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Abstract

The so-called Faster is Slower (FIS) effect is observed in some particular
real-life or experimental situations. In the context of an evacuation process,
it expresses that increasing the speed (or, more generally, the competitive-
ness) of individuals may induce a reduction of the flow through the exit door.
We propose here a parameter-free model to reproduce and investigate this
effect (more precisely its backward “Slower is Faster” equivalent). In spite
of its non-smooth character, which makes it difficult to analyze, this gran-
ular approach is based on very basic ingredients in terms of behavior. In
its native, purely asocial version, individuals are represented by hard-discs,
each of which has a desired velocity, and the actual velocity is built as the
projection of this field on the set of admissible velocities (which respect the
non-overlapping constraints). We implement the slower effect by introducing
here an extra step to account for the fact that individuals refrain from push-
ing, and therefore tend to reduce their desired velocity accounting for the
velocities of people upfront. The present paper has two objectives: estab-
lish the relevance of this model by showing that it satisfactorily reproduces
various empirical effects in highly crowded evacuations with various levels
of competitiveness, and explore how it can be implemented to recover and
explain the FIS effect. In this spirit, we confront this Inhibition-Based (IB)
model to experimental data, focusing on the Faster is Slower effect. We show
in particular that this approach makes it possible to accurately recover the
effect of competitiveness upon power-law distributions of time lapses which
have been experimentally observed. We also study the effect of mixed be-
haviors, by introducing a two-population model using both approaches. We
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investigate in particular the effect upon evacuation efficiency of the ratio be-
tween competitive agents and non-competitive ones. In a similar context, we
investigate the role of an obstacle placed upstream the exit upon evacuation
efficiency.

Keywords: crowd motion, hard congestion, non-overlapping constraint,
granular flows, evacuation scenarios, influence graphs, cone of vision.

1. Introduction

The Faster is Slower (FIS) effect pertains to a wide class of systems which
may perform globally worse as their individual components strive to do bet-
ter, or when an external forcing term is raised. Examples of such systems
are given in Gershenson and Helbing (2015), in various contexts: vehicle or
pedestrian traffic, ecology... Some simple mechanical systems with friction
may also exhibit this sort of behavior: as detailed in Maury and Faure (2018),
a mass pushed against and along an elastic wall with friction may undergo
a reduction of speed, under some conditions, when the forcing term is in-
creased. Let us also mention a real life phenomenon which exhibits this type
of behavior (see de Gennes and Brochard-Wyart (2015), page 204): a viscous
droplet hurtling down a slope under the action of its own weight, submitted
to surface tension, is slowed down by an increase of gravity, because of the
induced increase of the frictional contact zone.

In the context of crowd evacuation, this effect is commonly described as
a decrease of the flow rate induced by an increase of desired velocities, driv-
ing forces, or eagerness to exit. It is qualified in Helbing et al. (2000) as
one of the main characteristic features of escape panic. The authors show
that in simulations, an increase of individual desired speed can lead to a
lower exit speed in high congestion. While there is no consensus on the very
cause of this effect, some models (like the Social Force model, or Cellular
Automata) are able to reproduce it as soon as friction between individual is
accounted for (see details below). We investigate in this paper the alternative
possibility that the effect can be reproduced in a quantifiable way without
any frictional ingredient, by means of a minimal model in terms of behav-
ior, essentially parameter-less. As presented below, this minimal model will
consist of an extension of an earlier granular model, introduced in Maury
and Venel (2011), and used to model highly congested crowds. The term
“granular” expresses that individuals are considered as hard spheres, and
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the non-overlapping contraint is taken into account in a hard, nonsmooth
way, whereas other strategies (like Helbing’s Social Force Model) incorporate
smooth repulsive forces to implement the tendency of individuals to stay
away from each other. Note that this approach differs from standard me-
chanical model for granular flows (passive grains): it is first order in time,
and friction is disregarded. This extension takes into account the effect of
politeness at an individual level and can be used to model civilized evacua-
tions. The granular nature of the model gives a robust way to treat contacts
and overlappings without oscillations. We confront in the last part of our
study our results to various experiments in the literature.

1.1. Experimental evidence
Experimental evidence of the FIS effect is reported in Garcimartín et al.

(2014): the authors measured egress times for a population of 85 individuals
under various conditions. A first set of experiments is carried out in a non-
competitive spirit, and for the second set, the individuals are encouraged to
“push and jostle for the exit within reason”. Exit times in the second case
are reported to be systematically larger than in the first situation, with an
average increase of the order of 20%.

Note that this effect strongly depends on the experimental setting. Some
authors do not report any significant effect, see e.g. Daamen and Hoogen-
doorn (2012) where a large set of experimental data was collected to inves-
tigate the effect of various parameters upon the capacity of an exit door. In
those experiments, no FIS effect was observed: the increase of stress level
simply leads to higher speed and higher capacity. The same observation is
made in Nicolas et al. (2017), where the effect of individual behavior upon
the global flow though a narrow doorway is investigated. It is argued that
the level of competitiveness is not large enough in their experiments to re-
produce this effect. More generally in Haghani (2020) the author shows
inconsistencies in experimental evidences of the FIS effect, which depends
highly on structural or behavioral characteristics of the experiment. Similar
conclusions are drawn in Feliciani et al. (2020), the effect can be observed in
certain circumstances, but not systematically.

Since the effect is particularly significant for highly congested and aggres-
sive crowd, such experiments are delicate to carry out in a controlled exper-
imental setting, for obvious safety reasons. Some authors have investigated
the possibility to reproduce this effect in animals. In this spirit (see Pastor
et al. (2015)), some experiments have been performed on a herd of sheep
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rushing through a door, craving for food. The level of competitiveness is
monitored by the temperature, owing to the fact that the individual behav-
ior of a sheep is strongly affected by thermal conditions. The time lapses
between consecutive egresses of entities is observed to be significantly larger
in the case with high competitiveness. The authors propose in the same
paper a purely mechanical version of the experiment: The entities are rigid
grains flowing through a bottleneck, and they investigate the dependence of
the flow rate of grains upon the inclination angle of the setting. They observe
the following effect: in the clogging regime, increasing the angle (and thus
increasing the driving force) reduces the flow rate.

Effect of an obstacle
Let us also mention another effect, that is the fluidizing effect of an obsta-

cle. Since the obstacle can be seen as a way to passively reduce the velocity
of (some) individuals, the fact that it may increase the flow rate can be in-
terpreted as a special instance of the FIS phenomenon (more precisely its
equivalent reverse Slower is Faster). Even more than the plain FIS effect,
this paradoxical effect is delicate to reproduce and observe for pedestrian
crowds; for grains, the effect is fairly easy to observe.

The experimental setting described in Yanagisawa et al. (2009) is based
on pedestrians going through a 50 cm exit. Two series of experiments are
reported, a first one with no obstacle, and a second one with a cylindrical
obstacle located upstream the exit, non symmetrically. A 4% increase of the
flux by addition of the obstacle is reported. This small increase is considered
as statistically significant by the authors.

In Jiang et al. (2014), the effect of pillars placed upstream an exit of width
1m is investigated, experimentally. The measured mean flux is about 16%
larger for the case with two obstacles (2.9Ps−1, i.e. 2.9 persons per second),
compared to the situation with no obstacle (2.5Ps−1). Note that the number
(three) of experimental runs for each case does not make it possible to give
confidence intervals.

In Helbing et al. (2005), several experiments are presented. In particular,
the authors consider the evacuation of a room in panic-like situation. Placing
a board of width 45 cm upstream the exit (of width 82 cm, the distance to
the exit is not given) is shown to reduce the evacuation time by 30%.

More significant effects have been established for non-human entities.
In Lin et al. (2017), experiments involving mice are described. Mice (crowd
of 80 individuals were considered) are driven to pass through a narrow exit,
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with or without obstacle. The presence of an obstacle is shown to reduce the
evacuation time by a maximum of 36% (the effect varies with the position of
the obstacle). The maximal effect is obtained for an obstacle placed at 4 cm
from the exit, while mice are typically 3 cm wide and 10 cm long.

The experiments proposed in Zuriguel et al. (2016) involve sheep. The
authors investigate the effect of placing a cylindrical obstacle (with diameter
114 cm) upstream a 96 cm exit. Distances to the exit range from 60 cm to
1m, while the width of a sheep is about 35 cm. They report a positive effect
of the obstacles for distances of 80 and 100 cm (for 60 cm, the obstacle is
counter-productive).

Recent experiments are also presented in Feliciani et al. (2020), with a
circular obstacle. It is observed that an obstacle does not reduce the density,
neither the level of compression but, in non-emergency evacuations, it forces
the people to leave the exit in a more organized way.

This effect is still debated in the literature, as detailed in the recent review
proposed in Shiwakoti et al. (2019).

1.2. Modeling aspects
Social force model

In its native form, this model consists in a set of second order in time equa-
tions of motions for each agent, obtained in analogy with Newton’s second
law. Various force terms encode repulsive or attractive interactions between
individuals and their neighbours or nearby obstacles. A set of individual pa-
rameters for body mass, individual response time, compression and friction
are required for this model. We refer to Corbetta et al. (2015) for a recent
work dedicated to estimating those parameters from real-life experiments.

As illustrated by numerical tests (Helbing et al. (2000)), the FIS effect is
reproduced by this model. The authors observe a decrease of 26.7% in the
average flow when the desired velocity undergoes an increase from 1.7m s−1

to 3m s−1. The possibility to recover this effect relies on a friction term that
is added to the forcing term, and penalizes the relative velocity of people in
contact. Increasing the desired velocity leads to smaller inter-individual dis-
tances, which yields stronger frictional effects. These frictional effects tend
to freeze the congested crowd, which favors clogging, and reduces the overall
flow rate. Statistical analysis in Cornes et al. (2021) on the congestion effects
for the social force model shows the link between an increase in desired veloc-
ity and the formation of clusters. The stiffness parameter in the compression
term is also shown in Sticco et al. (2020) to play a role in the FIS effect. Low
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values of this parameter lead to additional sliding friction term that favors
the formation of clogs in front of a door, as mentioned earlier. The flow de-
creasing percentage is also significant for some modified versions of the social
force model described in Parisi and Dorso (2007) and Lakoba et al. (2005).
A decreasing percentage of 35.4% is found in Parisi and Dorso (2007) when
the desired velocity increases from 1.38m s−1 to 2.5m s−1. In Lakoba et al.
(2005), the authors observed the FIS effect for a higher increase in the de-
sired velocity. Notably, the flow decreases by 30% when the desired velocity
passes from 1.5m s−1 to 4.5m s−1.

A large set of numerical experiments based on the same approach is de-
scribed in Escobar and Rosa (2003). The authors investigate the effect of
panic on the efficiency of room evacuation. The panic is again accounted
for by increasing the desired velocity of individuals. It is observed that, for
small crowds (i.e. under 100 individuals), panic tends to speed up the pro-
cess, whereas for larger crowds, increasing some desired velocities may harm
it. More precisely, when the fraction of “panicked” people exceeds a certain
value, a decrease of the evacuation efficiency can be observed. In Ruifeng Cao
et al. (2019), the authors reproduced the FIS effect by introducing a modi-
fied version of the original social force model based on developing a give-way
behavior of evacuees. The desired velocity of a give-way individual decreases
exponentially when other individuals approach his near surrounding. This
behavior is shown to reduce the frequency of clogging, hence reducing the
evacuation times.

Cellular automata
Cellular Automata (CA) are based on a cartesian grid, each cell of which

is assumed to contain 0 or 1 individual (see Schadschneider (2001); Schad-
schneider and Seyfried (2009); Kirchner and Schadschneider (2002)). In the
parallel update setting, the evolution model consists of a sequence of updates,
where each particle-individual may change their position to a neighboring
cell, or remain in the same cell. The transition probabilities between two
updates are computed using a weight for each neighbouring cell. This weight
depends on the so-called floor field, which encodes individual tendencies and
is typically the distance to the exit. It is set to 0 for cells which are already
occupied by someone.

Motions for all individuals are then drawn independently, according to
these probabilities. This first step is likely to lead to conflicts, i.e. 2 or more
individuals aim to occupy the same cell. In the basic version of the approach,
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these conflicts are usually resolved by picking the individual which is the most
committed (regarding their individual tendency to reach this cell).

Those models are also known to reproduce the FIS effect under some
conditions. The crucial ingredient is again friction, but this notion takes
a particular form in the context of CA methods. Friction is implemented
by modifying the handling of conflicts, in the parallel update algorithm de-
scribed above. Adding friction amounts to considering that there is a prob-
ability µ > 0 that the conflict is resolved by leaving all competitors in their
cells: nobody moves. Here lies the Slower feature. The Faster ingredi-
ent is implemented by considering that the parameter which conditions the
transition probabilities (usually denoted by kS) quantifies the eagerness of
individuals to move forward. To sum up, the main parameters of this model
are the space step size (which conditions in a rigid way the maximal density
that is allowed), the parameter kS which characterizes the relation between
the so called floor field (typically the distance to the exit) and the transition
probabilities, and the friction parameter µ.

Parameter studies proposed in Kirchner et al. (2003) exhibit a significant
effect in terms of increase of the evacuation time. More precisely, when the
friction parameter is set at a high value (µ = 0.9), the minimal evacuation
time is achieved for an intermediate desired speed, more precisely by an
intermediate value of the parameter which converts the floor field into biased
transition probabilities. An increase of this time by 50% is reported (Figure
8 of Kirchner et al. (2003)). Let us point out that, in the context of CA, the
desired speed is actually limited by the ratio between the space step size and
the time step. Having kS increase from 0 corresponds at first to increasing
the speed, but large values of kS rather lead to favor the direction along the
axes (vertical or horizontal) that reduces best the floor field. In other words,
increasing kS beyond some threshold value essentially amounts to change the
expected direction of agents, and not their speed (see Figure 5.3 in Maury
and Faure (2018) for an illustration of this effect). The effect of friction is
clear (as detailed also in Maury and Faure (2018), Section 10.1): large values
of kS induce a systematic tendency to move forward, which increases the
number of conflicts, thus slowing down the overall evacuation process by an
increased probability of “do-nothing” events.

Large sets of numerical experiments based on CA are also presented in Xi-
aoping et al. (2010). The total evacuation time for 200 virtual individuals
is computed for several desired speeds. The evacuation time is reduced by
40 % when the desired speed goes from 0.5m s−1 to 1.5m s−1. Note that this
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time increases when the speed further increases.

Granular model
In a fully different setting, the granular approach (see Maury and Venel

(2011)) is also able to recover this effect, whereas no friction is accounted for.
In its basic version, this granular model (described in detail in Section 2) is
based on the consideration that individuals are identified with fully asocial
rigid discs which tend to achieve their own agenda (encoded is a desired ve-
locity), disregarding neighbors. Interactions are induced by physical contacts
between those grains, whenever the non-overlapping constraint is activated.
The actual velocities of individuals are then computed as the projection of the
desired velocity field on the set of admissible velocity fields (respecting the
non-overlapping constraint between individuals in contact). This model was
initially developed to handle collisions in the inertial setting, fluid-particle
suspension (see Glowinski and Maury (1997)). Numerical simulations of the
granular model are performed in Maury and Venel (2009) where the authors
show the ability of the model to reproduce two crowd motion effects: lane
formation in counter flowing crowd and the formation of arches in evacu-
ation situations. The creation of jams is furthermore investigated in Faure
and Maury (2015) and it is shown that static jams systematically occur when
the width of the exit door is less than twice the people diameter. However,
when the door width is greater than 2.7 the size of an individual such jams
are actually rare. An extension of the model is also proposed in the same
reference to account for the capacity of individuals to “take upon themselves”
and stop pushing whenever it is obviously useless. It is shown that incorpo-
rating this individual tendency to slow down in some situations has the effect
to speed-up the evacuation process.

As the previous ones, this approach relies on several tuneable parameters.
The purpose of the present paper is to propose a parameter-free setting to
reproduce and investigate the FIS phenomenon.

1.3. Principles of the present approach
We propose here a minimalist model to better understand the mechanisms

of the Faster is Slower effect. Our starting point is the so-called granular
model mentioned at the end of the last paragraph. This model (Maury
and Venel (2011)) was inspired from contact models developed for han-
dling collisions and possibly numerical overlapping in fluid particle simulation
(see Glowinski and Maury (1997)). It is based on the following principles: N
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individuals are identified to hard discs, and a collection of desired velocities
is given. For a given configuration (with no overlapping, but possibly with
contacts), we define the feasible set as the set of velocities that are admissible
with respect to the non-overlapping constraint: for any two grains already in
contact, the relative velocity is not allowed to further decrease the distance
between centers. The actual velocity of the crowd is then simply defined
as the projection (in a least-square sense) of the desired velocity field on
the feasible set. This approach is natively parameter-free (if one considers
that changing the speed of individuals amounts to make a change of vari-
able in time). It is also very crude in terms of behavior, in the sense that
the underlying behavior is purely a–social: all individuals tend to achieve
their goals disregarding other people, and the interactions emerge as a con-
sequence of the non-overlapping constraint. Therefore, the approach is fully
mechanical in the sense that the Lagrange multipliers arising to implement
the non-overlapping constraint can be interpreted as interaction forces, which
naturally obey the Law of Action-Reaction (see next section for more details
on those aspects).

We propose to incorporate the Slower feature (from the Slower is Faster
effect) in the following way: we consider now that the individuals have the
capacity and the tendency to account for the people they see (i.e. in front
of them). Each pedestrian is assumed to adapt their desired velocity with
respect to the velocities of the neighbors located in their cone of vision. More
precisely, each individual picks the velocity that is the closest to their desired
one, subject to the non-overlapping constraint with the people upfront, as-
suming that their velocities are known. If the situation is hierarchical (as
will be detailed below, it corresponds to the situation where individuals can
be indexed in a way which respects the oriented graph induced by the cones
of vision), all velocities can be determined in a unique way, by starting with
the people upfront who are not constrained, and then sweeping over the hi-
erarchy. The obtained velocity field, which we shall call adapted, may not
be feasible because some constraints may have been disregarded (typically
in the case of two side-to-side pedestrians striving to reach the same point
upfront, who experience a non-anticipated lateral collision).

From a modeling standpoint, the approach described above implements
the following behavior: each individual inhibits their tendency to move for-
ward by reducing their frontward velocity to avoid pushing on people in front
of them. This approach therefore implements some sort of social behavior,
which leads to slower individuals, without any tunable parameter. The core
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of this paper consists in showing that this minimalist approach makes it pos-
sible to recover and quantify in different manners the effect, in comparison
to a set of experiments in the literature studying the Faster-Is-Slower for
pedestrians.

2. Model formulation

We consider N individuals, which we identify with discs centered at
q1,. . . , qN , with common radius r. The configuration at some instant is
q = (q1, . . . , qN). We denote by Ui the desired velocity of individual i, i.e.
the velocity they would like to have if they were alone. We shall assume
in the sequence that Ui = U(qi), where U(·) is a common desired velocity
field (individuals are interchangeable), but this assumption is not manda-
tory. In the following, Ui will stand for Ui(qi). We define the set of feasible
configurations by:

K =
{
q ∈ R2N , Dij(q) ≥ 0, ∀i ̸= j

}
(1)

where Dij(q) = |qi − qj| − 2r is the body distance between individuals i and
j (see Figure 1). The non-overlapping constraint simply writes q ∈ K.

2.1. Plain granular model
We first describe the model proposed in Maury and Venel (2011), which

handles individuals as fully asocial entities which tend to achieve their own
goals. To any feasible configuration q ∈ K one can associate a set of feasible
velocities, i.e. velocities which do not lead to overlapping. More precisely

Cq =
{
w = (w1, . . . , wN) ∈ R2N , ∀i ̸= j Dij(q) = 0 ⇒ eij · (wi − wj) ≤ 0

}
,

(2)
where eij = (qj−qi)/|qj−qi| is the unit vector from i to j. The model simply
expresses that the actual velocity u = dq/dt is determined by

u = PCqU (3)

where U = (U1, . . . , UN) is the collection of desired velocities, and PCq is the
euclidean (least-square sense) projection on the feasible set Cq.

In spite of its formal simplicity, this model raises deep issues in terms of
mathematical analysis: due to the hard-sphere setting, it does not fit in the
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Figure 1: Notation

standard framework of smooth Ordinary Differential Equations. Based on
tools from convex analysis, in particular pertaining to the so-called sweep-
ing process (Moreau (1977)), existence and uniqueness of a solution can be
established (see Maury and Venel (2011)). In its basic version, this model
actually presents a very particular structure: under some conditions it can
be interpreted as a gradient flow (i.e. an evolution along the steepest de-
scent direction) for a certain dissatisfaction. More precisely, if one assumes
that the desired velocity of an individual depends upon their position only,
and that it writes as the negative gradient of a dissatisfaction function D
(typically the distance to a commun target), i.e. if

Ui = −∇D(qi), (4)

then the model can be written

dq
dt

∈ −∂Ψ(q), with Ψ(q) =
N∑
i=1

D(qi) + IK(q), (5)

where IK denotes the so-called indicator function of the feasible set K (it
vanishes in K, and takes the value +∞ outside K), and ∂Ψ denotes the
Fréchet subdifferential of Ψ. We refer the reader to Maury and Venel (2011)
for more details on this formalism, and we shall simply keep in mind that the
evolution model, once the gradient flow structure is set, is entirely contained
in this global dissatisfaction function which encodes both the individual ten-
dencies (sum of the D(qi)’s) and the non-overlapping constraint (indicator
function IK).

2.2. Inhibition-Based granular model
We propose to enrich the previous approach by incorporating an interme-

diary step to implement the tendency of people to refrain from pushing on
people in front of them, whenever it is obviously useless. We shall restrict
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ourselves here to cases which exhibit a strict hierarchy in terms of influence.
More precisely, we introduce a so-called influence graph (which is likely to
depend on the configuration). This object is a directed graph, the vertices
of which are the individuals 1, 2, . . . , N , and we shall consider that there
is an arrow from i to j if i is influenced by j. In practical applications to
evacuation processes, we shall consider that j influences i if j lies in the cone
of vision of i (see Section 2.3). We denote by Vi the set of individuals that
influence i. Now we make an essential assumption: the influence graph is
supposed to be acyclic. It implies in particular that j ∈ Vi =⇒ i /∈ Vj, but it
also excludes the presence of cycles of any length.

As we shall see in Section 2.3, this assumption makes sense in evacuation
situations, when all individuals in each zone tend to reach the same exit.
We refer to Remark 1 for some comments on the problem which is obtained
when this assumption of hierarchical influence is ruled out. The influence
graph being acyclic, it can be seen as a partial order, and the topological
sorting algorithm makes it possible to build a total order compatible with
the partial one. In other words, it is possible to re-index individuals in such
a way that j ∈ Vi implies j > i.

We propose now to define the inhibited desired velocities UN , UN−1, . . . ,
by initiating the downward induction by UN = UN (since N is influenced by
nobody, they keep their desired velocity as if they were alone), and the next
velocities UN−1, UN−2, . . . , by the following procedure:

U i = argmin
w∈Ci

1

2
|w − Ui|2, ∀i = 1, . . . , N (6)

where Ci is the set of feasible velocities for i, defined by

Ci =
{
w ∈ R2, ∀j ∈ Vi, Dij(q) = 0 ⇒ eij(q) · (w − U j) ≤ 0

}
. (7)

Note that this set only depends on the inhibited velocities of individuals
j for j > i. Thanks to the hierarchy, these velocities have already been
determined in the induction process, therefore U i is uniquely determined as
the minimizer of a quadratic functional over a well-determined set Ci, which
is convex as an intersection of half spaces.

Projection step
Once the inhibited velocities have been determined, the obtained velocity

field U = (U1, . . . , UN) is projected on the set of feasible velocities:
dq
dt

= u = PCqU. (8)
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Figure 2: Plain granular model (straight projection on feasible velocities) and Inhibition
Based version (inhibition step followed by a projection on feasible velocities).

The distinction with the plain granular model is illustrated in Figure 2:
instead of straightly projecting the field of desired (purely selfish) velocities,
we insert an intermediary step which implements the fact that each individ-
ual adapts their desired velocity to avoid pushing the people they see. In this
simple 3-individual situation, the straight projection step leads to a drastic
reduction of the speeds of 2 and 3, because they are in direct competition,
and the least square projection builds the effective velocity field as a trade-
off between all tendencies. In the case where desired velocities are inhibited
(rightward arrow), individual 2 leaves priority to 3, which allows 3 to keep
their desired velocity, whereas 2 drastically reduces their own. The final pro-
jection is here of no use, since all possible overlapping have been anticipated,
and as a result the speed of 3 is much higher than the one which results from
the straight projection. This simple example already illustrates the under-
lying mechanism of a Slower is Faster: by de-escalating some conflicts, the
inhibition step allows people in front to progress faster.

The term inhibited has been used in this section to express the fact that
it indeed corresponds to a tendency of some people to reduce their eagerness
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to move forward. It deserves to be justified. It actually expresses the fact
that the individual optimization procedure (6), that each individual performs,
leads to a decrease of their velocity in the direction of their desired one. More
precisely, if one assumes that all individuals that influence a given individual
i lie in the half plane in front of i, i.e. if, for any i, all the j ∈ Vi are such
that (qj − qi) · Ui ≥ 0, then it can be straightforwardly established that

Ui · U i ≤ |Ui|2, (9)

or, equivalently, that (U i−Ui) ·Ui ≤ 0. It means that the correction made on
the desired velocity points downstream with respect to the desired direction
Ui.

Remark 1. (Game theoretical approach) This hierarchical model is a par-
ticular instance of a more general approach, based on the same principles,
but without the acyclicity assumption. In this situation the problem consists
in finding a collection of inhibited velocities U1, . . . , UN such that

U i = argmin
w∈Ci(q,U−i)

1

2
|w − Ui|2, ∀i = 1, . . . , N, (10)

where

Ci(q, U−i) =
{
w ∈ Rd, ∀j ∈ Vi, Dij(q) = 0 ⇒ eij(q) · (w − U j) ≤ 0

}
. (11)

We have used the standard convention in this game theoretic context: U−i

denotes the collection of U j’s for j ̸= i. This constitues the core of the
approach : the feasible set for i depends on the strategies chosen by the other
players. In case the graph contains cycles, the feasible set for i is likely to
depend on the inhibited velocities of some j’s, the feasible set of which depend
in return on i’s velocity. Any U solution to this problem can be considered
as a Nash equilibrium for the game where pay-off functions depend on the
distance to the individual desired velocities, and the strategy sets depend on
the strategy of other players. The problem, which will be disregarded in this
paper, has a different nature, and both existence and uniqueness of solution
may be ruled out. We refer to Al Reda and Maury (2021) for a detailed
account of mathematical issues raised by this approach.
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Figure 3: An example of a cone of vision and its corresponding influence graph
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Figure 4: Notation

2.3. Hierarchy induced by the cones of vision
We consider here the case of an evacuation through a single exit door, and

we assume that individuals are interchangeable, i.e. that the desired velocity
of an individual depends on their position only. We denote by U(·) the
common desired velocity field, so that Ui = U(qi). We furthermore consider
that individuals are mainly influenced by others which they can see, i.e. that
lie in their cones of vision. The cone of vision associated to i is defined as a
conical zone centered at qi and symmetric about the desired direction Ui (see
Figure 3). It is fully determined by its half angle α > 0, and by the range of
vision (maximal distance below which individuals are accounted for). Yet,
in our situation, this latter characteristic can be disregarded, because only
individuals in contact are actually involved in the inhibition process, as stated
in (7). Since the desired velocity field is not uniform but rather points to a
given target, assuming α < π/2 is not enough to rule out cycles.

Informally said, given an angle of vision α, the desired velocity field U
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Figure 5: Desired velocities and associated influence graph

should not be too focusing to the point of creating mutually viewed indi-
viduals. Mathematically speaking, we ensure that two individuals i and j

do not see each other mutually if max(θi, θj) > α, where θi = ̂(Ui, eij) and
θj = ̂(Uj, eji) (see Figure (4)). To satisfy this constraint, it is sufficient to
have

cos

(
θi + θj

2

)
≤ cosα. (12)

Moreover (see Figure 4), we have:

cos

(
θi + θj

2

)
=

||Ui − Uj||
2

≤ r ||∇U||2. (13)

By prescribing the last term to be less than cosα, we obtain the following
condition on the angle of vision α and the desired velocity U :

||∇U ||2 <
cos α

r
. (14)

All the desired velocity fields used in the computations are based on the
geodesic distance to a point that is located beyond the door (at a distance
of 70 cm), to make people actually point outward the room. By making
this choice, and by setting the angle of vision at a value that is not too
wide (α = π/3), we ensure that the dependence graphs do not contain cy-
cles. Figure 5 represents the desired velocities together with the associated
(oriented) influence graph for a crowd directed toward an exit.

3. Computational aspects

The numerical experiments presented in the next section are based on
two models: the Granular Model (3) and the Inhibition Based model (6).
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Figure 6: Granular evacuation. The width of an edge connecting disc centers is propor-
tional to the interaction force between those discs.

As detailed in the previous section, the latter model is decomposed into two
phases: first, inhibited velocities are computed in a frontal way (inhibition
step). Then, once a preliminary field U has been built, it is projected on the
set of feasible velocities (granular step).

3.1. Solving the granular model
The granular projection expressed by (3) amounts to project the desired

velocity field U on Cq at any time. The time discretization procedure is
inspired from a numerical scheme proposed in Maury (2006). We denote
by τ > 0 the time step, qn the configuration at time tn = nτ . We also
refer to Venel (2011) for Numerical Analysis issues concerning this approach.
It relies on a first order expansion of the distances. Consider two grains i
and j and associated velocities ui and uj. If they actually move with these
velocities during a time τ > 0, the new distance will be

Dij(q
n + τu) ≈ Dij(q

n) + τeij(q
n) · (uj − ui).

We accordingly introduce the discretized set of feasible velocities as

Cτ (qn) =
{
v ∈ R2N , ∀j ̸= i, Dij(q

n) + τeij(q
n) · (vj − vi) ≥ 0

}
. (15)
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A similar expansion will be used to define the discretized set of feasible
velocities in the inhibition step, as detailed below.

The set Cτ (qn) is a polyhedron with a number of face equal to the number
of potential contacts, that is N(N −1)/2. In the context of regularly moving
grain, most of these contacts can be ruled out: the constraints which are
likely to be activated are limited to pairs of discs which are not too far away
from each other, say at a distance of the order the size of the discs. Thus,
the number of potentially active constraints grows linearly in N .

The saddle-point formulation of the minimization problem gives access to
Lagrange multipliers that corresponds to contact forces. These contact forces
pertain to pairs of discs in contact, they can be represented by modulating
the width of edges of the contact graph, as illustrated by Figure 6. This
saddle point formulation writes∣∣∣∣∣∣∣∣∣

u+B⋆p = U
Bu ≤ b
p ≥ 0

⟨p|Bu⟩ = 0.

(16)

where each row of B expresses a non-overlapping constraint, and ⟨·|·⟩ is the
standard scalar product. This matrix is the discrete counterpart of the oppo-
site of a divergence operator, and its adjoint B⋆ stands for a discrete gradient,
making the problem stand as a discrete counterpart of a unilateral Darcy
problem. Let us explain why this problem can be extremely ill-conditionned.
Consider a situation where all constraints are saturated, i.e. Bu ≡ 0. Then
p is the solution to a discrete Poisson problem

BB⋆p = BU + b.

The matrix BB⋆ is some sort of discrete Laplace operator, but it is highly
degenerate. It can be checked in particular that its smallest eigenvalue can
take arbitrarily small values.

Figure 6 represents a situation where the contact network is close to a
triangular lattice. If it were perfectly structured, the kernel of BB⋆ would
have a large dimension, and the matrix restricted to the orthogonal of this
kernel would have a condition number close to that of a discrete Laplacian
resulting from a Finite Difference discretization of the Laplacian in the two-
dimensional setting, which is of the order N , that is the number of discs.
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More precisely, for such a discrete Laplacian, the smallest eigenvalue is of
order 1, and the largest eigenvalue scales like 1/h2, where h is the mesh
step, which scales here like 1/

√
N . In the granular setting, the network can

be arbitrarily close to the triangular lattice, which creates arbitrarily small
eigenvalues. As an illustration, the condition number of BB⋆ in the situation
represented in Figure 6 is around 6×104, whereas the number of discs in the
cluster is of the order 100.

3.2. Solving the inhibition-based model
At each time step, we start by re-indexing the individuals according to

the topological sorting algorithm, so that any individual i is influenced by
individuals with an index j > i. We keep the same notation for readability
reasons. We update the individuals’ positions as follows: qn+1 = qn + τun+1

where un+1 is the actual velocity computed in two steps, both based on a
first order expansion of the non-overlapping constraint, like in the granular
step.

The first step corresponds to individual adaptation (decision taking phase).
We start with the highest index: individual N picks the velocity ũn

N that ap-
proaches best their desired one UN , subject to constraints with their neigh-
bors. When i’s turn comes, all velocities ũn

i+1,. . . , ũn
N have already been

computed. For all j ∈ Vi (set of individuals that lie in the cone of vision of
i), if i takes the velocity w during τ , the first order expansion of Dij writes

Dij(q
n) + τeij(q

n) · (ũn
j − w),

that is an affine expression which depends on velocities that have already
been computed, thanks to the hierarchical ordering. We simply prescribe
that the previous expression is non-negative, i.e. we prescribe

Dij(q
n) + τeij(q

n) · (ũn
j − ũn

i ) ≥ 0 ∀j ∈ Ii.

The second step (global preservation of non-overlapping constraints) con-
sists in projecting the adapted velocity ũn on the set of admissible velocities
that ensure the non-overlapping of individuals at each time step. These ve-
locities should satisfy, for all i ̸= j,

Dij(q
n) + τeij(q

n) · (un
j − un

i ) ≥ 0,

that is again the first order expansion of Dij(q
n + τun) ≥ 0.

To sum-up, the algorithm reads as follows:
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1. (Inhibition step)
We solve the following minimization problems in the following order
i = N,N − 1, . . . , 1:

ũn+1
i = argmin

w∈Cτ
i (q

n,ũn
−i)

1

2
|w − Ui(q

n
i )|2

where

Cτ
i (q

n, ũn
−i) =

{
w ∈ R2, ∀j ∈ Vi(q

n), Dij(q
n) + τeij(q

n) · (ũn
j − w) ≥ 0

}
.

Note that, because of the hierarchical indexing, all indices j correspond
to individuals that have already decided their velocity ũn

j .
2. (Projection step)

The vector of inhibited velocities ũn+1 is projected on the set of globally
admissible velocities (with respect to the non-overlapping constraint),
like in the granular situation:

un+1 = argmin
v∈Cτ (qn)

1

2
|v − ũn|2,

where Cτ (qn) is defined by(15).

Note that the minimization problems in the first step are local, they involve
a very few degrees of freedom, and can be solved quasi-instantaneously. On
the other hand, these problems have to be solved successively, which rules
out any efficient parallelization strategy.

4. Comparison with experiments and paradoxical effects

We propose in this section to validate the Inhibition-based model with a
hierarchy induced by cones of vision. We confront the numerical results of
the model with some real evacuation experiments described in Garcimartín
et al. (2014, 2016); Nicolas et al. (2017) to prove its ability to reproduce some
phenomena. Also, a quantitative comparison is done between the numeri-
cal results of the Inhibition-Based model and the Granular Model Maury
and Venel (2009, 2011) to highlight the difference between them concerning
individuals’ behavior.
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Real evacuation experiments
We start by describing the real evacuation experiments involved in the

comparison. The first set of experiments are evacuation drills done by Garci-
martín et al. Garcimartín et al. (2014, 2016). During these experiments, a
total of 85 participants are asked to exit a room through a door of width
75 cm. Two runs are done. In the first run, individuals are asked to exit the
room as fast as they could while trying to avoid physical contact with others
and pushing is banned (low competitiveness). In the second run, individu-
als are asked to do the same but they are allowed to push each other while
evacuating (high competitiveness), excluding violent shoving. The main goal
of these experiments is to test the evidence of the FIS effect experimentally.
The presence of this effect was proved by showing that the evacuation time
increases with the competitiveness level, and that the distribution of time
lapses between consecutive egresses has a power-law tail, with a larger ex-
ponent for the low competitiveness case. Other controlled experiments are
done in Nicolas et al. (2017) involving 80 participants asked to exit a room
through a door of width 72 cm. For each run a fixed percentage of pedestrians
are asked to behave selfishly, while the rest of individuals are asked to stay
polite. The experiments are performed imposing “periodic boundary condi-
tions” which means that evacuated pedestrians are re-injected in the room
again after a while. A study of the correlations between time lapses is done in
this paper as well as an analysis about their distribution and the dynamics in
the exit zone. We refer the reader to Garcimartín et al. (2014, 2016); Nicolas
et al. (2017) for more details about the experimental procedures.

Numerical simulations
We consider a square domain Ω with an exit door of width 75 cm located

on one of the edges of the domain. We represent individuals by discs of
diameters ranging between 35 cm and 40 cm considered as averages between
the width and depth of a human body (see Weidmann (1993); Buchmueller
and Weidmann (2006) for more details about parameters of pedestrians). We
suppose that the desired velocity field U is the opposite of the normalized
gradient of the distance to the exit door, i.e. U(q) = −∇D(q)/|∇D(q)|
where D is the distance to the exit door and q is the current configuration.
The angle of the cones of vision is fixed to π/3, which guarantees an acyclic
influence graph on the set of individuals (see Section 2.3).

We consider an initial configuration q0 ∈ K (defined by Equation (1)) of
individuals randomly distributed on Ω and we set the time step at τ = 0.1 s.
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Figure 7: Snapshot of a periodic evacuation simulation using the Inhibition-Based model.
Discs colors represent the frustration of individuals, which measures the deviation from
their desired velocities (dark color when the frustration is high).

The motion is then computed according to the numerical scheme for the
granular model (see Section 3.1), and for the IB model (see section 3.2).

The discs representing individuals have colors corresponding to their in-
stantaneous frustration, as defined in Faure and Maury (2015):

fi = 1− (ui · Ui)/|Ui|2

for each individual i. It is a dimensionless quantity, equal to 0 when the
individual achieves their desired velocity and equal to 1 when the individ-
ual is not moving or has an actual velocity orthogonal to their desired one.
The color of the discs ranges between white and dark red, white being for
individuals going at their desired velocity and dark red for individuals not
satisfied at all with their actual velocities. For the numerical simulations of
the Inhibition-Based model, we sketch the influence graph based on the cones
of vision for close individuals (see Figure 7). Figure 9 represents snapshots
of an evacuation for the granular model, the IB model, and the IB model
with an obstacle.
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Figure 8: Cumulated number of evacuated pedestrians versus time for evacuation simula-
tions using the granular model and the Inhibition-based model.

4.1. Faster is Slower
We aim at comparing two evacuation simulations for the Inhibition-based

model and the granular model and find out whether these models are able
to reproduce this effect. As mentioned in Subsection 1.3, individuals have
a tendency to go slower in the direction where they want to go for the
Inhibition-based model, compared to the granular model. Furthermore, using
the saddle-point formulation of both models, one can show that the decision
process based on the visual information of each pedestrian reduces their de-
sired velocity in the desired direction of motion (see Inequality (9)).

We consider two evacuation simulations for the same initial configuration
q0 of N = 150 individuals using the granular model and the Inhibition-
based model and extract all the time lapses between consecutive egresses.
The door width is still 75 cm. Some snapshots of the evacuation simulations
are represented in Figure 9 showing the occurrence of a jam upstream the
exit door for the granular evacuation. To highlight the global difference, we
represent in Figure 8 the cumulated number of evacuated individuals versus
time that gives an overview of the evacuation process. The difference between
the behavior of individuals is clear: the curve for the IB model is linear, while
for the granular model there are some discontinuities caused by jams and the
evacuation ends faster for the Inhibition-based model. Besides, the slope
of each segment is smaller than the one associated to the Inhibition-Based
model.

We compute empirically the mean of time lapses between consecutive
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egresses and the flow mean for the granular model and the IB model. The
result is displayed in Table 1. The mean flow is computed as the inverse of
the mean of time lapses and the errors represent a 95% confidence interval.
The time lapses are smaller for the IB model compared with the granular
one, and the flow undergoes an increase of 31.4% which highlights the fact
that individuals go globally faster for the IB model.

Model Time lapses (mean) Flow rate
Granular 0.41± 0.02 s 2.42± 0.1Ps−1

Inhibition-Based 0.31± 0.004 s 3.18± 0.04Ps−1

Inhibition-Based with obstacle 0.29± 0.003 s 3.44± 0.04Ps−1

Table 1: Different evacuation situations with their respective mean of time lapses and flow
rate.

4.2. Effect of an obstacle
As detailed in the introduction, the fluidizing effect of an obstacle can be

seen as a particular instance of the FIS effect. In order to explore whether the
Inhibition-Based model is able to reproduce this effect, we run two evacuation
simulations for the same initial configuration (150 individuals, door width
75 cm) placing an obstacle upstream the door for one of them. The obstacle
we consider here is a triangular obstacle placed 76.5 cm away from the exit
door. Some snapshots of the simulations are shown in Figure 9 showing that
the evacuation gets to its end faster in the case of the obstacle. The effect
of an obstacle could also be observed for the periodic evacuation simulations
when comparing the flow of pedestrians in two different cases: with and
without an obstacle. The average flow of pedestrians is 3.18 ± 0.04Ps−1

for the simulation of the Inhibition-Based model without obstacle, versus
3.44 ± 0.04Ps−1 for the one with an obstacle upstream the door, so the
average flow of pedestrians increases by 8.1%.

4.3. Alternation between short and long time lapses
This effect has been reported in Hoogendoorn et al. (2003); Hoogendoorn

and Daamen (2005); Seyfried et al. (2009); Nicolas et al. (2017) and is known
to occur when the width of the exit door is slightly less than two times the
average size of a pedestrian. Actually, pedestrians tend to form lanes when
evacuating that could be intercalated when the available space is low. In
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Figure 9: Evacuation of 150 pedestrians for: on the left, the granular model; on the middle
the Inhibition-Based model; and on the right, the Inhibition-Based model with a triangular
obstacle. The door width is 75 cm. Discs colors represent the frustration of individuals,
which measures the deviation from their desired velocities (dark color when the frustration
is high).
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this case, individuals that are the closest to the exit door try to exit at the
same time, but this is not possible due to the size of the exit. So what
actually happens is that two pedestrians from neighboring lanes succeed to
exit almost at the same time and then another pack of two pedestrians follows
them. This effect was ascribed to a generalized zipper effect in Nicolas et al.
(2017).

We aim to investigate whether the Inhibition-Based model is able to pro-
duce the alternation between short and long time lapses. For this purpose,
we run an evacuation simulation for N = 80 individuals using the Inhibition-
Based model where we impose “periodic boundary conditions” as for the
experiments in Nicolas et al. (2017). The door width is 75 cm. Some seconds
after the evacuation of an individual, we update his position and re-inject
him in the room again at a random position (a snapshot of a periodic evac-
uation simulation is represented in Figure 7). We run the simulation during
3000 s and record all the exit times as well as the time lapses between two
consecutive evacuations.

We compare the correlation function for numerical results with those of
real data from the experiments described in Nicolas et al. (2017) and Garci-
martín et al. (2014). The correlation function between time lapses ∆ti or-
dered by the rank of exit is defined by:

C(k) =
⟨(∆ti − ⟨∆t⟩)(∆ti+k − ⟨∆t⟩)⟩

⟨(∆ti − ⟨∆t⟩)2⟩
(17)

where the brackets denote an average over all pedestrians i in the experiment.
We plot in Figure 10 the correlation functions for the periodic evacuation

experiment in Nicolas et al. (2017) (top), the non-periodic experiment with
low competitiveness in Garcimartín et al. (2014) (middle), and the numerical
simulation of the IB model with periodic boundary condition (bottom). The
three plots show a negative dip for k = 1 meaning that statistically anti-
correlation exists between successive time lapses, which asserts the effect for
the real experiments, and the ability of the IB model to produce it for the
numerical simulations. Moreover, the value of the correlation function for
k = 1 is close to −0.2 for the numerical simulation and the low competitive-
ness experiment by Garcimartín et al. and is almost equal to −0.3 for the
experiment by Nicolas at al.
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Figure 10: Correlation between time lapses for: periodic evacuation experiment by Nicolas
et al. (2017) (top), evacuation experiment by Garcimartín et al. (2014) with low compet-
itiveness (middle), and periodic evacuation simulation for the IB model (bottom).
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Figure 11: Complementary cumulative distribution functions for numerical simulations,
granular model (red) and Inhibition-Based model (blue).

4.4. Power-law distribution of large time lapses
We are also interested in comparing the probability of occurrence of large

time lapses between consecutive egresses for numerical simulations and real
experiments.

For this purpose, we consider periodic evacuation simulations (as the ones
described in Section 4.3) for both the granular model and the IB model and
we extract all the time lapses between consecutive egresses. Then, we follow
the procedure done in Garcimartín et al. (2014) where the authors plot the
complementary cumulative distribution function (CCDF) for the two runs
(low and high competitiveness), which is one minus the cumulative distri-
bution function of time lapses. This probability distribution is computed as
follows: we order the time lapses from smaller to larger, and for every time
lapse ∆tk we empirically estimate the probability of finding a time lapse that
is larger or equal to ∆tk. Note that a similar power-law distribution of time
lapses has also been observed in suspensions of micro-swimmers forced to
move through a micro exit (Al Alam et al. (2022)).

The CCDF for the periodic simulations is displayed in Figure 11 in a
log-log scale. Using a dedicated tool to analyse such distributions (Python
toolbox Powerlaw, see Clauset et al. (2009)), we fit the simulated distribu-

28



tion for the IB model with a power law, which gives an exponent 4.63±0.13.
This favorably compares to the 5.7±0.8 obtained for the experiment with low
competitiveness. Note that the fit with a power law is less obvious than for
experimental data. Indeed, computed data can be fitted with an exponen-
tial law with a comparable accuracy: the log-likelihood ratio between both
models is close to 0. For the granular model, the power law better matches
the data, with an exponent of 2.84± 0.1 which is very low compared to the
one obtained for the IB model (4.63 ± 0.13), and also compared to the ex-
perimental exponent (competitive egress), that is 5.0 ± 0.1. It means that
long time lapses are more likely to occur in computations than experiments.
This fact may be due to additional phenomena that appear in real life exper-
iments to break jams whenever they occur, according to mechanisms that are
not included in the model. Although the exponent for the granular model
(2.84 ± 0.1) is not close to the one obtained for the high competitiveness
case of the experiments (5.0 ± 0.1), and although the power law fit of the
IB model is not perfect, these computations show that the time lapses for
the IB model (low competitiveness) are much smaller that times lapses for
the granular model (high competitiveness). Let us add that these considera-
tions pertain to the distribution tail, which does not contain the mean value.
These are nevertheless quite significant in terms of evacuation efficiency and
safety since, as pointed out in Garcimartín et al. (2014), heavy tails express
the occurence of large times lapses, which correspond to clogs, i.e. events
where people are crushed upstream the exit.

4.5. Mixed behaviors and clogging
We investigate here the effect of different behaviors for the individual

agents in the evacuation. In the spirit of the experimental setup detailed in
Nicolas et al. (2017), we consider that individuals adopt one of two possi-
ble behaviors : a fixed fraction is considered panicked or selfish and moves
according to the plain granular model, while the rest of the population is
considered polite / inhibited, and is modeled by the IB model. The resulting
algorithm is similar to the pure inhibition model: after the first hierarchi-
cal phase, the selfish individuals take their initial desired velocity before the
last granular projection step is performed. We compare the influence of this
mixed behavior on the probability of clogging and its effect on the flux. More
precisely, we consider two situations:

1. Narrow door. Individuals are initially located randomly upstream the
exit door, under conditions where clogs are likely to happen. For each
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Figure 12: Probability of clogging vs. the proportion of inhibited agents. The number of
agents is N = 250, and the door width is 75 cm.

proportion of inhibited agents, we perform a large number of simu-
lations (600), and we estimate the clogging probability by counting
the cases where a clog is still present after the final time 500 s, which
is much larger than the evacuation time when everything goes fine
(around 90 s). The results are presented in Figure 12

2. Large door. Individuals are initially located randomly upstream the
exit door, under conditions (larger door) where clogs are not likely
to happen. As previously, for each proportion of inhibited agents, we
perform a large number of simulations (2000), and we estimate the
mean evacuation time, averaged over the whole population, and also
over the two subpopulations (inhibited and agressive).

In all scenarios, the number of individual is 250. Diameters randomly
range over the interval [35 cm, 40 cm] (uniform distribution). In Case 1, the
door width is 75 cm (narrow door), and in case 2, the door width is 135 cm
(wide door).

Case 1 (narrow door): In Figure 12 we plot the estimated probability of
stable clogs with respect to the proportion of inhibited agents. As mentioned
previously, we consider that a stable clog occurs when there are still people
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blocked upstream the exit when the computation ends. This figure exhibits
a clear behavior: when the proportion of inhibited agents remains under
a certain threshold value (around 60%), there is no significant effect on
the clogging probability, that remains around 0.8. But above this value,
the clogging probability significantly decreases to the value of 0.4. This
observation reproduces the fact that polite agents fluidizes the egress flow,
in other words fewer conflicts make the evacuation faster, as observed in the
experiments presented in Nicolas et al. (2017).

Case 2 (wide door): in this setting the door is sufficiently large to
avoid clogs, all evacuations are completed in a finite time. Figure 13 plots
the mean exit time with respect to the proportion of inhibited agents. The
effect is less obvious and more subtle than in the first case. Indeed, for
small proportions of inhibited people, the evacuation time is reduced. This
reduction is small (around 7%) but clearly visible on the plot. Yet, when
this proportion is greater than 1/2, the effect is reversed: adding inhibited
agent has a counterproductive effect on the evacuation (U-shaped curve). In
other words, the left hand side of the plot expresses a Slower is Faster effect,
whereas the right hand side corresponds to a non-paradoxical Faster is Faster.
This series of simulations thus exhibits an optimal proportion of inhibited
agents, that is around a half, in terms of evacuation efficiency. Note also
that, even if inhibited people reduce the evacuation time for intermediate
proportions, their own evacuation time is larger than the mean over all the
population. In other words, they take benefit of their civilized behavior, but
less that the agressive people, for whom the evacuation time is smaller.

4.6. Further exploration of the influence of an obstacle
We conclude this section by some additional tests to investigate the influ-

ence of the position of an obstacle upstream an exit door upon the evacuation
process. We consider the experimental setting described in Feliciani et al.
(2020): the door width is 75 cm, the number of evacuees is 180, and we con-
sidered the periodic setting: people are re-injected after they pass the door.
The obstacle is a cylinder of diameter 40 cm, placed upstream the exit door
at various distances. We investigated the distance range [50 cm, 250 cm]. We
performed 300 evacuation simulations for each distance, with the granular
model. For each of them, we simply count the number of passages during
500 seconds, and we compute its difference with the mean number without
obstacle. Figure 14 represents, for each of the chosen distances, the mean
relative number of passages, the 0.25 − 0.75 percentile interval (rectangular
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Figure 13: Average exit times vs. the proportion of inhibited agents, in situations where
there was no clog. The average is performed over the whole population (blue), over polite
agents only (orange), and over impolite agents only (green).
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rectangle), the confidence interval and the fliers (extreme values represented
as circles). The blue line corresponds to mean values for this relative number
of passages. The distribution of passage numbers without obstacle is repre-
sented in the same graph, at the very left-hand side (distance 0), relative to
the mean value, which is 75.

This series of results clearly exhibits the following behavior: two ranges
of positions lead to a significant increase of the number of passages: around
d = 150 cm and d = 230 cm. We added intermediate positions to assess
whether they might correspond to artefacts, and the results for additional
value in these neighborhood tend to confirm this tendency.

Figure 15 sheds light on the fluidizing role of the obstacle. We plotted the
mean pressure (estimated as the Lagrange multiplier p of the non-overlapping
constraint, see Eq. (16)) relative to the mean pressure computed in the case
without obstacle, in 4 different situations. Blue indicates that the pressure
is lower than in the situation with no obstacle, and red that it is higher. In
all situations the red zone upstream the obstacle indicates higher pressure,
as expected. For distances 100 cm and 175 cm (first and third plots), the
red zone at the bottom indicates that congestion is increased upstream the
door, in accordance to Figure 14, which indicates a decrease in evacuation
efficiency. For distances 150 cm and 230 cm (second and fourth plots), the
figure exhibits a blue zone right upstream the door, which indicates that
congestion has been reduced, which is consistent with the fluidification of
the evacuation expressed by Figure 14.

5. Conclusion

In this paper we studied the Faster-is-Slower effect from a granular mod-
eling standpoint. We showed how a minimal parameter-free model based
on individual inhibition reproduces effects which are similar to a series of
laboratory experiments present in the literature.

The key ingredient of the model that we propose is the tendency of indi-
viduals to refrain from pushing the neighbors that lie in their cone of vision
while other interactions are ruled out in a purely granular way. We show
that turning on this tendency to avoid collisions with people upfront leads
to an improvement of the global egress.

We investigated the ability of the model to reproduce the Faster is Slower
effect by comparing some numerical simulations to real evacuation exper-
iments present in the literature and find matching conclusions, up to the
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Figure 14: Variations of the number of exits with respect to door-obstacle distance. The
coloured discs correspond to the various positions of the circular obstacle located upstream
the exit. The values at the very left of the figure correspond to the situation without
obstacle. The colors indicate the effect upon evacuation of the obstacle (compared to the
case with no obstacle): red for a decrease of the number of exits, black for an increase
of the number of exits (positive effect upon evacuation). These tests exhibit two distinct
zones where the effect of the obstacle is positive upon evacuation efficiency (blue curve
above the horizontal black line).
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Figure 15: Mean pressure variations with respect to the no-obstacle situation, distances
1.0, 1.5, 1.75, 2.3

distribution of times lapses between consecutive egresses. We also validated
the capacity of the model to reproduce other well known crowd motion phe-
nomena like the fluidizing effect of an obstacle in some situations (see Shi-
wakoti et al. (2019) for a recent review on this controversial issue), and the
alternation between short and long time lapses.

Finally, we studied the case where individuals adopt either a selfish or
polite behavior, and found out that the probability to end up with a clogged
simulation increases with the proportion of granular individuals.

The last point sets up a basis for a future work about the study of the
effect of panic on evacuations: if we consider the purely asocial individuals
as panicked, and the polite ones as calm, and consider a panic propagation
model we could see what would happen if individuals have the ability to
change from one state to the other in a continuous way. Another perspective
is to consider evacuation scenarios with mutually interacting individuals,
since the Inhibition-Based model strongly relies on a hierarchy of cones of
vision. Indeed, if this hierarchy does not hold, the overall inhibition approach
is ruled out, and it becomes necessary to set new rules to determine the
actual velocities of mutually interacting agents, based on game theoretical
ingredients.
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