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SOLVING THE p-RICCATI EQUATION AND APPLICATIONS

TO THE FACTORISATION OF DIFFERENTIAL OPERATORS

RAPHAËL PAGÈS

Abstract. The solutions of the equation f(p−1) + fp = hp in the unknown function f over
an algebraic function field of characteristic p are very closely linked to the structure and fac-
torisations of linear differential operators with coefficients in function fields of characteristic p.
However, while being able to solve this equation over general algebraic function fields is necessary
even for operators with rational coefficients, no general resolution method has been developed.
We present an algorithm for testing the existence of solutions in polynomial time in the “size”
of h and an algorithm based on the computation of Riemann-Roch spaces and the selection of
elements in the divisor class group, for computing solutions of size polynomial in the “size” of h

in polynomial time in the size of h and linear in the characteristic p, and discuss its applications
to the factorisation of linear differential operators in positive characteristic p.

1. Introduction

This article deals with some algorithmic questions related to the factorisation of linear differential
operators in positive characteristic p. Let K be a field equipped with an additive map a 7→ a′

verifying the Leibniz rule (ab)′ = a′b + ab′. Such a map is called a derivation on K and K is
called a differential field. An example of such a field is k(x), where k is any field, equipped with
the derivation d

dx . We can consider the field K〈∂〉 of linear differential operators with coefficients
in K, whose elements are polynomials in the variable ∂ of the form

an∂
n + an−1∂

n−1 + · · ·+ a1∂ + a0

with ai ∈ K, and where the (noncommutative) multiplication verifies the commutation rule ∂a =
a∂ + a′ for any a ∈ K. For operators with coefficients in K = C(x) or K = Q(x), the problem of
factorisation has been well studied and several algorithms have been proposed over the years [6,
10, 24]. The question of factorisation for operators with coefficients in Fp(x) has also been studied
in the perspective of developing modular algorithms to factor operators in Q(x)〈∂〉 [21, 7] after
van der Put published in [20] a full classification of finite dimensional differential modules in
characteristic p which serves as the basis of all factorisation algorithms for operators in Fp(x)〈∂〉.
The most remarkable difference between operators in characteristic 0 and in characteristic p is the
size of the field of constants. Indeed, whereas it is reduced to C over C(x), the field of constants
of Fp(x) is Fp(xp) over which the field of rational functions Fp(x) is of finite dimension p. As a
consequence, any operator L ∈ Fp(x)〈∂〉 is a divisor of an element N ∈ Fp(xp)[∂p], the center of
Fp(x)〈∂〉. Factoring those central elements is much easier as they behave as bivariate polynomials.
Furthermore, the factorisation of central multiples of L can be used to recover information on
the factorisations of L. This allows to reduce the problem of factorisation over Fp(x)〈∂〉 to the
factorisation of divisors of some N(∂p) where N is an irreducible polynomial over Fp(xp). In the
case where N is of the form Y − a with a ∈ Fp(xp), it was shown [20, 7] that finding irreducible
factors of ∂p − a is equivalent to solving the equation

dp−1

dxp−1
f + fp = a

over Fp(x). This result generalizes to higher degrees of N . For the sake of simplicity we shall
assume N to be separable. Let yN be a root of N in a separable closure of Fp(xp). If N(∂p) is not
itself irreducible, then irreducible factors of N(∂p) with coefficients in Fp(x) are in bijection with
the solutions of

(1)
dp−1

dxp−1
f + fp = yN
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in Fp(x)[yN ]. We call this equation the p-Riccati equation relative to N . Furthermore, if L is a
divisor of N(∂p) (not necessarily irreducible) then the solutions of the p-Riccati equation can be
used to recover irreducible divisors of L. One way of doing that is to notice that if f is a solution
of the p-Riccati equation relative to N then L(∂ − f) has an algebraic solution b ∈ Fp(x)[yN ].

It follows that an irreducible divisor of L is given by the smallest left multiple of ∂ − f − b′

b in
Fp(x)〈∂〉. The “size” of the irreducible divisor of L that this method returns thus depends at least
in part on the “size” of the solution to the p-Riccati equation used. In particular, while it is not
sufficient it is important in the perspective of developing modular methods for factorisation that
the “size” of the solution to the p-Riccati equation is independent from p.
Finally the existence of solutions to the p-Riccati equation acts as an irreducibility test for N(∂p).

1.1. State of the art. An algorithm to solve the p-Riccati equation was proposed [23, §13.2.1] in
the rational case. In that setting, the p-Riccati equation can be written as

dp−1

dxp−1
f + fp = gp

with g ∈ Fp(x). This method consists in showing that if rational solutions exists then one of them
has the same denominator as g and a numerator of degree at most the maximum of the degrees of
the numerator and the denominator of g. Finding this solution is now an easy task since the map

f 7→ dp−1

dxp−1 f + fp is Fp-linear. This method returns a solution of degree polynomial (in fact linear
here) in that of g and a naive computational approach outputs the result in polynomial time in
the degree of g and linear time in p.

Over a general algebraic function field, the only known method was presented in an unpublished
manuscript of van der Put [22]. If L is a nontrivial divisor of N(∂p) then one can consider
L∗ = gcd(L, ∂p − yN). By writing

L∗ = ∂m + bm−1∂
m−1 + · · ·+ b1∂ + b0

it can be shown that − bm−1

m is a solution to the p-Riccati equation relative to N .
This method can only be used if one already knows a nontrivial divisor of N(∂p). In particular if
nothing else is known it cannot be used as an irreducibility test for N(∂p). Furthermore, computing
the greatest common divisor of L with an operator of order p yields an operator whose coefficients
are of linear “size” in p. Thus the solution to the p-Riccati equation that this method returns has
linear size in p as well.

The case of the factorisation of central operators of the form N(∂p) has been ignored by the
previous works on factorisation. However, this case is highly nontrivial as we will see.

1.2. Contribution. We present two new algorithms regarding the p-Riccati equation on algebraic
curves of characteristic p. The first is a polynomial time irreducibility test for differential operators
of the form N(∂p) where N is an irreducible polynomial over Fq(xp) (with q being a power of p).
Precisely, we show the following result.

Theorem 1.1. Let q ∈ N∗ be a power of p and N∗ ∈ Fq[x, Y ] be an irreducible bivariate polynomial
of degree dx with respect to x and dy with respect to Y . There exists an algorithm testing the
irreducibility of Np

∗ (∂) in polynomial time in dx, dy and log(q).

We then use this irreducibility test to design a resolution algorithm of the p-Riccati equation
relative to N and discuss its implications for the factorisation of differential operators.

Theorem 1.2. Let q ∈ N∗ be a power of p and let N∗ ∈ Fq[x, Y ] be an irreducible polynomial
of degree dx with respect to x and dy with respect to Y . We denote by N ∈ Fq[xp, Y ] the unique
polynomial such that Np

∗ (Y ) = N(Y p).

• There exists a solution to the p-Riccati equation relative to N of size polynomial in dx

and dy and an algorithm taking N∗ as input and outputting this solution in linear time
in p and polynomial time in dx and dy.
• N(∂p) has irreducible factors in Fq(x)〈∂〉 of size polynomial dx and dy. There exists an

algorithm taking N∗ as input and outputting such a factor in linear time in p and polynomial
time in dx and dy.



SOLVING THE p-RICCATI EQUATION 3

Remark 1.3. It should be noted that while we limit, for the sake of simplicity, our complexity study
to the case of operators whose coefficients are rational functions over P1, all of the aforementioned
algorithms can in fact be designed for factoring operators whose coefficients are rational functions
over an algebraic curve C.

Complexity basics. We use the soft-O notation Õ which indicates that polylogarithmic factors are
not displayed. More precisely, if λ, µ : N → R+ are increasing functions, saying that λ(n) =

Õ(µ(n)) means that there exists an integer k ∈ N such that λ(n) = O(µ(n) logk(µ(n))). We will
also locally use the notation Oε. With the same notations, saying that λ(n) = Oε(µ(n)) means
that for any ε > 0, λn = O(µ(n)1+ε).
We denote by 2 6 ω 6 3 a feasible exponent for matrix multiplication, that is, by definition,
a real number for which we are given an algorithm that computes the product of two m-by-m
matrices over a ring R for a cost of O(mω) operations in R. From [1], we know that we can take
ω < 2.3728596. We shall also need estimates on the cost of computing characteristic polynomials.
Let denote Ω ∈ R∗

+ such that the computation of the characteristic polynomial of a square matrix

of size m with coefficients in a ring R can be done in Õ(mΩ) arithmetic operations in R. From
[13, Section 6], we know that it is theoretically possible to take Ω ≃ 2.697263. Finally, we assume
that any two polynomials of degree d over a ring R (resp. integers of bit size n) can be multiplied
in Õ(d) operations in R (resp. Õ(n) bit operations); FFT-like algorithms allow for these complex-
ities [5, 12].

We begin by recalling some facts about differential operators in characteristic p.

2. Prolegomena

In this section we will work on differential operators with coefficients in a differential field (K, ∂)
of characteristic p verifying the following hypothesis:

Hypothesis 2.1. Let C be the subfield of constants of K. We assume:

(1) [K : C] = p.
(2) There exists x ∈ K such that ∂(x) = 1.

Remark 2.2. Since we will work on operators in K〈∂〉, ∂ will denote both a formal operator and a
derivation on K. For the sake of simplicity we will write

f ′ := ∂(f) and f (k) := ∂k(f)

for any f ∈ K.

Notation 2.3. Let L ∈ K〈∂〉. We denote

DL := K〈∂〉/K〈∂〉L

and for any right divisor L∗ of L,

DLL∗ := K〈∂〉L∗/K〈∂〉L

The quotient module DL is important because of its relation to the factors of L.

Proposition 2.4. The map

L∗ 7→ DLL∗

is a bijection between the set of monic right divisors of L and the set of submodules of DL.

Proof. See [23, Section 2.2, page 47] �

As we previously mentioned, we restrain our study to operators L ∈ K〈∂〉 for which there exists
a separable irreducible polynomial N ∈ C[Y ] such that L is a divisor of N(∂p). For the rest of this
section we suppose that N is fixed.

Notation 2.5. We denote by CN := C[Y ]/N(Y ) the splitting field of N over C and by yN the image
of Y in CN . We also set KN = K[yN ].

Proposition 2.6. i) For any f ∈ K, f (p) = 0.
ii) K〈∂〉 is a free algebra of dimension p2 over its center C[∂p].
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iii) DN(∂p) is a central simple CN -algebra of dimension p2 (by identifying CN := C[Y ]/N(Y )

with C[∂p]/N(∂p) ⊂ DN(∂p)).
iv) DN(∂p) is either a division algebra or is isomorphic to Mp(CN ).
v) If N(∂p) is a division algebra then N(∂p) is irreducible. If DN(∂p) is isomorphic to Mp(CN )

then all irreducible divisors of N(∂p) are of order deg(N).

Proof. (i) and (ii) are done in [20, Lemma 1.1]. (iii) is [20, Lemma 1.2] and (iv) is [20, Corol-
lary 1.3].
Suppose that DN(∂p) is a division algebra. Then in particular it has no nontrivial zero divisor.
Thus N(∂p) has no nontrivial divisor.
Suppose now that DN(∂p) is isomorphic to Mp(CN ) and let L be an irreducible divisor of N(∂p).
Then DL is a simple K〈∂〉-module. We can apply [20, Proposition 1.7.1] to DL. Since DL is
simple we must have DL ≃ I(N) (with the notations of [20, Proposition 1.7. 1]). In particular,

dimCN
DL = p and ord(L) = dimK DL = [CN :C]

[K:C] dimCN
DL = deg(N). �

We now show how the p-Riccati equation appears when N is a polynomial of degree 1.

Proposition 2.7. Let a ∈ C. If ∂p − a is not irreducible then its monic irreducible divisors are
the operators of the form ∂ − f with f verifying

f (p−1) + fp = a

Proof. Let us suppose that ∂p − a is not irreducible. Then D∂p−a is isomorphic to Mp(C). Let L
be a monic irreducible divisor of ∂p−a. From Proposition 2.6 (v) we know that L is of order 1 so it
is of the form ∂− b. We consider the K-linear endomorphism ψL

p of DL given by ψL
p : M 7→ ∂p ·M .

Since ∂p is central in K〈∂〉, this is indeed a K-linear map. Furthermore, DL is isomorphic to K
as a K-vector space so there exists g ∈ K such that ψL

p is the multiplication by g. Then we have

∂ ≡ ∂ · ∂p (mod L)

≡ ∂p · ∂ (mod L)

≡ g∂ (mod L)

Thus ∂g− g∂ = 0 (mod L). Since ∂g− g∂ = g′, it follows that g′ = 0 and g ∈ C. Moreover, Y − g
is the characteristic polynomial of ψL

p , so ψL
p − gId = 0. In particular ∂p − g = 0 (mod L). Thus

L is a common divisor of both ∂p − a and ∂p − g. This is possible only if g = a. According to [20,
Lemma 1.4.2], g = b(p−1) + bp.
Conversely if L is of the form ∂ − b with b(p−1) + bp = a then from what precedes it is a divisor of
∂p − b(p−1) − bp = ∂p − a. �

It follows that ∂p − a is irreducible in K〈∂〉 if and only if the equation f (p−1) + fp = a has no
solution in K. We now extend this result to polynomials N of higher degree.

Proposition 2.8. i) KN verifies Hypothesis 2.1 and [KN : K] = deg(N).
ii) The canonical morphism DN(∂p) → KN 〈∂〉/(∂p−yN ) is an isomorphism of CN -algebras.

iii) DN(∂p) is isomorphic to Mp(CN ) if and only if the p-Riccati equation relative to N has a
solution in KN .

Proof. i) Let x ∈ K be such that x′ = 1. Since [K : C] = p, we have K = C[x]. Furthermore,
noticing that xp ∈ C, we find that Y p − xp is the minimal polynomial of x over C. In
particular, since N is supposed to be separable, x /∈ CN . Thus we also have KN = CN [x].
Furthermore, since the minimal polynomial of x over C is inseparable, that must also be the
case of its minimal polynomial over CN . Thus we have [KN : CN ] = p. Furthermore, we

have [KN : C] = [KN : CN ][CN : C] = [KN : K][K : C] so [KN : K] = p deg(N)
p = deg(N).

ii) Let ϕN : DN(∂p) → KN 〈∂〉/(∂p−yN ) be the canonical morphism. We first show that ϕN is
injective.
Let L ∈ ker(ϕN ) and L ∈ K〈∂〉 be a lift of L. We can write L =

∑

06i,j6p−1 li,j(∂p)xi∂j

with the li,j ∈ C[Y ]. Since KN verifies Hypothesis 2.1, we deduce that the family
(xi∂j)06i,j6p−1 is a CN -basis of KN 〈∂〉/∂p−yN . This means that for all i, j ∈ J0; p − 1K,
Y − yN divides li,j .
Thus yN is a root of all li,j . But since the li,j all have coefficients in C and N is the
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minimal polynomial of yN over C, it follows that N divides all li,j .
Thus the ideal generated by N(∂p) is precisely the kernel of the considered map. It follows
that ϕN is injective. Observe finally that dimCN

(DN(∂p)) = p2 and dimCN
(KN 〈∂〉/(∂p−yN )) =

p · [KN : CN ] = p2. It follows that ϕN is also surjective by dimensional analysis.
iii) DN(∂p) is isomorphic to Mp(CN ) if and only if KN 〈∂〉/(∂p−yN ) is isomorphic to Mp(CN )

which to say that ∂p − yN admits an irreducible divisor of order 1 in KN 〈∂〉. From
Proposition 2.7, this is equivalent to the p-Riccati equation with respect to N having a
solution in KN .

�

Notation 2.9. If N ∈ C[Y ] is an irreducible separable polynomial, we denote by SN the set of
elements f ∈ KN verifying

f (p−1) + fp = yN .

Lemma 2.10. Let N ∈ C[Y ] be an irreducible separable polynomial and f ∈ SN . Then SN =

{f − g′

g |g ∈ KN}.

Proof. Let h be an element of KN . The element h is in SN if and only if h − f verifies (h −
f)(p−1) + (h − f)p = 0, which is the same as requiring that ∂ − (h − f) is a divisor of ∂p. Since

dp

dxp (KN ) = 0, this is further equivalent to saying that ∂ − (h − f) has a solution g ∈ KN and is

its minimal vanishing operator, that is to say is equal to ∂ − g′

g . Thus h ∈ SN if and only if h− f

is of the form h = g′

g . �

In Section 4, we will also see how to use the solutions of the p-Riccati equation to compute
irreducible divisors of N(∂p).

3. Polynomial time irreducibility test

We now present an irreducibility test for operators of the formN(∂p) with N being an irreducible
polynomial over C. We restrict ourselves to the case where K is a finite separable extension of
Fp(x).

Lemma 3.1. If K is a finite separable field extension of Fp(x) equipped with the derivation d
dx

then K verifies Hypothesis 2.1. Furthermore its constants are the p-th powers of elements of K.

Proof. Let C be the field of constants ofK. Fp(x) does verify Hypothesis 2.1 and its field of constant
is Fp(xp). Since K is a finite separable extension of Fp(x), there exists F ∈ Fp[x, Y ] irreducible
and a root r of F in a separable closure of Fp(x) such that K = Fp(x)[r]. But then rp ∈ C, thus
Fp(xp)[rp] ⊂ C. Let Φ denote the Frobenius endomorphism on Fp(x). The element rp is a root of
Φ(F ) so [Fp(xp)[rp] : Fp(xp)] = [K : Fp(x)]. We have [K : Fp(xp)] = [K : Fp(x)][Fp(x) : Fp(xp)] =

[K : Fp(xp)[rp]][Fp(xp)[rp] : Fp(xp)] which is to say that [K : Fp(xp)[rp]] = deg(F )p
deg(F ) = p. Since

Fp(xp)[rp] ⊂ C ⊂ K, and K 6= C (x ∈ K) we have C = Fp(xp)[rp] and [K : C] = p. Furthermore
the elements of C = Fp(xp)[rp] are exactly the p-th powers of elements of K = Fp(x)[r]. �

Notation 3.2. Let N be an irreducible polynomial over C. For any place P of KN we denote by
KN,P the completion of KN with regard to the associated valuation νP. We also denote GP the
residue class field of KN . Finally we will usually use the notation tP to refer to a prime element
of P in KN .
For any place of P′ of CN , we denote by CN,P′ the completion of (CN , νP′).
For any algebraic function field F we denote by PF the set of places of F and by Div(F ) the group
of divisors of F ; we recall that it is the free Z-module generated by the elements of P(F ). If f is
an nonzero element of F , we denote by (f) the principal divisor of f , by (f)0 its divisor of zeros
and by (f)∞ its divisor of poles. If D is a divisor over F , we write L(D) = {f ∈ F |(f) > −D} for
the Riemann-Roch space associated to D.
We denote by Diff(KN/K) (or just Diff(KN )) the different divisor of KN over K.
Finally if k is a field, we denote by Br(k) the Brauer group of k.

The basis for our irreducibility test is the following proposition
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Proposition 3.3. Let N be an irreducible polynomial over C. Then, N(∂p) is reducible in K〈∂〉
if and only if the p-Riccati equation

f (p−1) + fp = yN

has a solution in KN,P for all P ∈ PKN
.

Proof. We know thatN(∂p) is reducible inK〈∂〉 if and only if DN(∂p) ≃ KN 〈∂〉/(∂p−yN ) is isomorphic
to Mp(CN ), which amounts to saying that KN 〈∂〉/(∂p−yN ) vanishes in the Br(CN ). We know that
D 7→

⊕

P∈PCN
D ⊗CN

CN,P induces an injective group morphism [9, Corollary 6.5.4]

Br(CN ) →֒
⊕

P∈PCN

Br(CN,P).

In particular this means that KN 〈∂〉/(∂p−yN ) is isomorphic to Mp(CN ) if and only if

KN 〈∂〉/(∂p−yN )⊗CN
CN,P

is isomorphic to Mp(CN,P) for all P ∈ PCN
.

Besides we know that KN 〈∂〉/(∂p−yN ) ⊗CN
CN,P is isomorphic to K

N,κ−1(P)〈∂〉/(∂p−yN ). Thus
KN 〈∂〉/(∂p−yN ) is isomorphic to Mp(CN ) if and only if KN,P〈∂〉/(∂p−yN ) is isomorphic to Mp(CN,κ(P))
for all P ∈ PKN

.
Lastly KN,P is of the form Fq((tP)) for q some power of p. In particular it is a field verifying

Hypothesis 2.1. Thus it is isomorphic to Mp(CN,P) if and only if the equation

f (p−1) + fp = yN

has a solution in KN,P. �

We now want to find a criteria for the p-Riccati equation relative to N to have a solution in
GP((tP)). Over fields of Laurent series we can apply a Newton iteration to find solutions to a
higher precision from a given seed as illustrated by the following proposition.

Proposition 3.4. Let f0 ∈ GP((tP)) and n ∈ Z be such that

dp−1

dxp−1
f0 + fp

0 = yN +O(tpn
P ).

We set eP := 1− νP(t′P). There exists f1 ∈ GP((tP)) such that f1 = f0 +O(t
pn+(p−1)eP

P ) and

dp−1

dxp−1
f1 + fp

1 = yN +O(t
p(pn+(p−1)eP)
P ).

Proof. Let g := dp−1

dxp−1 f0 + fp
0 − yN . For any f ∈ GP((tP)), dp−1

dxp−1 f is a constant since dp

dxp = 0.

Since yN ∈ CN is also a constant, it follows that dg
dx = 0. Thus there exists I(f0) ∈ GP((tP))

such that dp−1

dxp−1I(f0) = g. Furthermore, we claim that we can take I(f0) such that νP(I(f0)) =
pn+ (p− 1)eP.

Indeed, let h ∈ Im
(

d
dx

)

and H =
∑∞

k=νP(H) hkt
k
P ∈ GP((tP)) such that d

dxH = h. Then we set

H1 := H −
∑

k∈Z hpkt
pk
P . We have d

dxH1 = d
dxH = h. Furthermore p does not divide νP(H1).

But we also have

d

dx
H1 = t′P

d

dtP





∞
∑

k=νP(H1)

hkt
k
P



 = t′P
∑

k=νP(H1)−1

(k + 1)hk+1t
k
P.

It follows that νP(h) = νP(H1)−1+νP(t′P) which is to say that h admits a primitive H1 verifying

νP(H1) = νP(h) + eP. Applying this result p−1 times, we conclude that we can take I(f0) such
that νP(I(f0)) = pn+ (p− 1)eP.

Next, we consider f1 := f0 − I(f0). By definition f1 = f0 +O(t
pn+(p−1)eP

P ) and

dp−1

dxp−1
f1 + fp

1 =
dp−1

dxp−1
f0 + fp

0 −
dp−1

dxp−1
I(f0)− I(f0)p

= g + yN − g − I(f0)p

= yN +O(t
p(pn+(p−1)eP)
P )

�
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Corollary 3.5. The p-Riccati equation relative to N admits a solution in KN,P = GP((tP)) if
and only if there exists f ∈ GP((tP)) such that

dp−1

dxp−1
f + fp = yN +O(t

p(1−eP)
P ).

In particular if νP(yN ) > p·νP(t′P) then the p-Riccati equation relative to N has always a solution
in KN,P.

Proof. Let f be such that dp−1

dxp−1 f+fp = yN +O(t
p(1−eP)
P ) and set f0 := 1. We construct a recursive

sequence (fk)k∈N ∈ K
N
N,P such that the term fk+1 is constructed from fk using Proposition 3.4.

We set nk := max{n ∈ N| dp−1

dxp−1 fk + fp
k = yN +O(tpn

P )} and show that the sequence nk is strictly

increasing. Indeed we have n0 > −eP. Thus n1 > pn0 +(p−1)eP > n0−(p−1)eP+(p−1)eP = n0.
It follows that n1 > n0 and n1 > −eP. By induction we show that nk > −eP for all k and conclude
that nk+1 > nk the same way.
From Proposition 3.4 it also follows that fk = fl + O(tnl

P ) for all k > l. Thus a solution to the
p-Riccati equation in KN,P is given by limk→∞ fk.

Let us now suppose that νP(yN ) > p·νP(t′P). Then by definition of eP, the function f = 0
verifies

dp−1

dxp−1
f + fp = yN +O(t

p(1−eP)
P )

so the p-Riccati equation relative to N must have a solution in KN,P by what precedes. �

Corollary 3.5 is very important because it states that for almost all (all except a finite number)
place P ∈ PKN

, the p-Riccati equation has a solution in KN,P. Indeed, νP(t′P) being the valuation

of the divisor 2(x)∞ − Diff(KN ), the only places where the existence of a solution is not obvious
are the places where the valuation of the divisor p−1 · (yN ) + Diff(KN )− 2(x)∞ is negative. Since
the divisor Diff(KN ) is effective, those places are either poles of yN or poles of x.
We now see how to check if the p-Riccati equation has a solution in those places.

Lemma 3.6. For any f ∈ KN,P, dp−1

dxp−1 f = dp−1

dtp−1
P

(t′p−1
P f).

Proof. We consider the ring of differential operators KN,P〈∂∗〉 where ∂∗f = f∂∗ + d
dtP

(f) for all

f ∈ KN,P. We know that d
dx = t′P

d
dtP

so we want to show that (t′P∂∗)p−1 = ∂p−1
∗ t′p−1

P . We know

that for all f ∈ KN,P, dp

dxp f = 0. It follows that (g∂∗)pf =
∑p

i=0

(

p
i

)

di

dxi f(t′P∂)p−i = f(g∂∗)p.

Thus (g∂∗)p commutes with all the elements of KN,P so it is an element of KN,P[∂p] and is of the

form a1∂
p
∗ +a0. But the leading coefficients a1 is necessarily t′p−1

P and a0 = d1
dx = 0. Thus we have

(t′P∂∗)p = tpP∂
p
∗ = t′P∂

p
∗ t

′p−1
P . We can simplify by t′P∂∗ and get the desired equality. �

Theorem 3.7. Let P ∈ P(KN ) and tP ∈ KN be a prime element of P. We suppose that η :=
νP(t′P) − p−1 · νP(yN ) > 0. Let (g0, g1, . . . , gη−1) ∈ Gη be the first η coefficients of (t′P)p−1 and

(a0, . . . , aη−1) ∈ Gη be the first η coefficients of a p-th root of yN . Let GP = Fpb with b > 0. We

identify Gη
P with Fbη

p . We set

Dp−1(P) :=































0

gr · · · g0

...
. . .

gη−1−p · · · g0 0 · · · 0
gη−1 · · · gp gp−1 · · · g0































where Dp−1(P) ∈Mbη(Fp) is a block matrix and the coefficient gi is the matrix of the multiplication
by gi in GP. Let Φ be the diagonal block matrix in Mbη(Fp) whose diagonal block are all the matrix
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of the Frobenius endomorphism over GP. Then the p-Riccati equation relative to N has a solution
in KN,P if and only if the system

(Φ−Dp−1(P))X = Φt(a0, . . . , aη−1)

has a solution in Gη
P.

Proof. Let f ∈ KN,P verifying dp−1

dxp−1 f + fp = yN . Then νP(f) > p−1νP(yN ). Indeed we

know that νP(yN ) > min(pνP(f), νP( dp−1

dxp−1 f)). If we had νP(f) < p−1νP(yN ) then in par-

ticular νP(f) < νP(t′P) − 1. Since νP

(

dp−1f
dxp−1

)

> νP(f) + (p − 1)(νP(t′P) − 1), we find that

νP

(

dp−1f
dxp−1

)

> pνP(f). Thus we would have νP(yN ) = min(pνP(f), νP( dp−1

dxp−1 f)) = pνP(f), which

is a contradiction. Thus νP(f) > p−1 · νP(yN ).

We set f :=
∑∞

k=0 fkt
k+p−1·νP(yN )
p . We claim that X = t(f0, . . . , fη−1) is a solution of the

system (Φ − Dp−1(P))X = Φ · t(a0, . . . , aη−1). It is in fact enough to check that the vector

−Dp−1(P)t(f0, . . . , fη−1) is the vector of the coefficients of tpk
P in dp−1f

dxp−1 for k ∈ Jp−1 ·νP; νP(t′P)−

1K. We know that dp−1

dxp−1 (f) = dp−1

dtp−1
P

(t′p−1
P f) and the result follows from a straightforward compu-

tation.
Conversely, if (Φ−Dp−1(P))X = Φ · t(a0, . . . , aη−1) has a solution (f0, . . . , fη−1) ∈ Gη

P then we set

f =
(

∑η−1
k=0 fkt

k
P

)

t
p−1·νP(yN )
P and claim that dp−1

dxp−1 f + fp = yN + O(t
p(1−eP)
P ) which proves the

existence of a solution according to Corollary 3.5. From what precedes, we know that the equality

is true for the coefficients of tpk for k ∈ Jp−1 · νP(yN ),−ePK. Furthermore, since dp−1

dxp−1 f + fp and

yN are constant, all the other coefficients before t
p(1−eP)
P are equal to zero which gives the desired

result. �

We can now write an algorithm for testing the irreducibility of an operator N(∂p) where N is
an irreducible polynomial over C. From Lemma 3.1, we know that we can take N∗ ∈ K[Y ] such
that Np

∗ (Y ) = N(Y p) and KN ≃ K[Y ]/N∗. If we denote by a the image of Y in KN then yN = ap.
This representation is easier to manipulate (because smaller by a factor p in all generality) so we
consider that the entry of our algorithm is the polynomial N∗. The correctness of Algorithm 1 is

Input: N∗ ∈ K[Y ] a separable irreducible polynomial.
Output: Whether or not Np(∂) in irreducible in K〈∂〉

(1) Set KN := K[a] = K[Y ]/N where a is a root of N .
(2) Compute S := Supp(a)− ∪ Supp(x)−.
(3) For P in S do:

(a) Compute tP a prime element of P.
(b) Compute t′P and set η := νP(t′P)− νP(a).

(c) If η > 0 do:
(i) Compute gP, the Taylor expansion of t′P in tP at relative precision η.

(ii) With fast exponentiation on gP, compute the first η coefficients

(g0, . . . , gη−1) of t′p−1
P .

(iii) Compute (a0, . . . , aη−1) the first η coefficients of the Taylor expansion of
a in tP.

(iv) Check if the system (Φ−Dp−1(P)X = Φt(a0, . . . , aη−1 defined in
Theorem 3.7 has a solution in Gη

P.

(v) If it doesn’t, return False and stop the algorithm.
(4) return True

Algorithm 1: irreducibility test

easily deduced from the discussion that precedes. To evaluate its complexity, we must say a word
on the choice of the prime elements tP. To simplify the exposition, we assume that K = Fq(x)
with q = pb and that N∗ ∈ Fq[x, y] with dx = degxN∗ and dy = degy N∗. It follows that KN is
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a field extension of Fq(x) of degree dy. As such, any element f ∈ KN can be represented by d
rational functions in Fq(x).

Notation 3.8. For any element f = 1
Df

∑dy−1
i=0 fia

i ∈ KN such that Df , f0, . . . , fdy−1 ∈ Fq[x]

with gcd(Df , f0, . . . , fdy−1) = 1 we write

deg f := max(degDf , deg f0, . . . ,deg fdy−1).

In 2011, Jordi Guardia, Jesús Montes and Enric Nart presented in [11] an algorithm designed
for number fields called Montes algorithm. This algorithm takes in input a monic irreducible
polynomial f(x) ∈ Z[x] which defines a number field K = Q[θ], where θ is a root of f , and a prime
number p ∈ Z. The algorithm returns a full factorisation pe1

1 . . . p
eg
g of the ideal pZK as a product

of prime ideals of ZK , where ZK is the subring of elements of K which are integral over Z, as well
as generators α1, . . . , αg verifying pi = pZK + αiZK . The settings of number fields and algebraic
function fields are actually very similar and Montes algorithm can be easily adapted to it. The
analogous algorithm takes as input a monic irreducible polynomial f(x, y) ∈ Fq[x][y] generating
an algebraic function field of positive characteristic F ≃ Fq(x)[y]/f(x,y) together with an irreducible
polynomial P ∈ Fq[x]; and it returns the divisor (P ) = e(P1|P ) ·P1 + . . .+ e(Pg|P ) ·Pg as well
as prime elements tPi

for all the places in Supp(P ).
Montes algorithm is the starting point of many algorithms dealing with number fields or algebraic

function fields. In [2], a version of Montes algorithm where the generators αi are not computed
is used as a key element to compute OM-representations, of the ideals dividing p, from which the
generators can be obtained as a byproduct. In [14, section 6], Adrien Poteaux and Martin Weimann
stated that for a number field K = Q[x]/(F ), where F is a monic integral polynomial, and a prime
p ∈ Z, an OM-representation of the prime ideals dividing p can be computed in Õε(degy(f)δ)

operations in Fp, where δ is the valuation of Disc(F ) in p, if p > degy(f) or Oε(degy(f)δ + δ2)
operations in Fp otherwise. The analogous result for algebraic functions fields is that for an
algebraic function field F = Fq(x)[y]/f(x,y), where f is a monic integral polynomial, and an irreducible
polynomial P ∈ Fq[x], an OM-factorisation of the prime ideals dividing P can be computed
in Oε(deg(P ) degy(f)δ) operations in Fq if char(Fq) > degy(f), and Oε(deg(P )(degy(f)δ + δ2))
operations in Fq otherwise, where δ is the valuation of Disc(f) in P .

In a personal communication, Martin Weimann explained to us that, as a consequence of [11,
Proposition 4.28] and of the results of a paper in preparation [15], a prime element tP of a place

P ∈ Supp(P ) can be computed with deg tP = O(deg(P ) δ
degy(f)) at the cost of an OM-factorisation

and O(deg(P )δ) operations in Fq.

Theorem 3.9. Let N∗ ∈ Fpb [x, y] be an irreducible polynomial and let dx := degx(N∗) and dy :=
degy(N∗). Algorithm 1 determines whether N∗ is irreducible or not in , solving the local problems
can be done at the cost of computing (a)− and (x)− as well as Oε(dxdyb log(p)) bit operations from
computing OM-representations and prime elements, O(dx + dy) evaluation of functions in KN of

degree O(d2
xdy + dxd

2
y) and Oε(bω(dx + dy)ω log2(p) + (d3

xd
2
y + d2

xd
3
y + dxd

4
y)b log(p)) bit operations.

Proof. Let lc be the leading coefficient of N∗. We begin by the cost of computing prime elements
for all places P ∈ S := Supp(a)∞∪(x)∞. Let us first assume that Supp(a)∞∩Supp(x)∞ = ∅. Let

P be a pole of a. We can apply the OM -factorisation mentioned earlier to Q = l
dy−1
c N∗(x, y/lc)

which is integral, monic and the minimal polynomial of lca. We have Disc(Q) = l
dy−1
c Disc(N∗)

which is of degree O(dxdy). There exists P ∈ Fp[x] irreducible such that P divides P . It follows
that the cost of using the OM-factorisation algorithm is Oε(deg(P )(dyδ(Q) + δ(Q)2) = O((dy +
deg(Disc(Q))) deg(Disc(Q)) = O((dxdy)2) operations in Fpb and yields a prime element tP such

that deg(tP) = O(dx). The sum of these costs over the poles of a results in O(d3
xd

2
y) operations in

Fpb .

By the symmetry of the roles of x and a, the similar process over the poles of x costs Oε(d3
yd

2
x)

operations in Fpb and yields prime elements of degree O(dy) both in x and a.
If now P is a pole of both a and x we can replace a by a · xν and N∗(x, y) by N∗(x, x−νy) where
ν is the valuation of a in P. Thus we find ourselves in a situation where P is not a pole of x and
show that the result still holds. Thus this first phase has a cost of Oε((d3

xd
2
y + d2

xd
3
y)b log(p)) bit

operations.
Prime elements of poles of (x) created from this process are written in a basis of Fpb(a)[x] and need
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to be written in the canonical basis of Fpb(x)[a]. This yields prime elements of degree O(dxdy)
which we now assume to be the size of all our prime elements.

To compute the Taylor expansions we use a naive algorithm which consist in extending the
constant base field Fpb to GP and doing recursive evaluations of t′P and a in GP. This process

over P requires to do at most mP := −2νP(x)− νP(a) evaluations of function of a degree similar

to tmP
P that is to say O(mPdxdy) and (m2

Pdxdy) operations in GP. By definition, the sum of the

mP deg(P) is smaller than deg(2(x)∞+(a)∞) = O(dx+dy). Thus computing the Taylor expansions
requires to do O(dx + dy) evaluations of functions in KN of degree at most O(d2

xdy + dxd
2
y) and

Õ((d3
xd

2
y + dxd

4
y)b log(p) bit operations.

The final part is the resolution of multiple Fp-linear systems of size mP deg(P)b each of which

can be solved in Õ(bωmω
P deg(P)ω log(p)2) bit operations. The factor log(p)2 comes from the

computation of the Frobenius endomorphism over GP. The sum of these terms over the poles of a
and x gives the final result. �

4. Solving the p-Riccati equation

The goal of this section is to present an algorithm to solve the p-Riccati equation relative to
an irreducible polynomial N ∈ C[Y ] over KN . We discuss its complexity and its applications to
the factorisation of differential operators in K〈∂〉. This algorithm makes use of algebraic geometry
tools such as Riemann-Roch spaces and the Picard group of KN .
We recall that van der Put and Singer presented, in [23, §13.2.1], a method to compute solutions
of p-Riccati equations over Fq(x). Their method will serve as a guideline for the techniques we
develop in the general case.
We keep the notations of the previous section. In addition, we suppose that N ∈ C[Y ] is a fixed
irreducible polynomial and use the notations introduced in Notation 2.5. In particular, we recall
that SN denotes the set of solutions of the p-Riccati equation f (p−1) + fp = yN .

Proposition 4.1. Let P be a place of KN , tP be a prime element of P. Then, for all f ∈ SN ,
we have νP(f) > min(p−1νP(yN ), νP(t′P)− 1).

Proof. We have

νP(yN ) = νP(f (p−1) + fp)

> min(νP(f (p−1), pνP(f)).

Furthermore equality holds if νP(f (p−1)) 6= pνP(f). Since νP(f (p−1)) > νP(f)+(p−1)(νP(t′P)−1)

if νP(f) < νP(t′P)−1, we find in particular that pνP(f) < νP(f)+(p−1)(νP(t′P)−1) 6 νP(f (p−1))

so νP(yN ) = pνP(f). �

In fact we can show that if solutions exists, some of them verify a slightly better bound.

Definition-Proposition 4.2. Let f ∈ SN and P be a place of KN verifying νP(yN ) > pνP(t′P).

Then there exists k ∈ Fp such that for all g ∈ KN , if νP(g) ≡ k (mod p) then f − g′

g ∈ SN and

νP

(

f − g′

g

)

> νP(t′P). We call k the ramified residue of f in P and write

ReP(f) := k.

Proof. If νP(f) > νP(t′P) then we can take k = 0. Indeed in this case, if νP(g) ≡ 0 (mod p)

then there exists l ∈ N such that g = tpl
Pu with νP(u) = 0. Then g′

g = u′

u + pl
t′

P

tP
= u′

u . Since

νP(u) = 0, we can write u =
∑∞

n=0 unt
n
P and u′ = t′P

∑∞
k=0(n+ 1)un+1t

n
P. Thus νP(u′) > νP(t′P)

and νP

(

g′

g

)

> νP(t′P) which yields the result.

Suppose now that νP(f) = νP(t′P) − 1. We set e = 1 − νP(t′P), a := (te−1
P t′P)(P) and c :=

(tePf)(P). Let us show that c ∈ F×
p a. The characteristic p does not divide e, and we know that

νP(f (p−1)) = −pe. Furthermore we know (Lemma 3.6) that f (p−1) := dp−1

dtp−1
P

(tp−1
P f). It follows

that (tpe
P f

(p−1))(P) = −ap−1c and (tpe
P f

p)(P) = cp. But tpe
P (f (p−1) + fp)(P) = (tpe

P yN )(P) = 0

since νP(yN ) > −pe. It follows that tpe
P (f (p−1) + fp)(P) = cp − ap−1k = 0. Thus cp−1 = ap−1 and

c ∈ F×
p a. We set k := c · a−1.
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Let g ∈ KN be such that νP(g) ≡ k (mod p). There exists l ∈ Z and u ∈ KN such that

νP(u) = 0 and g = tpl+k
P u. Then g′

g = k
tP
tP

+ u′

u . Since νP(u) = 0, νP(u′) > −e and νP

(

g′

g

)

= −e.

Then
(

teP
g′

g

)

(P) = k(te−1
P tP)(P) = ka = c. Thus

(

teP

(

f − g′

g

))

(P) = 0, which is to say that

νP

(

f − g′

g

)

> 1− e = νP(t′P). �

In particular if P is neither ramified nor a pole of yN then SN contains an element with no
pole in P. This local improvement on the bound provided in Proposition 4.1 is accomplished by

adding an element of the form g′

g . Unfortunately adding such an element makes new poles appear

in general so this local approach is not enough. We globalize it in the following theorem.

Theorem 4.3. Let f ∈ SN and S := {P ∈ PKN
|νP(yN ) < pνP(t′P)}. Set

Re(f) :=
∑

P∈PKN

P/∈S

ReP(f) ·P.

If there exist D′, Dp ∈ Div(F ) such that Re(f) ∼ D′ + pDP then SN contains an element ϕ
verifying for all places P outside S ∪ supp(D′) that νP(ϕ) > νP(t′P).

Proof. Since Re(f) ∼ D′ + pDp, there exists g ∈ KN such that Re(f) − D′ − pDp = (g). From

Lemma 2.10, we deduce that f − g′

g ∈ SN . Let P ∈ PKN
\(S ∪ supp(D′)). Then we find

νP(g) = νP(Re(f))− νP(D′)− pνP(Dp)

= νP(Re(f))− 0− pνP(Dp)

≡ νP(Re(f)) (mod p)

≡ ReP(f) (mod p)

By definition of ReP(f), f − g′

g is an element of SN verifying for any place P outside S∪Supp(D′)

that

νP(f −
g′

g
) > νP(t′P).

�

Definition 4.4. We consider G
p
N = Cl(KN )/pCl(KN ). Since KN is an algebraic function field of

characteristic p, Gp
N is a finite commutative group of the form G

p
N ≃

(

Z/pZ
)n

for some n ∈ N∗.

Corollary 4.5. For each place P ∈ PKN
we denote by tP a prime element of P.

Let (D1, . . . , Dn) ∈ Div(KN)n be a lifting of a generating family of Gp
N viewed as a Fp-vector space.

Let S =
⋃n

i=1 SuppDN and set

A := max





∑

P∈S

P + Diff(KN )− 2(x)∞,
(yN )−

p



 .

If SN is not empty then it contains an element of L(A).

Proof. Let f ∈ SN and let Re(f) be defined similarly as in Theorem 4.3. Since D1, . . . , Dn is a
basis of G

p
N , there exists a linear combination D′ = a1D1 + . . . + anDn such that Re(f) ≡ D′

(mod G
p
N ). Thus there exists Dp ∈ Div(KN) such that

Re(f) ∼ D′ + pDp.

Besides supp(D′) ⊂
⋃n

i=1 supp(Di) ⊂ S. According to Theorem 4.3, SN contains an element
f∗ verifying for all places outside of S that νP(f∗) > νP(t′P). The corollary now follows from

Proposition 4.1 and the fact that the valuation in P of the divisor Diff(KN ) − 2(x)∞ is precisely
−νP(t′P). �

Definition 4.6. For any effective divisor D over KN , we define

A(D) := max





∑

P∈Supp D

P + Diff(KN )− 2(x)−,
(yN )−

p



 .
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We say that D is a generating divisor of Gp
N if and only if (P)P∈Supp D is a generating family of

G
p
N . In this case

SN = ∅⇔ SN ∩ L(A(D)) = ∅.

For a family of effective divisors (D1, . . . , Dn) we define

A(D1, . . . , Dn) = A(D1 + . . .+Dn).

To our knowledge there exists no algorithm able to compute the cokernel of the multiplication by
p in the divisor class group of a curve C of genus g in polynomial time in g and the characteristic p.
We instead opt to choose enough uniformly random elements of Gp

N to generate the whole group.
Since we know that G

p
N is of the form Fn

p with n being an integer smaller than g + 1, we know
that we only need to select O(g) elements on average. We use Algorithm 1 beforehand to ensure
the existence of a solution. We refer to [4, Section 3.5] in which the author present an algorithm

to select uniformly random elements in Cl0(KN). If KN is seen as the regular function field of
a curve C, [4, Algorithm 3.7] presupposes the choice of a line bundle L over C of degree at least
2g + 1. Since we are working over finite fields, line bundles of arbitrary degrees exists and we can
choose a line bundle of degree exactly 2g+1. Then we can use [4, Algorithm 3.7] to pick uniformly
random elements in Cl0(KN ) represented by uniformly random effective divisors of degree 2g + 1
in polynomial time in g and log(q). However, [4, Algorithm 3.7] also suppose that the zeta function
of C is known in order to ensure the uniform distribution of the divisors. The computation of the
zeta function can be done in time polynomial in g and linear in b and p (precisely Õ(pbd6

xd
4
y) bit

operations [19]).

Remark 4.7. In [8, section 13.2] the authors also state that Cl0(KN) is generated by the places of
degree less than 1+2 logq(4g−2). This in turns guarantees the existence of D a generating divisor

of Gp
N∗

of degree Õ(dxdy). However the probability of generating G
p
N with O(g) uniformly chosen

effective divisors of degree less than 1 + logq(4g− 2) could be very low which is why we do not use
it for our algorithm.

From now on we will assume that we are able to pick uniformly random elements in Cl0(KN ). If
G

p
N is of dimension r over Fp then we only need on average to select O(r) elements to generate G

p
N .

We now discuss in more details the computation of the linear system representing the p-Riccati
equation over some L(A(D)). The main issue lies in the computation of the (p− 1)-th derivative
of the elements of a basis of L(A(D)). Instead of computing their exact value in KN , we compute
their Taylor expansion up to a high enough precision.

Proposition 4.8. Let ΦN : KN → CN denote the Frobenius endomorphism over KN and D ∈
Div(KN). Let f ∈ L(A(D)). Then Φ−1

N (f (p−1) + fp) ∈ L(A(D)).

Proof. Let P ∈ PKN
. If P /∈ Supp(A(D)) then by definition of A(D), f is not a ramified place

and f has no poles in P. Thus neither f (p−1) nor fp has a pole in P. Thus Φ−1
N (f (p−1) + fp) has

no pole in P. For P ∈ Supp(A(D)), we let tP be a prime element of P. We know that

νP(Φ−1
N (f (p−1) + fp)) > min(p−1 · (νP(f) + (p− 1)(νP(t′P)− 1)), νP(f))

Besides we know that if νP(f) 6 νP(t′P)−1 then p−1·(νP(f)+(p−1)(νP(t′P)−1)) > νP(f) so in that

case we get that νP(Φ−1
N (f (p−1) +fp)) > νP(f) which implies the desired result since f ∈ L(A(D)).

If now we have νP(f) > νP(t′P)− 1 then p−1 · (νP(f) + (p− 1)(νP(t′P)− 1)) > νP(t′P)− 1. Since

valuations have to be integers we deduce that νP(Φ−1
N (f (p−1) + fp)) > νP(t′P) > −νP(A(D)).

Thus Φ−1
N (f (p−1) + fp) ∈ L(A(D)). �

Notation 4.9. From this point forward we assume that K = Fpb (x), for b ∈ N∗. We suppose that
N ∈ Fpb [xp, y] is a fixed separable irreducible polynomial and set N∗(x, y) ∈ Fpb [x, y] such that
Np

∗ (Y ) = N(Y p). Let a be the p-th root of yN ∈ KN . Then N∗(a) = 0 and KN = K[a]. We set
dx = degx N∗ and dy = degY N∗.

Definition 4.10. Let f ∈ KN . There exist unique f0, . . . , fp−1 ∈ KN such that

f =

p−1
∑

i=0

fp
i x

i.
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For all i ∈ J0; p− 1K We denote by Si(f) := fi the i-th section of f .

Although we define sections for all i ∈ J0; p − 1K, we will really only be interested in Sp−1 as
shown in the following lemma:

Lemma 4.11. For any f ∈ KN ,

Φ−1
N (f (p−1)) = −Sp−1(f).

Proof. Let f :=
∑p−1

i=0 f
p
i x

i. It suffices to show that f (p−1) = −fp
p−1. But this is obvious since

f (p−1) = (p− 1)!fp
p−1 and (p− 1)! = −1 mod p. �

Thus another way of writing p-Riccati equation is

b− Sp−1(b) = a.

We now use the fact that Lemma 4.11 also holds over KN,P for any P ∈ PKN
. Let P be a place

over KN that does not belong in Supp(A(D)). Then the injective homomorphism from KN to
its P-completion induces an injective homomorphism of Fq-vector spaces L(A(D)) →֒ GP[[tP]]. It
follows that there exists a constant N ∈ N such that for all f ∈ L(A(D)), f = 0 if and only if
νP(f) > N .

Lemma 4.12. Let P ∈ Div(KN ), let D be an effective divisor of KN and set d := deg(A(D)).
For any f ∈ L(A(D)),

f = 0⇔ νP(f) >
d

deg(P)
.

Proof. Since f ∈ L(A(D)), if f 6= 0 then we know that deg(f)∞ 6 d. But since deg(f)∞ = deg(f)0

we know that νP(f) 6 deg(f)∞

deg(P) 6 d
deg(P) . �

Thus it suffices for a function f ∈ B (where B is a basis of L(A(D))) to compute the image

of f − Sp−1(f) modulo t

⌊

deg(A(D))
deg P

⌋

+1

P in GP[[tP]]. If one writes f =
∑∞

k=0 fit
i
P then Sp−1(f)

mod t

⌊

deg(A(D))
deg P

⌋

+1

P can be deduced from the knowledge of the coefficients fpk+p−1 for k 6
deg(A(D))

degP
.

To that end we can compute the first p
⌊

deg(A(D))
degP

⌋

+p−1 coefficients of the Taylor expansion of f .

In practice, we compute the Taylor expansion of a of which we know the minimal polynomial, in
tP up to the desired precision by Newton iteration (note that by definition of A(D), a ∈ L(A(D))).

This can be done in Õ(p deg(A(D))dy) operations in Fq. Then, knowing that elements of L(A(D))
are given by polynomials F (x, a) we get their Taylor expansions by composition for an additional
cost of Õ(p deg(A(D))dy) operations in Fq.

Proposition 4.13. Let Qi be the quotient of the Euclidean division of N∗(x, y) by yi+1 for any

i ∈ N. Then for any f :=
∑dy−1

k=0 fka
k ∈ KN and any i ∈ J0; dy − 1K, fi = TrKN /Fq(x)

(

Qi(x,a)f
∂yN∗(x,a)

)

.

Proof. Let us fix N∗(x, y) =
∑dy

k=0 ηk(x)yk. From [16, Lemma 2 section III. 6] we know that

TrKN /F
pb (x)

(

ai

∂yN∗(x,a)

)

= 1
ηdy

δi,dy−1, for all i 6 d− 1. Thus the result holds for i = dy − 1, since

Qdy−1 = ηdy
. Then for all i we have Qi = Qi+1y+ ηi+1. We assume the proposition to be true for

i+ 1. Then

TrKN /F
pb (x)

(

Qi(x, a)f

∂yN∗(x, a)

)

= TrKN /F
pb (x)

(

Qi+1(x, a)af

∂yN∗(x, a)

)

+ ηi+1 TrKN /F
pb (x)

(

f

∂yN∗(x, a)

)

and by hypothesis TrKN /F
pb (x)

(

Qi+1(x,a)af
∂yN∗(x,a)

)

is the coefficient of ai+1 in af , which is given by

fi −
fdy−1ηi+1

ηdy
, while TrKN /F

pb (x)

(

f
∂yN∗(x,a)

)

is the coefficient of ady−1 of f
ηdy

.

TrKN /F
pb (x)

(

Qi(x, a)f

∂yN∗(x, a)

)

= fi −
fdy−1ηi+1

ηdy

+ ηi+1

fdy−1

ηdy

= fi.

�
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Corollary 4.14. Let D be an effective divisor over KN and P be an irreducible polynomial in
Fpb [x] coprime with Disc(N∗) and the leading coefficient of N∗. If none of the places in Supp(D)

divides P then for any f ∈ L(A(D)), none of the coefficients of f in the basis (1, a, . . . , ady−1)
have a pole in P .

Proof. Let lc be the leading coefficient of N∗. The function lca is integral and its minimal poly-

nomial is N1 = l
dy−1
c N∗(x, Y/lc). We have Disc(N1) = l

dy−1
c Disc(N∗) and (∂Y N∗(x, a))+ 6

(∂Y N1(x, lca))0 6 (dy − 1)(lc)0 + (Disc(N∗))0. This shows that for all i (with the notations of the

previous proposition), Qi(x,a)
∂yN∗(x,a) has no poles that divides P since the poles of a are among those

of lc.
Let us now show that Supp(A(D)) does not contain any place that divides P . Let Diff(KN∗

)0

be the different divisor of KN∗
outside of the places at infinity. Since lca is integral we know

that Diff(KN∗
)0 6 (∂Y N1(x, lca))0 6 (dy − 1)(lc)0 + (Disc(N∗))0. Thus Supp(A(D)) ∩ Supp(P ) ⊂

(Supp(Diff(KN)) ∩ Supp(P )) ∪ (Supp(a)∞ ∩ Supp(P ) ⊂ Supp(lc) ∩ Supp(P ) = ∅. Thus if we set
OP the valuation ring associated to P in Fpb (x) and O′

P its integral closure in KN , then for all i

and all f ∈ L(A(D)), Qi(x,a)f
∂yN∗(x,a) ∈ O

′
P . It follows that if fi denotes the i-th coefficient of f then

fi = TrKN /F
pb (x)

(

Qi(x,a)f
∂yN∗(x,a)

)

∈ OP and fi has no pole in P . �

When knowing the Taylor expansion of a up to the desired precision, computing the Taylor
expansion of an element f of L(A(D)) by composition requires to compute the Taylor expansion
of its coefficients. This can be done in Õ(pmax(η, degA(D))dy) operations in Fpb where η is the
degree of the coefficients of f . As we show now, by construction of A(D), η and deg(A(D)) have
the same order of magnitude.

Lemma 4.15. Let f ∈ KN and P ∈ PF
pb(x).

νP(TrKN /F
pb(x)(f)) > min

P′|P

⌊

νP′(f)

e(P′|P)

⌋

.

Proof. Let OP be the valuation ring associated to the place P and O′
P be its integral closure in

KN . For any f ∈ KN , if f ∈ O′
P then TrKN /F

pb (x)(f) ∈ OP [17, Corollary 3.3.2].

It follows that if P is a pole of TrKN /F
pb (x)(f), then at least one of the places lying under P is a

pole of f . Let P∗ above P be such that
⌊

νP∗ (f)

e(P∗|P)

⌋

= min
P′|P

⌊

νP′(f)

e(P′|P)

⌋

.

Set k =
⌈

−νP∗ (f)

e(P∗|P)

⌉

and P ∈ KN a prime element of P. Then for any P′ above P we have

νP′(P kf) = ke(P′|P) + νP′(f).

By definition k > −
νP′ (f)

e(P′|P) thus νP′(P kf) > 0. It follows that

νP(TrKN /F
pb(x)(P

kf)) = νP(P k TrKN /F
pb (x)(f))

= k + νP(TrKN /F
pb (x)(f))

> 0

νP(TrKN /F
pb (x)(f)) > −k

which is the desired result. �

Proposition 4.16. Let D be an effective divisor over KN and f = 1
f−1

∑dy−1
i=0 fia

i ∈ L(A(D))

where f−1, f0, . . . , fdy−1 ∈ Fq[x] are globally coprime polynomials.
Then for any i ∈ J−1; dy − 1K, both deg(fi) and deg(A(D)) are in O(deg(D) + dxdy).

Proof. Let P ∈ Fq[x] be an irreducible polynomial and let Qi denote the quotient of the Euclidean
division of N∗ by Y i+1 applied to x and a. If P is a pole of TrKN∗

/Fq(x)(Qif):
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νP (TrKN∗
/Fq(x)(Qif)) deg(P ) > min

P|P

⌊

νP(Qi) + νP(f)

e(P|P )

⌋

deg(P )

>
∑

P|P

(νP(Qi) + νP(f)) deg(P)

>
∑

P|P

(νP(Qi)− νP(A(D))) deg(P)

It follows that

deg(TrKN∗
/Fq(x)(Qif))∞ 6 deg(Qi)∞ + deg(A(D)).

But A(D) 6 D + Diff(KN)− 2(x)∞ + (a)∞. Thus, since deg(Diff(KN )− 2(x)∞) = 2g − 2, where
g denotes the genus of KN , degA(D) 6 deg(D) + dx + 2g − 2. Since g 6 (dx − 1)(dy − 1) (see [3,
Corollary 2.6]), it follows that deg(A(D)) = O(deg(D) + dxdy) and deg(TrKN∗

/Fq(x)(Qif))∞ =
O(dxdy + deg(D)). Thus, according to Corollary 4.13, ∂yN∗(x, a)f has coefficients of degree
O(dxdy + deg(D)). Since (∂yN∗(x, a)f)−1 has coefficients of size O(dxdy), the result follows. �

Notation 4.17. Let B be a basis of L(A(D)) with D ∈ Div(KN ), and P ∈ Fq[x] an irreducible
polynomial verifying the hypothesis of Corollary 4.14. Let P ∈ P(KN) be lying over P and tP
be a prime element of P and B0 be an Fp-basis of GP. We denote by TP(B) the matrix with
coefficient in Fp whose columns are the Taylor expansion of the image of elements of B by the map

f 7→ f − Sp−1(f), at precision
⌊

deg A(D)
degP

⌋

+ 1 written in the basis B0 × (tip)i deg(P )6deg(A(D)).

We can now write the final version of our algorithm the solve the p-Riccati equation in Algo-
rithm 2.

Input: N∗ ∈ Fpb [x, y] an irreducible separable polynomial.

Output: f ∈ K[a], where a is a root of N∗ such that f (p−1) + fp = ap, if such an f exists.

(1) Test if Np
∗ (∂) is irreducible using Algorithm 1.

(2) If Np
∗ (∂) is irreducible return.

(3) Set dy := degY N∗ and KN∗
:= K[a] = F

pb (x)[y]/(N∗).
(4) Compute (a)∞.
(5) Compute A := Diff(KN∗

)− 2(x)∞.
(6) Set D := 0, n := 0 and l = 0.
(7) Select (D1, . . . , Dn) ∈ Div(KN )n a family of n randomly chosen divisors

of degrees 2g + 1
(8) D ← D +D1 + . . . Dn, l← l + n, n← n+ max(1, l) and A(D) := A.
(9) For P SuppD do:

• A(D)← A(D) + P

(10) A(D)← max((a)−, A(D1, . . . , Dg+1)).
(11) Compute a basis B of L(A(D))
(12) Select P ∈ Fq[x] an irreducible polynomial verifying the hypothesis of

Corollary 4.14 with respect to D and P|P .

(13) Compute the Taylor expansion V of a in tP at precision
⌊

deg A(D1,...,Dg+1)
degP

⌋

+ 1

(14) Compute TP(B) (see Notation 4.17).
(15) Solve TP(B)X = V .
(16) If a solution X exists reconstruct a solution to the p-Riccati equation from it

and return it.
(17) Else redo from step 7

Algorithm 2: p-Riccati with irreducibility



16 RAPHAËL PAGÈS

Theorem 4.18. Let r be the dimension of G
p
N over Fp, where N(yp) = Np

∗ (y). We have r 6

dxdy and Algorithm 2 returns if it exists a solution of the p-Riccati equation relative to N whose
coefficients are of degree O(rdxdy) at the cost of

• testing the irreducibility of Np
∗ (∂) using Algorithm 1

• factoring the divisors (a)∞ and (x)∞

• computing the different divisor of KN

• selecting O(r) uniformly random elements of Div(KN∗
) of degree 2g + 1

• computing O(log2(r)) basis of Riemann-Roch spaces of dimension O(rdxdy).

• Õ(bpr2d2
xd

3
y + (brdxdy)ω) bit operations.

The total complexity of the computation is polynomial in b, dx and dy and linear in p.

Proof. The cost of steps (1) to (5) in Algorithm 2 is the cost of using Algorithm 1. The cost of
step (4) is the cost of computing (a)∞, (x)∞ and Diff(KN∗

).
The degree of D roughly doubles at each repetition of steps (7) to (15) and are repeated on average
O(log2(r)) times after which we have selected O(r) uniformly random elements of Gp

N which form
a generating family of it. The cost of steps (7) to (10) is essentially the cost of selecting uniformly
random divisors of degree 2g + 1. By definition of A(D), it is of degree O(dxdy + rg). Since
g = O(dxdy) we find that A(D) is of degree O(rdxdy).
Since we know that the solution of the p-Riccati equation constructed by Algorithm 2 is an element
of L(A(D)), Proposition 4.16 states that this solution has coefficients of degree O(rdxdy).
The cost of step (11) is thus the cost of computing a basis of L(A(D)) which is of dimension
O(deg(A(D)) ⊂ O(rdxdy).
Step (11) requires the computation of Disc(N∗) whose cost is negligible in regard of the final result.
The cost of steps (13) and (14) is the cost of computing the Taylor expansions of O(rdxdy) functions

in L(A(D)) using Newton iterations. The cost for one such function is Õ(bprdxd
2
y) bit operations

so the total cost is Õ(bpr2d2
xd

3
y). Using this we can compute the Taylor expansions of h− Sp−1(h)

for h ∈ B at precision O(
rdxdy

deg(P) ). We recall that B is an Fpb -basis of L(A(D)). Since we want

the result on an Fp-basis, we still need to multiply the result by an Fp-basis of Fpb which can be

done in Õ((brdxdy)2 log(p)) bit operations. Thus steps (13) and (14) can be done in Õ(bpr2d2
xd

3
y +

(brdxdy)2) binary operations.
Finally, step (14) is a matter of solving a Fp-linear system of size O(brdxdy) × O(brdxdy) which

can be done in Õ((brdxdy)ω) operations in Fp.
Reconstructing the solution to the p-Riccati equation is a matter of summing O(rdxd

2
y) polynomial

coefficients in Fpb [x] of degree O(rdxdy) which can be done in Õ(br2d2
xd

3
y log(p)) bit operations.

The sum of those cost yield the final result. �

Remark 4.19. In our experiments we often found that r = O(1) hence the expression of the
complexity in terms of this additional parameter and not purely in terms of dx and dy.

5. Application to factorisation of differential operators

Now that we have a working algorithm to solve p-Riccati equations and degree bounds for the
solutions, we discuss how it fits in the broader context of differential operators factorisation. We
begin by discussing how to go from a solution of the p-Riccati equation relative to N , to the
corresponding irreducible divisor of N(∂p).

Proposition 5.1. Let N ∈ C[Y ] be a separable irreducible polynomial and f ∈ KN be a solution
to the p-Riccati equation relative to N . If L is a generator of the ideal of operators in K〈∂〉 which
are left multiple of ∂ − f then L is an irreducible divisor of N(∂p).

Proof. We consider K〈∂〉6deg(N) = {L ∈ K〈∂〉|ord(L) 6 deg(N)} and the K-linear map ψN :
K〈∂〉6deg(N) → KN 〈∂〉/KN 〈∂〉(∂−f) which maps an operator to its image modulo ∂ − f .
Since dimK K〈∂〉6deg(N) = deg(N) + 1 and dimK KN 〈∂〉/KN 〈∂〉(∂−f) = deg(N), ψN has a nontrivial
kernel. In particular ord(L) 6 deg(N). Let us show that L is a divisor of N(∂p). We claim that
gcrd(L,N(∂p)) is a multiple of ∂ − f . Indeed, ∂ − f is a divisor of ∂p − yN which is a divisor of
N(∂p) and is also a divisor of L. By definition of L, gcrd(L,N(∂p)) = L and L is a divisor of
N(∂p). Since ord(L) 6 deg(N), it has to be irreducible according to Proposition 2.6.(v). �
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The proof of this result also points to an algorithmic way of deducing an irreducible divisor of
N(∂p) from a solution to the p-Riccati equation relative to N .

Corollary 5.2. Let N ∈ C[Y ] be an irreducible polynomial and f ∈ KN be a solution to the
p-Riccati equation relative to N . Set dy = deg(N).
Let a0 = 1 and for all i ∈ J0; dy − 1K, ai+1 = aif + a′

i. Consider the matrix M(f) in Mdy,dy+1(K)
whose columns are the coefficients of the ai (in some fixed K basis of KN). Then for any nonzero

v = (v0, . . . , vdy
) ∈ ker(M),

∑dy

i=0 vi∂
i is an irreducible divisor of N(∂p).

Proof. We consider K〈∂〉6deg(N) = {L ∈ K〈∂〉|ord(L) 6 deg(N)} and the K-linear map ψN :
K〈∂〉6deg(N) → KN 〈∂〉/KN 〈∂〉(∂−f) which maps an operator to its image modulo ∂ − f . For di-
mensional reasons, we know that ψN has a nontrivial kernel. Besides, any nonzero element of the
kernel is a multiple of ∂− f in K〈∂〉 of order less than deg(N). From Proposition 5.1 and Proposi-
tion 2.6.(v) this means that it is a irreducible divisor of N(∂p). We claim that the matrix M(f) is
the matrix of this restriction from the basis (1, ∂, . . . , ∂d) to the K-basis of KN ≃ KN 〈∂〉/KN 〈∂〉(∂−f)

we have fixed.
Indeed let L′ = ∂klk + ∂k−1lk−1 + · · ·+ l0 be any differential operator in KN 〈∂〉. Then there exists
an operator B = ∂k−1bk−1 + · · ·+ ∂b1 + b0 ∈ KN〈∂〉 and b−1 ∈ KN such that

L′ = B(∂ − f) + b−1.

Then

L′ =

k−1
∑

i=0

∂i+1bi −

k−1
∑

i=0

∂i(b′
i + fbi) + b−1

= ∂kbk−1 +

k−1
∑

i=0

∂i(bi−1 − b
′
i − fbi)

and we find that li = bi−1 − b
′
i − fbi, or equivalently bi−1 = li + b′

i + fbi and bk−1 = lk. We apply
this result to L′ = ∂k. It immediately follows that the corresponding b−1 is the k-th term of the
recursive sequence defined by a0 = 1, ai+1 = aif + a′

i, which concludes the proof. �

It is now easy to see that the coefficients of gcrd(N(∂p), ϕ−1
N (∂ − f)) are of size independent

from p as long as it is also the case for the coefficients of f , which we know to hold true from
Theorem 4.18.

Lemma 5.3. We keep the notation of Corollary 5.2 with the additional hypothesis that f ∈
L(A(D)) where D ∈ Div(KN ) is a generating divisor of Gp

N . Then for all i ∈ J1; dyK,

ai ∈ L
(

iA(D) + (i− 1) max(Diff(KN )− 2(x)∞, 0)
)

.

Proof. We know that a1 = f ∈ L(A(D)) so the proposition is verified here. We now suppose that
the conclusion of the lemma holds for the index i. Let P ∈ PKN

be a place and tP be a prime
element of it. Then

νP(a′
i) > νP(ai) + νP(t′P)− 1.

In all generality, 1 − νP(t′P) is precisely one more than the valuation of Diff(KN ) − 2(x)∞ in P.

In particular if P is ramified then it is smaller than twice the valuation of Diff(KN ) − 2(x)∞

which is smaller than the valuation of A(D) + Diff(KN)− 2(x)∞. If it is not ramified then either
ai does not have a pole in P, in which case neither does a′

i or it has one and we have both
νP(a′

i) > νP(ai) − 1 and νP(A(D)) > 1. Thus νP(ai) − νP(a′
i) is once again smaller than the

valuation of A(D) + Diff(KN)− 2(x)∞. Therefore

a′
i ∈ L

(

(i+ 1)A(D) + imax(Diff(KN )− 2(x)∞, 0)

Furthermore since f ∈ A(D), so too does fai and the result follows. �
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Input: N∗ ∈ Fq(x)[Y ] an irreducible separable polynomial, f a solution of the p-Riccati
equation relative to N∗.
Output: L ∈ K〈∂〉 the smallest monic multiple of ∂ − f with coefficients in K.

(1) Set KN∗
= Fq(x)[a] with a a root of N∗.

(2) Set dy := degN∗.
(3) Set a0 := 1.
(4) For i going from 1 to dy do:

• Set ai := a′
i−1 + fai−1

(5) Set M ∈Md,d+1(Fq(x)) the matrix whose columns are the ai

written in the Fq(x)-basis (1, a, . . . , ady−1) of KN∗
.

(6) Solve MX = 0.
(7) Reconstruct L from a solution and return it.

Algorithm 3: Irreducible factors

Theorem 5.4. Let N∗ ∈ Fpb [x, y] be a separable irreducible polynomial. Keeping the notations
of the previous sections, we suppose that dimFp

G
p
N∗

= r. Using Algorithm 2 we can compute a
solution f of the p-Riccati equation relative to N whose coefficients are of degrees O(rdxdy). Then
Algorithm 3 computes an irreducible divisor of Np

∗ (∂) whose coefficients are of degree O(rdxd
3
y) in

Õ(rdxd
ω+2
y ) operations in Fpb .

Proof. The coefficients of the irreducible divisor returned by Algorithm 3 can be expressed using
the minors of the matrix M whose columns are the ai written in the basis (1, a, . . . , ady−1). Since
we know that f has coefficients of degree O(rdxdy), by immediate recurrence we get that ai has
coefficients of degree O(rdxd

2
y). Thus the minors of M are of degree O(d2

yrdxdy) since M is a matrix

of size d× (d+ 1). Furthermore, the coefficients ai can all be computed in Õ(rdxd
3
y) operations in

Fq. It finally remains to solve a linear system of size d× (d+ 1) with coefficients in Fq(x) of degree

O(rdxd
2
y). This can be done in in Õ(rdxd

ω+2
y ) operations in Fpb [18]. �

Remark 5.5. In practice we have observed that the growth of the size of the coefficients, from those
of the solution to the p-Riccati equation, to those of the corresponding irreducible divisor of N(∂p),
is only linear in dy (and not quadratic as shown in Theorem 5.4). We infer that the situation is
similar to seeking the minimal polynomial of an algebraic function in some K[a].
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