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ABSTRACT

A novel model for stationary flames in inert porous media is proposed. It is based on
the hypothesis that interphase heat transfer has negligible impact on the local flame
structure. This requires a gradual separation between the length scales of chemical
reactions, gas diffusion, and interphase thermal re-equilibriation. It is shown that
resolving the gas and solid equations without reaction on each side of the reaction
sheet is sufficient to compute the preheating of the fresh gases ahead of the flame
front. Combustion kinetics are solved separately, assuming the consumption rate
to be a sole function of this preheating. Two kinetic models are considered, namely
single-step Arrhenius and power law fits from experiments or detailed computations.
Several fully-explicit formulae for flame speed in porous media are given accordingly.
A universal abacus provides the maximum flame speed attainable in finite porous
media. The explicit, ready-to-use nature of the present theory is particularly suitable
for practical designs. This work is consistent with previous theoretical, numerical
and experimental trends of the literature.

KEYWORDS
Porous media combustion, superadiabatic combustion, heat recirculation, porous
design, flame speed porous media.

1. Introduction

Some key advantages of combustion in inert porous media are the increased flamma-
bility limits and stability, allowing a significant reduction in pollutant emissions (e.g.
CO and NOx) [1-3]. The underlying mechanism is the preheating of the fresh gases,
whose increased chemical reactivity allows to burn very lean mixtures [4-6]. This pre-
heating is achieved by harvesting energy from the burnt gases through interphase
heat exchange, which is then recirculated upstream by conduction and radiation in
the porous matrix. Conceptually-speaking, the solid porous matrix is a supplemen-
tary path for upstream energy transfer to sustain combustion processes. Due to this
preheating, the peak temperature in the gas domain may locally exceed the adiabatic
temperature. This feature, characteristic of heat-recirculating burners, is often referred
to as superadiabatic or excess enthalpy combustion.

Experimental investigations of flames submerged within porous media are intricate,
mainly because of the opacity of the solid matrix and its small characteristic length
scales. Measurements of temperature profiles, especially in the gas phase, are not trivial
and may require advanced diagnostics [7, 8]. For example, to the authors’ knowledge,
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a standard and essential quantity such as the local gas velocity has not been measured
in these configurations. Regarding numerical simulations, there are many levels of ap-
proximation and corresponding modelling strategies. The most widespread may be
the volume-averaged Navier-Stokes equations including reaction terms. This requires
the determination of equivalent properties, such as a volume heat transfer coefficient,
equivalent mixing diffusion or thermal conductivity, which may not be constant and
cannot always be measured. The seminal works of Takeno et al. [9, 10] laid down the
concept of excess enthalpy combustion, proposing numerical solutions in semi-infinite
and finite geometries. Their one-dimensional model assumed constant solid temper-
ature and single-step Arrhenius kinetics. Unlike classical gaseous combustion, mass
flow rate and flame position were shown to be linked. A single branch was found in
the semi-infinite case, while two branches were found in the finite case - meaning that
for a given inlet velocity, two flame positions are possible. A critical mass flow rate
defining blow-off was identified. A similar model was used by Yoshizawa et al. [11] to
predict the temperature profile in the solid and the relative importance of diffusion,
conduction, and reaction terms along the flow direction was discussed. Later, it was
shown in [12] that the classical shortcomings of single-step kinetics were more limiting
for configurations with strong heat recirculation, where slow chemical reactions may
drive the global behavior. This motivated the extension of traditional, one-dimensional
combustion codes such as PREMIX or CANTERA to account for the inert porous ma-
trix [13—-16]. Albeit improving accuracy, general trends remain the same. Some authors
also considered two-dimensional simulations, again with volume-averaged equations.
Notably, the recent work of Li et al. [17] on a porous microcombustor may be high-
lighted for its careful choice of modelling constants. Given the importance of proper
radiation modelling to enhance predictability, many authors also resolved the Radia-
tive Transfer Equation or one of its various approximations [14, 16, 18-20]. At the
other side of the numerical spectrum, Direct Pore Level Simulations (DPLS) were un-
dertaken by some researchers, looking for insights on the corrugated flame structure
intertwined in the porous structure [21, 22].

In parallel to numerical simulations, analytical works were carried out. By means
of asymptotic theory, Dehaies and Joulin [23] studied the semi-infinite case of Takeno
and Sato [9]. They also found one branch of solutions for inlet speed versus flame
position. Buckmaster and Takeno [24] followed through to account for the finite case.
They found two or more distinct branches, depending on flame position and heat losses
to ambient. The apparition of a third or fourth branch stems from the consideration
of local heat losses, leading to subadiabatic weak flames. Later on, Escobedo and
Viljoen [25] were the first to propose an analytical approximation following a linearized
Rosseland hypothesis. They discussed features of radiant efficiency and also found two
distinct flame positions for a given inlet speed. Soon afterwards, Boshoff-Mostert and
Viljoen [26] published an Arrhenius-based model which always led to superadiabatic
temperatures, but their work did not catch the downstream branch found by most
other authors. More recently, Pereira et al. [27-29] published a series of articles on
the structure of a flame within infinite porous media. Unique feature of the literature,
they treated in [28] the case of ultra-lean mixtures, where interphase heat exchange
plays a role at the scale of gas diffusion. In the rest of the literature where interphase
equilibrium is not assumed, authors considered diffusion and reaction zones to be
exempt of interphase heat transfer. It means that apart from the matching conditions
on each side of the reaction-diffusion region, the flame was often implicitly assumed
to behave locally as an adiabatic free-flame.

It is worthwhile mentioning that the formalism of flames submerged within porous



media shares many traits with the study of combustion in micro and mesoscale
tubes [30-36]. Conceptually, small tubes can be seen as a straightened porous structure
also featuring substantial thermal coupling with the wall. Lee and Maruta [36] have
described many stationary propagation regimes of the flame front through a theoretical
one-dimensional, single-step Arrhenius model. They have shown that superadiabatic
combustion with high wall temperatures occurs only for slowly-moving, almost station-
ary flames. This feature is coherent with the results of the vast literature on filtration
combustion, where thermal and reaction waves should be superimposed to achieve
maximum superadiabatic effect [37-42]. Unlike the present work, which considers sta-
tionary flames with substantial interphase non-equilibrium, filtration combustion fo-
cuses mainly on flame front propagation, assuming strong interphase equilibrium.

Despite the fact that many aspects of combustion in porous media have already been
explored, it seems that a simple, fully-explicit formula for flame speed as a function of
basic porous and mixture properties is yet to be proposed. For instance, the formula
proposed by Pereira [27] requires to solve an implicit problem involving recirculation
efficiency to obtain the flame speed. In addition, analytical models suffer from the
single-step approximation, which may hide the actual sensitivity of the flame to pre-
heating. Eventually, little practical design rules and universal relationships between
infinite and finite porous media have been explored. The purpose of the present paper
is to cover these issues, by proposing a novel and ready-to-use decoupled analytical
model in both infinite and finite cases. Assuming the flame to behave locally as an
adiabatic free-flame, it is be possible to 1) solve the thermal problem on each side of
the reaction sheet so as to compute the preheating of the flame, and then 2) solve the
chemical problem separately, so as to know how the flame responds to this preheating.
The full modelling of each phase allows to predict when gas diffusion and interphase
re-equilibriation length scales are well separated, assessing whether the local adiabatic-
ity hypothesis is valid. Analytical approximations provide fully-explicit forms for the
flame speed. The proposed decoupled methodology allows to consider complex chem-
istry through correlations of free-flames consumption rates as a function of preheating,
thus offering alternatives to single-step. However, since the present model does not in-
clude local heat losses, it cannot account for weak-flame solutions. The present work
is also meant to retrieve and discuss many key features of combustion within porous
media from the literature, which can be summarised as follows:

e the flame structure consists of a macroscale preheating region, followed by a thin
reaction-diffusion zone, then by another macroscale thermal relaxation region
(counterpart of the preheating region, of comparable length) ;

e recirculation efficiency decreases with equivalence ratio and porosity, and in-
creases with solid conductivity and volume heat transfer coefficient ;

e for finite porous media, two or more solutions may be found for a given inlet
speed.

The paper is organised as follows. Section 2 treats the case of the infinite porous
medium, and several fully-analytical expressions for flame speed-up are provided. Sec-
tion 3 is dedicated to the influence of finite length on flame stabilization and recircu-
lation efficiency.



2. Infinite porous medium

2.1. Configuration

The configuration sketched in Figure 1 represents a steady flame submerged in an in-
finite, inert and homogeneous porous medium, characterised by its porosity €, thermal
conductivity Ag, and surface density Sy . The problem is assumed to be one-dimensional
along the space coordinate x, and the steady flame is localized at the arbitrary position
x = 0 by its reaction zone, assumed infinitely thin. The gas phase is characterised by

T
€ As h SV

el [AT T,
celea ey
—

m

Tu lre—eq—>

zone 1 0 zone 2 T

Figure 1.: Principle: flame submerged within infinite porous medium.

its thermal conductivity Ay and heat capacity per mass unit ¢, . The temperature of
the solid and gas phases are denoted Ts and T}, respectively and the heat flux between
the two phases is modelled via a classical transfer coefficient h. A mass flow rate per
surface unit r of premixed gas is imposed upstream at a temperature T;. The sys-
tem is assumed to be globally adiabatic so that far downstream both solid and gas
temperatures equal the adiabatic equilibrium temperature T,4. Due to the presence of
the solid matrix, the gas is preheated before reaching the flame front. This may lead
to a maximum gas temperature 7T;,,, above the adiabatic temperature, which will be
shown in Appendix B to be reached at the origin in the reaction zone. This classical
behavior of combustion in inert porous media is quantified via the so-called excess
temperature AT, defined as:

AT = Taw — Tha- (1)

If the reactive-diffusive flame structure is not affected by interphase heat transfer,
then AT is also the preheating temperature perceived upstream the flame front. We
now discuss this hypothesis, and see how it corresponds to what we call the decoupled
methodology.

2.2. Modelling assumptions and decoupled methodology
An adiabatic free-flame front may be divided into two regions [43]:

e a non-reactive, diffusion zone of length lq;¢, where the heat from the reaction
zone is diffused upstream through a steep temperature gradient ;

e a reactive zone of length l;eac where the chemical energy of the mixture is re-
leased. Classically, one finds lreac < lgift-

For flames embedded in porous media, a third length scale l;c.cq intervenes, related
to the interphase re-equilibrium zones on each side of the flame front, as shown in



Figure 1. Under the assumption of length scale separation, that is:
lre—eq > ldiﬁ > lreac; (2)

the flame in the porous medium can be considered locally adiabatic and interphase heat
exchange plays a minor role at the scale of diffusion and reaction. This hypothesis,
corresponding to (2) is adopted in the present work. It notably allows for decoupling
the analysis into two distinct, independent problems:

e a thermal problem 7, which provides the preheating temperature AT as a func-
tion of the inlet mass flux . It is obtained by solving the non-reactive, coupled
gas and solid equations on each side of the reaction sheet;

e a chemical problem C, which describes the sensitivity the consumption rate
to the preheating AT.

Formally, these two problems can be written:
AT =T (m) and m = C(AT). (3)
Combining them leads to an implicit formulation:
i = (C o T)(ri), (4)

whose resolution provides the value of 1 consistent with both the non-reactive equa-
tions outside the reaction sheet and the local sensitivity of the flame to preheating.
The benefits of the methodology are the following. Solving the non-reactive equations
boils down to simple linear algebra. Under the some hypotheses, notably Equation (2),
the preheating/excess temperature finds a simplified expression. Also, both single-step
and more complex chemistry can be considered for the resolution of Equation (4).

2.3. Thermal problem T

In this section, the thermal problem 7T is solved both numerically and analytically.

2.8.1. Equations and boundary conditions

On each side of the flame, no reaction occurs. Consequently, the steady-state, iso-
baric, volume averaged one-dimensional energy equations for the solid and gas phase
read [44]:

hy
— €
hy

€

Xs 02T, + . (Ty —Ts) =0 (solid), (5)

—ncp, 0Ty + Ag 8§Tg - (Ty —Ts) =0 (gas), (6)
where hy = h Sy is the heat exchange coefficient per unit volume. The porous medium
is assumed globally adiabatic, thus there are no heat losses in the equations. This jus-
tifies the boundary conditions for the gas and solid phases, which must reach thermal



equilibrium far upstream and downstream:

T, —— T, and T, —— T, (7)
T——00 T——00

Ty ——— Tog and Ty —— Toa. (8)
T—r+00 —+00

2.83.2. Dimensionless equations

The coordinates and temperatures are normalized as:

A=ar , _Li-Tu , T=-T o, _ Tnw-T
hV ’ ° Tad _Cru7 g Tad _Tu e Tad _Tu .

(9)
It follows that the reduced adiabatic temperature is, by definition: 6,4 = 1. Also, since

T,q — T, represents the thermal load, it is found that the dimensionless preheating
temperature AT identifies to the recirculation efficiency:

=/

AT T, - T
g T = TTZZHC— Ta: = emax - ead = emax -1 (10)

Mrec = T

a
For a given mixture, the knowledge of 7. is thus directly equivalent to that of AT

AT = aTyy Trecs (11)

where o = (Ty,q — Ty) /Toq- Equations (5-6) can be normalised using (9), yielding:

%05+ 0, — 05 =0, (12)
—1i, 00, + 13 0%y + 05 — 0, = 0, (13)
where 0 = 9,- and:
mecy €Ng
Trin = [ o E— and ™ = . 14
hy (1 — €)As AT AN (1)

The product hy (1 — €)As can be interpreted as a conductance for the recirculated
heat, first harvested via hy, then conducted upstream through the solid matrix via
(1 — €)As. As such, the quantity 7, can be seen as a ratio between the thermal load,
proportional to 7y, , and the energy recirculated upstream by the solid. Thus, the
inverse of 1, is expected to be closely related to the recirculation efficiency. The other
ratio, 7y, represents the ability of the system to conduct energy, either in the gas with
the term € Ay, or through the solid with the term (1 —€)A,. The solutions for the solid
and gas temperatures are respectively noted 6}, 01 in zone 1, and 62, 92 in zone 2.
Following Equations (7-8), the normalised boundary condltlons are:

0 ———0 and 0} ———0 (15)
T*——00 T*——00

02 ———1 and 62 ——— 1 (16)
T*—+00 T*—+00



Combining Equations (12-13), the problem reduces to a single linear differential equa-
tion for # with constant coefficients, valid in both zones:

9 [ry0® —rp 0 — (rA+1)0+714] 05 =0. (17)

By integrating Equation (17) once and applying the boundary conditions (15-16), the
governing equation in each zone becomes:

[r)\ 9 —r; 0% — (ra+1)0+ rm] 0; =0 in zone 1, (18)

(13 0% =1y 0% = (rA +1) 0+ 1] (02 —1) =0 in zone 2. (19)

The general solutions of Equations (18-19) are linear combinations of exponentials,
whose eigenvalues are given by the roots of the same characteristic polynomial:

AN =1 A2 — (rA + 1) A+ 75 = 0. (20)

For m > 0, the roots are necessarily two positive reals and a negative one, ordered
A1 < 0 < Ay < A3. A proof and further details are provided in Appendix C. Since the
boundary conditions require boundedness at @ — £00, the solutions of Equations (18)
and (19) for the solid temperature take the following form:

04(z%) = Age™™ + Age™™ (21)
02(x*) =1+ AjeM™ . (22)

Using Equation (12), the gas temperature is also found:
0(x*) = Ag(1 — A3)e™*" + A3(1 — A)e™™, (23)

02(z*) = 14 A1 (1 — AD)eM™. (24)

The determination of the three unknowns A;, As and Ag requires three jump condi-
tions between zones 1 and 2, at * = 0. Assuming negligible interphase heat exchange
at the scale of the reaction zone, the temperature of the solid and its derivative are
necessarily continuous across the flame:

Ts(x =07) = Ts(z =07), (25)
0. Ts(x = 07) = 0, Ts(x = 0T). (26)

For the gas, the conservation of enthalpy across the flame reads:
Ag 0:Ty(x = 07) = riey, (Tog — Tu) + Ag O Ty(z = 07). (27)
It is shown in Appendix A that Equation (27), together with Equation (26) and

the boundary conditions (15-16) is in fact equivalent to imposing gas temperature
continuity. The three jump conditions are thus:

Ol(z* =07) = 0%(z* = 0T) continuity of solid temperature, (28)
20 (z* =07) = 002 (z* = 0™) continuity of solid heat flux, (29)
6; (z*=07)= 03(3}* =0") continuity of gas temperature. (30)



Applying the boundary conditions (28-30) to Equations (21-22), one gets a linear
system:

Ay + A3 — A1 =1, (31)
AoAs + A3A3 — A\ A1 =0, (32)
A(1=23) + A3(1 = A3) — Ai(1 = A1) = 1, (33)

whose resolution gives the coefficients A;, thus the temperature profiles. The formal
solution is provided in Appendix B. As explained in Section 2.1, the temperature of
interest is the maximum temperature found at the origin:

Omaz = Oy(a* =07) = 62(2* = 07). (34)
Using Equations (10) and (24) yields:
Mree = 03 (z" = 07) — 1= Ay (1 - A7), (35)

proving that heat recirculation depends only on the smallest (negative) solution of
Equation (20), which depends a priori on both ry; and ry. Formally, using (10) the
solution of the thermal problem 7 writes:

AT = (Tog — Tw) Nrec(Trin, Tx)- (36)

2.8.3. Numerical solutions of the thermal problem

Before providing an analytical solution for 7., let us take a look at particular solu-
tions to gain physical insight on the model and the range of validity of its underlying
assumptions. Examples of temperature profiles are shown in Figure 2 for four different
inlet mass fluxes and given porous/mixture properties, i.e. four different values of r;;,
for a given value of 7). It is observed that the solid temperature does not exceed the
adiabatic temperature, which is coherent with most findings in the literature. A graph-
ical representation of the recirculation efficiency 7, as defined in Equation (35), is
shown in Figure 2(a). Looking at the temperature increase in the gas by diffusion, near
to the origin, in Figures 2(a) and 2(b), it is very sharp and a clear distinction between
the lengths scales of preheating and gas diffusion is observed. However, on Figures 2(c)
and 2(d), 65 ~ 0, except in the vicinity of the flame because of the much stronger in-
terphase equilibrium. These two solutions for small mass fluxes are therefore not valid,
first because the hypothesis of local adiabaticity in the flame front seems to be vio-
lated and second because given the high preheating (6, > 0.9 before the flame front)
auto-ignition is likely to occur. Examination of the four cases presented in Figure 2
suggests that there are lower bounds for both 7y, and /7)) below which the solution
may not be valid. This is attributed to the violation of the scale-separation hypoth-
esis (2). Using this preliminary observation, a necessary condition for the validity of
the model is proposed:

T > 0.1 and Tm/Tx > 10. (37)

In order to investigate these limitations in a more systematic way, the numerical
solutions of 7. are plotted versus r,;, for different values of ) in Figure 3. The four
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Figure 2.: Temperature profiles for four different inlet mass flow rates and r) = 0.01.
The parameters used are: € = 0.8, Ay = 20 Wm K1, Ag = 0.025 Wm K,
hy =1.2x10° Wm ™3 K™, and ¢p, = 10° Jkg ' K.

cases of Figure 2 are also displayed. Typical values representative of combustion in
porous media can be found in [27], where r;, = 1.78 and r), = 0.07. By covering two
orders of magnitude above and below these values, the proposed range should cover
most porous media and mixtures. The solutions verifying r; > 0.5 and ry,/ry > 50,
consistent with assumptions (37), are drawn in solid lines, while the others are drawn
in dotted lines. Interestingly, these solid lines seem to collapse the dashed curve whose
equation is 1/2r;,, with little influence of the parameter 7. In summary, it seems that
under the assumptions (37):

e the lengths scales of preheating and gas diffusion are well separated (cf. Figure 2),



which is consistent with the modelling assumptions;
e the solution of the thermal problem can be approximated by 7yec ~ 1/2r;,.

Similar ranges were explored in previous studies. For example, the case ry < 1 was
considered by Lee and Maruta for mesoscale tubes [36]. The limits considered by
Pereira [27] were 1) ry < 1if ¢/(1 —€) = O(1) and 2) 72,/ry > 1 if ¢ = O(1).
By combining 75, > 0.1 and 7;/7ry > 10, this latter limit is retrieved, without the
influence of porosity which is not considered in [27] to discriminate asymptotic regimes.

1.0

ry =104
Q -3
3 ry =10
< 038+ A
B Ty = 1072
g ry=10"
‘S 0.6
& ry = 10°
g
‘2 041
=
=)
o
=
£ 021
=
0.0 4
1072 10?

Figure 3.: Recirculation efficiency 7. for various values of the dimensionless param-
eters 7, and ry. Solid lines: r;, > 0.5 and r;/ry > 50. Dotted lines: r,;, < 0.5 or
/T < 50. The points (a-d) correspond to Figure 2.

2.4. Length scales separation and approxrimation of M,ec

2.4.1. Length scales separation

In this Section, mathematical developments and physical interpretation are provided

under the assumption (37). First, let us recall that since \/(1 — €)As/hy is the length
used to normalize the equations, each root A; of (20) found in the exponentials of

Equations (23-24) provides a dimensional length scale I; given by:

(1 —€)Xs/hy
Al '

li = (38)

It is thus of interest to find the expression of the roots A; in the regime (37). Their rig-
orous, general forms and Taylor expansions in the regime (37) are given in Appendix C.
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At the leading order, it is found that:

A~ —1, Ay~ 1 and A3 r—m, (39)
X
so that:
1—e) A
Iy ~ gy ~ A=A and lg ~ —2—, (40)
hy m cp,

l3 is the well-known gas diffusion length scale, denoted lg;g, while I3 and ls define the
typical length of interphase thermal re-equilibriation, denoted lre.eq:

(1 —e€)s
lre_eq = T. (41)

This scale characterises the preheating and interphase relaxation regions before and
after the flame front, as can be seen on Figures 2(a) and (b). This analysis gives an
interpretation of 7,;, /7 as a ratio of length scales:

o [0 _G)As/< Ay > _ lreeg )

T hy mep, lai

The condition r,;, /7y > 10 is thus consistent with the separation of length scales of
Equation (2) underlying the decoupled hypothesis of the present modelling.

2.4.2. Approximation of Nrec

Combining Equations (B3) and (C7-C9) into Equation (35), the leading-order analyt-
ical solution for the heat recirculation is:

1
rec =~ 5 4
n 9 (43)

T'rn

which is exactly the asymptote plotted in Figure 3. In this regime, the thermal problem
does not depend on ry, which is coherent with the collapse of the curves in Figure 3.
Equation (43) supports further the discussion of Section 2.3.2 on the physical sig-
nificance of ry; and that of Section 2.3.3 on the condition 7, > 0.1, showing that
the approximate solution is valid when heat recirculation is not overly intense. In
dimensional terms, the solution for 7 in Equation (3) is therefore:

hy (1 —€)As

AT = (Toa — Tu) 2mec
Pg

(44)

It is insightful to understand which physical properties are likely to play a signiticant
part in validating the regime (37) or not. These are:

e the mass flow rate 7: very slow flames might show a strong interphase equilib-
rium. This regime was studied thoroughly by Pereira et al. [28];

11



e the solid thermal conductivity As: its decrease leads to a lower separation of
length scales. Its value will vary a lot with regard to the tortuosity of the porous
matrix. Reticulated foams with little struts might have a much lower value than
the original thermal conductivity of the material;

e the volume heat transfer coefficient hy is also a key parameter which is often
difficult to assess [1]. It is typically affected by the material surface state, the
geometry, the Reynolds number, etc.

2.5. Chemical problem - model closure

In the present section, two paths for the resolution of the chemical problem C are pro-
posed. Each time, the principle is to find a kinetic relation between the inlet mass flux
m and the preheating of the fresh gases AT. First, a single-step Arrhenius estimation
based on the work of Pereira et al. [27] is investigated. Then, a power law approxima-
tion of the consumption rate increase with preheating is identified through numerical
simulations of adiabatic free-flames. For the sake of the example, two typical mixtures
are considered: one methane-air and one hydrogen-air, whose descriptive values are
given in Table 1. The parameter (3 is the so-called Zel’dovich number, related to the

mixture 10} «a B | Twa (K)
methane-air | 0.80 | 0.85 | 9.07 1996
hydrogen-air | 0.52 | 0.82 | 8.27 1683

Table 1.: Relevant thermodynamic and chemical properties for two reacting mixtures
used as examples.

activation temperature 7T, through:

Ta (Tad - Tu)
Ta

B = (45)

Values for 8 in Table 1 are found in [27] for methane and [45] for hydrogen. In what
follows, Sf denotes the global consumption speed (i.e. the gas velocity at the infinite
upstream), and Sg(T) the speed of the corresponding adiabatic free-flame of fresh
gases at a temperature 7. The flame speed-up is defined as the ratio S¥'/S%(T,). It
quantifies the acceleration of combustion due to the heat recirculation in the porous
matrix. This speed-up is also that of the mass fluxes and is directly related to i, thus
C(AT), through:

P .
OSL _ m :C(‘AT). (46)
SL(Tu) mo mo

where g = p, SY(T,,) is the mass flux of the adiabatic free-flame without porous
medium and p, is the density at the infinite upstream. Note that g is an input of
the model in the sense that p,, and 5’2 (T,) are known a priori.

2.5.1. Single-step kinetics

The first kinetic model is based on the theoretical work of Peireira et al. [27]. They
analyzed the asymptotic structure of a flame submerged in a porous medium. Alike
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Figure 4.: Relative error between Equations (47) and (48).

the present model, their methodology consisted in neglecting interphase heat exchange
at the scale of reaction and diffusion. They made use of a single-step Arrhenius law,
and matched the preheating and flame exit gas temperature gradients - something not
caught by the present model, but of negligible importance in the regime (2). For a null
temperature exponent in the Arrhenius term, they found the following expression for
flame speed-up:

Si
Sp(Tu)

! ﬂ”) . (47)

= 1 —
( + anrec) eXp <2 1 + anrec

In coherence with the regime (37), assuming an.. small enough yields a simplified
expression for Equation (47):

SLP . Brec
752(71”) = exp < ) (48)

The relative error between Equations (47) and (48) is plotted in Figure 4 for represen-
tative values of a and (. This shows that (48) is a fair approximation of (47) only for
recirculation efficiencies below 0.3. Using this simplification, the derivation is pursued
and we define:

0 m
Nrec = nrecmioa (49)

which, using Equation (43), yields:

0 Vhv(1 —E))\s. (50)

rec = .
21myg € cp,

This shows that 1. is a constant related to the physical properties of the mixture
and the porous medium. Then using Equations (46) and (49), Equation (48) becomes:

Z =Wexp (W), (51)
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where:

_ Bec and W = Plvee o
2 2

Z (52)

The solution of Equation (51) is given by the the first branch of the Lambert function
W [46]. Recalling Equation (46), this yields a fully-explicit formula for flame speed-up:

SL B
SUT.)  2W(Bn2./2)

(53)
In order to discuss trends, Equation (53) is further simplified in the limit of small 1%,
using the Taylor expansion of W(Z) at the origin:

W(Z) =2 - Z*+0(Z%), (54)
which simplifies Equation (53) to:

Sy B o
~]1+ = . 95
S([]/(Tu) 2 nrec ( )

2.5.2. Power law approximation

In this study, it is assumed (cf. (2)) that preheating and combustion are decoupled
meaning that the local flame velocity is that of a preheated laminar adiabatic flat
flame, i.e. S?(T,, + AT). Mass conservation in steady state reads:

p(T.)SE = p(T, + AT)SY(T, + AT), (56)

which in the case of small pressure drop yields:

sP ( T, > ST, + AT) (57)

SO(T,)  \Tu+AT S9(T,)
Consequently, the determination of the flame speed-up only requires the knowledge of
the adiabatic flame speed Sg at T, and T, + AT. Within a given temperature range it
is common practice to fit experimental or numerical results via a power law. In order
to simplify the algebra, one can choose a power of (1+ AT/T,) in which case equation

(57) reduces to:
sP AT\"" Tod nr
—(1+2=) =(1+“ane.] . 58
s~ (7)) = (o) 9

Examples corresponding to the two mixtures of Table 1 are shown in Figure 5,
where the reference flame speeds have been computed with CANTERA [47] using
GRIMECH 3.0. In both cases, the power law approximation is quite accurate. Note
that since overly large preheating temperatures lead to auto-ignition and a lack of
numerical convergence of the adiabatic flames, the maximal preheating temperature
is set to 300 K, which leads to different bounds in terms of 7,... between the two plots.
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Figure 5.: Speed-up of the porous medium system: numerical simulations and power
law correlations.

Following this approximation, an analytical formulation for the chemical problem is
obtained by feeding Equations (46) and (49) into (58):

L_A'_l
( G ) - gl = T, (59)
SU(Ty) SO9T,) T, T

Because this equation is not amenable to a general analytical solution, two special
cases are considered. First in the limit of small %,., a first-order Taylor expansion
yields:

sP T,

d 0
~1 . 60
S% (Tu) +nr T, ANpec ( )

Then in the special case np = 1:

Si

Thd
1 14+4=2an0 |. 61
s = | Tu“”m] oy

1
2

2.6. Discussion and validation

Several fully-explicit formulae for flame speed-up were derived in Section 2.5: Equa-
tion (55) for single-step Arrhenius; Equations (60) and (61) assuming a power-law
sensitivity to temperature for the adiabatic free-flame speed. Both Equations (55)
and (60) are first-order approximations where the speed-up is proportional to 1%,
with a slope depending on the sensitivity of their respective chemical model. These
are useful to analyse general trends of flames with heat recirculation. As already dis-
cussed in the literature: recirculation efficiency decreases with porosity, and increases
with solid conductivity and volume heat transfer coefficient. In addition, it is found
here that recirculation efficiency increases with the adiabatic temperature T,4 and
decreases with the fresh gases temperature T;, and adiabatic free-flame speed. Fur-
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thermore, the previously-observed decrease in recirculation efficiency with equivalence
ratio can be explained as resulting from the larger impact of equivalence ratio on rig
than T,4. Equations (53) and (59) are more general solutions of the chemical problem
but because they respectively require the knowledge of the Lambert function and a
numerical integration, they are less useful for interpretation.

These analytical solutions are now compared to a numerical resolution using the
software CANTERA with the GRIMECH 3.0 chemical scheme. For this validation,
CANTERA was coupled to an in-house code solving the thermal problem in the solid
matrix. The initial condition is set using the present analytical derivations and the
two solvers are coupled until convergence. The two mixtures of Table 1 are consid-
ered with the following properties for the porous: € = 0.9, A, = 10 Wm ' K~!, and
hy =1 x 10* Wm™3K~!. This leads to the values r,;, = 5.29, T /7y = 70.5 for the
methane-air mixture and r,;, = 8.06, ;,/r\» = 109.7 for hydrogen-air, all falling within
the regime (37). As expected, Equations (53) and (59) are more accurate than their

CANTERA | (53) | (55) | (59) | (60) | (61)
methane-air 1.64 1.59 | 1.74 | 1.54 | 1.85 | 1.59
hydrogen-air 1.48 1.43 | 1.51 | 1.68 | 2.02 | 1.40

Table 2.: Validation of the speed-up ST /S%(T,): comparison between a reference
numerical simulation with CANTERA and GRIMECH 3.0 and the various formulae
derived in this work.

corresponding first-order approximation, namely Equations (55) and (60). Thanks to
its non-linear behavior, Equation (61) is quite close to the reference simulation, albeit
assuming np = 1.

As a concluding remark, it is important to stress the implications of the choice of
B a priori. Equations (55) and (60) show that speed-up is given, at the first-order,
by n%.. times a certain coefficient expressing the chemical sensitivity of the mixture
to preheating. It is /2 for single-step and aT,q/T, nr for power law. Classically,
hydrogen-air mixtures have lower activation energies compared to methane-air mix-
tures, as can be seen in Table 1. This apparently contradicts the fact that np is larger
for hydrogen-air, as shown in Figure 5. This arises from the fact that § is usually
fitted for a given global behavior (such as auto-ignition delay, laminar flame speed, or
flame thickness) at given temperature and pressure. Note that, for a fixed activation
temperature, 8 decreases when increasing inlet temperature. Therefore, single-step
models using a fixed 5 do not account a priori for the variation of flame speed with
preheating. A better strategy could consist in fitting a single value for activation tem-
perature for various temperatures of fresh gases and applying an iterative procedure
for the value of § as a function of 7)., which technically varies for the equivalent local
free-flame.

3. Effects of finite length

In this section, we investigate the role of finite length on superadiabatic properties
and recirculation efficiency. The influence of radiant heat losses at the extremities of
the porous is also studied. It is shown that the maximum recirculation efficiency in a
porous of finite length converges towards that of its infinite counterpart in a universal
manner.
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3.1. Problem formulation

A flame submerged in a finite porous medium is now considered such as depicted in
Figure 6. In addition to the parameters defined in Section 2, both the length of the
porous medium L and the distance of the reaction sheet from the inlet z, € [0, L] are
specified. For the flame to be submerged, only porous much longer than the diffusion
length scale are considered:

L > lag. (62)
Using (41) and (42), this condition becomes:
> 2 (63)
Tin

Four regions are distinguished: G1 and G2 are the gaseous zones before and after the
porous medium, while S1 and S2 are the two-phase zones before and after the reaction
sheet. The porous inlet is located at x = —x,, and the outlet at x = L —x,,. Heat losses
via radiation are noted Jie at the inlet and Jyjgne at the outlet. All corresponding
dimensionless quantities are noted with the * superscript.

T L

A
v

zone G1 zone S1 0 zone S2 zone G2

Figure 6.: Principle: lame submerged in a finite porous medium.

Alike the infinite case, the principle here is to find the flame speed-up in function
of an implicit formulation (4), but this time, there is one distinct problem for each
prescribed flame position x,. Since this position changes the temperature profiles,
thus heat recirculation, the flame speed-up is expected to be a function of x,. One can
anticipate that when the flame is close to the inlet or the outlet heat exchange with
the solid is limited, thus reducing the speed-up. A maximum speed-up is therefore
expected for a flame around the mid-section of the porous medium. The objectives of
this Section are to predict the speed-up for a given flame position and quantify the
influence of the finite porous length.

For zones S1 and S2, the governing equations remain that of the infinite case (5-6),
whose general solutions are:

3 3
01 (2") = AFT + > ATTMT and  09%(a%) = AFP+ ) AT (64)
i=1 i=1

Again, \; are the roots of the polynomial (20) for which \; < 0 < A9 < A3. This time,
the two constants Ag I and AOSQ must be determined using the conditions all over the
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domain, not just the boundary conditions. For the zones G1 and G2, the modelling
reduces to a single gas equation without coupling with the solid:

—1hcp, OxTy + Ag 02T, = 0. (65)
Normalisation yields:
0 [—Tm 99 + 7 899] = O, (66)

whose solutions compatible with the boundary conditions are respectively:

o
T %
et

6’51 (z*) = ASte and 952(1‘*) = A§2. (67)

In zone G2, the temperature 052(33*) is a constant, whose value is determined by the
gas temperature continuity at the exit of the solid. It is as such an output of the
problem, not an unknown:

AG? = 057 (%) = 057 (a* = L* — 7). (68)

This leaves 9 unknowns for 9 jump conditions: the A1, the Af2 and AOG1 are to be

(3
determined. At the flame front, we have:

0 (2 =07) = 0S%(2* = 0T) continuity of solid temperature,  (69)
20 (2 = 07) = 9052 (z* = 0T) continuity of solid heat flux,  (70)
01 (z* =07) = %% (z* = 0T) continuity of gas temperature,  (71)
69901 (z*=07)= % + 8052(33* =0") continuity of gas heat flux.  (72)

This time, both gas continuity and the energy release from reaction must be prescribed.
This is due to the indirect relation of the constants Agl and Ag‘z to the boundary
conditions at the infinite. Then, at the porous inlet, possible radiant heat losses must
be accounted for, as well as the effect of porosity on gas heat flux continuity:

205 (2% = —7,) = Jiegy inlet radiant heat loss, (73)
80?1(»”3* =-—x,) = 680951 (2" = —x}) continuity of gas heat flux, (74)
QgGl (z" = —x,) = Hjl(x* = —x,) continuity of gas temperature. (75)

At the outlet, the gas temperature gradient must go to zero because the gas temper-
ature in region G2 is constant, so that:

005 (% = L* — a3) = — T outlet radiant heat loss, (76)
8952(1’* =L"—x2,)=0 continuity of gas heat flux. (77)

In the adiabatic case, it is trivial that Jg; = 0 and J;"ight = 0. When considering
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radiant heat losses using a Stephan model, it is found that:

1— Tod 4
i =g o T (1 @ 88 = ) (78)
* 1 Tad * * * !
right = ”h )\ T4 <1 + a?uaf?(a: =L"— :L'p)> ) (79)

The jump conditions (69-77) can be recast under matrix formalism as:
M-A-=B, (80)
where A is the column matrix of unknowns:
A= [A5Y ATV A5 ASY AS? AP AP ARMw) Agle*%’f’”ir, (81)

and B the second member:

B=1[00 0 rafra Jig 00 0" (82)

*
right
The matrix M is provided in Appendix D. Note that in Equation (81), the coefficient

A$? is lumped together with (X" ~%3) and AS? with e~ 7. This allows for a well-
conditioned numerical inversion of Equation (80). A close look at Equations (82) and
(D1) reveals that 7., depends this time on more than r; and ry. In the adiabatic
case, the solution is a function of L and x,, but also of € through the inlet jump
condition (74). This latter dependency is very small for flames several gas diffusion
length scales away from the porous inlet. This motivated some authors to discard the
influence of porosity at the inlet and use directly a Dirichlet condition instead. When
considering radiant heat losses, the non-linearity of Jj ; and nght brings supplemen-

tary dependencies, namely of T4, T, and the parameter /(1 — €)/hy \s. Numerically,
this non-linearity is treated using a basic recursive method.

Examples of gas and solid temperature profiles are shown in Figure 7, without and
with radiant heat losses, together with that of the same infinite porous. As expected,
the reduction of the preheating length leads to a lower superadiabaticity compared to
the infinite case. Since interphase non-equilibrium (i.e. §3—0s) is higher, the preheating
rate is also higher and the preheating temperature gradient steeper. Regarding radiant
heat losses, one can see in Figure 7 that they lead to a reduction in both gas and solid
temperature at the outlet of the porous.

3.2. Influence of flame position

As anticipated, finite porous lengths reduce heat recirculation and therefore superadi-
abaticity. For a more detailed analysis of this effect, Figure 8 presents the recirculation
efficiency 7e. versus the reduced flame position zj, for various reduced porous lengths
L*, at a given arbitrary inlet mass flux. It is observed that the maximum superadia-
batic effect in the porous increases with porous length until L* ~ 5. In these situations,
the effects of finite length are not perceivable for a flame deep inside the porous. In
parallel, it is observed that radiant heat losses lead to lower recirculation efficiencies.
Overall, Figure 8 indicates that recirculation efficiency is a concave, direct function of
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adiabatic with radiant heat losses

reduced temperature

reduced abscissa x* reduced abscissa x*

Figure 7.: Example of temperature profiles: adiabatic and radiant heat losses cases.
The solution of the equivalent infinite porous is superimposed for comparison. The
parameters used are: T, = 300 K, T,4 = 2000 K, ¢ = 0.8, A\, = 20 Wm ! K1,
Ag = 0.025 Wm ' K™™', hy =6x10* Wm3K ™!, ¢, =10x10% Jkg 'K, L = 2
cm, m =1.2kgm 257!, and z, = L/4.

flame position. And since speed-up is a monotonous function of 7;.¢., a similar trend is
expected for the flame speed-up. This is indeed observed in Figure 9, where ST /S%(T,,)
is plotted versus flame position z;. It appears that the flame speed is also a function
of flame position, with an upstream and a downstream branch: for a given inlet mass
flux, two solutions are possible, on each side of the porous. Following the rationale of
other authors, notably that of Diamantis [19], only the upstream branch is expected
to be stable. A graphical explanation for the stability is that close to the inlet, the
speed-up increases if the flame is pushed back while near the outlet, the speed-up
decreases with z*.

3.3. Unaversal behavior of finite-length effects in the decoupled regime

As discussed above, Figures 8 and 9 show a convergence of the maximum superadiabat-
icy, typically when L* > 5. We now investigate the universality in this convergence.
Figure 10 shows ratios of the maximum recirculation efficiency obtained in a finite
porous medium 7% (L*) and the one found in its infinite counterpart 7,..(c0), for
various values of 75, ry and L*. The chosen values satisfy the decoupled regime (37)
and submerged flame (63) conditions. All these cases are very close to the limit case
T — 00, 7y — 0 with relative differences below 5%. For the sake of clarity, only a few
cases are presented in Figure 10 but they cover all the solid line regions of Figure 3.
This is a strong indication that finite-length effects only depend on the normalised
length L* and confirms that for L* > 5, a porous matrix can be treated as infinite
from the perspective of heat recirculation.

This is arguably of great practical interest. Using the model presented in Section 2
(either numerical integration or analytical approximations), one can compute 7;.¢.(00).
Then with Figure 10, one can estimate finite-length effects and obtain the numerical
value for n2%%(L*). This means that heat recirculation and flame speed-up can be

rec
anticipated at the design stage of a porous burner using intrinsic properties of the
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Figure 8.: Recirculation efficiency versus flame position for various lengths of porous
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Figure 9.: Speed-up ratio versus flame position for various lengths of porous media.
Solid line: adiabatic case. Dashed line: with radiant heat losses. The parameters used
are: T, = 300 K, Tpg = 2000 K, e = 0.8, As =20 Wm 1 K~1, \; =0.025 Wm K~}
hy =24 x10° Wm 3K, ¢, =10 x 10° Jkg 'K, g = 1.2 kgm 257!, and nyp =
1.

gaseous and solid phases. In other words, it is possible to use the speed-up formulae
proposed in the infinite case, by multiplying n°.. by the value of the ratio reported
from Figure 10.

4. Conclusion

In this work, a one-dimensional framework is considered for the modelling of com-
bustion in porous media. Heat losses are neglected in the sense that the domain is
globally adiabatic and the case of an infinite porous media is considered first. Un-
der the assumption of scale-separation for interphase heat exchange, gas diffusion and
combustion, several analytical, fully explicit formulae were derived for the heat recir-
culation efficiency and flame acceleration. Major trends were spelled out, namely: a
decrease with equivalence ratio, porosity and ambient temperature, and an increase

21



1.0 = 101, 7y = 107!

T = 102, T = 1071
T =102, 1y = 1072
i = 102, ry = 10°

Ty, —> 00, Tx — 0

0.8 1

|><—<o

8
3
< 0.6 A
Py
=

1072 1071 10° 10! 10?
reduced length L*

Figure 10.: Convergence towards the infinite porous medium case - universal curve in
the conditions (37) and (63).

with solid conductivity, volume heat transfer coefficient and adiabatic temperature.
Two dimensionless numbers denoted ry;, and 7y drive this phenomena and the present
study is valid for r,;, > 0.1 and r,;,/ry > 10, which is the transcription of the scale-
separation hypothesis.

The analysis is then extended to finite-length porous burners and including heat
loss through radiation at the extremities of the porous. Numerical resolution of the
problem showed the existence of two solutions near the extremities of the porous,
the one upstream being stable and the other one being unstable. This feature has
already been discussed in the literature but variations in the length of the porous
burner showed a convergence of the heat recirculation for normalised lengths L* > 5.
A parametric investigation pointed out that this convergence is independent of the
porous flame parameters and solely determined by L*, which is of practical interest
for the design of porous burners.
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Appendix A. Gas temperature continuity

In this appendix, we prove the equivalence of gas temperature continuity and energy
conservation from reaction (27), provided the continuity of the solid heat flux (26) and
consistent boundary conditions (15-16):

T,(z=07)=T,(x=0") < (15) + (16) + (26) + (27). (A1)

We reason without dimensions. Equations (12) and (13) can be rearranged as follows,
by substituting the term 6, — 6,:

) 020y + 005 = 1,3, 00,. (A2)

By integrating Equation (A2) from —oo to 0~ in zone 1 and 0" to 400 in zone 2 and
taking into account the boundary conditions (15-16), we find respectively:

T 80;@* =07)+ 90 (z* =07) =1y 9;(~’U* =07), (A3)
T 803(:1:* =0") +90%(z* =07) = ry, [93(37* =0%)—1]. (A4)

Subtracting Equation (A3) to Equation (A4) and using solid heat flux continuity (26)
yields:

* — * T'rin T * — *
89;@ =0 )—893@ :0+):K+K[%(x =0 )—93(33 =0")]. (A5)

When the gas temperature is continuous at the origin, Equation (A5) simplifies to:

901 (z* = 07) = Zﬂ + 062 (x* = 07), (A6)
A

which is the dimensionless form of Equation (27). This proves the equivalence (Al).
The gas temperature is continuous over the entire gas domain.
Appendix B. Maximum of gas temperature at t = 0
We now show that the gas temperature is maximal at the origin:

Omaz = Oy(a* =07) = 62(2* = 07). (34)
Since the gas temperature is continuous over the entire domain, it is sufficient to show
its strict increase in zone 1 and its strict decrease in zone 2. Recalling the sign of each

root of Equation (20):

/\1 <0< )\2 < /\3, (Bl)
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and looking at Equations (23-24), it is clear that if:

then the variations meet the researched property. To move forward, it is necessary to
resolve formally the system (31-33). This gives:

—A2A3

A= T 0= ) (B3)
B A1)

Az = (A2 — A1) (A3 — Ag)’ (B4

A3 _ +)\1)\2 (B5)

(A3 = A1)(A3 = A2)
By using Equation (B1), it is clear that the denominators in Equations (B3-B5) are
positive. Then, taking into account the signs in front of the numerators, the condition
(B2) breaks down into:

AoAz(1 =) <0, MA3(1 =23 <0 and  AAo(l—2A3)>0. (B6)
This requires studying the sign of:

(1= A7), (B7)

for the circular permutations i, j, k € {1,2,3}. For that, we make use of the relations
between the roots and the coefficients of the polynomial of Equation (20):

M+ Ag o+ Ag = (BS)
D)
1+
Atz + Adg + Ay = —— 2 (B9)
A
Adodg = — 1. (B10)
D)
Using Equation (B10), the term (B7) becomes:
A — AN )AL = Aidj + At (B11)
D)
Then, by using Equation (B9), it becomes:
1 m 1 ™
SR e SR WS VR V5 VIS WL e . <Aj i 7“> Ar. (B12)
D) D) LD\ D)
And then thanks to Equation (BS8), we find a compact form for (B7):
1 + TA 2
- + Az, (B13)
D)
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so that (B6) is equivalent to:

1 1 1
— +T>‘+)\%<O, — +r)‘—|—>\%<0, and  — Rl

A2 > 0. B14
B\ X ) * 3 ( )

One way to prove (B14) is to use the continuity and monotony of the roots with regard
to 7. The monotony can be seen by considering the form (C5) given in Appendix C.
Keeping in mind the ordering A\; < 0 < A2 < A3, let us study the roots of (20) when
rn — 0 and 7r;, — +o0o. We find:

1 1
i =0 = Mo A 50 and Ao 2 (BI5)
) D)

Ty — +00 — A — -1, A—1 and Az = +00. (B16)

Since (14 ry)/rx > 1, it is found that:

147y
[

1
)\16}— +”,—1[, X2 €1]0,1]  and )\36}

LD

what leads to (B14). This proves that the maximum temperature is reached at = 0.

Appendix C. Characteristic polynomial

In this appendix, the characteristic polynomial of Equation (20) is scrutinized. The
general forms of its roots and their respective Taylor developments in the regime (37)
are given. So as to simplify further calculations, the following notations are introduced:

1
e= A and X = R > 1. (C1)
T )
Equation (20) becomes:
Mo xyat+el=0. (C2)

Following Cardano’s general theory, the canonical variables are introduced:

1 1/ 2
=—(— d =—— (= +x-3). C3
p <3€2 + x) an 4= 5 <9€2 + X ) (C3)

The discriminant of Equation (C2) is:

4  9(2x -1
A:—(4p3+9q2):64+(>§2)+4x2>0, (C4)
whose positivity comes from x > 1. This confirms that Equation (20) has three real
solutions (A1, A2, A\3) € R3. Using the relations (B8-B10), namely the negatitivy of

their product and the positivity of their sum, it is deduced that their sign follows (B1).
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The general solutions take the following form:

1 [— 1 2k
A = " + 2 ?pcos [3 arccos (;Z —3p> + ;] for ke {1,2,3}. (C5)

The regime (37) can be recast in terms of € and x as:

o\ 1
T = (x—1e <10 and (ff”) =e<0.1,  (C6)
A

which means that a Taylor development in € near the origin is conceivable. After some
calculations, this gives:

M= 1 (x;l)g_ (X‘5§’<—1)52+0(53), (C7)
)\2_1_(X;UEJF(X—5);X_1)€2+O(53)7 (C8)
da= L (= Do 0. (©9)

It is worth noting that often, terms similar to (x — 1)e appear in the expansions. This
is the translation that roughly, the regime (37) corresponds to 7, — 400 for a fixed
rx. These developments show that the approximated roots found in Section 2.4 are
dominant-order approximations in €. The roots A\; and As tend to be symmetric, of
norm close to unity, while A3 has a propensity to be large.
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Appendix D. Matrix for resolution of the finite porous

1 1
A1 A2
Y 1— )3
A(1=A9) Aa(1=23)
)\16_)‘130; )\QG_AZOE;

A1 —A)e™M% edg(1 — A3)e 2%
(1 —A2)e My (1 — A3)e e

Il
cCoOR OO0 OO

0 0
I 0 0
1 —1 -1
A3 0 ~\1
1— A3 -1 —(1-=)})
A3(1 =A%) 0 =2 (1 =23
0 0 M(1—=X)eM =)
edz(1—A2)e M2 0 0
(1=Xde ™% 0 0
Age e 0 0
0 0 A=)
-1 —eAs(L7—ap) 0
-9 —)\36_>‘3(L*_x;) 0
—(1-23) —(1 = A)e (T mm) 0
—Xa2(1 - A3) —Ag(1 = A)e (L) 0
0 0 0
0 0 — T /T A
0 0 —1
)\26)‘2@*_%) A3 0
Ao (1 — A)eth =) As(1— A2) 0
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