cliff’s Delta effect size (ES) measure. 
APLS, antiphospholipid syndrome; BD, Behçet’s disease; CD, Crohn’s disease; CS, Churg-Strauss disease; FMF, familial Mediterranean fever; GPA, 
granulomatosis with polyangiitis; HV, healthy volunteer; MY, myositis; OA, osteoarthritis; PCA, principal component analysis; RA, rheumatoid arthritis; 
SA, spondyloarthritis; SLE, systemic lupus erythematosus; T1D, type 1 diabetes; T2D, type 2 diabetes; TA, Takayasu arteritis; UC, ulcerative colitis.
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cells and the absolute number of mDC2. Nine parameters nega-
tively correlated with this PC1 axis and drove diseases on the 
left part of the PCA. These parameters consisted of multiple cell 
parameters associated with ICOS+ in Tregs, Th or Tc, as well as 
the number of type 1 NKT cells.

Heatmap representations of effect size measures for these 
13 cell parameters showed a clear gradient of downregulation 
or upregulation relative to HV along this first axis in the three 
clusters (figure  3C,D). This set of 13 parameters was almost 
not significantly impacted in the first cluster (PC1-C1) and 
was increasingly significantly impacted in the second and the 
third clusters (PC1-C2 and PC1-C3). The absolute numbers of 
ICOS+ Tregs and ICOS+ Teffs, and the percentage of LAG3+ 
cells among Tregs were representative of this gradient (online 
supplemental figure S3A–C). Of note, we found a strong positive 
correlation between the absolute numbers of ICOS+ Teffs and 
ICOS+ Tregs (online supplemental figure S3D).

Furthermore, we identified that the balance between the 
percentages of LAG3+ Tregs and ICOS+ Tregs was the most 
determining factor of this gradient (figure 3E,F).

Activated Treg subsets and ILC3 clusters AD and AIF according 
to the type of affected tissues
We identified that disorders were spread into three clusters along 
the second axis (PC2) of the PCA (figure 4A). UC, CD and FMF 
diseases (that are IBD and IBD-like disorders) were localised on 
the bottom of the PC2 axis, in a first cluster (PC2-C1). RA, BD, 
SA, SLE and OA (that are arthritis disorders) as well as T1D and 
T2D (that are metabolic diseases) were positioned in the middle 
of the PC2 axis, in a second cluster (PC2-C2). Finally, APLS, CS, 
TA, GPA (that are blood vessel disorders) and MY diseases were 
located at the top of the PC2 axis, in a C3 disease cluster, with 
MY (that is a muscle disorder) being at the extreme top of the 
PCA (PC2-C3). Thus, PC2 appears to cluster diseases based on 
affected tissues.

This second axis was specifically associated with 10 cell 
parameters (figure 4A,B). Seven parameters positively correlated 
with this PC2 axis, driving the diseases to the top of the PCA. 
These cell parameters consisted of Tregs and Treg subsets—
including LAP+ Tregs, CD45RA− Tregs and FoxP3+ Tregs—
central memory CD4+ T cells and CD95+ Th cells. Conversely, 

Figure 4  Disorders are spread along a second immunological axis that is mainly driven by Treg subsets and type 3 ILC. (A) Principal component 
analysis constructed based on Cliff’s Delta values of each group of patients relative to the healthy condition along with the correlation circle of 
cell parameters exclusively associated with the second principal component (PC2). Conditions are coloured based on the three clusters of disease 
identified along the PC2 axis. Selected parameters are coloured based on their immunological families. (B) Bar chart representation showing the 
eigenvalues of cell parameters exclusively associated with the PC2. Cell parameters with negative eigenvalues are driving the disease at the bottom 
of the PCA representation. Cell parameters with positive eigenvalues are driving the disease on the top part of the PCA representation. (C and D) 
Heatmap representation showing the Cliff’s Delta measures in each disease relative to healthy volunteers for all cell parameters at the disease or 
cluster levels. Diseases or clusters of diseases are ordered as projected on the PC2 axis. Parameters significantly dysregulated in one condition are 
indicated with a red dot. Cell parameters are ordered according to their eigenvalues. APLS, antiphospholipid syndrome; BD, Behçet’s disease; CD, 
Crohn’s disease; CS, Churg-Strauss disease; FMF, familial Mediterranean fever; GPA, granulomatosis with polyangiitis; HV, healthy volunteer; ILC, 
innate lymphoid cell; MY, myositis; OA, osteoarthritis; PCA, principal component analysis; RA, rheumatoid arthritis; SA, spondyloarthritis; SLE, systemic 
lupus erythematosus; T1D, type 1 diabetes; T2D, type 2 diabetes; TA, Takayasu arteritis; UC, ulcerative colitis.
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three cell populations negatively correlated with this PC2 axis 
driving the diseases on the bottom of the PCA representation. 
These parameters included the percentage of TCR Va7.2+ cells 
among T cells, the percentage of plasmacytoid dendritic cells 
among CD45+ mononuclear cells and the percentage of ILC3s 
among ILCs.

Heatmap representations of effect size measures for this set of 
10 cell parameters showed a clear gradient of regulations relative 
to HV along this second axis in the three clusters (figure 4C,D). 
This set of 10 parameters was almost not significantly impacted 
in the PC2-C1 cluster and was increasingly significantly 
impacted in the PC2-C2 and PC2-C3 clusters. The percentages 
of LAP+ cells among Tregs, the absolute number of LAP+ Tregs, 
the percentage of ILC3s among ILCs and the absolute number 
of ILC3s were representative of this gradient of dysregulations 
(online supplemental figure S4).

Disease clusters can be captured by a restricted core of 
immune cell populations
Together, the signature of 23 cell parameters significantly asso-
ciated with PC1 or PC2 axes was enough to capture the five 
clusters of diseases that were previously identified (figure 5A). 
The C1 disease cluster contained T1D and T2D—which are 
two metabolic disorders without inflammation—along with BD, 
OA, RA and SA—which are arthritis disorders with low inflam-
mation degree. The C2 disease cluster contained MY alone—a 
muscle disorder with a low inflammation. The C3 disease cluster 
contained APLS, CS, GPA and TA—which are blood vessel disor-
ders with moderate degrees of inflammation. Finally, the C4 and 
C5 disease clusters comprised CD, FMF and UC—which are 
inflammatory bowel or inflammatory bowel-like diseases with 
high degrees of inflammation. Of note, SLE, which is mainly 
an arthritis disease generally associated with low inflammation 
degree, was found to belong to the C3 disease cluster.

Each cluster of disease was characterised by specific patterns 
of downregulated or upregulated cell parameters relative to the 
healthy group along the PCA axes (figure 5B). The C1 disease 
cluster was characterised by no dysregulations of parameters 
associated with the PC1 axis and limited significant dysregula-
tions of parameters associated with the PC2 axis. The C2 disease 
cluster, which comprised MY alone, was characterised by dysreg-
ulation of cell parameters mainly associated with the PC2 axis. 
The third clustering of diseases was characterised by significant 
dysregulation of cell parameters associated with both PC1 and 
PC2 axes. Finally, the C4 and C5 disease clusters were character-
ised by dysregulations of cell parameters mainly associated with 
the PC1 axis.

To further investigate the characteristics of this signature, 
we created a coexpression network based on its parameters 
(figure 5C). We identified a main community of Teff− and Treg− 
parameters positively correlated. Among them, the number of 
CD95+ Th/Teffs/Tregs, the number of Tregs and the number of 
central memories Th/Teff had the highest connectivity degrees, 
reflecting potential central activities in immune dysregulations 
and could serve as biomarkers (figure 5D).

The number of LAG3+ Tregs is a key immunological marker in 
multiple ADs and AIFs
To complement our findings, we generated classification trees 
capturing parameters or combination of parameters that best 
separate patients from healthy individuals in each disease (online 
supplemental figures S5–S7). These supervised analyses aimed 
to capture the most discriminating features in each disease 

independently. Each classification tree was generated using all 
available cell parameters, and we quantified the model classifi-
cation precisions.

A total of 12 cell parameters were found by classification trees 
(figure 6A,B). We found that patients from the C1 disease cluster 
were characterised by heterogeneous disease-specific markers 
rather than a common set of markers. The p values associated 
with the selected parameters were less significant, and the accu-
racy of decision tree predictions was lower for these diseases 
compared with other clusters of diseases. Patients from C2, C3 
and C4 disease clusters were all characterised by a higher number 
of LAG3+ Tregs compared with HVs, with more significant p 
values and higher decision tree predictions compared with other 
clusters of diseases. Finally, the C5 disease cluster was character-
ised by a higher percentage of NKp44+ cells among NKdim cells 
relative to HV. Of note, the downregulation of the number of 
ICOS+ Tregs was found to be the most discriminative param-
eter to segregate all patients—regardless of their diseases—from 
controls, with a limited classification precision (online supple-
mental figure S8).

Of note, the absolute number of LAG3+ Tregs and the abun-
dance of NKp44+ cells among NKdim—that were statistically 
different from healthy donors in clusters C2, C3, C4 and C5—
were heterogeneous within diseases. This suggests that these 
parameters could be potential markers for subsets of patients 
belonging to clusters C2, C3, C4 and C5 (figure 6C,D).

Together, these independent supervised analyses confirmed 
the role of LAG3+ if Treg cells as a key immunological marker 
in multiple ADs and AIFs, along with ICOS+ Tregs to a lesser 
extent.

DISCUSSION
We aimed to use deep immunophenotyping of blood samples 
drawn from a diverse cohort of patients suffering from various 
ADs and AIFs,10 to describe and classify better AIF and AD.

A proposed classification of AD and AIF using deep 
immunophenotyping
Based on 15 disorders ranging from purely autoimmune to 
purely inflammatory, we have identified five clusters of diseases, 
proposing a classification of these diseases based on deep 
immunophenotyping profiles. Noteworthily, the robustness of 
this clustering was shown using three unsupervised analytical 
approaches: hierarchical clustering, PCA and multidimensional 
scaling.

Each cluster of disease was characterised by specific patterns 
of downregulated or upregulated cell parameters relative to 
the healthy group. Overall, BD, OA, RA, SA, T1D and T2D, 
all grouped in the C1 disease cluster, exhibited an immuno-
logical profile that did not markedly deviate from that of HV. 
Conversely, diseases classified in the other clusters demonstrated 
a distinct divergence from HV.

We identified a core signature of 23 markers able to capture 
the proposed disease clustering. We found that CD95+ Th/Teff/
Treg were associated with this signature, upregulated relative to 
HV. CD95 is a cell surface receptor that plays a pivotal role in 
regulating apoptosis or programmed cell death.18 Mutation or 
dysregulation of the CD95 apoptotic pathway can be involved in 
various diseases, including AD.18 19 We hypothesise that contin-
uous exposure to self-antigens can keep these T cells activated, 
leading to increased CD95 expression as a part of the feedback 
mechanism to regulate excessive immune responses.
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Figure 5  Disease clusters can be captured by a restricted core of immune cell populations. (A) Heatmap representation of Cliff’s Delta effect size 
measurements relative to healthy volunteers in all diseases for the 23 cell parameters associated with first principal component (PC1) and PC2. 
Unsupervised hierarchical clustering was used to automatically gather diseases and cell populations. Diseases are coloured based on their associated 
inflammation levels (no-inflammation levels in yellow, low-inflammation levels in orange, moderate-inflammation levels in red, high-inflammation 
levels in brown) and shaped based on their type/localisation (stars for metabolic diseases, down triangles for arthritis, up triangles for blood vessels, 
squares for inflammatory bowel disease (IBD) and lozenge for IBD-like). (B) Heatmap representation of Cliff’s Delta effect size measurements relative 
to healthy volunteers in the five clusters of diseases for the 23 cell parameters associated with PC1 and PC2. (C) Coexpression network showing the 
significant correlations between cell parameters and other cell parameters. Parameters included in the immunological signature are represented with 
circles, while other cell parameters associated with parameters of this signature are represented with hexagonal shapes. Parameters are coloured 
according to their immunological families. (D) Dot plot and bar plot representations showing cell parameters of the signature or associated with 
the signature statistically different in diseases relative to healthy volunteers along with their connectivity degrees in the coexpression network and 
their number of occurrences across diseases. APLS, antiphospholipid syndrome; BD, Behçet’s disease; CD, Crohn’s disease; CS, Churg-Strauss disease; 
FMF, familial Mediterranean fever; GPA, granulomatosis with polyangiitis; ILC, innate lymphoid cell; MY, myositis; OA, osteoarthritis; RA, rheumatoid 
arthritis; SA, spondyloarthritis; SLE, systemic lupus erythematosus; T1D, type 1 diabetes; T2D, type 2 diabetes; TA, Takayasu arteritis; UC, ulcerative 
colitis.
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Figure 6  Classification decision trees identify LAG3+ Tregs as a key marker in multiple diseases. (A) Dot plot representation showing cell parameters 
found to be significantly involved in classification decision trees. For each disease, a classification decision tree was generated to identify the best 
marker or combination of markers that distinguish patients from healthy volunteers. The size of each dot is proportional to the −log10 of the p value, 
and dots are coloured according to the effect size relative to healthy volunteers. Cell parameters are sorted based on their number of occurrences in 
the generated models. (B) Accuracy, ranging from 0 to 1, of each classification decision tree are represented using a bar chart representation. (C and 
D) Boxplot and jitter representations showing the number of LAG3+ Tregs and the percentage of NKp44+ within NKdim cells for each disease. Diseases 
are gathered by identified disease clusters. Significant comparisons to healthy volunteers are indicated with their p values (*p<0.05, **p<0.01, 
***p<0.001) and Cliff’s Delta effect size (ES) measure. APLS, antiphospholipid syndrome; BD, Behçet’s disease; CD, Crohn’s disease; CS, Churg-
Strauss disease; FMF, familial Mediterranean fever; GPA, granulomatosis with polyangiitis; HV, healthy volunteer; MY, myositis; OA, osteoarthritis; RA, 
rheumatoid arthritis; SA, spondyloarthritis; SLE, systemic lupus erythematosus; T1D, type 1 diabetes; T2D, type 2 diabetes; TA, Takayasu arteritis; UC, 
ulcerative colitis.
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A predominant characteristic of most of the diseases included 
in this study was an augmented count of LAG3+ Tregs, as 
demonstrated by the supervised classification trees. LAG3 is 
an immune checkpoint that binds to Major Histocompatibility 
Complex class II (MHCII), and which main role appears to be 
the inhibition of T cell activation. LAG3 plays various and some-
times controversial roles in autoimmunity, tumour immunity and 
anti-infection immunity.20–22 However, the distinct function of 
LAG3 on Tregs is largely unknown.

The LAG3+/ICOS+ balance in Tregs is associated with disease 
inflammation levels
We identified a first immunological axis, mainly characterised 
by a LAG3+/ICOS+ balance in Tregs, that is associated with 
disease inflammation levels. Of note, our analysis positioned 
SLE in the middle of this inflammation axis, consistent with the 
observation made by El-Shebiny and colleagues emphasising 
that SLE is one of the best examples of bridging between AIF 
and AD.23 Indeed, SLE is characterised by a secretion of auto-
antibodies but also as an interferonopathy.24 Of note, only five 
out of our 33 patients with SLE were diagnosed with coexisting 
secondary APLS, which limits the contribution of this secondary 
diagnosis to our observation. In this line, while different studies 
have pointed out the bivalent characteristics of SA with both 
autoinflammatory and autoimmune factors,25 26 our results high-
light a limited dysregulation of cell parameters associated with 
the inflammation axis in blood.

The percentage of LAG3+ cells among Tregs was directly asso-
ciated with this immunological axis associated with the inflam-
mation degree of disorders. These results are consistent with the 
model proposed by Zhang and colleagues, suggesting that the 
LAG3 intrinsically limits Treg proliferation and functionality 
by repressing pathways that promote the maintenance of Treg 
cells at inflammatory sites.27 An alternative explanation is that 
this overexpression of LAG3 in Tregs could reflect an immune 
exhaustion associated with the disease inflammation degrees. 
Indeed, overexpression of inhibitory receptors is a characteristic 
of exhausted T cells.28 Our results warrant further examination 
of the role of LAG3+ Tregs in AD and AIF.

We observed a downregulation of ICOS+ cells within both 
Tregs and Teffs. Downregulation of ICOS in Teffs and Tregs can 
have several implications. First, ICOS is an important costimu-
latory molecule that enhances T cell activation.29 Its downregu-
lation can thus potentially impair the activation and function of 
T cells, leading to a weakened immune response. Second, ICOS 
is crucial for the function of Tregs, which play a key role in 
maintaining immune tolerance and preventing autoimmunity.30 
Downregulation of ICOS in Tregs can disrupt their suppressive 
functions, potentially leading to an increased risk of AD. Third, 
ICOS stimulation is known to promote the production of certain 
cytokines by T cells, such as interleukin 10 (IL-10) and IL-4.31 
Therefore, ICOS downregulation may lead to decreased cyto-
kine production, potentially affecting immune responses. Fourth, 
ICOS could have an impact on antibody responses as it plays 
a role in B cell activation and germinal centre responses.32 Of 
note, the strong correlation observed between ICOS+ Teffs and 
ICOS+ Tregs suggests an interdependence or cross-regulation 
between these two subpopulations of T lymphocytes.

Our results show that the increased number of FoxP3+ 
Helios+ Tregs and the percentage of T Effector Memory RA 
(TEMRA) among CD8+ were the most discriminant cell param-
eters to distinguish patients with OA from HVs. Additionally, the 
increased number of TEMRA Tregs was the most discriminant 

cell parameter to distinguish patients with T2D from HVs. 
Although our analysis did not reveal a significant influence of 
T1D and OA on cell parameters related to the inflammatory 
axis, we did notice an effect of these diseases on specific cell 
parameters associated with the disease-type axis, particularly 
involving ILC3s and activated Treg subsets. Our observations 
are in line with the notion that even if inflammation is an estab-
lished secondary component in OA and T2D diseases, autoim-
mune or autoinflammatory dysregulations could play significant 
roles in their pathogenesis and in the aetiology of OA11 12 33 and 
T2D.14 15 34 35 However, the main discriminating cell parameters 
in RA and T1D are different from OA and T2D, respectively.

Activated Tregs and ILC3 are associated with disease types
We identified a second immunological axis, mainly characterised 
by activated Tregs and ILC3 that is associated with disease types. 
This axis distinguishes between blood vessel diseases, arthritis 
and metabolic diseases and IBD/IBD-like diseases. This separa-
tion points towards the existence of common immunological 
mechanisms for each of these groups of diseases and suggests 
that each of them may require a specifically tailored treatment 
and management.

While ICOS+ Tregs were downregulated in most diseases, we 
identified multiple subsets of activated Tregs that were upreg-
ulated compared with HV, and that were associated with the 
disease-type axis. At first, this may be surprising as many ADs 
have been associated with decreased numbers or proportion 
of Tregs studied as a whole. We believe that given the fact that 
Tregs’ main role is to protect us from autoimmunity, developing 
AD consubstantiality identifies a Treg insufficiency. However, 
the nature of this insufficiency is likely more complex than 
usually contemplated and may comprise upregulation of specific 
subsets that may try to balance the autoimmunity. Actually, 
multiple groups have made contradictory observations regarding 
the decrease or increase of Tregs in many ADs and AIFs.36 37 Our 
results highlight the need for more in-depth study of Treg subsets 
in AD and AIF.

We found that the percentages of ILC3c among ILCs were 
downregulated in multiple diseases and that this downregula-
tion was associated with the type of diseases. ILCs are predomi-
nantly tissue-resident cells, exhibiting remarkable plasticity and 
adaptability in their functional characteristics.38 Several studies 
have demonstrated the importance of ILC3 in the regulation of 
tissue homeostasis and their role in regulating inflammatory T 
cell responses.39 ILC3s have been found downregulated in the 
blood of patients with GPA,40 T2D,41 SLE42 and RA,43 relative to 
healthy controls. ILC3c is implicated in gut homeostasis main-
tenance and gastrointestinal immune responses.44 Furthermore, 
dysregulation of ILC3 contributes to the progression of IBD.44 45 
In detail, a dysregulation of NCR− ILC3 or NCR+ ILC3 func-
tion and the bias of NCR+ ILC3 towards ILC1 can lead towards 
these pathogenic conditions.44 Clottu et al documented the 
dynamic nature of ILC populations in pathological condi-
tions, observing an increase in ILC1 numbers with a concur-
rent decrease in ILC3 in the intestines during diseases such as 
CD.46 An interplay between ILC3 and Treg has been reported, 
especially in the gut and intestine, with ILC3s interacting with 
microbiota-specific regulatory T cells to establish tolerance in 
the gut.47 Noteworthy, an interplay between ILC3 and LAG+ 
Tregs has also been reported in the context of gut inflamma-
tion.48 49 Thus, our results are in line with these observations, 
with an ILC3 dysregulation being associated with disease type/
localisation in AD and AIF.

 on M
arch 5, 2024 by guest. P

rotected by copyright.
http://ard.bm

j.com
/

A
nn R

heum
 D

is: first published as 10.1136/ard-2023-225179 on 5 January 2024. D
ow

nloaded from
 

http://ard.bmj.com/


12 Tchitchek N, et al. Ann Rheum Dis 2024;0:1–13. doi:10.1136/ard-2023-225179

Autoimmunity

A novel nosology of AD and AIF based on disease 
inflammation degrees and types
In 2006, McGonagle and McDermott proposed a novel classi-
fication of AD and AIF, where disorders lay down on a geneti-
cally determined gradient ranging from pure AIF to pure AD.7 
Since, this continuum paradigm has been largely adopted, but 
also refined.4 5 Our results further identified two immunolog-
ical axes associated with disease inflammation and disease local-
isation rather than a monodimensional continuum of diseases. 
We found that the ratio of LAG3+ and ICOS+ in Tregs was 
associated with disease inflammation levels and that some acti-
vated Treg subsets and ILC3s were associated with these types 
of diseases. This latter observation is in agreement with the fact 
that tissue-specific factors can serve as components for this clas-
sification.4 7

Study limits
A limitation of this study resides in the heterogeneous number of 
patients across the different disease groups, in large part attrib-
utable to the prevalence of diseases. Diseases with larger patient 
pools can exhibit greater heterogeneity, potentially harbouring 
subgroups of patients with their own unique immunological 
specificities. Such a hypothesis might explain why, in diseases 
with a higher patient count, we identified fewer parameters 
as significantly impacted. This implies that within these larger 
groups, individual immune responses may be diverse and not 
adequately captured by our broad categorisation, potentially 
masking some specific patterns that could otherwise be infor-
mative. On the contrary, the characterisation of diseases with 
limited numbers of patients in our study, such as FMF (n=7), 
MY (n=4) and UC (n=5), is not powerful enough statistically 
and should be taken with moderation. To take into consider-
ation the unbalanced design of our study, we employed the 
Cliff ’s Delta effect size in combination with statistical hypoth-
esis testing to quantify the magnitude and significance of immu-
nological changes. Furthermore, we employed unsupervised and 
supervised analysis strategies to reduce the potential bias due to 
the unbalanced design of our study.

Another limitation stems from the heterogeneous degree of 
disease activity and the diverse treatments received by patients, 
both of which can impact the immune system. Different stages 
of a disease can elicit various immune responses, and distinct 
therapeutic strategies might further modulate these responses. 
Therefore, while attempting to correlate immune signatures 
with disease status, we must consider the potential confounding 
effects of varying disease activity and therapeutic interventions. 
Nevertheless, it could be considered that the significant param-
eters revealed by these studies must have a certain robustness as 
they show up despite this high variability.

Another limitation of this study rests on the cytometry panels 
that were primarily formulated to target adaptive cell popula-
tions. To comprehensively characterise the immune systems of 
patients with AD and AIF, future steps will necessitate the use 
of more advanced flow cytometry panels evaluating innate cell 
populations. The broader and combined analyses of these major 
components of the immune system should contribute to poten-
tially unveiling novel targets for intervention.

Another limitation of this study is the lack of validation of 
the proposed clustering on an external dataset. However, to our 
knowledge, there currently exists no comparable dataset. Specif-
ically, there is a lack of publicly available datasets that screen 
such an extent of cell parameters collected under similar condi-
tions for a large cohort of patients. This situation significantly 

limits our ability to perform the necessary external validations. 
This lack hampers our capacity to conduct the essential external 
validations. Additionally, the limitation is compounded by the 
general unavailability of massive deep immunophenotyping 
data. To mitigate this, we have included the complete set of cell 
parameters used in our study within the online supplemental 
materials. This addition aims to serve as a reference for other 
groups to validate and compare against our identified disease 
clusters.

CONCLUSION
In this study, we outlined the significance of LAG3 and ICOS 
expression by Tregs, along with various activated Treg subsets 
and ILCs, in their capacity to act as biomarkers of AIF and AD. 
These markers offer the means to differentiate diseases based 
on their type/localisation and their inflammation degrees. Func-
tional studies will now have to investigate the detailed mech-
anistic roles of these markers and cell populations in various 
settings. Ultimately, our findings point towards a personalised 
treatment of patients based on the cell and molecular parameters 
defining their disease clusters.
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