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Abstract 

To estimate urban network travel time, the classical analytical procedure uses cumulative counts at upstream and downstream 
locations of links. This procedure is vulnerable in urban networks mainly due to significant flow to and from mid-link sinks 
and sources. Moreover, most urban network links are only equipped with detectors at their end. Therefore without information 
on the percentage of turning movement at crossroads, the classical analytical procedure is not applicable. The algorithm 
proposed and validated in this research estimates urban links travel times based on an unscented Kalman filter (UKF). This 
algorithm integrates stochastically the vehicle count data from underground loop detectors at the end of every link and the 
travel times from probe vehicles. The proposed methodology can be used for estimating travel time in real-time. Moreover, 
with this methodology the number of upstream vehicles as well as the number of mid-link sink/source vehicles is estimated 
for each link. 
 
© 2012 The Authors. 
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1. Introduction 

Travel time information has a significant impact on the efficiency and the capacity of the road network. It has 
the potential to reduce congestion at both temporal and spatial scales. An essential step towards a reliable traffic 
monitoring and management is accurate travel time estimation. Different techniques are used to estimate travel 
time on roads. These techniques depend on the type of system (i.e. fixed or mobile sensors) used to collect traffic 
data. Fixed sensors, such as inductive loop detectors, are the oldest and most widely used sensors for generating 
traffic data. They provide temporal traffic state information, though only point based data. Under certain 
assumptions, researchers have proposed methodologies for travel time estimation that can be characterized by 
deterministic [1-3] or stochastic approaches [4-5]. Mobile sensors, such as probe vehicles, are vehicles equipped 
with vehicle-tracking equipment (e.g. Global Positioning System). They provide trajectory data, i.e. time stamp 
and position coordinates, and hence probe vehicle travel time. Since probe vehicle are random sample from the 
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population of the vehicles in the network, the accuracy of travel time estimation with probe vehicles is related to 
the number of the latter. Research focused on determining the minimum number of probe vehicles required for 
providing statistically significant travel time estimation [6]. 

The properties of these two data sources are complementary. Hence, they can be harnessed by developing a 
solution that merges multi-sensor data for the considered problem, in particular in urban areas [7]. Most of 
existing fusion techniques [8-9] has not been dealing with traffic signals, which affects link travel time of probe 
vehicles, nor has processed the flow to and from mid-link sink and source. The CUPRITE methodology [10] 
addressed these problems by deterministically rectifying the cumulative number of vehicles at the upstream of 
each link using data from the traversing probe vehicles. CUPRITE corrects the upstream cumulative count at the 
minute-ceiled instant of occurrence of the probe vehicle, as well as prior and after this instant. It is a smoothing 
technique that does not match real-time constraint. Moreover, this methodology is sensitive to the noise on travel 
time probe vehicles. Finally, CUPRITE requires “a minimum” number of probe vehicles to work properly in 
networks, especially when the percentages of turning movements are unknown. 

The majorities of above researches are limited to freeways and cannot be applied in urban networks, where the 
travel time estimation is more challenging. The present study bridges this gap by using a statistical filtering 
approach based on an unscented Kalman filter (UKF). 

2. Unscented Kalman filter 

The most common strategy used for applying a Kalman filter (KF) to a nonlinear system is to make use of the 
extended Kalman filter (EKF). In the EKF, the probability distribution function is propagated through a linear 
approximation of the system around the operating point at each time. Consequently, the EKF requires computing 
the Jacobian matrices that can be sometimes difficult and complicated to obtain. Furthermore, the linear 
approximation of the system at a given time may introduce errors in the state, which may lead the state to diverge 
over time. In order to overcome the drawbacks of the EKF, other nonlinear state estimators such as the UKF have 
been developed. The UKF uses a deterministic sampling technique, known as the unscented transform, to pick a 
minimal set of sample points (called sigma points) around the mean. These sigma points are then propagated 
through the non-linear functions, from which the mean and covariance of the estimate are recovered. More details 
can be found in [11]. 

3. Travel time state space modeling 

By definition, the link travel time for a vehicle is the time needed to travel from the upstream point to the 
downstream point in the link. This research focuses on estimating the average travel time for all the vehicles that 
depart downstream for each link in the network. Fig. 1 illustrates the studied urban network for estimating travel 
time using mid-link sinks and sources. The mid-link infrastructures, such as side streets, parking lots, private 
properties etc., are acting as sink or source or both and are simply represented by additional mid-links. The state 
vector, its evolution in time, the nature of the observations and the algorithm of the proposed UKF filter are 
detailed below. 
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Fig. 1. Studied network. 

3.1. State vector 

Suppose that a given studied network (Fig. 1) is equipped with loop detector at the end of each link and at its 
two entries (E1 and E2). For each link k (k=1, …, 6), one needs to estimate the travel time, the number of 
vehicles that enter/exit from/to the mid-link source/sink and the number of vehicles at upstream with sampling 
time TS of 1 minute, which corresponds to the period of loop detectors aggregation (cf. section 3.3). The state 
vector for each link k can be described as follows: 
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with 

• TTk: the travel time; 
• Ndk: the downstream cumulative count of vehicles; 
• quk: the upstream flow; 
• Nuk: the upstream cumulative count of vehicles of link k; 
• pk: the cumulative number of vehicles that enter/exit the link from/to the mid-link source/sink; and 
• Previous Nuk: history of the cumulative upstream count of vehicles. This history tabulates a fixed number hk of 

past counts, this number being a parameter of the model and specific to each link. 

3.2. Dynamic model 

We suppose that the state at time t derives from the state at time t-TS as follows: 
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• The classical analytical procedure states that the cumulative number of vehicles at link entrance shall be equal 
to the cumulative number of vehicles at link exit after an average travel time TT at time t. Thus TT at time t is 
equal to difference between time t and the corresponding time t1 defined such that Nuk(t1)=Ndk(t); 

• The classical analytical procedure states that the cumulative number of vehicles at link entrance shall be equal 
to the cumulative number of vehicles at link exit after an average travel time TT at time t. Thus TT at time t is 
equal to difference between time t and the corresponding time t1 defined such that Nuk(t1)=Ndk(t); 

• The cumulative number at the upstream at time t is the cumulative number at the upstream at time t-TS, 
incremented by the flow at the upstream multiplied by TS; and 

• The flow at the upstream at time t is stable, as well as the cumulative mid-link vehicles number. 

Therefore the evolution model is as follows: 
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The key point in this evolution model is that it depends on the state vector itself (second equation in (1)) 
therefore it is impossible to explicit the Jacobian matrix needed in the EKF, which justifies the use of the 
unscented version of Kalman filtering. 

3.3. Observation model 

The considered observations are the travel time from the probe vehicles and the number of vehicles counted 
by the loop detectors. The data from the probe vehicles contain the vehicle ID, the GPS position coordinates, the 
time, and eventually the speed, moving direction, etc. To estimate individual travel times, a map-matching is 
required. This is an important step in the process since its accuracy will directly affect the final results. Map -
matching algorithms may adopt either a geometric or a topologic or a combination of both approaches [12]. 
Observations are threefold: 

Case 1: a travel time issued from a probe vehicle gives an observation of TT associated to a noise v1t that is 
assumed to be zero mean Gaussian white noise with covariance R1t. 

Case 2: the reading from the counter associated to a loop detector at the downstream of a link gives an 
observation of Nd with a noise v2t assumed to be zero mean Gaussian white noise with covariance R2t. 

Case 3: the reading from the counter associated to a loop detector at the upstream of a link gives an 
observation of Nu with a noise v2t assumed to be zero mean Gaussian white noise with covariance R2t. Such 
upstream detector is redundant with downstream and therefore is not always set up in networks. In the one 
studied, only its two entries are equipped with loop detector, i.e. at the upstream of links 1 and 2. 

In addition to the above observations, the law of vehicles conservation at the intersections of the network 
introduces constraints that can be considered as observations. This law states that (eq. 2), at an intersection and at 
every time t, the total number of vehicles at the exit links (with indexes k=i) is equal to the total number of 
vehicles at the entrance links (with indexes k=j). If we consider that the percentages of turning movements at the 
intersections are known “a priori”, then the Nu of the entering links is defined by the corresponding proportion of 
the total Nd of the exit links. In this case, the problem in the network can be considered as a decoupled problem 
between its different links, and every link can be processed by its own UKF. Consequently the constraint in eq. 2 
becomes un-relevant. 
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The covariance matrices will vary whether the counters or probe vehicles travel times are considered. 
Counters standard error will be fixed to 5 vehicles. In the case of probe vehicles, the covariance should 
characterize the possible errors occurring in the process of map-matching the GPS positions. GPS errors and the 
consecutive map-matching errors are fixed depending on the location of the link. In a dense city center, the order 
of magnitude of these errors is several tens of meters, whereas in an open area, it is only a few meters. In a very 
first approximation, the travel time observation errors are fixed to a maximum of 10 seconds down to a few 
seconds. When the intersection constraint is considered as an observation, its associated error covariance is 
approximately set to ε << 1, because of the high confidence level assumed for the vehicles conservation law. 

3.4. Algorithm 

Data from detectors are aggregated each minute whereas data from probe vehicles are available between two 
consecutive minutes t and t+1. In order to use the information at its exact time, an intermediate step is performed 
between t and t+1. Fig. 2 summarizes the UKF algorithm. 

 

 

Fig. 2. UKF algorithm. 

4. UKF testing 

The algorithm is implemented and tested with simulated data. The simulation is made with AIMSUN in the 
urban network described in Fig. 1. For each link, the free flow speed is set to 36 km/h and the flow is limited to 
1008 veh/h. For an hour of simulation, the demand flow, i.e. the flow at the two entries (E1 and E2), is the 
following. For the first period of 20 min, the average flow is 400 veh/h, for the second 20 min period, it is 
increased to 900 veh/h and it is further decreased to 400 veh/h during the final 20 min. The percentage of vehicles 
that are lost into the sink and gained from the source (perturbation) varies from one link to another. The 
proportion of turning movement at the divergent intersection varies in time. Moreover, probe vehicles are a 
random sample from the population and 1%, 5%, and 10% of the vehicles were considered as probe vehicles. For 
each probe vehicle, we simply use its corresponding travel time. 

4.1. Model performance testing 

The following statistics are used to qualify the proposed methodology: 
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Where, 

• actuali, estimatedi, and errori are respectively the actual average travel time, the estimated travel time, and the 
relative error for the ith estimation interval;  

• MAPE stand for the mean absolute percentage error; 
• Accuracy indicates the mean exactitude in %; and 
• n is the total number of estimation interval. 

4.2. Results and analysis with known percentages of turning movements at intersections 

The percentages of turning movements being known, the network travel time estimation can be decoupled link 
per link. This section presents the results of the classical analytical procedure, the CUPRITE model and our 
UKF-based model for link 3. With CUPRITE, the upstream cumulative plot is redefined deterministically using a 
vertical scaling and a shifting technique in order to match the information of probe vehicles travel times, whilst 
the downstream cumulative plot is kept unchanged. The upstream cumulative plot redefinition is made at the 
minute-ceiled instant of occurrence of each probe vehicle, as well as prior and after this instant. Finally 
CUPRITE applies the classical analytical procedure between redefined upstream and downstream cumulative 
plots to estimate the average travel time. In a real-time context, prior correction would not have been useful. In 
fact, any correction on travel times before the occurrence of a probe vehicle is questionable with regard to the “a 
posteriori” use of this information. In the context of this research, we have adapted CUPRITE in order to match 
real-time constrain, i.e. the upstream plot redefinition is made at the time and after the probe vehicle occurrence. 
The results of both CUPRITE and CUPRITE real-time are always presented in the sequel. 

4.2.1. Sensitivity of CUPRITE 
The classical analytical procedure gives an unbiased estimation of the travel time when the vehicles are 

conserved. In such case, the CUPRITE (as well as CUPRITE real-time) correction should remain zero. But in the 
eventuality of a significant deviation between the actual TT and the one from the considered probe vehicle, this 
correction will induce a bias in the travel time estimation Fig. 3 illustrates the sensitivity of CUPRITE to a biased 
probe vehicle travel time. With the UKF, this deviation has mainly an effect at the probe vehicle instant of 
correction. After this correction, the UKF will overcome this bias, thanks to the dynamic model and detectors 
corrections, whereas CUPRITE remains biased as long as no new probe vehicle passes. 
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Fig. 3. Demonstration of the sensitivity of CUPRITE with 1 probe vehicle. 
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4.2.2. Results and analysis 
Fig. 4 (a) represents the classical analytical procedure error in minute. The cumulative effect of the 

perturbation, especially on the last 10 minutes, can be noticed. Fig. 4 (c) and (d) represent respectively the 
CUPRITE and CUPRITE real-time error in minutes. They show that in some simulations, the error reaches up to 
±2 min. Here, we observe again the sensitivity of CUPRITE correction to probe vehicles TT. Fig. 4 (b) represents 
the UKF error. In UKF and CUPRITE, the standard deviation of the estimated travel time decreases as the 
percentage of probe vehicles increases. Finally, UKF estimation is observed to be less noisy then CUPRITE. 
Table 1 summarizes the average accuracy in percentage with 5% mid-link sinks/sources, for 20 simulations, for 
the classical analytical procedure, CUPRITE and UKF with 1%, 5%, and 10% of probe vehicles. It is observed 
that both UKF and CUPRITE correct the bias in the classical analytical procedure. As expected, their accuracies 
increase with probe vehicle percentage. 
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Fig. 4. (a) Classical analytical procedure error; (b) UKF error; (c) CUPRITE error, (d) CUPRITE Real-time error. 

Table 1. Average accuracy (100-MAPE%) in % of CAP, UKF, CUPRITE, and CUPRITE real-time with mid-link 
sink/source. 

% of probe vehicles CAP UKF CUPRITE CUPRITE real-time 

 47    

1  82 82 81 

5  91 90 89 

10  94 92 91 
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4.2.3. Outliers detection and exclusion 
Fig. 5 (a) illustrates the effect of a probe vehicle outlier (3 min vs. 2 min) on the TT estimation, whereas 

Fig. 5 (b) illustrates the effect of the occurrence of a detector outlier, where the counted downstream value has 
been fixed for 2 consecutive minutes. By means of a chi-square test on the squared normalized innovation (also 
called the Mahalanobis or Nyquist distance), the UKF was able to reject the outlier, whereas CUPRITE (as well 
as CUPRITE real-time) was not, leading to an aberrant TT estimation. 
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Fig. 5. TT estimation by the classical analytical procedure (CAP), CUPRITE, CUPRITE real-time, and UKF with (a) 1 probe vehicle outlier; 
(b) detector outlier 

4.3. Results and analysis with unknown percentages of turning movements at intersections 

This section presents the results of the CUPRITE model and our UKF-based model for the network described 
in Fig. 2 where the percentages of turning movements are unknown. In this case, the classical analytical 
procedure is not applicable. 

4.3.1. Upstream and mid-link sink/source cumulative counts 
To estimate link 3 travel time, for example, CUPRITE uses the downstream cumulative count of link 1 as the 

upstream cumulative number of link 3, despite part of the flow that goes to link 4. Fig. 6 illustrates the redefined 
upstream cumulative plot (obviously much higher than the reality) with both CUPRITE and CUPRITE real-time 
with 10% of probe vehicles. We notice that CUPRITE may redefine the upstream plot under the downstream 
plot. In fact, only when the percentage of probe vehicles reaches at least 20% CUPRITE is capable to properly 
correct the upstream cumulative plot. As concerns CUPRITE real-time, the link 3 upstream cumulative plot is 
always pulled toward the link 1 downstream cumulative plot. To conclude, with an unknown percentage of 
turning movement between links 1, 3 and 4, the deviation between the CUPRITE real-time and the reference 
travel times is significantly biased by the excessive considered flow from upstream. As per UKF, the upstream 
cumulative count for all the links in the studied networks is properly estimated, even with 1% probe vehicles, 
despite mid-link perturbations. The cumulative number of mid-link sink/source without direct measurement of 
this perturbation is also estimated. Fig. 7 illustrates the estimation of the latter with 1%, 5%, and 10% of probe 
vehicles. 
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Fig. 6. The redefined upstream cumulative plot with CUPRITE and CUPRITE real-time. 
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Fig. 7. The redefined upstream cumulative plot with CUPRITE and CUPRITE real-time. 

4.3.2. Results and analysis 
Table 2 summarizes the average accuracy in percentage of the UKF for each link with 1% to 3% mid-link 

sinks/sources, for 10 simulations, with respectively 1%, 5%, and 10% of probe vehicles. The performance is 
consistent for all links, either they are perturbated or not, and the accuracy increases with the percentage of probe 
vehicles as expected. Fig. 8 shows the error in minute for each link. Even without information on the turning 
proportion, the UKF is capable of estimating properly their TT with a maximum error of 1 minute. 

Table 2. Average accuracy (100-MAPE%) in % 

 Link number 

Probe vehicle percentage 1 2 3 4 5 6 

1 90 90 87 87 91 94 

5 91 91 90 90 92 96 

10 92 92 91 91 94 97 
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Fig. 8. UKF error (a) for the first; (b) for the second; (c) for the third; (d) for the forth; (e) for the fifth; (f) for the sixth link. 

5. Conclusion 

The UKF filter developed here provides encouraging results for travel time estimation in urban network with 
mid-link sinks and sources and unknown percentages of turning movements. The evolution model of this 
algorithm is based on the classical analytical procedure. The observations are the vehicle counts from the loop 
detectors, which are located at the end of every link, and the travel times from probe vehicles after they have 
been map-matched with the appropriate link. 

The main contribution of this article is that the UKF stochastic approach, even with a few number of probe 
vehicles (1%), estimates the number of vehicles at the upstream of each link and consequently the proper travel 
time of the network. In addition, it estimates the number of mid-link sink/source vehicles. Moreover, the UKF 
offers the possibility to introduce an error model for map-matching and resulting travel times, as well as for loop 
detectors. Thus, the estimation is robustified by statistic tests, made possible by the UKF formalism. Indeed, this 
formalism enables the detection and exclusion of outliers, like mismatched GPS positions or loop deficiency. 
Furthermore, UKF can be applied in real-time. 

In this article many simulations were run with variable flow, variable percentage of vehicles that were 
randomly selected and considered as probe vehicles, variable percentage of turning movements and finally 
variable percentage of mid-link perturbations. The determination of the travel time observation error model from 
GPS data is under development. In the future, work for applying this model to real data will be conducted. 
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