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Abstract — This work, a part of the RHU-EndoVx project, is carried out in collaboration with the
Hospital Marie Lannelongue (91). Its primary objective is to create realistic 3D-printed models of ab-
dominal aortic aneurysms (AAA) for surgical training and rehearsals. The work involves the formulation
of equations for hyperelastic material models to match the properties of the biomimetic materials used in
the construction of the models, as well as the development of an optimization algorithm utilizing Proper
Generalized Decomposition (PGD) to accurately simulate their behavior.
Mots clés — hyperelasticity, model reduction, optimization, biomimetic composites.

1 Introduction and context

The present work is part of the RHU-EndoVx project, which is a multi-partners project including actors
in many different fields (AI, numerical simulation, 3D printing, etc.) aiming at improving the handling
of aortic lesions using new technologies for fast and personalized treatment. Here, the main goal is to
improve the endovascular management of complex abdominal aortic aneurysms.

The aorta is the main artery providing blood from the heart to the rest of the body. It stretches from
the heart, down to the femoral and hypogastric arteries, in the pelvic area. It can be separated into 4 main
sections, as shown in Figure 1a: the ascending aorta, which ascends straight out of the heart, the aortic
arch, which directs it downwards, the thoracic aorta and the abdominal aorta [10] [11].

(a) (b)

Figure 1: (a) Location of the aorta in the body and 3D reconstruction [10] & (b) Open Surgery Repair
(OSR) and EndoVAscular Repair (EVAR) [9]

An AAA is a permanent localized dilation of the abdominal aorta of at least 50% of the expected
diameter [9]. Once detected, the treatment for an AAA is surgical repair. There are two kinds of surg-
eries practiced in that context: open and endovascular surgery (Figure 1b). We focus on endovascular
surgery [5], as it is the more common and less dangerous surgery. Endovascular repair (EVAR) involves
introducing a catheter through the femoral and iliac arteries in order to deploy a stent that will serve as
a sleeve guiding the blood through the aneurysm sac, anchoring above and below the aneurysm. The
operation is monitored using computed tomography angiography.

1



Figure 2: Diagramme showing the different raw and digital materials of the PolyJet technology
[BIOMODEX™ , 2022]

This operation can be complicated and dangerous, thus it has been suggested that surgeons train in
advance on a 3D-printed conformal replica of the patient’s organ.

The printing technology used is the PolyJet technology, developed by the 3D printing company
Stratasys™ . Droplets of UV-curable resin are jetted on a build tray using print heads and cured in a flash
of UV light. This technique allows for multiple materials with varying material properties to be printed
at the same time to create a final result with graded properties, such as stiffness (see [17]). In the case
presented above, the materials are obtained through combinations of various degrees of Agilus and Vero,
which are Stratasys™ materials (see Figure 2). These materials have a wide range of stiffnesses, from
classic elasticity to hyperelasticity.

This study therefore does not consider actual biological tissue, but solely the biomimetic composite
used in 3D printing the models. Thus, the more complicated aspects of the material modeling and
biomechanics, such as anisotropy, or complex biological microstructures are not to be considered.

(a) (b)

Figure 3: (a) Example of a printed model in Marie Lannelongue Hospital in the operation simulation
setup [Author’s collection, 2022] & (b) Picture of a rupture in a printed model at the trials in Marie
Lannelongue Hospital. [Author’s collection, 2022]

However, in the tests carried out on printed models at Marie Lannelongue Hospital (Figure 3a), it has
been shown that the current process should be improved. Indeed, the models often ruptured at unexpected
and unrealistic places, such as around the bifurcations between the aorta and the iliac, femoral and
hypogastric arteries (Figure 3b). These issues make it important to design a process that allows printing
a working and viable model quickly.

The objectives are thus to create a layer of numerical optimization before printing, by adding appro-
priate mechanical modeling using, in particular, the hyperelasticity theory and efficient reduced order
modeling (ROM) solvers in order to get the correct results at the first print. We write the appropriate
formulations for hyperelasticity, which is the appropriate theory for biological aortic tissue, and the most
flexible PolyJet materials [8]. Then, we develop the formulation of the parametric Proper Generalized
Decomposition (PGD) model reduction technique, using a specific innovative algorithm taking care of
the strong nonlinearity of the problem which has not been applied to such cases before in order to set the
foundation for faster computation times in the rest of the project.
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2 Model problem in a hyperelastic framework

This section details the base problem and material properties used in the study. We will first write
the fundamental equations and derive the weak formulation from the principle of virtual works before
exposing the constitutive equations of hyperelastic materials, notably taking a look at the different forms
of strain energy.

2.1 Weak formulation

Let us consider an undeformed continuum body Ω, bounded by ∂Ω, such that ∂uΩ and ∂σΩ are a partition
of ∂Ω.

Ω is also called the initial configuration. Under the body forces f, the prescribed boundary forces g
and the prescribed displacement ū, its current configuration is noted Ωt . X is the position in the initial
configuration, and x in the current (deformed) configuration, such that x=X+u, with u the displacement
that we are solving for.

Our non-linear boundary problem expresses:

DivXP+ f = 0 on Ω

u = ū on ∂uΩ (1)

g = P ·n = ḡ on ∂σΩ

P is the first Piola Kirchhoff stress tensor, ρ0 the density of the material, n the unit outward normal
vector. We assume the problem to be static.

Through some manipulation, one determines the weak form of the initial value boundary problem to
be:

F (u,δu) =
∫

Ω

P : DXδu dΩ−
∫

Ω

f ·δu dΩ−
∫

∂σΩ

ḡ ·δu d∂Ω = 0 (2)

δu is the virtual displacement field, used here as a test function. We have the first Piola-Kirchhoff tensor
P = JσF−T , σ the Cauchy stress tensor, and the second Piola-Kirchhoff stress tensor S such that P = FS.

Using δE = sym(FT DXδu) the variation of the Euler-Lagrange tensor (as in [7]), the principle of
virtual works with the 2nd Piola-Kirchhoff stress tensor can then be written as:

F (u,δu) =
∫

Ω

S : δE dΩ−
∫

Ω

f ·δu dΩ−
∫

∂σΩ

ḡ ·δu d∂Ω = 0 (3)

A classical way to solve the problem is to linearize explicitly the weak formulation 3 and then use a
Newton-Raphson scheme. In our case, it is not necessary, as the PGD algorithm we use takes care of the
non-linearity in another way, as is exposed in section 3.

2.2 Constitutive equations

A hyperelastic material is a material that exhibits nonlinear elasticity and is characterized by a strain
energy density function (also known as the strain energy potential or the hyperelastic material model),
which characterizes how the energy of the material changes with the deformation (see [7] and [15]).
These materials are essential for modeling and understanding the behavior of soft and elastomeric mate-
rials, like rubber, biological tissues, and certain types of polymers.

A common distinction among hyperelastic materials is whether the material is compressible or in-
compressible. This has to do with the response in the variation of the volume of the body when subjected
to deformation. As expected, compressible materials see their volume change greatly when deformed,
whereas incompressible materials show very little to no volume change. This has to be taken into account
in the material model, meaning in the strain energy density function.

This function, or strain energy as we will call it in the rest of this paper, denoted ψ is linked to the
stress tensor. It is completely determined by the constitutive equation linking stress and strain, namely

S = C : E (4)
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where C is the modulus tensor, which is different from the classic linear elasticity Hooke tensor, C=FT F
the right Cauchy-Green tensor, F = I+DX u the deformation gradient tensor, and E = 1

2(C− I) is the
Euler-Lagrange strain tensor. Finally, S is the 2nd Piola-Kirchhoff stress tensor.
ψ is involved in the expression of C. It is a function of C, therefore it can be written as a function of E,
and its analytical formula can be obtained from the following equation.

S =
∂ψ

∂E
= 2

∂ψ

∂E
(5)

ψ(C) =
∞

∑
(p, q)=0

Cpq(I1(C)−3)p(I2(C)−3)q

ψ(C) has numerous specific forms in the literature, for compressible and incompressible materials.
The most common ones are a form of Rivlin’s law, as written in the second line of equation (5), where
Ii(C) (i = 1,2,3) are the invariants of the Cauchy-Green right tensor.I1(C) = tr(C) ; I2(C) = 1

2(tr(C)2−
tr(C2)) ; I3(C) = det(C) = J(C)2. In what follows, the dependence of the invariants of C on C will be
omitted to simplify the notations. The most significant Rivlin laws are the neo-Hookean, the Mooney-
Rivlin and the Signorini laws.

In our study, we choose to use a Neo-Hookean model due to its simplicity (meaning C20 =C01 = 0).
However, in the future, it will be interesting to expand our results to more models.

The incompressibility constraint for a hyperelastic material is expressed as I3 = 1. In order to take it
into account properly, one needs to modify the strain energy density function to ψ = ψ(C)− 1

2 p(I3−1),
where p acts as an indeterminate Lagrange multiplier.

3 Proper Generalized Decomposition of space and load position with a
non-linear material model

The purpose of model order reduction is to be able to approximate a complex system with only a handful
of degrees of freedom. It uses the redundancy of information available in a field, be it known or defined
implicitly by a partial differential equation (PDE). To generate an accurate approximation of the original
model, it projects the initial model on a low-dimensional reduced basis.

In this section, we describe the PGD and its potential use with a non-linear material model like
the one described earlier. The PGD technique is an a priori model reduction technique relying on the
separation of variables in the solution to compute quickly and efficiently the solutions to some complex
problems. For instance, the most usual separation is the one of space and time for a dynamic problem.

However, the separation of other variables has also been introduced, such as the different space
coordinates (x1,x2,x3), or material properties. More specifically, PGD has been used in biomechanical
applications, such as the real-time simulation of the haptic feedback of a liver [12] [13]. .

In this framework, we intend to conduct a parametric optimization of our models, using most notably
the position of the load as a parameter. Indeed, during an EVAR, the surgeon uses guidewires and
catheters inside the organ, which exerts a force whose position and amplitude vary greatly.

Using the load position as a parameter has been done using PGD on 3D formulations by Niroomandi
et al., both using an explicit linearization [12] and the Asymptotic Numerical Method [13] to handle
the non-linear nature of hyperelastic materials. In the present work, we propose to use an innovative
algorithm to take care of the nonlinearity of the problem, presented in [6]. This algorithm handles non-
linearity at each stage of the PGD algorithm, using all the information about the current content of the
solution instead of linearizing the general formulation first. Although it has been used previously on
nonlinear thermodynamics problems and the resolution of the Navier-Stokes equation, it has never been
applied to a hyperelastic material model and the nonlinearity that follows.

The following decomposition is introduced, denoting un(x,s) the solution at the nth iteration of the
PGD solving process (n < Nmod), x the position of any point in the body, and s the position of the load
on the boundary that is accessible to the surgeon:

un(x,s) =
n

∑
i=1

3

∑
j=1

φ
i
j(x) λ

i
j(s)e j (6)
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where e j is a vector of the orthonormal basis of the 3D space. More specifically, s is a surface meshing
of the portion of the boundary where loading can be applied, noted Γs.

Alternatively, one can write

un(x,s) =
n

∑
i=1

ϕi(x) ◦ λi(s) (7)

where φi(x) = ∑
3
j=1 φi

j(x)e j and λi(s) = ∑
3
j=1 λi

j(s)e j are the separated fields used to approximate the
displacement field u(x,s), added to ith iteration of the PGD solving process, and ◦ is used to denote the
so-called Hadamard or Schur multiplication for vectors. Then, ϕ(x) and λ(s) are discretized similarly to
the FEM approach, with N the set of interpolation functions for the space x, and Nλ the one for the load
position s. {

φi
j(x) = N(x) ·Φi

j
λi

j(s) = Nλ(s) ·Λi
j

(8)

In the rest of this document, (ϕn(x),λn(s)) is the couple of newly calculated separated fields to
improve un−1(x,s).

Description of the PGD algorithm introduced in [6], to be used in our case

Starting from the non-linearized weak formulation of the problem 3, one applies the decomposition
described in equation 6. The formulation is modified in the following way, by integrating over the domain
of the parameter s in addition to the integration over the whole domain:∫

Γs

∫
Ω

S : δE dΩ dΓ−
∫

Γs

∫
Ω

f ·δu dΩ dΓ−
∫

Γs

∫
∂σΩ

ḡ ·δu d∂Ω dΓ = 0 (9)

Then, we need to compute Nmod PGD couples, or modes (Φi,Λi)(i=1,...,Nmod). At each iteration of
computing one mode, there are two steps: an enrichment step (the actual computation of the mode) and
the update stage (the re-computation of all the load position functions).

First, the enrichment step computes the modes. At iteration n, assuming all n−1 first modes known,
one has

un =
n

∑
i=1

ϕi ◦λi = un−1(x,s)+ϕn ◦λn (10)

As we use the previous mode un−1, special attention is required on the computation of the first couple
(ϕ1,λ1). One needs to initialize u(x,s) = u0 and compute the appropriate matrix operators needed in the
computation of the modes using this value. We then use a fixed-point algorithm to determine the modes.
After running one iteration of this algorithm to compute (ϕ1,(1),λ1,(1)) with the initialized operators (the
superscript indicating the fixed-point iteration), we use it to re-calculate the operators. We repeat the
operation until the convergence of this first pair (ϕ1,(1),λ1,(1)) is reached according to a relative error
criterion or a maximum number of iterations.

To compute the other couples is easier and less resource-consuming. Let us consider the nth couple
(ϕn,λn). We use u = un−1 = ∑

n−1
i=1 ϕi ◦λi to compute and update the matrix operators. In the fixed-point

algorithm, to determine the new couple, one needs to solve two problems successively and repeatedly
until convergence:

• Compute ϕn,(k) using the known λn,(k−1).

• Compute λn,(k) using the newly computed ϕn,(k).

Then, the update stage re-computes all the load position functions (λi)i=1,...,n. At step n, as the couple
(ϕn,λn) is now known, one computes the matrix operators using un(x,s) = ∑

n
i=1ϕ

i ◦λi, and uses them
to re-calculate all the load position functions.

This algorithm has the particularity of treating the nonlinearity of the problem globally: the behavior
law’s non-linearity is dealt with over all the integration points, in the fixed-point loop for the first mode,
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and right before it for the other, less energetic modes. In our hyperelastic case, the operators that are
defined during this procedure become very complex and are not detailed here for the sake of legibility,
compared to the quite classical operators that would appear in the linear elastic case.

PGD algorithm in pseudo-code

Here is the PGD strategy summed up in an algorithm.
Require: The non-linearized variational formulation, the material parameters, and the initializing value

for displacement u0
1: u(x,s)← u0
2: n← 1 ▷ Initialization in order to count the number of modes necessary to reach convergence
3: Computation of the matrix operators using u0.
4: Initialization of the error criterion tolerance tolPGD.
5: // Loop over the PGD modes
6: while εPGD > tolPGD do ▷ εPGD is a convergence criterion
7: // Enrichment step
8: if Nmod = 0 then
9: // Fixed-point algorithm

10: Initialization of the FP error criterion tolerance tolFP or max number of iterations.
11: Compute ϕ1,(1) and λ1,(1) with the just initialized matrix operators.
12: k← 2.
13: while εFP > tolFP do ▷ εPGD is a relative error criterion
14: Compute ϕ1,(k) using the known λ1,(k−1) and the matrix operators.
15: Compute λ1,(k) using the just computed ϕ1,(k) and the matrix operators.
16: k← k+1
17: Calculate εFP.
18: Recompute the matrix operators using u = (ϕ1,(k) ◦λ1,(k)).
19: end while
20: ϕ1← ϕ1,(k) ; λ1← λ1,(k)

21: else
22: // Fixed-point algorithm
23: Initialization of the FP error criterion tolerance tolFP.
24: Initialization of ϕn,(1) and λn,(1) (for example, with ϕn−1 and λn−1).
25: k← 2.
26: Compute the matrix operators using u

(
= ∑

n−1
i=1 ϕi ◦λi

)
.

27: while εFP > tolFP do ▷ εPGD is a relative error criterion
28: Compute ϕn,(k) using the known λn,(k−1) and the matrix operators.
29: Compute λn,(k) using the just computed ϕn,(k) and the matrix operators.
30: k← k+1
31: Calculate εFP.
32: end while
33: ϕn← ϕn,(k) ; λn← λn,(k)

34: end if
35: // Update step
36: Compute the matrix operators using u =

(
∑

n
i=1ϕ

i ◦λi
)

37: Recompute all the (λi)i=1,...,n
38: // End of the iteration
39: u← ∑

n
i=1ϕ

i ◦λi

40: n← n+1
41: end while
42: Nmod ← n
43: return u.

6



4 Conclusions

The first steps of our approach, which aims at improving the 3D printed models replicating patient-
specific aneurysmal aortae, have been completed. The appropriate hyperelastic material model has been
developed, and the variational formulation has been written, in both a linearized and its original non-
linearized form. In order to allow for faster and more efficient computations, and in the path to the
development of a full optimization method, an innovative PGD algorithm has been applied to our spe-
cific formulation, separating the physical space and the position of the load the surgeon applies on the
boundary. The algorithm for this strategy of implementation of the PGD technique has been written, and
the numerical implementation is a work in progress. The first results are expected to follow soon and
will be presented in more detail during the conference.

Another objective of this study is to use shell theory in order to accelerate even more the computa-
tions and reduce their cost further. The combined use of shell models and PGD requires rewriting the
formulations with the proper kinematics, which is the next step in our project. Such work has been done
before (see [16] and [18]) with a different separation of variables.
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