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The distribution of stress generated by a turbulent flow matters for many natural
phenomena, of which rivers are a prime example. Here, we use dimensional
analysis to derive a linear, second-order ordinary differential equation for the
distribution of stress across a straight, open channel, with an arbitrary cross-
sectional shape. We show that this equation is a generic first-order correction to
the shallow-water theory in a channel of large aspect ratio. It has two adjustable
parameters — the dimensionless diffusion parameter, χ, and a local-shape param-
eter, α. By assuming that the momentum is carried across the stream primarily
by eddies and recirculation cells with a size comparable to the flow depth, we
estimate χ to be of the order of the inverse square root of the friction coefficient,

χ ∼ C
−1/2
f , and predict that α vanishes when the flow is highly turbulent. We

examine the properties of this equation in detail and confirm its applicability by
comparing it with flume experiments and field measurements from the literature.
This theory can be a basis for finding the equilibrium shape of turbulent rivers
that carry sediment.

Key words:

1. Introduction

Channels whose shape and evolution are determined by the interaction with the
flow are common in nature — examples include alluvial rivers (Parker 1978a;
Glover & Florey 1951), ice streams (Echelmeyer et al. 1994), or blood vessels
(Rodbard 1975). In alluvial rivers, for example, the sediment is transported by
the slight deviations from the threshold stress needed to dislodge a grain from
the bed (Parker 1978b). The fact that these deviations are small makes the river’s
shape sensitive to the detailed distribution of the stress across the stream. The
problem of estimating stress across a channel is, therefore, both important, due to
its implications for landscape evolution (Métivier & Barrier 2012), and difficult,
since the estimate needs to be accurate (Popović et al. 2021).

† Email address for correspondence: arpedjo@gmail.com
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When the flow in the channel is steady, the friction on the bottom consumes all
of the momentum injected by gravity into the overlying fluid. In the idealised case
of a flow over a flat, inclined plane with a slope S, this basic balance requires
that the stress, τ , on the channel’s bottom be proportional to the flow depth,
D. Even when the channel is not completely flat in the cross-stream direction,
this proportionality still approximately holds at each point, y, across the stream,
provided that the depth, D(y), varies slowly enough with y:

τ(y) ≈ ρgSD(y) , (1.1)

where ρ is the fluid density and g is the acceleration due to gravity. This is a
simple form of the “shallow-water” approximation.
The shallow-water theory of equation 1.1 ignores any transfer of momentum

between adjacent fluid columns. Despite its simplicity, it was successfully used to
describe the shape of straight, laboratory rivers with a laminar flow that carry
no sediment (Seizilles et al. 2013). Building on this work, Abramian et al. (2020)
performed similar experiments with laminar rivers that carried sediment, while
Popović et al. (2021) developed a theory to describe the shape of such rivers. The
theory of Popović et al. (2021) made clear that the shallow-water approximation
was not sufficient to describe rivers that carry sediment — the properties of such
rivers were critically affected by the transfer of momentum across the stream.
Here, we are mainly motivated by extending the above theory from laminar

rivers to natural ones. As a first step towards that end, we investigate the simplest
case relevant to this problem — a turbulent flow driven by gravity in a straight,
open channel with a fixed cross-section. We aim to find an approximation for the
stress, τ(y), across the bed of such a channel that goes beyond the shallow-water
theory, and captures the first-order effects of turbulent momentum transfer. In
such a flow, approximations based only on first principles are not available —
the flow is unsteady and complicated, as turbulent eddies mix the fluid, and
secondary flows organise into recirculation cells (Tominaga et al. 1989; Chauvet
2014; Blanckaert et al. 2010).
Many models that deal with the turbulent transfer of momentum were devel-

oped in the context of flood management (Bousmar & Zech 1999; Martin-Vide
& Moreta 2008; Proust et al. 2009; Kaddi et al. 2022). These models typically
split the channel into several regions (such as the deep main channel and the
shallow floodplain) and parameterise the interaction between them. However,
this splitting does not yield a continuous distribution of the stress, τ(y), across
the channel. Possibly the simplest model that does this was presented in Wark
et al. (1990), and developed earlier in Samuels (1985) starting from the Navier-
Stokes equations. There, the shallow-water approximation of equation 1.1 was
supplemented with an empirical term for the turbulent diffusion of momentum,
allowing one to calculate the profiles of stress and velocity across the stream, τ(y)
and U(y), by solving an ordinary differential equation (ODE). Similar models,
such as that of Shiono & Knight (1991), were developed along the same lines to
include additional effects, such as those due to secondary flows.
In this paper, we develop a model along similar lines as Wark et al. (1990).

Our goal is to examine this model in detail, and show that it can be used within
a broader theory of river self-organisation. To make clear the assumptions that
go into the model, we start from a depth-integrated momentum balance (section
2), and derive the model from dimensional analysis and symmetry arguments
under several broad assumptions about the nature of the turbulent flow, without
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Figure 1: (a) Turbulent flow in a straight, open channel. The depth profile,
D(y), is constant along the downstream direction, x, and varies along the

cross-stream direction, y. At each point across the profile, the normal to the
bed makes an angle ϕ with the z-axis. The channel makes a constant

downstream slope, S, with the horizontal. The upper surface is flat and open.
(b) Momentum balance in a portion of a channel between coordinates y1 and
y2. The length of the channel section along the bed is ℓ. Momentum is injected
into the section by gravity, and is lost to friction at the bottom. It is transferred

across the boundaries at y1 and y2 by the flow.

invoking the Navier-Stokes equations (section 3). This model corrects the shallow-
water theory to first order in a channel with slowly varying bed topography. The
distribution of the stress across the stream, τ(y), in this model is a solution
to a second-order linear ODE with two dimensionless parameters (section 4)
— the diffusion parameter for the stress, χ, which controls the magnitude of
the cross-stream flux of momentum, and the local-shape parameter, α, which
controls the effect of the local variations of the channel’s shape on the flux. By
assuming that the momentum is carried across the stream by the largest eddies
and recirculation cells, whose size is comparable to the flow depth and which
move at about the frictional velocity, we estimate the orders of magnitude of χ
and α. This model predicts a smooth stress distribution across the stream on
scales comparable to the flow depth — when there are strong recirculation cells
in the flow, the model predicts a reasonable average stress over several such cells,
while significant deviations can remain on the scale of an individual cell.
We then proceed to explore this model in the full range of its parameters. Inter-

estingly, we find that fixing the parameters at χ = 1/3 and α = 1 approximately
describes the stress in a laminar flow, a result which connects natural rivers with
small-scale laboratory experiments (section 4.1). When the flow is turbulent,
these parameters can, in principle, take any value, so we investigate how they
affect the stress distribution in channels of various shapes, and demonstrate the
qualitative effects of the cross-stream transfer of momentum, some of which may
have important implications for river formation (section 5). Finally, we suggest
values of the parameters χ and α for practical use. We show that our model with
these parameters provides a reasonable agreement with experiments and field
data (section 6). For this reason, and because it is simple and interpretable, it
can serve as a basis for a minimal model of self-formed alluvial rivers.

2. Momentum balance

We consider the following problem: a turbulent fluid is driven by gravity down
a straight, open channel with a fixed depth profile, D(y), and a downstream
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slope, S (figure 1a). Here, y is the cross-stream coordinate, x is the downstream
coordinate, and z is the coordinate normal to the free surface of the fluid, which
we assume to be flat. The slope, S, is defined as the sine of the angle the channel
makes with the horizontal, and is typically small in rivers (10−5 to 10−2, Métivier
et al. (2016)). We assume that all properties of the flow are uniform on average in
the x direction so that we only need to consider the flow in the (y, z) plane. We
will attempt to find the time-averaged stress, τ(y), the fluid exerts at each point
across the channel bottom, as well as the lateral profile of the vertically averaged
downstream velocity, U(y). For convenience, we summarize a list of symbols we
use throughout the paper in Table 2.
We begin by examining the balance of streamwise momentum within a portion

of the channel between two vertical slices at locations y1 and y2 (figure 1b).
Gravity injects momentum into this portion at a rate

∫ y2

y1
ρgSDdy, where ρ is the

fluid density and g is the acceleration due to gravity. The turbulent flow moves
momentum in and out of the portion through its vertical sides. In steady state,
all the momentum that enters the section is lost to friction along the bed, which
occurs at a rate

∫
ℓ
τdℓ, where the integral is performed over the arc, ℓ, of the

bed between y1 and y2. Altogether, the balance of streamwise momentum for this
section of the fluid reads:∫ y2

y1

ρgSDdy + F (y1)− F (y2) =

∫
ℓ

τdℓ , (2.1)

where F is the the flux of momentum across the stream, i.e. the net momentum
that crosses a vertical slice of the channel per unit time and length in the
streamwise direction (the units of F are kg s−2). Bringing y1 and y2 infinitesimally
close to each other, we find the differential form of this balance:

ρgSD − dF

dy
= τ

dℓ

dy
. (2.2)

The term dℓ/dy is a geometric factor related to the angle, ϕ, between the bed’s
normal vector and the z-axis (dℓ/dy = 1/ cosϕ). Since the tangent of ϕ equals
the local slope of the channel cross-section, tanϕ = dD/dy, this term can also
be expressed in terms of the depth as dℓ/dy = (1 + (dD/dy)2)1/2. With this, we
find the momentum balance equation as

ρgSD − F ′ − τ
(
1 +D′2)1/2 = 0 , (2.3)

where the primes stand for derivatives with respect to y. This equation did not
require any assumption about the flow — it is equally valid for laminar and
turbulent flows.
The specifics of the flow determine how the momentum flux, F , is related to

other properties, such as the velocity or the shape of the channel. Ignoring the
momentum flux (F = 0), and assuming that the bed is nearly flat (D′ ≈ 0), we
recover the shallow-water approximation of equation 1.1:

τsw(y) = ρgSD(y) , (2.4)

where we used the subscript “sw” to specifically denote the stress in this approx-
imation. Our goal here is to go beyond this approximation, and estimate F to the
lowest non-trivial order, on a variable bed. We do this in the following section.

Focus on Fluids articles must not exceed this page length
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3. Flux of momentum in a turbulent flow

Due to the complicated nature of turbulent flows, it is challenging to connect
the macroscopic properties of the flow, such as the flux of momentum, F , to
the Navier-Stokes equations which describe the basic laws of fluid motion (Pope
2011). For this reason, here we will develop a simple model for the flux, F , without
explicit reference to the Navier-Stokes equations, and confirm it later in section 6
by comparison with measurements. We will start by giving examples of physical
mechanisms that can give rise to different fluxes (section 3.1). Afterwards, we will
use dimensional analysis to mathematically derive a first-order model for the flux
on a slowly varying bed under some generic assumptions about the flow (section
3.2).

3.1. Physical picture

Much of the phenomenology of turbulent flows can be derived from the conceptual
framework of “turbulent eddies” which transfer energy from large to small scales
through Kolmogorov’s energy cascade (Richardson 1920; Prandtl 1925; Taylor
1935). More recently, this physical picture was used to relate the turbulent energy
spectrum to macroscopic properties of the flow, such as the vertical velocity profile
and the friction coefficient (Gioia & Bombardelli 2001; Gioia & Chakraborty
2006; Gioia et al. 2010). If the motion of the eddies is random, they will induce
a diffusion of momentum across the stream with a diffusivity, De, proportional
to their velocity, V , and length-scale, L (De ∝ V L). These eddies mix the fluid
from different parts of the flow so that they can generate a flux of momentum, F ,
across the stream if the downstream velocity, u(y, z), varies throughout the flow,
as in figures 2 and 3. In figure 2, the bed is flat (D′ = 0), the flow is uniform in
the vertical (∂u/∂z = 0), while the depth-averaged velocity, U(y), varies across
the stream; in figure 3, the bed has a slope (D′ ̸= 0), the velocity, u(z), varies
along the vertical, while its depth-average is uniform across the stream (U ′ = 0).
We will now consider the flux, F , in these two configurations, assuming that the
variations of D(y) and U(y) across the stream are slow.
Let us first consider the example of figure 2. In this case, eddies of size L and

velocity V carry the downstream momentum across a vertical slice of the channel
located at y, mixing the fluid from y+L/2 with the fluid from y−L/2. The parcels
of fluid from y+L/2, therefore, carry about ρU(y+L/2) of momentum and cross
the vertical slice in the negative y direction, while those from y−L/2 carry about
ρU(y−L/2) of momentum and cross the section in the positive y direction. The
flux, F , from these eddies represents the net total amount of momentum that
crosses the vertical slice of height D per unit time, so it is about:

F ∼ ρDV [U (y − L/2)− U (y + L/2)] . (3.1)

If the downstream flow velocity, U , varies slowly across the channel, we can
approximate the difference in equation 3.1 as U (y − L/2)−U (y + L/2) ≈ −LU ′,
so that the flux generated by these eddies is approximately:

F ∼ ρDV LU ′ . (3.2)

Empirically, in wide channels with a rough bottom, eddies reach a size, L, com-
parable to the flow depth, D, since eddies much larger than this are suppressed
by friction at the bottom (Bouchez et al. 2010) — it matters little whether these
eddies rotate in the vertical, y-z, plane (as in figure 2), or in the horizontal,
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Figure 2: Momentum transfer by large eddies in a flow with a horizontal
velocity gradient, U ′, but a constant vertical velocity profile. This figure shows
eddies rotating in the vertical, y-z, plane, but the same analysis applies to those
rotating in the horizontal, x-y, plane. Lighter shades of blue indicate faster flow.
The largest eddy has a horizontal scale, L, comparable to the depth, D, and a

velocity V comparable to the frictional velocity, U∗ = C
1/2
f U . The downstream

flow velocity, U , varies slowly in the transverse direction from U(y − L/2) to
U(y +L/2) across the scale of the eddy. The eddy mixes the fluid of momentum
ρU(y − L/2) with the fluid of momentum ρU(y + L/2) across a vertical slice
(vertical dashed line). The flux of momentum integrated along this section is

proportional to F ∼ ρDV (U(y − L/2)− U(y + L/2)) (equation 3.1).

x-y, plane. According to Kolmogorov’s theory, the largest eddies in the flow
also move the fastest, so that their diffusivity, De ∝ LV , is the greatest. We
can, therefore, expect that these eddies are responsible for carrying most of
the momentum across the stream, and for setting the mixing length (Prandtl
1925). The flux of momentum induced by turbulence scales with the square of the
velocity fluctuations (Batchelor 1967), so that the stress, which balances the flux
of momentum into the channel’s bottom, should scale with the square of the eddy
velocity, τ ∼ ρV 2. Therefore, the velocity of the largest eddies should be of the
order of the frictional velocity U∗ =

√
τ/ρ. On the other hand, the stress is related

to the mean downstream velocity, U , through the empirical friction coefficient, Cf ,
as τ = ρCfU

2. Thus, the velocity, V , of the largest eddies, although much smaller,

is proportional to the downstream velocity, V ∼ C
1/2
f U . Using the scalings L ∼ D

and V ∼ C
1/2
f U in equation 3.2, we can write the flux, F , as

F ≈ −ΛρC
1/2
f D2

(
U2
)′

, (3.3)

where Λ is a positive, dimensionless number of order one, and the minus sign
ensures that the momentum is transferred from fast- to slow-flowing regions. The
parameter Λ controls the magnitude of the flux and we call it the dimensionless
diffusion parameter.
We now consider the example of figure 3. In this case, a flux of momentum

develops across the stream even though the depth-averaged velocity is uniform
(U(y) = const), due to a combination of a sloping bed (D′ ̸= 0) and a variable
vertical velocity profile (∂u/∂z ̸= 0). A non-constant vertical profile of velocity
means that some eddies will generate a flux of momentum, while the bed slope,
D′ ̸= 0, breaks the left-right symmetry and induces a horizontal velocity gradient,
∂u/∂y (figure 3a). If mixing is isotropic, the momentum flux across a vertical



7

u(z)

z
Wa te r  su r fa ce0

D1

D2

0 U

(a )

y1

y2
y

(b )

FF

Figure 3: Momentum transfer in a flow with a vertical velocity profile, u(z), and
a topography gradient, D′ < 0, but no horizontal gradient of the

depth-averaged velocity, U ′ = 0. (a) Vertical profiles of velocity at two locations
across the stream, y1 and y2. The profiles are arbitrarily assumed to be

quadratic, u(y, z) = 3
2
U
[
1− z2/D(y)2

]
. A horizontal velocity gradient develops

from the deeper to the shallower part of the flow, inducing a corresponding flux
of momentum across the stream, F . (b) Part of the channel corresponding to

panel (a). Lighter shades of blue indicate faster flow.

slice is proportional to this horizontal gradient, and the total flux, F , scales as,

F ∼ ρV
∫ 0

−D
[∂u/∂y] dz, where V is the velocity of the dominant eddies. Since

the horizontal velocity gradient is, in this case, generated by the sloping bed, to
first order it scales as ∂u/∂y ∼ UD′, and the flux, F , is therefore:

F ∼ ρV UDD′ . (3.4)

Using V ∼ C
1/2
f U , we find an approximate expression for the flux in this

configuration:

F ≈ −αΛρC
1/2
f U2

(
D2
)′

, (3.5)

where α is another dimensionless number of order one, and we kept Λ for later
convenience. This flux is proportional to the depth gradient,D′, so that it appears
to be induced by the bed topography. For this reason, we call α the “local-shape
parameter”. The minus sign in equation 3.5 means that when α is positive, the
flux is generated from the deeper to the shallower parts of the flow. If the vertical
profile of velocity, u(z), is top-heavy, meaning that the flow is faster near the free
surface than at the bottom, a horizontal velocity gradient will indeed develop
from deeper to shallower parts of the flow (figure 3). Therefore, positive values of
α indicate a top-heavy velocity profile, while α vanishes in the “plug flow” limit,
i.e. when the velocity is constant along the vertical, u(z) = const.
Equations 3.3 and 3.5 for the flux, F , have a similar form, only differing in the

position of the cross-stream derivative — in both cases, the flux is proportional
to D2 and to U2. The term D2 can be interpreted as a product of the depth,
D, of the vertical slice through which the transfer of momentum occurs and the
length-scale, L, of the dominant eddies, while the term U2 can be interpreted as
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a product of the eddy velocity, V , and the downstream velocity which carries the
momentum, U . In agreement with the discussion above, previous experimental
studies suggest that the diffusion parameter Λ is of order one. For example,
Okoye (1970) showed experimentally that the dimensionless eddy diffusivity,

De/(2C
1/2
f UD), analogous to our Λ, is of order one, varying between about 0.03

and 1.0. Although we also expect the local-shape parameter, α, to be of order
one, it likely vanishes as the flow becomes more and more turbulent, and its
velocity profile starts to resemble a vertically uniform “plug” flow. In appendix
A, we estimate the values of Λ and α in a standard model of turbulent diffusion,
assuming a logarithmic vertical profile of velocity. There, we find Λ ≈ 0.03, and
α vanishing logarithmically with the Reynolds number.
In addition to unsteady eddies, turbulent flows often develop long-lived, coher-

ent secondary currents (Znaien et al. 2009; Shih et al. 2016). In channel flows
with large aspect ratios, these secondary currents form an array of counter-
rotating cells which have length-scales comparable to the depth, and a transverse
velocity of the order of the frictional velocity (Tominaga et al. 1989; Chauvet 2014;
Blanckaert et al. 2010). Therefore, the scalings we introduced previously should
still hold for momentum transfer across these cells, even though the momentum
transfer on the scale of an individual cell is not diffusive. Thus, if D(y) and U(y)
vary slowly over the scale of a single cell, we expect equations 3.3 and 3.5 to
approximately capture the average transfer of momentum smoothed over several
cells, although they cannot be accurate at the scale of a single cell.

3.2. Dimensional analysis

In the previous section, we estimated the flux of momentum, F , in two specific
configurations of the flow based on physical reasoning. We will now derive a
generic, first-order expression for the flux, F , using dimensional analysis. To that
end, we will make the following broad assumptions about the turbulent flow:

(i) Inertial turbulent regime: Gravity, g, molecular viscosity, ν, and the bed
roughness, ks, do not explicitly change the flux, F . This is certainly not exactly
correct — molecular viscosity, ν, and the relative roughness of the bed, ks/D,
both affect the friction coefficient, which can affect the momentum transfer.
Nevertheless, we assume that this dependence is weak enough to remove g, ν,
and ks from the list of parameters that can affect the flux. We will later relax
this assumption by allowing the model parameters to weakly depend on g, ν, and
ks.
(ii) Single-layer: The depth-averaged downstream velocity, U , is sufficient to

characterise the vertical velocity profile of the flow. In other words, we assume
that the vertical velocity profile does not change its shape across the stream, so
that we do not need to keep track of higher-order moments of the velocity.
(iii) Locality: The flux, F , is locally related to the flow speed and depth. In

other words, the flux F (y) is a function of the local depth-averaged velocity,
U(y), depth, D(y), and their derivatives up to some finite order, U ′, D′, U ′′, D′′,
etc. However, we assume that it does not depend on the far-away parts of the
flow (such as a distant wall), nor on the integrated properties of the flow, such
as the total flow discharge.
(iv) Slow variation: Finally, we assume that the changes in D and U occur

over large scales, so that their higher-order derivatives are much smaller than the
lower-order ones, and the flux can be written as an expansion in terms of these
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derivatives. This is likely true in a channel with a large aspect ratio. Therefore,
we will neglect second- and higher-order derivatives when writing a model for F .
In this sense, our model is a first-order correction to the shallow-water theory.
Based on the above, our cross-stream flux of momentum, F , can only depend

on the fluid density, ρ, the local velocity, U(y), and depth, D(y), as well as their
derivatives up to some finite order, U ′, D′, U ′′, D′′, etc. The most general way to
construct a quantity with the units of flux (kg s−2) from the quantities above is

F = ρU2DΦ(D′, DU ′/U, ...), (3.6)

where Φ is an arbitrary dimensionless function of dimensionless parameters and
“...” stands for higher-order derivatives written in dimensionless form. This
equation states that the dimensionless flux, F/ρU 2D, can only depend on di-
mensionless variables, such as D′ and DU ′/U (Barenblatt et al. 1996). Since we
are looking for the lowest order model for F , we can expand the function Φ as
Φ ≈ c0 + c1D

′ + c2DU ′/U + ..., for some constants c0, c1, and c2. However, since
the flux is a directed quantity, it should also change sign if we mathematically flip
the orientation of the y-axis, F → −F as y → −y. The constant term, c0, does
not obey this symmetry, and, therefore, must vanish. To lowest order, therefore,

F ≈ −ρC
1/2
f Λ

[
D2(U2)′ + αU2(D2)′

]
, (3.7)

where Λ and α are dimensionless numbers. We included the term C
1/2
f in the

definition of Λ, as in section 3.1, for convenience. Even though we assumed
that the flux, F , does not depend on molecular viscosity, bed roughness, or the
integrated properties of the flow in order to reduce the number of parameters in
the dimensional analysis, we can somewhat relax this assumption and allow the
constants Cf , Λ, and α to weakly depend on these properties, as they likely do.
Equation 3.7 consists of two terms which correspond exactly to equations 3.3

and 3.5. Although the physical mechanisms we discussed in the previous section
are representative of these terms, equation 3.7 is a generic first-order expression
which does not depend on the detailed dynamics of the flow — only the values
of the parameters Cf , Λ, and α do. If eddies and recirculation cells of a size
comparable with the flow depth dominate the momentum transfer, we expect Λ
and α to be of order one, with α vanishing in the highly turbulent, “plug flow”
limit (section 3.1). On the other hand, wide recirculation cells or eddies much
larger than the flow depth, cannot be included in our model since they induce a
fundamentally non-local flux, violating one of our key assumptions. In appendix
A, we show that a standard model of turbulent diffusion satisfies equation 3.7.
In this sense, we may also call equation 3.7 a diffusive approximation.
Equation 3.7 can also be written in compact form:

F = −ρC
1/2
f ΛD2(1−α)

(
D2αU2

)′
. (3.8)

From here, we can see that the local-shape parameter α determines the part of
D2 inside the derivative. In this way, it controls the quantity that diffuses due to
the flux, F — if α = 0, it is the depth-averaged velocity, U , while if α = 1, it is
the depth-integrated momentum, DU .
Wark et al. (1990) proposed a model similar to equation 3.7. However, they

do not explicitly include the local-shape parameter, α, but rather mention two
alternative models — one in which the velocity, U , diffuses, and another one in
which it is the depth-integrated momentum DU (“unit flow” in their terminol-
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ogy). Therefore, they consider two cases corresponding to α = 0 and α = 1,
and state that it is unclear which one is better. Here we show that these cases
are not necessarily special, so that models with non-integer values of α may
also be appropriate within the same order of approximation. Besides Wark et al.
(1990), we are not aware of anyone else who explicitly considered this parameter.
Moreover, to our knowledge their model and its consequences have not been
carefully examined.

4. Stress on the channel bottom

In the previous section, we expressed the cross-stream flux of momentum, F , in
terms of the depth, D, and velocity, U (equation 3.7). In this section, we show
how we can use this result to find the stress, τ , on the channel’s bed.
As we mentioned in the previous section, the velocity in a turbulent flow is

usually related to the bed stress through the friction coefficient, Cf (Chézy 1775):

τ = ρCfU
2. (4.1)

The friction coefficient depends on the characteristics of the flow, such as the
Reynolds number and the bed roughness (Nikuradse 1933). The phenomenolog-
ical equation of Colebrook (1939) summarises this dependence in circular pipes,
and is often used to estimate the friction coefficient in other geometries for which
direct measurements are not available. According to this approximaiton, the
friction coefficient can be found as Cf = fD/8, where the Darcy friction factor,
fD, is the solution to:

1√
fD

= −2 log10

(
ks

3.7Rh

+
2.51

Re
√
fD

)
, (4.2)

where Re = UD/ν is the Reynolds number, Rh = A/P is the hydraulic radius of
the channel, equal to the ratio of the channel cross-sectional area, A, to its wetted
perimeter, P, and ks is the so-called “Nikuradse equivalent sand roughness”, a
parameter which measures the hydraulic roughness of the bed, and vanishes on
a smooth bed. The typical values of the friction coefficient, Cf , for experimental
flumes and large rivers range between 10−3 and 10−2 (Lajeunesse et al. 2010a).
Using equation 4.1 with our expression for the flux (equation 3.7), and assuming

the friction coefficient, Cf , is constant across the channel, we find the flux
expressed in terms of the stress:

F = −χ
[
D2τ ′ + α(D2)′τ

]
, (4.3)

where we introduced the diffusion parameter for the stress, χ ≡ ΛC
−1/2
f . For the

typical values of Cf we mentioned above, we expect this parameter to be about
χ ∼ 10.
Combining equation 4.3 with the momentum balance (equation 2.3), and

assuming χ is constant across the channel, we find a differential equation for
the stress:

χ
(
D2τ ′ + α(D2)′τ

)′ − τ
(
1 +D′2)1/2 + ρgSD = 0, (4.4)

For a given depth profile, D(y), and the downstream slope, S, equation 4.4 is
a linear, second order, ordinary differential equation for τ(y). We can further

Rapids articles must not exceed this page length
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simplify it by rescaling the lengths and stress as:

ỹ =
y

Rh

, D̃ =
D

Rh

, τ̃ =
τ

ρgSRh

. (4.5)

The equation for the stress in terms of these dimensionless variables becomes:

χ
(
D̃2τ̃ ′ + α(D̃2)′τ̃

)′
− τ̃

(
1 + D̃′2

)1/2
+ D̃ = 0, (4.6)

where the primes now stand for derivatives with respect to ỹ. This rescaling
ensures that the dimensionless stress averages to one over the entire channel
(⟨τ̃⟩ = 1), a result which readily follows from the integrated momentum balance
of equation 2.1.
Equation 4.6 contains two dimensionless parameters — the diffusion parameter

for the stress, χ, and the local-shape parameter, α. Converting from dimensionless
stress, τ̃(ỹ), to the physical one, τ(y), simply requires multiplying by a factor of
ρgSRh. Therefore, for a given channel geometry, the physical stress, τ , depends
only on the diffusion parameter, χ, and the local-shape parameter, α, which are
set by the details of the flow. Thus, the stress does not depend on the diffusion
parameter, Λ, and the friction coefficient, Cf , independently, but only on their

combination, χ = ΛC
−1/2
f .

Instead of writing equation 4.6 for the stress, we could have equally written an
equation for velocity by rewriting τ̃ = Ũ2:

χ

(
D̃2
(
Ũ2
)′

+ α
(
D̃2
)′
Ũ2

)′

− Ũ2
(
1 + D̃′2

)1/2
+ D̃ = 0, (4.7)

where Ũ = U
√
Cf/gSRh is the dimensionless flow velocity. Wark et al. (1990)

used precisely this model, although in dimensional form and without explicitly
mentioning α. Like the stress, the dimensionless velocity, Ũ , is determined by
two parameters, χ and α. However, to retrieve the physical velocity, U , we need
to multiply Ũ by a factor of

√
gSRh/Cf , which depends both on the channel

geometry (through S and Rh) and on the properties of the flow (through Cf ).
Although Cf can be estimated using, for example, the Colebrook equation, its
value is not certain in channels with irregular geometries, or when roughness is
not known. This makes comparing our model with stress measurements more
straightforward than comparing it with velocity measurements — to compare
with stress, we need to specify two parameters determined by the details of the
flow (χ and α), whereas we need to specify three (χ, α, and Cf ) to compare with
velocity. We will, therefore, mostly use the stress equation 4.6, and only refer to
the velocity equation 4.7 when needed.
The stress τ that results from equation 4.6 depends on the entire shape of the

channel. In this sense, τ is non-local, even though the flux, F , in equation 4.3
is locally related to τ and D. In appendix B, we show that when the depth and
velocity vary very slowly, or when the diffusion parameter is small, the stress
approximately depends only on the local depth of the channel and its derivatives.

4.1. Connection between turbulent and laminar flows

How much does a laminar channel flow resemble a turbulent one? Here, we show
that there exists a connection between these two cases, at least in the most basic,
diffusive approximation we discussed above.
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Figure 4: A rectangular channel with an aspect ratio of W/D = 5.

Devauchelle et al. (2022) showed that the cross-stream flux of momentum in a
straight channel with a laminar flow, Flam, is approximately:

Flam ≈ −1

3
(D2τ)′ . (4.8)

This flux has the same form as the turbulent flux in equation 4.3 with parameters
χ = 1/3 and α = 1. Therefore, despite the fact that the laminar flux is driven
by molecular diffusion while in the turbulent flow, it is driven by diffusion by the
largest eddies and recirculation cells, the stress on the bottom of each flow is,
to first-order, determined by the same equation 4.4. This similarity may not be
all that surprising, since our approximation implicitly assumes a turbulent flux
driven simply by gradients of velocity (section 3.1). However, the above analysis
shows that the equivalence between turbulent and laminar flows holds for stress
rather than velocity — turbulent and laminar velocities remain different, since
they scale differently with the stress.
The transition from the laminar to the turbulent stress can be described by

the change in parameters from χ = 1/3 to χ ∼ 10 and from α = 1 to α ≈ 0.
This result clarifies the extrapolation of the small-scale, laminar rivers to real,
turbulent ones (Lajeunesse et al. 2010b; Malverti et al. 2008).

5. Analytical solutions in idealised channels

In this section, we will solve equation 4.6 in several idealised channels to explore
the role of the channel geometry and the effect of the parameters χ and α on
the resulting distribution of the stress. This will allow us to bring to light several
phenomena that do not exist in the simple shallow-water theory of equation 1.1,
and, therefore, result from the transfer of momentum across the stream.

5.1. Rectangular channel

We first consider the case of a rectangular channel with a constant depth, D,
and a width, W (figure 4). In this case, the shallow-water theory (equation 1.1)
predicts a constant stress on the flat bottom. When the cross-stream flux of
momentum exists, however, some of the momentum will be transferred to the
vertical side-walls, thereby reducing the stress in their vicinity.
In a rectangular channel, equation 4.4, which assumes that the channel to-

pography varies slowly, becomes ill-defined on the side-walls where D′ → ±∞.
Therefore, we cannot hope to find the distribution of the stress along them.



13

However, the model is well-defined away from the walls, so that we can still use it
on the flat bottom if we take care to specify a boundary condition at the corners
where the side-walls meet the bottom (y = ±W/2).
This boundary condition is often overlooked in the literature, where it is simply

assumed that the velocity, U , vanishes at the corner. Formally, this is true — the
velocity of the full Navier-Stokes equations must vanish at all boundaries, so
that the proper boundary condition is always that of no-slip at the side-wall.
However, for highly turbulent flows, this occurs within a thin viscous boundary
layer where the velocity changes very rapidly. At the outer edge of this layer,
where the flow becomes properly turbulent, the velocity may be significant. Since
we can only hope to apply our model outside of this laminar boundary layer, it
may be appropriate to consider a non-vanishing slip velocity at the side-walls.
Therefore, we will not simply assume the no-slip condition at the side-walls, but
will, instead, consider a range of possible boundary conditions.
Although we cannot determine the exact distribution of the stress along the

side-walls, we can find its mean value, ⟨τ⟩w, from the momentum balance, equa-
tion 2.1. The flux of momentum into the side-wall, F (W/2), must be expended
by the friction at the wall, so that F (W/2) = D⟨τ⟩w. We can, therefore, express
the mean side-wall stress as

⟨τ⟩w =
F (W/2)

D
, (5.1)

which, combined with equation 4.3 and the fact the bottom is flat (D′ = 0), yields
⟨τ⟩w = −χDτ ′(W/2). We will use this average stress on the side-walls to define
the boundary condition at the corner. In particular, we assume that the bottom
stress at the corner is some fraction, θ, of the mean side-wall stress,

τ(±W/2) = θ⟨τ⟩w. (5.2)

This, therefore, defines a mixed boundary condition, wherein the stress at the
corner is related to its first derivative, τ(W/2) = −θχDτ ′(W/2). We will treat θ
as an unknown, adjustable parameter of the model.
The parameter α, which controls the importance of topography-induced flux of

momentum, becomes irrelevant in a rectangular channel since D′ = 0 everywhere
on the bottom. Therefore, in a rectangular channel, the stress is determined by
parameters χ and θ rather than χ and α.
The solution of equation 4.6 in a rectangular channel with the boundary

condition 5.2 is

τ(y) = ρgSD

(
1− cosh(y/λ)

cosh(W/2λ)
(
1 + θ

√
χ tanh(W/2λ)

)) , (5.3)

where the diffusion length-scale, λ, is given by

λ ≡ D
√
χ. (5.4)

In figure 5, we show how the boundary condition, θ, and the diffusion parameter,
χ, affect the stress distribution.
The values θ = 0 (figure 5a) and θ = 1 (figure 5b) have a physical interpretation.

When θ = 0, the stress at the corner vanishes, τ(±W/2) = 0, implying that the
depth-averaged velocity in our model also vanishes there, U(±W/2) = 0 (equation
4.1). This is consistent with a no-slip condition at the side-wall (u(z) = 0 along
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Figure 5: Solutions to equation 4.6 in the rectangular channel of figure 4 (aspect
ratio of W/D = 5). Different colored lines stand for different values of χ (the
ratio of the diffusion length to channel width, λ/W , for these solutions varies
between 0.11 and 0.6). The black dashed line stands for the shallow-water

theory (χ = 0). (a) The stress vanishes at the corner, τ(y = ±W/2) = 0 (θ = 0).
The dark blue line (χ = 1/3 and θ = 0) corresponds to the laminar flow. (b)

The stress at the corner equals the mean stress on the side-wall,
τ(y = ±W/2) = ⟨τ⟩w (θ = 1).

the entire side-wall). On the other hand, θ = 1 means that the stress at the corner
equals the mean stress on the side-wall. This has a simple physical interpretation
in the limit of large diffusion of momentum, χ → ∞ — in this limit, θ = 1 means
that the stress is distributed uniformly throughout the channel, including on the
side-walls. For all other values, θ ̸= 1, the side-walls are not treated equally to the
flat bottom when diffusion is high. The fact that the values θ = 0 and θ = 1 are
physically significant is the reason we defined the boundary condition through
equation 5.2.
The length-scale λ determines how far away from the side-walls the flow can

feel their presence. More than several λ away from the side-walls, the stress
approaches the shallow-water theory, τsw = ρgSD. The stress at the center
becomes significantly different from this value when the width is comparable to
the diffusion length,W ∼ λ. In other words, the effect of the side-walls propagates
throughout the entire channel if the aspect ratio of the channel is comparable to
the square root of the diffusion parameter for the stress, W/D ∼ √

χ. For large
values of χ (such that λ ≫ W ), the stress on the bottom becomes uniform.
To appreciate more clearly the role of the boundary condition parameter, θ,

we now show how the stress is partitioned between the bottom and the side-
walls. Moreover, since this partition is often estimated in experiments, this
discussion will be useful for comparison with measurements in section 6. In a
rectangular channel, momentum is supplied by gravity at a rate of ρgSDW ,
and it is transferred partly to the side-walls and partly to the channel bottom.
The fraction, φw, of the total momentum that is transferred to the side-walls is,
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Figure 6: The fraction of the stress, φw, carried by the side-walls of a
rectangular channel (equation 5.6) as a function of the channel’s aspect ratio,

W/D, for the case of (a) θ = 0 and (b) θ = 1. Different colors stand for different
values of χ. The dark blue line on panel (a) (χ = 1/3 and θ = 0) corresponds to

laminar flow. The dotted lines stand for the high diffusion limit (χ → ∞,
equation 5.7).

therefore:

φw =
2⟨τ⟩w
ρgSW

, (5.5)

where ⟨τ⟩w is the mean stress on the side-walls, and the factor 2 is due to the
fact that there are two side-walls. Our model predicts φw to be (equations 5.2
and 5.3):

φw =
2D

√
χ

W

tanh
(

W
2D

√
χ

)
1 + θ

√
χ tanh

(
W

2D
√
χ

) . (5.6)

In figure 6, we show the fraction, φw, as a function of the channel aspect ratio
for various values of χ and boundary conditions defined using θ = 0 (figure 6a)
and θ = 1 (figure 6b). In the shallow-water theory (χ → 0), all of the force is
carried by the bottom, so φw → 0. On the other hand, in the high-diffusion limit
(χ → ∞), this ratio becomes

φw =
1

1 + θ W
2D

, χ → ∞. (5.7)

As we mentioned above, when θ = 1, increasing χ uniformises the stress across
the entire channel (including the vertical side-walls), so that the momentum is
transferred to the bottom and to the side-walls in proportion to their length,
φw = 2D/(2D + W ). On the other hand, a no-slip boundary condition (θ = 0)
requires most of the momentum to be transferred to the side-walls, so that when
θ = 0 and χ → ∞, the side-walls carry all of the stress, φw = 1. In this way,
the departure from θ = 1 describes the asymmetry between the bottom and the
side-walls in the limit of high diffusion. Both θ = 0 (no-slip at the side-wall) and
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Figure 7: The water discharge, Q, normalised by the shallow-water discharge,
Qsw = WD

√
gSD/Cf , in rectangular channels as a function of the channel’s

aspect ratio, W/D, in the case of (a) θ = 0, and (b) θ = 1. Different colors
stand for different values of χ. The black dashed line corresponds to the

shallow-water theory (χ = 0), while the black dotted line corresponds to the
high-diffusion limit (χ → ∞, equation 5.8).

θ = 1 (uniform stress in the high diffusion limit) may seem intuitive and we will
show in section 6 that experimental data are not unanimous about this.
One of the most easily measured quantities is the total water discharge, Q,

which we can find in our model asQ =
∫
UDdy. The velocity, U , that follows from

equation 5.3 does not allow us to write this integral in a simple, closed form, so we
have to solve it numerically. In figure 7, we show the discharge, Q, normalised by
the discharge in the shallow-water theory of equation 1.1, Qsw = WD

√
gSD/Cf ,

for θ = 0 and θ = 1 and various values of χ as a function of the channel’s aspect
ratio. The effect of increasing the diffusion parameter, χ, is quite different for
different boundary conditions, θ = 0 and θ = 1. When θ = 0, increasing the
diffusion parameter decreases the discharge so that in the limit χ → ∞, there
is no flow (figure 7a). On the other hand, when θ = 1, increasing χ brings the
discharge closer and closer to the limit in which the velocity U =

√
gSRh/Cf is

uniform across the entire channel. In this limit, the discharge is:

Q

Qsw

=

√
W

2D +W
, (θ = 1, χ → ∞). (5.8)

Therefore, when θ = 1, the discharge curves look alike for any diffusion parameter
beyond χ ∼ 1 (figure 7b). The transfer of momentum makes the discharge, Q,
significantly smaller than the discharge in the shallow-water theory, Qsw, for
channels with a small aspect ratio, while, for a large aspect ratio, the shallow-
water theory becomes accurate.
Since α does not play a role in a rectangular channel, our model predicts that

turbulent and laminar flows lead to the same stress distribution of equation 5.3
(assuming the same values of χ and θ). In a laminar flow, the velocity must vanish
all along the vertical side-wall, so the appropriate condition is θ = 0 (no-slip),
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Figure 8: (a) An infinitely wide channel with a wavy bottom (equation 5.9),

with δ/D0 = 0.1 and D0k = 1/
√
2. (b) Stress distribution of equation 5.10 with

α = 0. Different colored lines stand for different values of χ. The black dashed
line stands for the shallow-water theory, τ(y) = ρgSD(y) (χ = 0), while the
black dotted line stands for the high diffusion limit (χ → ∞). (c) Stress

distribution of equation 5.10 with α = 1. The dark blue curve corresponds to
the laminar flow (χ = 1/3 and α = 1). The value χ = 1 is the critical value

beyond which the stress distribution inverts.

while the diffusion parameter is χ = 1/3 (section 4.1). The dark blue lines in
figures 5a and 6a show the stress profile and the fraction of the stress carried by
the side-wall in a laminar flow. Since the relationship between the stress and the
velocity is different for laminar and turbulent flows, the discharge, Q, cannot be
directly compared between these two cases.

5.2. Wavy bottom

In the rectangular channel of the previous section, the stress distribution was
independent of the local-shape parameter, α — this parameter only becomes
important in channels with variable depth. Here we will show that when α is
finite, the diffusion of momentum can make the stress higher in shallower parts
of the flow. In this way, momentum diffusion can invert one of the most basic
predictions of the shallow-water theory, according to which the stress is always
greater where the fluid is deeper.
To examine the role of α, we consider an infinitely wide channel with a wavy

bottom (figure 8a):

D = D0 + δ sin(ky) , (5.9)

whereD0 is the mean depth, while k and δ are the wavenumber and the magnitude
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of the depth perturbation. To first order in small δ/D0, the solution to our model
(equation 4.4) is:

τ = ρgSD0

[
1 +

1− 2αλ2k2

1 + λ2k2

δ

D0

sin(ky)

]
, (5.10)

where λ ≡ D0
√
χ is the diffusion length-scale that we already encountered in the

case of rectangular channels (equation 5.4). In figure 8, we show the solutions of
equation 5.10, for α = 0 and α = 1 and several values of χ.
The effect of momentum diffusion depends on the ratio of the diffusion length-

scale, λ, to the wavelength of the perturbation. When this ratio is small, λk ≪ 1,
we retrieve the shallow-water theory of equation 1.1. If the wavelength of the
perturbation is comparable to the diffusion length-scale, the effect of momentum
diffusion depends on the value of α. When α = 0 (figure 8b), momentum diffusion
simply reduces the variability of the stress across the channel, so that in the limit
of infinite diffusion, λk → ∞, the stress is uniformly spread across the channel
and equal to ρgSD0. Thus, the stress for α = 0 is greatest in the deepest parts
of the flow, regardless of the strength of momentum diffusion. Conversely, when
α = 1 (figure 8c), there exists a critical bed wavelength below which the stress
distribution becomes inverted — the stress becomes highest where the fluid is
shallowest. This happens when:

D0k >
1√
2αχ

. (5.11)

This inversion can occur for any α > 0. The limit of infinite diffusion (λk → ∞) in
this case does not correspond to a uniformly distributed stress across the channel
(black dotted line in figure 8c). Instead, it becomes uniform for a finite strength
of momentum diffusion, when equation 5.11 is an equality.
We can understand why this inversion happens by considering the flux written

in a compact form, F = −χD2(1−α) (τD2α)
′
(equation 4.3). The flux tends to

homogenise the quantity under the derivative, τD2α. In the limit of large diffusion,
the quantity under the derivative becomes nearly uniform throughout the channel,
τD2α → const., so that the stress scales as τ ∝ D−2α. Therefore, when momentum
diffusion is strong enough, the stress is inversely proportional to depth for positive
values of α. Relating the stress to velocity according to equation 4.1, this means
that when α > 0, the fluid may become the faster in shallower parts of the flow.
Such an inversion of the flow velocity should be readily apparent in an experiment.
The question of this stress inversion is important, since this mechanism may be

responsible for setting the instability length-scale for braiding rivers (Abramian
et al. 2019). This inversion in known to happen in the laminar flow (Devauchelle
et al. 2022), but it is unclear whether it also happens in turbulent flows. Strictly
speaking, our model is only valid when the depth varies slowly, so that its
predictions become questionable when λk ∼ 1. Unfortunately, we were not able
to find appropriate experiments in the literature to test this inversion.

5.3. Triangular channel

In the previous section, we showed that for positive values of α, the stress may
become inverted, increasing where the flow is shallower. Here we will show that
the same mechanism can make the stress in our model diverge at the channel’s
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Figure 9: (a) A triangular channel with a bank angle of ϕ ≈ 27◦. (b) and (c)
Dimensionless stress (τ̃) profiles in our model for different values of χ (different
colored lines) and α. The black dashed line is the shallow-water theory (χ = 0).
Panel (b) corresponds to α = 0, while panel (c) corresponds to α = 1. The dark
blue line in panel (c) (χ = 1/3 and α = 1) corresponds to the laminar flow in

our model, while the red dotted line corresponds to the unapproximated
laminar flow. The largest value of χ shown (χ = 20/9) corresponds to the

highest value for which the stress in our model does not diverge in the corners
of the above channel when α = 1 (equation 5.12).

banks, where the bed intersects the free surface. This divergence suggests that
our model fails in such cases, and should therefore be used with care.
We now solve equation 4.6 in a triangular channel (figure 9a). Although there

exist analytical solutions to our model in this configuration, the algebra is too
cumbersome to show here. We leave this derivation for appendix C, and, here,
we only discuss the results for α = 0 and α = 1.
The dimensionless stress profiles, τ̃(ỹ), are shown in figures 9b and c. The

solutions for α = 0 and α = 1 look quite different. When α = 0, the stress is
smooth and reaches a maximum at the center of the channel. As χ increases, it
simply becomes more evenly distributed across the channel. On the other hand,
when α = 1, the stress reaches a maximum somewhere off-center and has a kink
in the center. As χ increases in this case, the maximum of the stress moves more
and more towards the corners where the flow depth vanishes. When χ reaches a
critical value, the stress reaches its maximum at the corners, decreasing linearly
towards the center (light blue line in figure 9c). For even greater values of χ, the
stress diverges at the corners, and the theory, therefore, fails. In appendix C, we
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show that this happens when:(
Dmax

W

)2

>
1 +

√
1 + (4αχ)2

2(4αχ)2
, (5.12)

where Dmax is the channel depth at its center, and W is the total channel width.
This criterion is analogous to equation 5.11, and the divergence occurs for the
same reason as the stress inversion we discussed in section 5.2 — when α > 0,
a strong diffusion of momentum will make the stress diverge with depth as τ ∼
D−2α. Equation 5.12 shows that for any α > 0, a steep enough bank angle will
cause our theory to fail. Since this divergence does not happen for vanishing α,
setting α = 0 may be a useful practical choice for modelling purposes.
Laminar flow offers a benchmark for our model since it can be solved without

approximation by solving the Poisson equation, ∇2u = −gS/ν (appendix C.1),
and analogies with this equation were sometimes used to estimate the stress in
turbulent flows (figure 7.6 in Chow (1959)). The divergence of the stress at the
banks we discussed does not exist in the Poisson equation. Still, in the triangular
channel of figure 9, the solution to the Poisson equation closely matches our model
with χ = 1/3 and α = 1, except near the sharp corner at the center (red dotted
line in figure 9c), where the symmetries of the Poisson equation require the stress
to rapidly vanish (as in all sharp corners). Although our model is not well-suited
to treat the flow around such sharp corners, it nonetheless makes a sharp dip at
the center, correctly capturing the trend of the exact solution. We can conclude
that even when the bed topography varies quickly, our model predictions should
not be disregarded altogether, although one should be careful when using them.

5.4. Variable roughness

So far, we assumed that the friction coefficient, Cf , is constant. However, when
the roughness of the bed varies across the stream, the diffusion of momentum
induces a phenomenon which does not exist in the shallow-water theory — the
stress concentrates on the rough parts of the channel (figure 10a).
In the shallow-water theory (equation 1.1), the stress at each point simply

balances the input of momentum by gravity in the overlying fluid column, so that
variations of the channel roughness do not affect the stress. On the other hand, the
roughness affects the velocity through the friction coefficient, Cf , so that the flow
is slower over the rough parts of the channel (equation 4.1). Therefore, a gradient
of velocity develops from the smooth to the rough parts, even in the shallow-water
theory. A flux of momentum, F , will thus develop from the smooth to the rough
parts of the channel, increasing the stress over the rough and decreasing it over
the smooth parts.
Although the friction coefficient, Cf , is in reality determined by the details of

the flow, for simplicity, here we will assume that it is simply a function of the
local bed roughness. Accordingly, when the roughness changes discontinuously,
the stress on the bottom can also become discontinuous. However, the velocity, U ,
will remain continuous. To emphasise the fact that we are looking for a continuous
velocity when the roughness varies across the stream, we will solve our model in
terms of U :(

ΛC
1/2
f

(
D2
(
U2
)′
+ αU2

(
D2
)′))′ − CfU

2(1 +D′2)1/2 + gSD = 0, (5.13)

where we kept the diffusion parameter, Λ (equation 3.7), inside the derivative,
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Figure 10: Solutions to equation 5.13 on a flat bed with variable roughness —
the left half (ỹ < 0) is smooth, while the right half (ỹ > 0) is rough (brown line
in panel a). We are assuming that Cf adjusts instantaneously to bed roughness,
so that it is constant in two halves of the channel, with Cf,rough/Cf,smooth = 5.

We are assuming a constant diffusion parameter, Λ. Different blue lines
correspond to different values of Λ (the diffusion length scale on the rough side
varies between λ/D ≈ 0.25 for the dark blue curve and λ/D ≈ 2.5 for the light
blue curve). The black dashed line corresponds to the shallow-water theory. (a)

Dimensionless stress, τ/ρgSD. (b) Dimensionless velocity, U/
√
gSD.

since it may also vary. We note that, when the friction coefficient, Cf , varies
across the stream, it is not possible to collect Λ and Cf into a single parameter,
χ, by rewriting the momentum balance in terms of the stress, τ (even if Λ is
constant).
In figure 10, we show a solution to equation 5.13 on a flat bed on which the

roughness suddenly changes (assuming a constant diffusion parameter, Λ). The
stress develops a discontinuity at the point where the smooth and the rough parts
meet (figure 10a). Over the rough part, there is an excess of stress compared with
the shallow-water theory, while over the smooth part there is a deficit of stress. In
both regions, away from the discontinuity, the stress relaxes exponentially to the

shallow-water theory, τsw = ρgSD, over the diffusion length-scale λ = D
√
ΛC

−1/2
f

(the same one as in equation 5.4). The magnitude of the discontinuity does not
depend on the value of the diffusion parameter, Λ — around the junction, any
amount of momentum diffusion will uniformise the velocity, thereby creating a
jump in the stress on the rough part and a dip in the smooth part. The ratio of
the stresses on two sides of the junction equals the ratio of the friction coefficients,
τrough/τsmooth = Cf,rough/Cf,smooth. The excess of stress in the rough region creates
an excess of force, ∆F =

∫∞
0
(τ − τsw)dy = ∆τλ, where ∆τ = τrough − τsw is the

deviation from the shallow-water theory at the junction point. This excess of force
is proportional to the diffusion length-scale, λ. Strong cross-stream diffusion of
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χ Λ α θ (Seine) θ (experiments)

Laminar flow 1/3 None 1 0 0

Turbulent
flow

ΛC
−1/2
f 0.3 0 0 0.8

(1.3, 23.4) (0.07, 1.05) (−0.1, 0.1) (0, 0.1) (0.6, 1)

Table 1: Default model parameters. The values for the laminar flow correspond
to the approximation of Devauchelle et al. (2022) (section 4.1), while we suggest
a default value (top number) and the uncertainty (brackets) for each turbulent
flow parameter based on comparison with the data in section 6. The uncertainty

range for Λ roughly corresponds to range of best-fit values to all the
experiments of section 6. The default Λ is about the geometric mean of the
minimum and the maximum best-fit value. For the laminar flow, Λ is not

defined since χ is not related to the friction coefficient, Cf , as in the turbulent
case. The value for α is based on comparisons with the floodplain experiments
of Shiono & Knight (1991) (section 6.3). Since the data are inconclusive, we

give two values for the boundary condition, θ, for the rectangular channel flow
— one based on the comparison with the Seine river (section 6.1), and another
based on the comparison with the flume experiments (section 6.2). For the

laminar flow, θ = 0 always.

momentum, therefore, makes the flow pull significantly more on the rough parts
of the channel, an effect that the shallow-water theory cannot account for.
The velocity, U , continuously decreases from the smooth to the rough region

over a the same length-scale, λ (figure 10b). The gradient in velocity, therefore,
creates a flux of momentum from the smooth region to the rough one. In the
shallow-water theory, this decrease in U is discontinuous.

6. Comparison with experiments

We now test the predictions of the previous sections by comparing our model,
equation 4.6, against various measurements of stress and velocity in straight
channels with a turbulent flow. In Table 1, we summarise the values of our model
parameters (χ, Λ, α, and θ) that best fit these data. In the figures below, we
will show our model solutions using the default parameters from Table 1 —

χ = ΛC
−1/2
f , Λ = 0.3, α = 0, and θ = 0 (for the Seine river) or θ = 0.8 (for the

rectangular channel experiments). We chose these default parameters from the
range of best-fit values to conveniently represent all of the experiments — our
model with the default parameters of Table 1 reproduces all of the measurements
to within about 30%.
We start by discussing the Seine river measurements of Chauvet et al. (2014)

and the rectangular channel experiments reported in Knight et al. (1984). Then,
we consider the more complicated “floodplain” geometry of Shiono & Knight
(1991). Finally, we discuss the experiments of Blanckaert et al. (2010) with
variable roughness. We give additional experimental details in appendix D.
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Figure 11: Comparison with measurements in rectangular channels. The red
dots represent measurements. The blue lines represent our model with the

default values of model parameters from Table 1 (χ = ΛC
−1/2
f with Λ = 0.3;

since the bottom is flat, the value of the local-shape parameter, α, is irrelevant).
The blue shaded area corresponds to the uncertainty in Λ and θ from Table 1.
The black dashed lines represent the shallow-water theory. (a) Measurements of
the depth-averaged downstream velocity, U , in the Seine river by Chauvet et al.
(2014). We show our solution with Cf = 4× 10−3 and the default θ = 0 (Table
1). (b) Measurements by Knight et al. (1984) of the stress, τ , in a rectangular

flume with an aspect ratio of 7.73. We estimate Cf ≈ 2.8× 10−3 from
measurements of channel-averaged velocity and stress, and use the default

θ = 0.8 (Table 1).

6.1. The Seine river

We begin by comparing equation 5.3 with velocity measurements of Chauvet et al.
(2014) in the Seine river in Paris, France (figure 11a). In order to make the river
navigable throughout the year, the banks of the Seine were paved into vertical
walls where it crosses Paris. The river flows over bedrock, which is virtually flat.
Therefore, the channel of the Seine is nearly rectangular with an aspect ratio of
about 23.9. We give the details about the geometry of the Seine at the time and
the location of the measurements in appendix D.1.
In order to find the velocity, U , in our model we need to specify three parameters

— the friction coefficient, Cf , the diffusion parameter for the stress, χ, and the
boundary condition, θ. Allowing all these parameters to adjust, we find the best
fit for Cf ≈ 4.0±0.2×10−3, χ = 6.6±2.5 (Λ = 0.42±0.15), and θ ≈ −0.03±0.03
(we estimate the uncertainty by bootstrapping). Our model with these best-fit
parameters matches closely the measurements — the largest error is about 3%
of the mean velocity. In figure 11a, we show that our model with the default

parameters of Table 1 (χ = ΛC
−1/2
f , Cf ≈ 4 × 10−3, Λ = 0.3, and θ = 0) also

reproduces the data well — maximum error is about 11% of the mean velocity.
Consistent with our discussion above, the measurements on the Seine suggest

a Λ of order one. The best-fit value of Cf is also reasonable — Chézy (1775)
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estimated it to be about Cf ≈ 5× 10−3, while the Colebrook equation (equation
4.2) yields our best-fit value assuming an equivalent sand roughness, ks, of the
order of several centimetres, a sensible value for the Seine. The measurements
above suggest a no-slip condition at the side-walls, which, in our model, translates
to a vanishing stress at the corners (θ ≈ 0).

6.2. Rectangular flumes

Next, we turn our attention to the experiments of Knight et al. (1984) who
measured the distribution of the stress across smooth rectangular channels with
varying aspect ratios and Reynolds numbers. We provide more details about their
experiments in appendix D.2.
In figure 11b, we show an example of their measurements of the stress, τ ,

in a single channel, and compare them to our model. Since the stress rather
than velocity is measured, we do not need to specify the friction coefficient, Cf

(section 4) — our model for τ in a rectangular channel is fully determined by

specifying χ and θ. Nevertheless, in order to use our scaling, χ = ΛC
−1/2
f , we

estimate Cf using the reported measurements of the channel-averaged velocity,
⟨U⟩, and the mean stress, ⟨τ⟩, as Cf = ⟨τ⟩/ρ⟨U⟩2. For the experiment in figure
11b, this yields Cf ≈ 2.8×10−3, a value consistent with an estimate based on the
Colebrook equation (equation 4.2) assuming a smooth channel with a Reynolds
number Re = ⟨U⟩D/ν. Allowing Λ and θ to adjust, we find the best fit with
Λ = 0.22 ± 0.05, and θ = 0.73 ± 0.1 (for other experiments reported in Knight
et al. (1984), the best-fit Λ ranges from 0.07 ± 0.01 to 0.22 ± 0.05, and the
best-fit θ from 0.7 ± 0.08 to 0.85 ± 0.15). These best-fit solutions reproduce the
measurements very well — the error is at most 9% of the average stress (for other
experiments it is between 5% and 9%). In figure 11b, we show that our default
solution (Λ = 0.3 and θ = 0.8) also captures the data well (maximum error is
about 16% of the mean stress).
Knight et al. (1984) reported the fraction of momentum transferred to the

side-walls, φw, for each of their 25 experiments and compared it with 35 other
experiments performed in smooth rectangular flumes in studies by Cruff (1965),
Ghosh & Roy (1970), Kartha & Leutheusser (1970), Knight & Macdonald (1979),
Myers (1978), and Noutsopoulos & Hadjipanos (1982). The fraction φw for all of
these studies approximately falls onto a single curve as a function of the channel’s
aspect ratio (figure 12a). Allowing Λ and θ to vary, we find the best fit with
Λ ≈ 0.14 ± 0.07 and θ ≈ 0.88 ± 0.1, which reproduces the data well (the mean
error is about 2%). The blue line in figure 12a shows that our model with default
parameters (Λ = 0.3 and θ = 0.8) also falls close to the measurements (the
mean error is about 4%). Moreover, the limit of uniform stress across the channel
(χ → ∞ and θ = 1, equation 5.7) also explains the data well (black dotted line in
figure 12a). In fact, the data for φw are consistent with our model for any θ ∼ 1,
and χ greater than about χ ∼ 1.
Although we find good agreement between predicted and measured stress in all

of the experiments, measuring stress directly is difficult. For this reason, we also
test our model against the measurements of water discharge, a quantity which is
easy to measure. In figure 12b, we show that normalising the water discharge, Q,
by its value in the shallow-water theory, Qsw = UswDW , where Usw =

√
gSD/Cf ,

collapses all of the data points of Knight et al. (1984) onto a single curve as a
function of the channel aspect ratio. Here, we assumed that Cf = 2.8× 10−3, the
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Figure 12: (a) The fraction of momentum transferred to channel side-walls, φw

(equation 5.6), and (b) the normalised water discharge, Q/Qsw, as a function of
the aspect ratio. We assume the friction coefficient Cf = 2.8× 10−3, as in figure
11b. The blue lines correspond to our model with default parameters of Table 1

(Λ = 0.3 and θ = 0.8), while the blue shaded area corresponds to the
uncertainty in these parameters. The red dots in panel (a) represent a collection
of 60 experiments by various authors reported in Knight et al. (1984), while the
red dots in panel (b) represent 25 experiments performed by Knight et al. (1984)
themselves. The black dotted lines correspond to a uniform stress across the

entire channel (χ → ∞ and θ = 1, equations 5.7 and 5.8). The horizontal black
dashed line in panel (b) corresponds to the shallow-water prediction, Q = Qsw.

same as in the experiment of figure 11b. Allowing Λ and θ to vary, we find the best
fit with Λ = 0.06±0.03 and θ = 0.8±0.1 which reproduces the data with at most
7% error. Figure 12b shows that our default model (Λ = 0.3 and θ = 0.8) also
reproduces the data well (maximum error is 11%). Again, the data are consistent
with the limit of uniform stress (χ → ∞ and θ = 1, equation 5.8), so that our
model with any θ ∼ 1 and χ ≳ 1 is compatible with the measurements. Unlike φw,
which is a statement about the stress, the water discharge is a statement about
velocities. Figure 12b, therefore, suggests that the velocity is close to uniform
across the channel.
Although Λ in these experiments is smaller than in the Seine (the best fits range

from 0.07 to 0.22), it is still of order one, and our default value (Λ = 0.3) still
explains the data well. However, all of the experiments above strongly suggest a
boundary condition specified through θ of order one, in stark contrast with the
no-slip condition we found for the Seine (section 6.1). At this point, it is unclear
why this difference exists.

6.3. Floodplain

The experiments presented above did not allow us to constrain the local-shape
parameter, α. To do this, we now consider the flow in a channel with variable
depth across the stream. We are unaware of any experiments in the literature
that were performed in channels with slowly varying bottom topography and no
sharp corners, which would conform with our model’s assumptions, and would,
therefore, be ideal for this study. However, many previous studies considered the
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Figure 13: (a) Cross-section of one half of the symmetric “floodplain” channel
used by Shiono & Knight (1991) with the depths of the main channel and the
floodplain Dmc ≈ 19.8 cm and Dfp ≈ 4.8 cm. (b) Measurements (red circles) of

the stress, τ , in the channel above. The solid blue line is the solution to
equation 5.13 assuming α = 0, Λ = 0.3, and Cf estimated from the Colebrook
equation using an approximated Reynolds number Re(y) = Usw(y)D(y)/ν,

where Usw(y) =
√

gSD(y)/Cf,def and Cf,def = 2× 10−3. The blue shading
corresponds to uncertainty in Λ from Table 1. The blue dotted line corresponds
to α = 0.3 and Λ = 0.3. The black dashed line is the shallow-water prediction.
(c) The depth-averaged velocity, U , with the same notation as in panel (b). (d)
Estimates of the friction coefficient, Cf The red circles are estimates using the
stress and velocity measurements, Cf (y) = τ(y)/ρU2(y). The black dotted line
is the estimate based on the Colebrook equation (equation 4.2) assuming a
smooth channel and a local Reynolds number, Re(y) = U(y)D(y)/ν. This
equation predicts a higher friction coefficient in the floodplain, where the

Reynolds number is lower, and a divergence near the right corner of the channel
where the Reynolds number vanishes.
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flow in the so-called floodplain geometry (figure 13a). Such a configuration was
designed to mimic the flow in rivers during flooding, and consists of a deep and
relatively narrow main channel joined with a wide and shallow “floodplain”. Al-
though many models were developed that accurately estimate the stage-discharge
relations in this geometry, i.e. how the water level varies with total water discharge
(Bousmar & Zech 1999; Martin-Vide & Moreta 2008; Proust et al. 2009; Kaddi
et al. 2022), they typically payed little attention to the detailed distribution of
the stress across the banks between the main channel and the floodplain. Yet, in
this geometry, our parameter α only plays a direct role on these banks, so, unlike
most previous studies, we will pay special attention to this transitional region
between the main channel and the floodplain.

Here we consider the experiments of Shiono & Knight (1991) in a symmetric
floodplain channel (figure 13a). The water level changed from one experiment to
the next, so that the flow depth in the main channel, Dmc, and in the floodplain,
Dfp, varied. The main channel and the floodplain were connected by banks of
unit slope (D′ = ±1), and the floodplain was connected to the water surface
by banks of the same slope. In this channel, Shiono & Knight (1991) measured
both the stress, τ(y) (figure 13b), and the depth-averaged velocity, U(y) (figure
13c), using independent methods (appendix D.3). We note that bank slopes of
D′ = ±1 are not really small so that we consider these experiments only because
we lack a more appropriate alternative.

We start by considering the friction coefficient, Cf . Since the Reynolds number
is larger in the deep main channel than in the shallow floodplain, Cf is lower in
the main channel than in the floodplain. We can estimate the friction coefficient
at each point across the stream directly from the measurements of the stress and
velocity as Cf (y) = τ(y)/ρU2(y) (figure 13d). We find that Cf ≈ 2 × 10−3 in
the main channel for all experiments, while it varies in the floodplain from one
experiment to the other. This variability of Cf across the stream is well-captured
by the Colebrook equation (equation 4.2) assuming a smooth channel (ks/D = 0),
and a local Reynolds number, Re(y) = U(y)D(y)/ν (black dotted line in figure
13d).

To compute the stress, τ , and the velocity, U , from our model when the
friction coefficient varies across the stream, we need to solve equation 5.13.
We supply our model with the friction coefficient Cf (y) estimated using the
Colebrook equation with a local Reynolds number Re(y) = Usw(y)D(y)/ν, where
Usw(y) =

√
gSD(y)/Cf,def is the shallow-water velocity and Cf,def = 2 × 10−3 is

a default friction coefficient which we take to be that of the main channel. This
rough estimate of the Reynolds number is sufficient, since Cf in the Colebrook
equation depends only weakly on the Reynolds number — using twice the value of
Cf,def , the Colebrook equation yields only about 9% higher Cf in the floodplain,
which corresponds to a floodplain velocity only about 4% smaller (and similarly in
the main channel). Finally, we assume that the parameters Λ and α are constant.
Therefore, besides the depth profile, D(y), our model in this case requires three
parameters — Cf,def , Λ, and α.

The solutions to our model here are not as accurate as in the rectangular
channels of the previous two sections. For this reason, it is not clear how to
define the best fit to the data — we may accurately reproduce the data in the
main channel, in the floodplain, or in the transition region, but not all three at the
same time (focusing only on the main channel yields the best-fit Λ from Λ ≈ 0.48
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to Λ ≈ 1.05 depending on the experiment, regardless of α). Therefore, we do
not attempt to show the best-fit solutions, and, instead, we simply compare our
model with the default diffusion parameter (Λ = 0.3) and two different values of
α: α = 0 and α = 0.3 (figures 13b and c).
In the main channel and the floodplain, the solutions with α = 0 and α = 0.3

behave very similarly and reproduce the data equally well. The two solutions differ
significantly only in the transition region. They both show a peak in the stress
which is not observed in the data, but this peak is more pronounced for α = 0.3.
When α = 0, this peak is caused by the rapidly changing friction coefficient in the
transition region, while for α > 0, it is caused by the bed topography itself, and
would remain even for a constant friction coefficient. Using a negative α could
remove this peak of the stress, but would, at the same time, make the stress
change more abruptly from the main channel to the floodplain, unlike what we
see in the data. The solution with α = 0 shows no peak in the velocity, consistent
with the measurements, while α = 0.3 still shows a small peak. For these reasons,
our model conforms with the data only for small (positive or negative) values of
α, so, for simplicity, we set α = 0 as our default parameter.
In the floodplain, our solution quickly converges to the shallow-water predic-

tion, while the measured stress and velocity remain about 20% above it — a
modest difference that our model cannot account for. This discrepancy can either
be the result of a slight bias in the measurements, or, as suggested by Shiono &
Knight (1991), caused by a real feature of the flow such as a wide recirculation
cell that spans the floodplain or large eddies that exist in the horizontal x-z plane.
These features, which are normally suppressed by the bottom friction in rivers,
may play a significant role in smooth channels such as this one.

6.4. Variable roughness

Finally, we test the predictions of section 5.4 for a bed with variable roughness
by comparing our model with the experiments of Blanckaert et al. (2010). They
performed high-precision measurements of velocity in half-trapezoidal channels
(figure 14a) in which the bottom of the channel had a fixed roughness while the
right, sloping bank was either smoother, as rough, or rougher than the bottom.
They report Cf ≈ 5.3 × 10−3 for the bottom based on direct measurements of
stress and velocity, and we use the Colebrook equation to estimate Cf ≈ 2.4×10−3

for the deepest part of the smooth bank, and Cf ≈ 1.9 × 10−2 for the deepest
part of the rough bank (on the sloping bank, Cf increases as the bank becomes
shallower). We give the details of these experiments in appendix D.4.
We show the estimates of Blanckaert et al. (2010) for the stress in figures

14b and c. As predicted in section 5.4, the stress develops a discontinuity at
the junction between the bed and the banks. If the bank is smoother than the
flat bottom, the stress on the bank suddenly decreases, while a rough bank
makes the stress exceptionally high on the bank, but, also, exceptionally low
on the bottom near the junction point. We solve equation 5.13 using the default
parameters (Λ = 0.3, α = 0, and θ = 0.8 on the left vertical side-wall), and
using the Colebrook equation (equation 4.2) to estimate Cf (y) as a function
of the local Reynolds number approximated as Re(y) = UswD(y)/ν (where
Usw =

√
gSD(y)/Cf,def and Cf,def = 5.3 × 10−3), and the relative roughness,

ks(y)/Rh, where ks(y) assumes different values on the bottom and the banks.
This solution reproduces the measurements qualitatively well — it captures both
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Figure 14: (a) A channel of Blanckaert et al. (2010) with a bank angle of 30◦.
Banks were coated with different material so that the bank roughness was less
than, equal to, or greater than the roughness of the flat bottom in different

experiments. The friction coefficient is Cf ≈ 5.3× 10−3 on the bottom, while it
varies on the banks. (b) Measurements (red circles) of the stress, τ , in the

channel above with smooth banks. The blue line is the solution to equation 5.13
assuming default parameters Λ = 0.3, α = 0, and θ = 0.8 on the left vertical
side-wall, and Cf estimated using the Colebrook equation. The blue shading
corresponds to the uncertainty in Λ and θ (Table 1). The black dashed line

corresponds to the shallow-water prediction. The downstream slope is
S ≈ 5.5× 10−4. (b) A rough bank experiment. The notation is the same as

above. The downstream slope is S ≈ 7.6× 10−4.

the drop in the stress in the case of the smooth bank and its jump in the case
of the rough bank. The value of Λ does not affect the magnitude of the jump in
the stress — it only affects the shape of the stress curves. We find the best fit
with Λ ≈ 0.18 for the smooth bank experiment and Λ ≈ 0.31 for the rough bank
experiment, close to our default value.
Even though our model reproduces the measurements qualitatively well, there

are still significant deviations. The measurements show strong variability around
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our solutions on scales comparable to the channel depth. This variability is of
the same order as the deviation of our theory from the shallow-water prediction,
and is, therefore, not negligible. It is likely that this is due to strong recirculation
cells. This is an effect that we cannot hope to capture with our model on the
scale of individual cells — our model can only give the stress smoothed out over
several such cells.

6.5. Summary of model parameters

In summary, we find that our model reproduces most of the observations. The
friction coefficient, Cf , is well-captured by the Colebrook equation (equation 4.2).
The best-fit Λ varied from one experiment to another but was always of order
one. The lowest best-fit value we found was Λ = 0.07 for the rectangular flume
of Knight et al. (1984) with the smallest aspect ratio (W/D ≈ 2), while the
largest was Λ ≈ 1.05 in the main channel of the floodplain experiment of Shiono
& Knight (1991) with the smallest flow depth (Dmc ≈ 17 cm). We chose our
default value (Λ = 0.3) to be between these two extremes. Together with our

estimates of Cf , this yields the diffusion parameter for the stress, χ = ΛC
−1/2
f ,

between χ ≈ 1.3 and χ ≈ 23.4. The values of Λ we found here are compatible
with previous estimates — Okoye (1970) tracked tracer dispersion in various
experiments and field studies, and estimated the effective eddy diffusivity, De, to
be between De ≈ 0.07U∗D and De ≈ 2.0U∗D. These measurements imply that
our parameter Λ = De/2U

∗D lies in the range between [0.03, 1.0], consistent with
our present estimates.
Experimental evidence suggests that α is small — significant positive values of

α lead to peaks in the stress that are not observed in the floodplain experiments
of Shiono & Knight (1991), while significant negative values lead to an abrupt
transition of the stress from the main channel to the floodplain which is, again,
inconsistent with measurements. Theoretical arguments also suggest a small α
for highly turbulent flows — the model of turbulent diffusion of appendix A
suggests that α decays logarithmically with the Reynolds number, as the velocity
profile starts to resemble a vertically-uniform “plug” flow. For these reasons, we
suggest the default value α = 0 with a tentative uncertainty range around zero,
α ∈ (−0.1, 0.1). Nevertheless, we note that care should be taken when dealing
with flows at lower Reynolds numbers which do not resemble a “plug” flow —
approaching the laminar regime, the values of α should approach α = 1.
In rectangular channels, it is necessary to prescribe a boundary condition, θ,

at the vertical side-wall. Measurements on the Seine suggest a no-slip boundary
condition (θ ≈ 0) and do not support θ greater than θ ∼ 0.1. On the other
hand, rectangular flume experiments suggest θ of order one. Depending on the
experiment, the best-fit values range from θ ≈ 0.6 to θ ≈ 1, and we take the
mid-value (θ = 0.8) to be our default. We currently do not understand what
causes this significant difference between the natural channel of the Seine and
the experimental flumes.
Using Re = 105 and Cf = 10−3 in the model of turbulent diffusion of appendix

A, we find Λ ≈ 0.03 and α ≈ 0.17 (equation A11). The value of Λ in this
model is lower than our observed values, while the value of α is too large to
be supported by the data. This suggests that, although the model of turbulent
diffusion captures many qualitative features of turbulent momentum transfer, it
is not quantitatively accurate. We note that Λ ≈ 0.03 corresponds to the lowest
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value measured by Okoye (1970), who hypothesised that this is the theoretical
lower bound.

6.6. Validity of model assumptions in the experiments

We derived our model under four assumptions: (i) the transfer of momentum
across the stream does not depend on the gravity, g, viscosity, ν, and the bed
roughness, ks, (ii) the vertical profile of velocity does not change shape across the
stream, (iii) the flux of momentum, F , is locally related to the flow depth and
velocity, and (iv) the depth and velocity vary slowly across the stream. None of
these assumptions were exactly satisfied in the experiments we considered.

The flux in our model depends on the Reynolds number and the bed roughness
through the friction coefficient, although it does so only weakly. This violates the
first assumption of our model, and we partly took it into account by allowing Cf

to vary according to the Colebrook equation.

Chauvet (2014) measured the vertical profiles of velocity at different locations
in the Seine. Based on their measurements, we estimate that the contribution
to the flux, F , due to the changing shape of the vertical velocity profile is
likely more than an order of magnitude smaller than the contribution due to
the velocity gradient, Uσ̃′

U/U
′ ∼ 0.04, where σ̃U = σU/U is the dimensionless

standard deviation of the velocity profile which characterises its shape. This is
consistent with our second assumption above, but we note that variations of the
profile’s shape likely become significant near the corners where the bed intersects
the free surface, especially when α > 0 and our model diverges (section 5.3).

The non-local contributions to the flux generated two notable features in the
data that we could not reproduce: (i) the large fluctuations of the stress in the
experiments of Blanckaert et al. (2010) on the scale of the flow depth, probably
related to recirculation cells, and (ii) the slight but consistent underestimate of
the stress in the floodplain region in the experiments of Shiono & Knight (1991),
possibly caused by large, horizontal eddies or recirculation cells. These features
contributed to about 20% error in our model, but they may become weaker in
natural, irregular channels with a rough bed (Blanckaert et al. 2010).

Finally, none of the experiments we considered really had a slowly varying
topography throughout the channel — they all contained sharp corners or steep
banks. The fact that the experiments of Shiono & Knight (1991) had banks
with D′ = 1, means that the higher-order terms in the flux (for example, those
proportional to D′2) are of a similar order of magnitude to the one we considered.
This could explain why our model produced a small peak of the stress between
the main channel and the floodplain, which was not observed by Shiono & Knight
(1991).

Despite these inconsistencies, most of the data fell within the uncertainty
bounds of our model, while our default parameters (Table 1) reproduced the
data to within about 30%. Our model always provided a significant improvement
to the shallow-water approximation. The data we considered cover about three
orders of magnitude in Reynolds number (from about 104 for some rectangular
flumes to about 7×106 for the Seine), and include channels of varying shape with
smooth or rough bed, as well as those with variable roughness. These reasons
suggest that the model we presented here is reasonable.
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7. Conclusions

In this paper, we explored in detail a model for the steady-state distribution of
the stress generated by a turbulent flow in a straight channel with an arbitrary,
albeit slowly varying, bottom topography. This model is a simple linear, ordinary
differential equation for the stress which assumes that eddies and recirculation
cells of a size comparable to the channel depth carry most of the momentum across
the stream. It assumes that the flow depth and velocity vary slowly relative to
the size of the dominant eddies or recirculation cells — in this case, momentum
transfer across the stream becomes diffusive, driven by simple gradients of time-
averaged velocity.
Our model contains two dimensionless parameters — the diffusion parameter

for the stress, χ, equal to about the ratio of the dominant eddy velocity to
the downstream velocity, and the local-shape parameter, α, which arises due to
horizontal velocity gradients induced by the variation of the flow depth. Assuming
that dominant eddies move at roughly the frictional velocity, we estimated that
the diffusion parameter is of the order of the inverse square root of the friction

coefficient, χ = ΛC
−1/2
f . On the other hand, assuming a homogeneous turbulence,

we suggested the local-shape parameter, α, vanishes as the flow becomes more
and more turbulent and the vertical profile of velocity becomes close to uniform.
When comparing our model to various experimental and natural flows, we found
that Λ = 0.3 and α = 0 reproduced all of these diverse measurements to within
about 30%.
This model follows from dimensional analysis under generic assumptions about

the flow, such as the locality of the cross-stream flux of momentum and the fixed
shape of the vertical velocity profile. As a first-order, diffusive approximation,
it is equally valid for turbulent and laminar flows (which is obtained by setting
the parameters to α = 1 and χ = 1/3). This suggests that it may be possible to
describe other types of flows, such as the non-Newtonian flow of ice, by simply
adjusting these parameters.
We developed this model with natural rivers in mind. As was proposed by

Parker (1978b), and demonstrated experimentally by Popović et al. (2021) in the
case of laminar laboratory rivers, the transfer of momentum across the stream
is crucial to the stability of an alluvial river that transports sediment. The
present model suggests that it may be possible to understand equilibrium shape
of alluvial, turbulent rivers as simply as in laminar ones, at least to first-order.

Appendix A. Turbulent diffusion

In this section, we will show how equation 3.7 arises explicitly in a specific
model of turbulent diffusion. We will use this to demonstrate how our heuristic
arguments work in practice, and calculate the parameters Λ and α.
In the model of turbulent diffusion, like in a laminar flow, the momentum

diffuses at a rate proportional to the local velocity gradient, ρDe∇u. Unlike the
molecular viscosity, however, the turbulent diffusivity, De, varies throughout the
flow because the properties of the eddies that carry the momentum differ near a
channel’s bottom and far away from it — De is generally highest near the center
of the flow, where the turbulent eddies are the largest and move at the greatest
velocities. Over a flat surface, the turbulent diffusivity, De, usually develops a
parabolic vertical profile which vanishes at the bottom and at the surface (Nezu
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& Nakagawa 1993):

De = −D0

z

D

(
1 +

z

D

)
, (A 1)

where D0 is the turbulent diffusivity scale, and the minus sign ensures that the
diffusivity is positive (z ⩽ 0). Empirical studies show that the turbulent diffusivity
scale is about (Nezu & Nakagawa 1993):

D0 ≈ κU∗D , (A 2)

where κ ≈ 0.4 is the Von Kármán constant and U∗ is the frictional velocity.
Equation A2 reflects our remark in section 3.1 that turbulent diffusivity is
proportional to the size (of the order of D) and to the velocity (of the order
of U∗) of the largest eddies. For highly turbulent flows, the parabolic diffusivity
profile (equation A1) corresponds to a logarithmic velocity profile (Schlichting &
Gersten 2000):

u+ =
1

κ
ln z+ + C+ , (A 3)

where u+ ≡ u(z)/U∗ is the dimensionless velocity, z+ ≡ (D + z)U∗/ν is the
dimensionless vertical coordinate, and C+ is a constant equal to C+ ≈ 5 in
channels with smooth walls. The flow is fully turbulent when z+ ≳ 70, while for
z+ ≲ 5 it is laminar. Typically, there also exists an “outer-layer wake” near the
free surface where the velocity deviates from the logarithmic law of equation A3.
Here, we will neglect the part of the flow below the turbulent layer (for z+ ≲ 70)
as well as the outer-layer wake. We will consider that the dimensionless depth is
much greater than one, D+ ≡ DU∗/ν ≫ 1, but we will not immediately ignore
the terms proportional to its logarithm, lnD+.
We can find the turbulent diffusive flux of momentum, F , in this approximation

by integrating ρDe∇u over a vertical slice:

F = −ρ

∫ 0

−D+z+
0 ν/U∗

De

∂u

∂y
dz , (A 4)

where z+0 ≈ 70 is the value of z+ at the lower end of the turbulent layer. Using
the diffusivity and velocity profiles of equations A 1 and A3, neglecting terms
of order 1/D+ but retaining those proportional to lnD+, and after considerable
amount of straightforward algebra, we find the flux in equation A4:

F = −ρD0 [U
′DI1 + UD′I2] , (A 5)

where, in the limit we are considering (D+ ≫ 1 and ln(D+) ∼ 10), the prefactors
I1 and I2 are

I1 =
1

6
− 5

36 (lnD+ + κC+)
+O

(
1

D+

)
, (A 6)

I2 =
1

3 (lnD+ + κC+)
+

5

36 (lnD+ + κC+)
2 +O

(
1

D+

)
. (A 7)

The terms U ′ and D′ both arise from taking the cross-stream derivative of the

velocity, ∂u/∂y. Expressing the frictional velocity as U∗ = C
1/2
f U , we find the

diffusivity scaleD0 = κC
1/2
f UD. Using this and reorganising the terms in equation
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A5, we get

F = −ρC
1/2
f Λ

[(
U2
)′
D2 + αU2

(
D2
)′]

, (A 8)

where the diffusion parameter, Λ, and the local-shape parameter, α, are

Λ =
κ

12

(
1− 5

6 (lnD+ + κC+)

)
+O

(
1

D+

)
, (A 9)

α =
2

lnD+ + κC+

lnD+ + κC+ − 5/12

lnD+ + κC+ − 10/12
+O

(
1

D+

)
. (A 10)

We, thus, find the expression 3.7 for the flux, F , in this model of turbulent
diffusion. For highly turbulent fluids, the logarithms lnD+ also become large, so,
to leading order in large lnD+, we find:

Λ ≈ κ

12
, α ≈ 2

ln
(
ReC

1/2
f

) , (A 11)

where we used U∗ = C
1/2
f U to express D+ = ReC

1/2
f . Therefore, Λ is a constant of

order one (Λ ≈ 0.03), while α vanishes logarithmically with the Reynolds number.
Equation A8 holds in the model of turbulent diffusion for any shape of vertical

profiles of velocity and diffusivity so long as the diffusivity scales as De ∝ UD —
logarithmic velocity and parabolic diffusivity are not necessary. Different profiles
of velocity and diffusivity only change the values of Λ and α. The value of α
only depends on the shapes of these profiles, while the value of Λ also depends
on the scale of the diffusivity, D0/(U

∗D). A vertically uniform velocity leads to
α = 0 regardless of the diffusivity, while α < 0 can occur only if the flow near
the bottom is faster than the flow near the surface.

Appendix B. Local model

Even though we assumed that the flux, F , is locally related to the depth and
the velocity, the stress, τ , resulting from equation 4.6 is non-local — at each
point, it depends on the entire shape of the channel. In this appendix, we derive
a “local” approximation for the stress, τ , in which it is related directly to the
local depth and its derivatives. In this approximation, there is no need to solve
the full equation 4.6, but the approximation is only meaningful for small enough
values of the diffusion parameter, χ.
In this approximation, we assume that the variations in the depth are slow

compared to the depth itself so that D̃′ ∼ ϵ ≪ D̃, where ϵ is a small parameter of
the order of the inverse of the aspect ratio, ϵ ∼ Dmax/W . Then, we assume that
τ̃ can be expanded in a series as:

τ̃(ỹ) = τ̃ (0)(ỹ) + τ̃ (1)(ỹ) + ... , (B 1)

where the nth-order term is of the order ϵn. The zeroth order in this expansion
assumes that there are no variations in the depth, D̃′ = 0, so that it corresponds
to the shallow-water stress, τ̃ (0) = D̃. We then insert this zeroth-order stress into

the expression for the flux, F̃ = −χ
(
D̃2τ̃ ′ + ατ̃(D̃2)′

)
, to get the flux to the first
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non-trivial order:

F̃ (1) ≈ −χ(2α+ 1)

3

(
D̃3
)′

. (B 2)

The superscipt (1) in the flux signifies that the first non-vanishing order of the

flux is of the order of ϵ (i.e. proportional to D̃′). The flux at the zeroth order
corresponds to the shallow-water approximation, and, therefore, vanishes. If we
use equation B 2 for the flux in equation 4.6 for the stress, we can find the stress
corrected to the next order in the expansion:

τ̃ ≈
(
D̃ +

χ(2α+ 1)

3

(
D̃3
)′′)

cosϕ , (B 3)

where cosϕ = (1 + D̃′2)−1/2. This is the stress corrected up to the order ϵ2. It
is the first order that contains a non-trivial contribution from the cross-stream
transfer of momentum. Inserting this expression for the stress back into the flux,
we can also get higher-order corrections for F̃ , which, through equation 4.6, yield
higher order corrections for τ̃ .
In equation B 3, the stress at a point ỹ is only related to the local depth, D̃(ỹ),

and its first two derivatives at that point. In this way, we do not need to know
the entire shape of the channel in order to find the stress at a particular point.
Although we can follow the procedure above to find the stress to an arbitrarily
high order, all of these corrections remain local — for example, we will never be
able to capture the effects of vertical side-walls in a rectangular channel in this
way, no matter the order to which we approximate the stress.
In some applications, this local approximation may suffice. Notably, Popović

et al. (2021) showed that a similar approximation was sufficient to explain the
shape of laminar laboratory rivers that carry sediment. This may not always be
the case if the variations in the depth are too great or if the diffusion parameter
for the stress, χ, is too large — the expansion in terms of small ϵ (equation B 1)
may not exist. In appendix C, we demonstrate a transition from a local stress
to a non-local one near a corner for high enough values of χ (equation C 5). In
fact, equation C 5 likely also serves as a rule of thumb for when we can use the
local approximation B 3. If the gradient of the topography is too large or the
momentum diffusion is too strong, we need to solve the full equation 4.6 in order
to get a meaningful approximation of the stress.

Appendix C. Corner flow

In this appendix, we will derive the equation for the flow along a corner, which can
be used to construct the solutions to our model in a triangular channel (section
5.3). In doing this, we will show two features of our model: (i) the transition from
a local to a non-local flow for high values of the diffusion parameter, χ, and (ii)
the breakdown of our model for high enough values of χ when α is positive. This
section also demonstrates how convenient it is that our model, equation 4.6, is
linear in τ̃ .
We consider a bed that slopes downwards at an angle ϕ with the horizontal,

starting from a corner at ỹ = 0. The depth, therefore, increases as

D̃ = ỹ tanϕ . (C 1)

This depth profile lacks a boundary condition on the open end of the corner, so
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we cannot fully solve equation 4.6 for the stress. Nevertheless, we can find τ̃ up
to an integration constant.
Since equation 4.6 is linear in τ̃ , we can write its solution as a sum of a particular

and a homogeneous solution, τ̃ = τ̃p + τ̃h. The particular solution is proportional
to the depth:

τ̃p =
D̃√

1 + (tanϕ)
2 − 2(2α+ 1)χ (tanϕ)

2
. (C 2)

On the other hand, we can find the homogeneous solution in the form of a power
law:

τ̃h = AD̃a , (C 3)

where A is an integration constant which depends on the entire shape of the
channel, and the exponent, a, is

a = −2α+ 1

2
+

√√√√(1− 2α)2

4
+

√
1 + (tanϕ)

2

χ (tanϕ)
2 . (C 4)

The particular solution is proportional to the depth and is independent of
the shape of the bed beyond the corner. In this sense, it is local — the stress
depends only on the local depth. On the other hand, the homogeneous solution
is non-local — it depends on the entire channel beyond the corner through the
constant A. Which one of these two solutions dominates near the corner depends
on whether the exponent, a, is less than or greater than one. When a is less than
one, the homogeneous solution takes over near the corner, and the flow feels the
entire shape of the channel. This happens when the momentum transfer is strong
enough:

a < 1 ⇐⇒ χ >

√
1 + (tanϕ)

2

2(2α+ 1) (tanϕ)
2 . (C 5)

Thus, equation C5 defines a threshold diffusion parameter, χ, or a threshold
channel slope, ϕ, beyond which the flow near the corner transitions from local to
non-local.
If we keep increasing the intensity of the momentum transfer, the exponent of

the homogeneous solution, a, can become negative:

a < 0 ⇐⇒ χ >

√
1 + (tanϕ)

2

2α (tanϕ)
2 . (C 6)

When this happens, the homogeneous solution diverges near the corner, leading
to an unphysical situation. Therefore, we may say that a < 0 represents the point
at which our theory breaks down. By noting that tanϕ = 2Dmax/W , and solving
for tanϕ in equation C 6, we retrieve equation 5.12 of section 5.3.
If we specify the full shape of the channel, we can find the integration constant,

A. In a triangular channel of figure 9a, the depth profile is given by:

D̃ =

{
ỹ tanϕ, if ỹ ⩽ W̃

2

(W̃ − ỹ) tanϕ, if ỹ > W̃
2

(C 7)

In both halves of the channel the solution is given by the same sum of the
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particular and homogeneous solution we just discussed, so we simply need to
determine the constant, A. To find it, we assume that the stress, τ , and the
flux, F , are continuous at the junction between the two halves (in fact, due to
symmetry, the flux at this point vanishes). This yields

A =
D̃1−a

max

(2α+ a)(2χ (tanϕ)
2 −

√
1 + (tanϕ)

2
/(2α+ 1))

. (C 8)

These solutions are shown in figure 9b and c.

C.1. Poisson equation

To find the unapproximated laminar stress in the triangular channel of figure 9
(red dotted line in figure 9), we solve the Poisson equation for the velocity:

∂2ũ

∂ỹ2
+

∂2ũ

∂z̃2
= −1 , (C 9)

with a no-slip boundary condition at the bed, ũ(z̃ = −D̃) = 0. Since this equation
is linear, the resulting velocity is the sum of the particular and the homogeneous
solution, ũ = ũp + ũh. For the corner of equation C 1, the particular solution is:

ũp =
(ỹ tanϕ)2 − z̃2

2(1− tan2 ϕ)
. (C 10)

A homogeneous solution is (Polubarinova-Kochina 1962):

ũh = CnRe
(
ω(2n+1) π

2ϕ

)
, (C 11)

for any integer n > 0. Here, ω = ỹ + iz̃ is a complex combination of the
coordinates, Re (...) stands for the real part, and Cn is a constant. Therefore,
the full solution, ũ, is:

ũ(ỹ, z̃) =
(ỹ tanϕ)2 − z̃2

2(1− tan2 ϕ)
+

∞∑
n=1

CnRe
(
ω(2n+1) π

2ϕ

)
, (C 12)

where Cn are constants to be determined from the boundary condition at the
center of the triangular channel. Due to the symmetry of the channel, the
velocity gradient must vanish at the center, ∂ũ/∂ỹ|ỹ=W̃/2 = 0. By considering
this condition at N distinct heights, z̃1, ...,z̃N , we can find the constants Cn to
arbitrary order N (the solution in figure 9 assumes N = 50). After determining
the constants Cn, we find the components of the stress as τ̃z = ∂ũ/∂z̃|z̃=−D̃ and

τ̃y = ∂ũ/∂ỹ|z̃=−D̃, and the total stress as τ̃ =
(
τ̃ 2
z + τ̃ 2

y

)1/2
.

Appendix D. Details about the experiments

In this appendix, we give the details of the experiments we compared our model
with. All of these details can be found in the cited references, but we give them
here for reader’s convenience.

D.1. Chauvet et al. (2014)

In the Paris region, the Seine river flows down a gentle slope of about S ≈ 10−4,
with a Reynolds number of about Re ≈ 7 × 106. At the time and the location



38

at which Chauvet et al. (2014) took their measurements, it was about 148 m
wide and about 6.2 m deep. Their measurements were based on readings from an
Acoustic Doppler Current Profiler (ADCP) fixed to a raft which was tethered to
a footbridge, and shifted across the flow.

D.2. Knight et al. (1984)

Knight et al. (1984) performed a series of experiments in smooth rectangular
channels whose width varied between W = 7 cm and W = 61 cm. The slope in
all experiments was fixed at S = 9.66 × 10−4, while the flow depth was varied
by adjusting the water discharge. The resulting aspect ratio varied between 0.31
and 19.12, with a Reynolds number varying between about 104 and 7×104. They
measured the stress with a Preston tube method (Preston 1954).

D.3. Shiono & Knight (1991)

Shiono & Knight (1991) investigated the flow and the stress distribution in
idealised experiments which resemble a river with a floodplain (figure 13). Their
channels consisted of a deep main channel of width Wmc = 1.5 m, surrounded by
two shallow parts (the “floodplain”), each Wfp = 2.25 m wide. The water level
changed from one experiment to the next, so that the depth of the main channel
varied between Dmc = 15 cm and Dmc = 30 cm, and that of the floodplain
between Dfp = 0 and Dfp = 15 cm. The difference between the two depths was
fixed by experimental design at Dmc − Dfp = 15 cm. The downstream slope of
the channel was fixed at S = 1.027 × 10−3. Shiono & Knight (1991) measured
the velocity using a two-channel Laser Doppler Anemometer across one half of
the channel. They measured the stress across the channel using Preston tubes
(Preston 1954). The velocities were about 1 m/s, which yields a Reynolds number
of about 3 × 105, similar to the largest experiments considered by Knight et al.
(1984), and about an order of magnitude lower than in the Seine.

D.4. Blanckaert et al. (2010)

The experiments of Blanckaert et al. (2010) were performed in half-trapezoidal
channels, such as the one shown in figure 14. The left bank was a vertical wall,
whereas the right bank had a slope of either 30◦ or 45◦, depending on the
experiment. The width of the flat bottom was about Wbot = 1.2 m, the flow
depth about Dbot = 16 cm, the flow speed about U ∼ 0.4 m/s, and the Reynolds
number about Re ∼ 7×104. The bottom of the channel was roughened by gluing
beads of size ks,bot = 2 mm. They considered three cases for the banks: smooth
banks (ks,bank ≈ 0), banks that were as rough as the bottom (ks,bank = 2 mm),
and rough banks (ks,bank = 30 mm). Unlike Shiono & Knight (1991), Blanckaert
et al. (2010) did not measure the stress directly, but estimated it from the vertical
velocity profiles.
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Symbol Name Units Equation

x, y, z Downstream, cross-stream, and vertical coordinate m

D Flow depth m

τ Stress on the channel bottom kg m−1s−1

x̃, ỹ, z̃, D̃, τ̃ Dimensionless coordinates, depth, and stress None 4.5

⟨τ⟩ Average stress across the entire channel kg m−1s−1

⟨τ⟩w Average stress on the vertical side-walls kg m−1s−1 5.1

F Cross-stream flux of momentum kg s−1 3.7, 4.3

Rh Hydraulic radius m

Q Water discharge m3s−1

S Downstream slope None

U Vertically-averaged velocity m s−1

u(z) Vertical profile of downstream velocity m s−1

U∗ Frictional velocity m s−1

De Eddy diffusivity m2s−1

ν Molecular diffusivity m2s−1

Λ Diffusion parameter for momentum None 3.3

χ Diffusion parameter for the stress None 4.3

α local-shape parameter None 3.5

θ Boundary condition on a vertical wall None 5.2

λ Diffusion length-scale m 5.4

φw Fraction of momentum transferred to side-walls None 5.5

Cf Friction coefficient None 4.1

Re Reynolds number None

Table 2: Symbols used throughout the paper.
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