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Abstract

Research on the biological determinants of male homosexual preference has long 

realized that the older brother effect (FBOE, i.e. a higher fraternal birth rank of homosexuals) 

and the antagonist effect (AE, i.e. more fertile women have a higher chance of having a 

homosexual son) can both generate family data where homosexual men have more siblings 

and more older siblings than heterosexual men. Various statistical approaches were proposed 

in the recent literature to evaluate whether the action of FBOE or AE could be discriminated 

from empirical data, by controlling for the other effect. Here, we used simulated data to 

formally compare all the approaches that we could find in the relevant literature for their 

ability to reject the null hypothesis in presence of a specified alternative hypothesis (tests 

based on regression, Bayesian modeling, or contingency tables). When testing for the FBOE, 

the relative performance of the different tests was different depending on the specific function

generating the older brother effect. Even if no tests were found to always perform better than 

the others, some tests performed systematically poorly, and some tests displayed a systematic 

high rate of type-I error. For testing the AE, the relative performance of the tests was 

generally not changed across all parameter values assayed, providing a clear ranking of the 

various proposed approaches. Pros and cons for each candidate test are discussed, taking into 

consideration power and the rate of type-I error but also practicability, the possibility to 

control for confounding variables and to consider alternatives hypotheses. 

Key words: homosexuality, sexual orientation, fraternal birth order, older brothers, female 

fecundity, balancing selection
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Introduction

Male homosexual orientation, i.e., preferential attraction of male subjects to same-sex 

partners for sexual intercourse and/or romantic relationships, is an evolutionary enigma as it is

partially heritable and associated with a fertility cost. Its origin has long been discussed, with 

several evolutionary hypotheses being proposed, mostly involving kin selection or 

antagonistic pleiotropy (see Apostolou, 2020b; Barthes et al., 2015; Gavrilets & Rice, 2006; 

Raymond & Crochet, 2022 for reviews).

One intriguing feature of homosexual men is their higher fraternal birth rank  (i.e., 

they have more older brothers on average) compared to heterosexual men. This can be 

explained by two non-exclusive mechanisms. Firstly, an antagonistic effect (AE), implying 

that more fertile women have a higher chance of having a homosexual son, has been proposed

(Camperio-Ciani et al., 2004, 2009; Iemmola & Camperio-Ciani, 2009): homosexual men 

would then be overrepresented in large families and would thus have a higher mean birth rank

than the population average. Secondly, a fraternal birth effect (FBOE), where each additional 

older brother increases the chances for a male embryo to develop later a homosexual 

orientation due to an immunoreactivity process, has been repeatedly put forward (Blanchard, 

2018a; Bogaert et al., 2018; Bogaert & Skorska, 2011).

Whether the FBOE and AE are both at play in human populations or not remains a 

difficult question to tackle, as their effects can be difficult to distinguish when analyzing 

empirical data (Raymond et al., 2023). Indeed, higher fertility of mothers of homosexual men 

implies that when sampling homosexuals from a population, the mean birth order of 

homosexuals will be higher, on average, than the mean birth order of heterosexuals. If sex-

ratio is unbiased, this will result in higher fraternal birth order of homosexual men.  



4

Conversely, if fertility varies within a population independently of the occurrence of 

homosexuality, and if FBOE is at play, then sampling higher birth ranks (as is the case when 

sampling homosexuals in the presence of the FBOE) will generate a sample biased towards 

offspring from high-fertility mothers.

This is especially problematic in family data generated from population samples 

typically used to study these questions: homosexual and heterosexual men are sampled and 

they report the composition of their sibship. The importance of controlling for family size 

when studying birth order has long been recognized (e.g. Blanchard, 2014; Slater, 1962), 

although the importance of controlling for birth order when studying fertility has been often 

overlooked (e.g. Camperio-Ciani et al., 2004). Recently, in order to separate these AE and 

FBOE effects from empirical family data, several statistical methods have proposed to test for

the presence of an FBOE when controlling for fertility, or to test the presence of AE when 

controlling for birth rank.

To test for the presence of the FBOE, controlling statistically for fertility variation, 

several methods have been proposed (Table 1). First, various regression models have been 

used, such as a Poisson regression, where the number of older brothers is the dependent 

variable, and sexual orientation is the variable of interest, with sibship size as a control 

variable (e.g., Nila et al., 2019); or a binomial regression on sexual orientation, with the 

number of older brothers being the variable of interest, and fertility being controlled by either 

one (sum of the other sibs, e.g., Vanderlaan et al., 2017), or several variables (older sisters, 

younger brothers, younger sisters, e.g., Blanchard & Bogaert, 1996); or sibship size, older 

sibs, and younger brothers, see Ablaza et al., 2022). Second, both FBOE and AE have been 

explicitly modeled in a Bayesian analysis using a hierarchical model, and support of the 
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FBOE in the presence of AE is estimated (Raymond et al., 2023). These methods rely on 

individual data so that control variables could be added to take into account confounding 

effects, such as variation of fecundity with the year of birth, variation of sibship composition 

with age, etc. Two methods have been proposed to test for the presence of FBOE on 

aggregated data, i.e., after pooling family data by sexual orientation for all individuals. Firstly,

the total number of older brothers, relatively to older sisters, or relatively to all other sib 

categories, can be compared between homosexual and heterosexual men. The measure of the 

FBOE is an odd-ratio, named “odds of homosexuality” (see study 1 of Blanchard & Skorska, 

2022), and OBOR (or Older Brother Odds Ratio) (Blanchard, 2018a; Blanchard et al., 2021), 

respectively, and the corresponding tests are Fisher exact test on a 2x2 contingency table. 

Another possible approach to control for fertility is to consider only individuals with a 

specific number of sibs, for example only one brother, and to contrast the sexual orientation of

those with one older or one younger sib, using a 2x2 contingency table (Blanchard & Lippa, 

2021; Khovanova, 2020).

Similarly, several approaches have been used to study variations in female fecundity 

associated with male homosexuality, controlling for a direct effect of birth rank (Table 1). 

First, a regression on the number of sibs, controlling for male birth rank, and sexual 

orientation as the dependent variable of interest (Raymond et al., 2023). Second, a binomial 

regression on sexual orientation, with the number of sibs being the variable of interest, and 

birth rank controlled with three variables (older sibs, older brothers, and younger brothers, see

Ablaza et al., 2022). Third, a Bayesian modeling considering both FBOE and AE, as above, 

and support of the AE in the presence of FBOE is estimated (Raymond et al., 2023). Another 

possible approach to control for birth rank is to consider only individuals with a specific birth 
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rank, e.g., only first-born or second-born, and contrast their sexual orientation between large 

and small families (e.g., Blanchard, 2012; Blanchard et al., 2020; Khovanova, 2020). 

These various methods have been used in different studies, and each one has some 

advantages and limitations. However, they have never been formally compared, and their 

relative power to reject the null hypothesis in presence of alternative hypotheses is not known.

In this paper, we compare the power of these methods using simulated data. Specifically, we 

generate numerous family data with a specified level of FBOE and/or AE, then sample 

heterosexual and homosexual men and perform the various tests presented above. This 

process is repeated multiple times, allowing the computation of the power for each test, i.e., 

the proportion of rejection of the null hypothesis in presence of an alternative hypothesis 

(FBOE and/or AE)

Material and Methods

Simulating Family Data

A total of 6000 families were generated, with fecundity drawn from a Poisson distribution of 

parameter λ. For each offspring, sex was randomly assigned from the outcome of a binomial 

of parameter ½, and birth order was recorded. FBOE was explicitly modeled by two different 

functions. First, by considering that the probability P to be homosexual is P = p0+a.ob, where 

p0 is the probability to be homosexual for a man without older brothers, ob is the number of 

older brothers, and a > 0 (corresponding to function f5 of Table S1 in Raymond et al., 2023). 

Second, by considering that P = p0 for ob = 0, and P = p0 + a1 for ob > 0 (function f7 of Table 

S1 in Raymond et al., 2023). In all cases, FBOE was affecting only male offspring, so that  an

eventual older sister effect was not generated. AE was simulated using parameters α and β 

(both ≥ 0), and considering that for ¼ of the families, p0 and fertility are higher, p0(1+α) and 
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λ(1+β), respectively. From the whole offspring population, a random sample of 200 

heterosexual and 200 homosexual men was drawn, thus matching most empirical data sets 

where balanced numbers of homosexual and heterosexual subjects are sampled from the 

populations, before performing the various tests for detecting the presence of FBOE or AE 

and storing the corresponding p-values. This was replicated at least 200 times for a given set 

of parameters (a or a1, α, β). A value of p0 = 0.05 and λ = 4 was considered throughout.

The various tests compared for their power relatively to various alternative hypotheses

are indicated in Table 1, and detailed below.

Testing for FBOE

Regressions

R1. Generalized linear model with the number of older brothers as the response 

variable, which tested whether males of different sexual orientations had more or fewer older 

brothers (Nila et al., 2019). The variable of interest was the sexual orientation of sampled men

(non-ordinal qualitative variable), and the control variable was the number of siblings 

(quantitative variable) of sampled men. Generalized linear regression was performed, using a 

quasiPoisson error structure. The significance of the variable of interest was calculated by 

removing it and comparing the resulting variation in deviance using the χ² test, as done by the 

function Anova from the car R package. Significant p-values indicative of FBOE 

corresponded to cases where more older brothers were associated with an homosexual 

orientation, relatively to heterosexual men (i.e., a positive slope estimate of the variable of 

interest). 

R2-R4.  Generalized linear model with sexual orientation as the response variable, 

which tested whether sexual orientation was explained by the number of older brothers. The 
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variable of interest was the numbers of older brothers of sampled men (quantitative variable). 

For R2 (Ablaza et al., 2022), the control variables were the number of siblings, the number of 

younger brothers, and the number of older sibs (all quantitative variables). For R3 (Blanchard 

& Bogaert, 1996), the control variables were the number of older sisters, the number of 

younger brothers, and the number of younger sisters (all quantitative variables). For R4 

(Vanderlaan et al., 2017), the control variable was the number of other sibs (quantitative 

variable). Generalized linear regression was performed, using a binomial error structure. The 

significance of the variable of interest was calculated by removing it and comparing the 

resulting variation in deviance using the χ² test, as done by the function Anova from the car R 

package. Significant p-values indicative of FBOE corresponded to cases where a homosexual 

orientation was associated with more older brothers (i.e., a positive slope estimate of the 

variable of interest). 

Goodness of fit for R1-R4 was measured using the McFadden pseudo-R-squared.

Bayesian modeling

B1. Both the FBOE and AE were explicitly and simultaneously modeled in a Bayesian

analysis using a hierarchical model, as proposed by (Raymond et al., 2023), using the nimble 

R package (de Valpine et al., 2017). The birth order effect, i.e., the probability of displaying a 

homosexual preference according to the number of older siblings was modeled using function 

f5 or f7 (see above). Fertility was assumed to follow a Poisson distribution with rate 

parameter λ. AE was modeled as the possible presence of a subgroup displaying higher 

fertility and simultaneously a larger value of p0. This effect was modeled as an increase in λ 

by a factor (1+β), conjointly with an increase in p0 by a factor (1+α), with α and β≥0 . For 

each individual, the probability that the AE applies followed a Bernoulli distribution with 
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parameter φae. We implemented the model in a Bayesian framework by assigning 

uninformative (flat) prior distributions for all model parameters. Support for the FBOE, in the 

presence of the AE, was computed using Reversible-Jump Markov chain Monte Carlo (or 

RJMCMC, Green, 1995). RJMCMC is an extension of the standard MCMC methodology that

allows the simulation of the posterior distribution on spaces of varying dimensions. One 

indicator variable dictated the presence or absence of the FBOE parameter (a or a1, depending

of the FBOE function considered). RJMCMC was run at least 200,000 iterations, discarding 

the initial 10,000 iterations as burn-in, and only convergent chains (according to Geweke, 

1991) were considered. The mean of the posterior distribution of the binary inclusion variable 

was used as an estimate of the support of the FBOE. Analyses were run in R 4.0.2 (R Core 

Team, 2020) using version 0.12.2 of the nimble package (de Valpine et al., 2020). 

Contingency tables on aggregated data

T1. A 2x2 contingency table, contrasting sexual orientation and the total number of 

older brothers and older sisters (Blanchard & Skorska, 2022). Significant p-values for an 

excess of older brothers, relatively to older sisters, for homosexual men, was considered as 

indicative of FBOE. 

T2. A 2x2 contingency table, contrasting sexual orientation and the total number of 

older brothers and other sibs (Blanchard, 2018b; Blanchard et al., 2021).  Significant p-values 

for an excess of older brothers, relatively to other sibs, for homosexual men, were considered 

as indicative of FBOE. 

T3. A 2x2 contingency table, contrasting sexual orientation for individuals with one 

older or one younger brother, for aggregated data restricted to individuals with only one 

brother (sibship size = 2) (Khovanova, 2020). Significant p-values for an excess of 
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homosexual men with one older brother, relatively to heterosexual men, were considered as 

indicative of FBOE. 

For all 2x2 contingency tables, a Fisher’s exact probability test was performed. 

Testing AE

Regressions

R5. A generalized linear model with the number of siblings as the response variable  

tested whether males of different sexual orientation had more or fewer siblings (Raymond et 

al., 2023). The variable of interest was the sexual orientation of sampled men (non-ordinal 

qualitative variable), and the control variable was the male birth rank (quantitative variable) 

of sampled men. Generalized linear regression was performed, using a quasiPoisson error 

structure. The significance of the variable of interest was calculated by removing it and 

comparing the resulting variation in deviance using the χ² test, as done by the function Anova 

from the car R package. Significant p-values indicative of AE corresponded to cases where a 

higher sib numbers were associated with a homosexual orientation, relatively to heterosexual 

men (i.e., a positive slope estimate of the variable of interest). 

R6.  Generalized linear model with the sexual orientation as the response variables, 

which tested whether sexual orientation was explained by the number of siblings (Ablaza et 

al., 2022). The variable of interest was the number of siblings of sampled men (quantitative 

variable). The control variables were the number of older brothers, the number of younger 

brothers, and the number of older sibs (all quantitative variables), see R2. The significance of 

the variable of interest was calculated by removing it and comparing the resulting variation in 

deviance using the χ² test, as done by the function Anova from the car R package. Significant 

p-values indicative of AE corresponded to cases where a homosexual orientation was 
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associated with more siblings (i.e., a positive slope estimate of the variable of interest). 

Goodness of fit for R5 and R6 was measured using the McFadden pseudo-R-squared.

Bayesian modeling

B2. The same Bayesian model as B1 was used, except now including an indicator 

variable controlling the inclusion or exclusion of AE. RJMCMC was again used for model 

fitting, where the indicator variable dictates the presence or absence of the two AE parameters

(alpha and beta). RJMCMC was run at least 200,000 iterations, discarding the initial 10,000 

iterations as burn-in, and only convergent chains (according to Geweke, 1991) were 

considered. The mean of the posterior distribution of the binary inclusion variable was used as

an estimate of the support of the AE. Analyses were run in R 4.0.2 (R Core Team, 2020) 

using version 0.12.2 of the nimble package (de Valpine et al., 2020). 

Contingency tables on aggregated data

T4. A Fisher’s exact probability test on a 2x2 contingency table, contrasting sexual 

orientation for individuals with a higher or lower number of sibs than the population mean, 

for aggregated data restricted to individuals with no older brother (Khovanova, 2020). 

Significant p-values for an excess of homosexual men with a higher mean sib number, 

relatively to heterosexual men, were considered as indicative of AE.

Estimating Power and False Discovery Rate

For each statistical test (frequentist models), the proportion of p-values less than or 

equal to the rejection rate (0.05) was calculated. These provide an estimation of the power of 

each test (when an alternative hypothesis was included in the simulated data) or of the false 

discovery rate, or risk of type I error, when an alternative hypothesis was absent. We only 

counted the number of p-values supporting the AE or FBOE alternative hypotheses (i.e., 
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excess of older brothers, or excess of sibs for homosexual men) so the expected false 

discovery rate was 2.5% (one-sided test). The power-equivalent for Bayesian modeling was 

taken to be the proportion of the replicated experiments for which the posterior mean of the 

RJMCMC indicator variable was above 50%. This approach considers a type-2 error as 

occurring when the RJMCMC posterior distribution suggests the effect being considered is 

less than 50% likely to have been present.

Results

Testing FBOE

When data were generated without FBOE (i.e., no alternative hypothesis), the power 

of each test corresponds to the rate of type I error or false positive. When AE was absent, all 

tests displayed a rate of type-I error not significantly higher than the expected value of 2.5 %. 

The only exception was T2, which displayed a rate of type-I error of 6.3 % (Table 2). When 

AE was present, the rate of type-I error increased for all tests, particularly for R3 and R4, 

reaching 19.0 % and 26.2 %, respectively (Table 2). The rate of type-I error was significantly 

higher than 2.5 % for R1 (5.2 %), T2, R3, and R4. The only exception was T3 for which the 

rate of type-I error decreased.

When data were generated in presence of only FBOE, the power to reject the null 

hypothesis increased with the intensity of FBOE and was affected by the specific function 

used to generate the FBOE. When function f7 was used to generate the FBOE, five tests (B1, 

R1, R3, R4, and T2) provided a higher power than the other ones (R2, T1, and T3), for all 

values of the parameter a1 describing the strength of FBOE (Fig. 1A). For the best test (B1), 

the power was (Mean ± SEM) 50.5 % ± 3.5 for a1 = 0.025, and 91.5 % ± 2.0 for a1 = 0.05. For

the worst test (T3), these values were 2.0 % ± 1.0 and 4.5 % ± 1.5, respectively. For this test, 
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data reduction (men having not exactly one brother are discarded), across all parameter 

values, was on average 96.4 %. When function f5 was used to generate the FBOE, R1, R3, 

R4, and T2 provided a higher power than the other ones (B1, R2, T3, and T4), for all values 

of the parameter a describing the strength of FBOE (Fig. 1C). Nevertheless, all tests provided 

a power higher than 80 % for parameters values a ≥ 0.05. The only exception was test T3, 

displaying a relatively low power (< 20 %) for all parameter values tested. For this test, data 

reduction, across all parameter values, was on average 96.7%. For R1-R4, across all 

parameter values, the mean McFadden’s pseudo-R-squared was 22.91 %, 6.55 %, 6.55 %, and

6.16 %, respectively. 

When AE was also present (with parameters α = β = 1) in addition to FBOE 

(generated with function f7 or f5), the power decreased for all tests, although their relative 

ranking remained globally similar (Fig. 1B, 1D). The only exceptions were tests R3 and R4, 

for which the power increased, e.g., for the FBOE intensity a = 0.0125, from 65.5 % ± 3.4 to 

73.5 % ± 1.4, and from 84.5 % ± 2.6 to 90.0 % ± 2.1, for R3 and R4, respectively. For T3, 

data reduction was on average 98.1% for function f7, and 98.1% for function f5. For R1-R4, 

across all parameter values, the mean McFadden’s pseudo-R-squared was 27.05 %, 7.03 %, 

7.03 %, and 6.64 %, respectively. 

Testing AE

When data were generated without AE, the power of each test corresponds to the rate 

of type I error or false positive. When FBOE was absent, or when FBOE was present, either 

using function f7 or f5, all tests displayed a rate of type-I error not significantly higher than 

the expected value of 2.5 % (Table 3). 

When population data were generated in presence of only AE, the power to reject the 
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null hypothesis increased with the intensity of AE. The most powerful test, for all parameter 

values, was B2, followed by R5, T4, and R6 (Fig. 2A). For AE corresponding to a two-fold 

increase of both the probability to be born homosexual and female fertility (α = β = 1), the 

power was 100 % ± 0, 45.5 % ± 3.5, 18.5 % ± 2.8, and 17.0 % ± 2.7, for B2, R5, T4, and R6, 

respectively. For R5 and R6, across all parameter values, the mean McFadden’s pseudo-R-

squared was 21.31 % and 1.96 %, respectively. For T4, across all parameter values, data 

reduction (men with at least one older brother are discarded) was on average 64.5 %. 

When FBOE was also present, generated with either function f7 (a1 = 0.1) or function 

f5 (a1 = 0.1), the power decreased for all tests, although their relative ranking remained 

globally similar (Fig. 2B and 2C). For R5 and R6, across all parameter values, the mean 

McFadden’s pseudo-R-squared was 21.83 % and 3.34 %, respectively.

Discussion

Research on the biological determinants of male homosexual preference has long 

realized that the older brother effect (FBOE) and the antagonist effect (AE) can both generate 

family data where homosexual men have more siblings and more older siblings than 

heterosexual men. Various statistical approaches have been proposed in the recent literature to

evaluate whether the action of FBOE or AE could be discriminated from empirical data, by 

controlling for the other effect. In this paper, we used simulated data to formally compare all 

the approaches that we could find in the relevant literature for their ability to reject the null 

hypothesis in presence of a specified alternative hypothesis. 

Regressions

The various types of regression proposed differ for the dependent variable and the 

variable of interest (Table 1). For example, to test for the presence of FBOE, the dependent 
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variable could be the number of older brothers (R1, Poisson regression), or the sexual 

orientation (R2-R4, binomial regression): variables of interest are reversed, being sexual 

orientation (R1) or the number of older brothers (R2-R4), respectively. In all cases, control 

variables were present to control for birth rank (when testing AE), or to control for fertility 

(when testing FBOE). 

Curiously, when testing for the presence of the FBOE, controlling for fertility 

variation, tests R3 and R4 displayed a relatively high rate of type-I error when AE was present

(19 and 26%, respectively), thus incorrectly rejecting the null hypothesis (i.e., the absence of 

FBOE). This bias was not apparent when AE was absent, suggesting that these tests do not 

control adequately for the collinearity created between birth rank and number of sibs by 

variations in fertility as AE generates heterogeneity for fertility in the sample which is not 

captured easily by simple regression. This probably explains why all regressions tested 

displayed an increase in the rate of type-I error when AE was present, although these 

increases were modest for R1 and R2. The large increase observed for R3 and R4 remains to 

be fully understood.

The relatively modest performance of tests R2 and R6 is possibly explained by the 

presence of multiple correlated explanatory variables. The four explanatory variables of this 

regression model are the number of older sibs, older brothers, sibs, and younger brothers. The 

principle of this type of regression, according to the authors, is “to isolate the independent 

influences of siblings’ sex, birth order, and sibship size” (Ablaza et al., 2022). For test R2, the 

β coefficient associated with the number of older brothers is interpreted by the authors as the 

increase in the dependent variable (here, the probability of homosexuality) when there is an 

additional older brother, holding all other predictor variables constant (total siblings, older 
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siblings, and younger brothers): this additional older brother, according to the authors, must 

therefore be associated with the loss of an older sister. Similarly, for test R6, the β coefficient 

associated with the number of sibs is interpreted by the authors as the increase of the 

dependent variable when an additional sib is present, with all the other predictor variables 

constant (older sibs, older brothers, and younger brothers):  this additional sib must thus be a 

younger sister according to the authors. This procedure has been proposed and used on a very 

large data set (Ablaza et al., 2022), but not formally evaluated until now, particularly for the 

consequences of multicollinearity. In a regression model, multicollinearity is known to lower 

the ability to detect significant coefficients, as it inflates standard errors of the estimates (e.g., 

Daoud, 2017). This could explain the relatively low power of these tests, particularly for R6, 

for which the explanatory variable (number of sibs) displayed a VIF (Variance Inflation 

Factor, Zuur et al., 2010) value higher than 5, a situation usually considered problematic, in 

25% of the samples. The collinearity of R2 has been deliberately constructed in order to test 

for FBOE while controlling for fertility and SBOE. Thus type-I error is probably never 

inflated for those alternative hypotheses, although this is at the cost of a low power for the 

sample size considered here (200 homosexual and 200 heterosexual men). The behavior of 

R2, in terms of power and type-I error for alternative hypotheses and sample sizes not 

explored here, remain to be formally established.General linear regression methods are easily 

accessible (implemented in all statistical packages). The inclusion of confounding variables 

allowing a statistical control of some type of variation (such as age, socioeconomic level, etc.)

is easy, although non-linear effects could be hard to implement when using pre-programmed 

current packages. However, they cannot fully account for the collinearity generated between 

birth rank and number of sibs by fertility variation. 
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Bayesian Modeling

Bayesian modeling using a hierarchical model can accommodate complex non-linear 

effects, although explicit expression of all effects is required. When FBOE was modeled using

function f7 to generate the data, test B1 (coded with function f7 to detect FBOE) performed 

best relative to the other tests including regressions (discounting R3 and R4, see above), 

whether or not AE was present (Fig. 1A and B). However, when function f5 was used to 

generate the data, the performance of test B1 (coded with function f5 to detect FBOE) was 

unremarkable compared to the other ones, for low values of FBOE. Unfortunately, the rate at 

which additional older brothers increase the probability of homosexuality is not known (see 

discussion in Raymond et al., 2023). Until this function has been deciphered, it is uncertain  

whether or not this type of Bayesian modeling will perform best to detect FBOE.

To detect female fecundity associated with male homosexuality (AE), Bayesian 

modeling (test B2) displayed a higher power in all conditions evaluated, including in the 

presence of an FBOE (Fig. 2).

Contingency Tables

The performances of the various contingency tests were very different, some 

displaying a relatively high power (T2), and other performing poorly (T1, T3, and T4).

Under the null hypothesis, the power of Fisher’s exact test on a 2x2 contingency table 

is 5%, if the rejection rate is 0.05. This is true if the variances of the variables for each cell are

binomial (Bennett & Hsu, 1960). This is the case for T1, where the number of older brothers 

(ob) and older sisters (os) are compared across sexual orientation: for a given number of older

sibs (n), the number of ob and os is drawn from a binomial B(n, p), with  p = ½; and the sum 
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of repeated binomials sampling (with the same p parameter) is also a binomial. As expected, 

the power under the null hypothesis (the rate of type-I error) for T1 is not different from the 

rejection rate (Table 2). If the variances of the variables for each cell are not binomial, type-I 

error could be inflated. This is the case when cells of the contingency table are drawn from a 

quasi-binomial distribution (Appendix 1, Fig. S1). Interestingly, the number of older or 

younger sibs, for a given sib size, follows a uniform discrete distribution (and not a binomial, 

as these sib classes are ordered), with a higher variance than binomial. A Fisher’s exact test 

on a 2x2 contingency test of two independent samples contrasting older and younger sibs 

displays an inflated rate of type-I error, whether the test is performed with one draw for each 

line, or with the sum of multiple draws (Appendix 2, Fig. S2). Test T2 contrasts ob and 

younger+os over the sum of multiple draws, thus not corresponding to a simple known 

distribution. Indeed, the sum of several independent discrete uniform distributions is not 

uniform, with no simple formal description. The non-binomial distribution of the cell counts 

for T2 explains its inflated type-I error, suggesting that the use of this test should be 

discontinued.

The poor performance of T3 was probably due to the drastic data reduction required, 

as only individuals with exactly one brother (either older or younger) were retained, 

corresponding here to more than 95% data loss. The expected loss is a function of population 

fertility λ, as the proportion of individuals without exactly one brother is 1−λ . e−λ/2

(derived from Appendix 2 in Raymond et al., 2023). The minimum data loss is thus 81.6% 

(for λ = 1), although the presence of FBOE alters slightly this figure. Less drastic data loss 

was reported, from 12 to 68% (average 30%) (Blanchard et al., 2020), although these values 

were computed without excluding sisters (R. Blanchard, pers. communication), and thus 
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represent large underestimates. From the Canadian data published by Blanchard and Bogaert 

(1996), individuals with only one brother (and no sisters) represent 14.9 % of the data, thus 

the data loss for the T3 test is 85.1%. Similarly, from the Greek data from Apostolou (2020a) 

and the Indonesian data from Nila et al. (2019), data loss would be 74.1 % and 92.6 %, 

respectively. 

Similarly, the poor performance of test T4 is also attributable to data reduction, as 

only firstborn were considered, corresponding here to 64.5 – 72.6 % data loss. For the 

Canadian, Greek, and Indonesian data, the corresponding data loss would be 55.6, 47.8, and 

73.1%, respectively. The probability to sample a latter born is 1−(1−e− λ)/ λ , (derived from 

Appendix 1 in Raymond et al., 2023), giving an increasing function for the proportion of data 

loss in function of population fertility λ. Unless very large datasets are collected from low 

fertility populations, the T3 and T4 tests might be unable to reject the null hypothesis from a 

single sample, mostly if the FBOE (for T3) or AE (for T4) are of moderate intensity.

A contingency table test on aggregate data can incorporate aggregate confounding 

variables by switching to a regression equivalent test, allowing a statistical control of some 

type of variation (such as mean age for homosexual and heterosexual men). 

Recommendations

When testing for the FBOE, some tests turned out to be inadequate due to their 

systematic high rate of type-I error (T2), or high rate of type-I error in presence of AE (R3 

and R4). The performance of B1 was different depending on the specific function generating 

the older brother effect (best or medium performance when FBOE was modeled using 

function f7 or f5, respectively). Test R1 is a good compromise between practicability and 

efficiency, although it displays a slight increase in type-I error in presence of AE. 
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For testing the AE, the relative performance of the tests was generally not changed 

across all parameter values assayed, with or without FBOE, providing a clear ranking of the 

various proposed approaches (B2 > R5 > T4 > R6). 

In real life, we don’t know which effect is present and a good method should be able 

to identify both FBOE and AE if they are present and, most importantly, should have a low 

rate of type-I error. Bayesian modeling thus appears as the best option as it never suffers from 

an increased rate of type-I error (low false discovery rate) and has good power in most 

situations (only moderate power if the probability to be homosexual increases with the 

number of older brothers as modeled by function f7). 

However, we acknowledge that applying Bayesian modeling requires computational 

skills that will probably restrain its adoption in the field. As an alternative, we recommend 

regressions R1 and R5, i.e., the simplest models where only the number of older brothers and 

the number of sibs are included in the model. Some care should be taken though as they do 

not entirely account for collinearity between birth rank and number of sibs; a good practice is 

probably to decrease α from 0.05 to 0.01 for the evaluation of the significance of the p-value. 

More complex models where several correlated variables are included (e.g., R2, R3, R4; R6) 

should be avoided as they suffer from either a high false discovery rate (R3, R4) or a low 

power (R2, R6). 

Contingency tables are simple to use and could constitute an appealing alternative to 

regressions. Yet, they consistently have a low power: “null” results (absence of AE or FBOE) 

should be interpreted cautiously as these approaches probably require very large datasets to 

detect AE or FBOE in human population samples. Additionally, they cannot account for 

confounding variables. Thus, they do not offer any obvious advantage compared to regression
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approaches. In any case, if using contingency tables, T2 should be avoided as it suffers from 

an increased false discovery rate.

As a word of caution, the current results and conclusions pertaining to the statistical 

tests are applicable exclusively to the alternative hypotheses that have been considered.  We 

note that the results of statistical tests presented herein are interpretable only relative to the 

alternative hypothesis considered in each test.  Specifying a different alternate hypothesis for 

any given test will generally alter the resulting power and/or type-I error rate.  In such cases, 

the relative ranking of these tests could also change. For instance, a sororal birth order effect 

(SBOE) has not been examined here as a plausible alternative hypothesis, despite suggestions 

that, alongside the fraternal birth order effect (FBOE), a genuine SBOE exists in certain 

datasets (Ablaza et al., 2022; Blanchard & Lippa, 2007; 2021, but see Raymond et al., 2023), 

albeit to a lesser extent than the FBOE. An exploratory analysis was conducted to assess the 

FBOE under two conditions: 1) when an SBOE was also present (with the SBOE effect being 

one-third of the FBOE effect), a significant drop in the power of some tests occurred (e.g., 

R2) (see Appendix 3); and 2) when only an SBOE was present (without an FBOE), a 

substantial increase in the type-I error above the false discovery rate was observed for some 

tests (e.g., R4), while other tests remained unaffected (e.g., R2, T1, T3). Some tests exhibited 

varying outcomes (R1, B1, T2) depending on the function used to generate the SBOE (see 

Appendix 4). R2 was always conservative (no increase in type-I error) in presence of SBOE 

but at the cost of a relatively low power for the sample size considered (see above). Similarly, 

considering larger sample sizes could reduce power differences between the tests, and also 

could increase type-I error for some tests. Thus, for alternative hypotheses not thoroughly 
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considered here, and for different sample sizes, the above recommendation need to be re-

evaluated. 

Limits and Future Directions

We acknowledge several limitations of this study. First, a limited number of parameter

values were explored, which limits the generality of the results, especially for lower values of 

population fecundity (λ). Second, the sample size was limited: tests T3 and T4, which  require

extensive data pruning, would likely perform better with a larger sample size. More generally,

for very large samples, or for very large effect sizes of FBOE or AE, the power of all tests 

should converge to 100% : however, in some societies the sample size could be limited, even 

if a complete demographic survey is conducted (e.g., Camperio-Ciani et al., 2016), or the 

effect size could be modest (e.g., FBOE when the mean fecundity is low, Fig. 2A of Raymond

et al. 2023). Third, the shape of the FBOE was modeled using only two functions (f5 and f7), 

which yielded different results for some tests: including others functions could potentially 

change the results. However, when the true function is known, it will be easier to compare the 

power of the various tests proposed. Fourth, all possible alternative hypotheses have not been 

considered, particularly the presence of a SBOE. In absence of SBOE, our conclusions remain

valid. In presence of SBOE, or of any other alternative hypotheses not considered here, type-I 

error and power comparison should be undertaken to identify the best test. Fifth, the literature 

on AE and FBOE has not been exhaustively reviewed, so there may be alternative tests not 

considered here.  Nevertheless, this study shows that power comparison is a useful step when 

designing a new test for FBOE or AE. 
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Table 1. Statistical tests used to evidence FBOE, controlling for fertility, or to evidence AE, 

controlling for birth rank. The variables describing sibship composition, ob, os, yb, ys, sib, 

and older_sib are the number of, respectively, older brothers, older sisters, younger brothers, 

younger sisters, all brothers and sisters, and older sibs. “so” is the binary variable describing 

sexual orientation. Subscripts H and h designate homosexual and heterosexual men, 

respectively. Ob, Os, and Othersibs are aggregated variables of ob, os, and os+younger sibs, 

respectively, across all sampled individuals.  For the regression models or the regression 

modeling, the variable of interest is underlined. 

Name Test type Test principle Effect size References
Testing 
FBOE

R1  Poisson regression ob ~ so + sib  Model estimatesNila et al. 2019
R2 Binomial 

regression
so ~ ob+sib+older_sib+yb Model estimates Ablaza et al. 2022

R3 Binomial 
regression

so ~  ob+os+yb+ys Model estimates Blanchard & Bogaert
1996

R4 Binomial 
regression

so ~  ob+other_sib Model estimates VanderLaan et al. 
2017

B1 Bayesian modeling data ~ FBOE+ AE Mean of 
posterior 
distribution of 
the RJMCMC  
binary inclusion
variable

Raymond et al. 2023

T1 Fisher’s exact test 
on 2x2 contingency
table

Odd Ratio=

ObH

Os H

Obh

Osh

Blanchard  &
Skorska, 2022

T2  Fisher’s exact test 
on 2x2 contingency 
table

OBOR=

ObH

OthersibsH

Obh

Othersibsh

Blanchard,  2018a;
Blanchard et al., 2021

T3  Fisher’s exact test 
on 2x2 contingency 
table

(data restriction: only men
with 1 brother)

Odd ratio Khovanova, 2020

Testing AE
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R5  Poisson regression sib ~ so + ob Model estimates Raymond et al. 2023
R6  Binomial 

regression
so ~  ob+sib+older_sib+ybModel estimates Ablaza et al. 2022

B2  Bayesian modeling Data ~  FBOE +AE Mean of 
posterior 
distribution of 
the RJMCMC  
binary inclusion 
variable

Raymond et al. 2023

T4  Fisher’s exact test 
on 2x2 contingency 
table

(data restriction: only men
without ob)

Odd ratio Khovanova, 2020
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Table 2. Rate of type-I error for FBOE tests. All tests are performed on N = 600 independent 

samples, from data generated without FBOE, and with or without AE, and the percentage of 

false rejection is indicated (Rate). This percentage is compared to the expected rate of type-I 

error for one-sided tests (2.5%), using a binomial exact test (p-value). Bold characters 

indicates significant values (p-value < 0.05) for higher values than the expected one (2.5%).  

Without AE With AE
Type of test Rate (%) p-value Rate (%) p-value

R1 3.2 0.29      5.2 2.10-4

R2 2.7 0.79      3.3 0.19
R3 3.2 0.29    19.0 < 10-4

R4 3.7 0.09    26.2 < 10-4

B1 0.5 3.10-4      2.3 0.90
T1 2.2 0.70      3.0 0.43
T2 6.3 < 10-4      7.2 < 10-4

T3 1.5 0.15      0.2 < 10-4
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Table 3. Rate of type-I error for AE tests. All tests are performed on N = 600 independent 

samples, from data generated without AE and FBOE, and on N = 200 independent samples 

from data with FBOE using function f5 or f7. The percentage of false rejection is indicated 

(Rate), and is compared to the expected rate of type-I error for one-sided tests (2.5%), using a 

binomial exact test (p-value). No significant values (p < 0.05) for higher values than the 

expected are present.  

Without FBOE With FBOE (f7) With FBOE (f5) 
Type of test Rate (%) p-value Rate (%) p-value Rate (%) p-value

B2 0.7 2.10-3 1.0 0.25 2.5 1.0
R5 2.5 1.0 1.5 0.50 2.0 0.82
R6 2.0 0.51 1.0 0.25 1.5 0.50
T4 1.3 0.07 4.5 0.10 4.0 0.17
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FIGURES

Figure 1. Power comparison for testing FBOE. Data are generated with FBOE of various 

strength, described by the x-axis (a1 from function f7 for panels A and B, or a from function 

f5 for panels C and D). AE is either absent (panels A and C), or present with α = β = 1 

(panels B and D). The name of each test is indicated for each curve. The bar-interval indicates

the 95% confidence interval. The dotted horizontal line indicates the false rejection rate of 

2.5%.
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Figure 2. Power comparison for testing AE. Data are generated with AE of various strength, 

described by the x-axis (with α = β ). FBOE is either absent (A), or present with function f7, 

a1 = 0.1 (B), or with function f5, a = 0.1 (C). The name of each test is indicated for each 
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curve. The arrows indicates the 95% confidence interval. The dotted horizontal line indicates 

the false rejection rate (2.5%).
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Appendix 1

Rate of type-I error of the Fisher test on 2x2 contingency table draw from a quasi-

binomial sampling. 

Simulations were used to compute the rate of type-I error of Fisher’s test on 2x2 

contingency table, when cells were drawn from a quasi-binomial distribution (QBD). A quasi-

binomial distribution of type II (QBD II) was used (Consul & Mittal, 1975; Mishra et al., 

1992),  with parameter n, p, and α, with n the number of experiments, p the probability of 

success, and 0 ≤ α < (1-p)/n. When  α = 0, QBD II becomes a classical binomial, B(n, p). 

When  0 <  α < (1-p)/n, the variance of QBD II is higher than the binomial variance (Mishra et

al., 1992).

 A 2x2 contingency table was generated under the null hypothesis (independence of 

rows and columns). In an infinite bag of A and B objects, with frequency p and 1-p 

respectively, n objects were drawn, resulting in a1 objects A, and b1 objects B, with a1 + b1 = 

n. In the same bag, another set of n objects were independently drawn, resulting in a2 objects 

A, and b2 objects B. Each draw was performed using QBD II, with parameter n = 800, p = 

0.25, and  α. The resulting contingency table was, 

A B Total
First draw a1 b1 n
Second draw a2 b2 n

and the two sided p-value of the Fisher’s exact test on this contingency table was calculated. 

This process was repeated 1000 times, allowing to compute the proportion of p-values lower 

than 0.05 (i.e., the rate of type-I error associated with this set of parameters). This calculation 

was repeated for α varying from 0 to 0.0009, by step of 0.0001.
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When  α = 0, the rate of type-I error was not different than the rejection rate (Fig. S1), 

as expected when cells of the contingency table display a binomial distribution. When  α > 0, 

the rate of type-I error was significantly higher than the rejection rate, increasing with 

increasing values of  α (Fig. S1).
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Figure S1. Rate of type-I error for a 2x2 contingency table with cells drawn from a 

quasi-binomial distribution, for various values of α. For each α value, the rate of type-I 

error of the test is indicated, based on 1000 replicates. Bars indicate 95% confidence 

intervals. The dotted line indicates the rejection rate (0.05). α = 0 corresponds to a 

binomial distribution. 
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Appendix 2

Rate of type-I error of the Fisher test on 2x2 contingency table for binomial, discrete 

uniform, and mixed sampling. 

Simulations were used to compute the rate of type-I error of Fisher’s test on 2x2 

contingency table. Two independent samples are compared. First, each sample corresponded 

to one draw from a large family of n = 200 sibs. Older sibs (older) were drawn from a 

uniform distribution U[1, 200], and older brothers (ob) were drawn from a binomial B(older, 

½). Younger sibs (younger) and older sisters (os) were derived as younger = n - older, and os 

= older – ob. Three tests on 2x2 contingency tables were performed. For the OR test (or test 

T1 of Table 1), ob and os were compared across two independent samples, and were thus 

derived from a binomial sampling. For the test comparing older and younger across two 

independent samples (OY test), cell counts were derived from a uniform distribution. For the 

OBOR test, ob and younger + os  were compared across two independent samples, and were 

derived from a mixed distribution: ob and os are from a binomial distribution B(older, 1/2), 

an younger is from a uniform distribution (Fig. S2 A). Second, each sample corresponded to 

the sum 200 draws from a families of 4 sibs. The same three tests (OR, OY, and OBOR) were

performed. For the OR test, the sum of ob and os were compared across two independent 

samples, and were thus derived from a binomial sampling, as the sum of binomials (with the 

same p parameter) is also a binomial: B(n1, p) + B(n2, p) = B(n1+n2, p). For the OY test, the 

sum of older and younger follows a complex distribution, as the sum of independent discrete 

uniform distribution is not uniform, with no simple formal description (except for the sum of 

just 2 or 3 uniform distributions). For the OBOR test, the sum of ob follows a binomial 
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distribution, and the sum of younger + os follows a complex distribution, resulting in a 

distribution not described easily by a simple formula (Fig. S2 B).

Figure S2.  Rate of type-I error for a 2x2 contingency table. Two independent samples 

are compared. A. Each line of the contingency table corresponds to one draw from a 

large family (200 sibs). B. Each line of the contingency table corresponds to sum of 

200 draws from families of 4 sibs. The dotted line indicates the rejection rate (0.05).
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Appendix 3

Power comparison for testing FBOE, when and SBOE is also present.

Families were generated as described above. FBOE and SBOE were explicitly modeled by 

two different functions. First, by considering that the probability P to be homosexual is P = 

p0+a.ob + (a/sb).os, where p0 is the probability to be homosexual for a man without older 

sibs, ob and os are the number of older brothers and older sisters, respectively, with sb = 3, 

and a ≥ 0 (corresponding to function f5 of Table S1 in Raymond et al., 2023). Second, by 

considering that P = p0 for ob + os = 0, and P = p0 + a1 + for ob > 0 and os = 0, P = p0 + a1/sb 

for os > 0 and ob = 0, and P = p0 + a1 + a1/sb for ob > 0 and  os > 0, with with sb = 3, and a1 

≥ 0  (corresponding to function f7 of Table S1 in Raymond et al., 2023). AE was not 

considered here (i.e., α = β = 0). From the whole offspring population, a random sample of 

200 heterosexual and 200 homosexual men was drawn as described above, and the various 

tests for detecting the presence of FBOE were performed (B1, R1-R4, T1-T3). This was 

replicated at least 200 times for a given set of parameters (a or a1), allowing the computation 

of the power of each test for  each value of a or a1 (Fig. S3). 
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Figure S3. Power comparison for testing FBOE, when SBOE is also present. Data are 

generated with FBOE of various strength, described by the x-axis (a1 from function f7 for 

panel A, or a from function f5 for panel B). SBOE is three times weaker than FBOE, for each 

a or a1 value. The name of each test is indicated for each curve. The bar-interval indicates the 

95% confidence interval. The dotted horizontal line indicates the false rejection rate of 2.5%.
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Appendix 4

Type-I error comparison for testing FBOE, when SBOE is present.

Families were generated as described above. SBOE were explicitly modeled by two different 

functions. First, by considering that the probability P to be homosexual is P = p0+a.os, where 

p0 is the probability to be homosexual for a man without older sibs, os is the number of older  

sisters, and a ≥ 0 (corresponding to function f5 of Table S1 in Raymond et al., 2023). Second, 

by considering that P = p0 for os = 0, and P = p0 + a1  for os > 0, and a1 ≥ 0  (corresponding to

function f7 of Table S1 in Raymond et al., 2023). AE was not considered here (i.e., α = β = 

0). From the whole offspring population, a random sample of 200 heterosexual and 200 

homosexual men was drawn as described above, and the various tests for detecting the 

presence of FBOE were performed (B1, R1-R4, T1-T3). This was replicated at least 200 times

for a given set of parameters (a or a1), allowing the computation of the type-I error rate of 

each test for  each value of a or a1 (Fig. S4). 
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Figure S4. Type-I error rate for testing FBOE, when SBOE is present. Data are generated 

with SBOE of various strength, described by the x-axis (a1 from function f7 for panel A, or a 

from function f5 for panel B). No FBOE was generated. The name of each test is indicated for

each curve. The bar-interval indicates the 95% confidence interval. The dotted horizontal line 

indicates the false rejection rate of 2.5%.


