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Abstract — In the present work, the grain scattering induced attenuation coefficient is obtained for lon-
gitudinal bulk waves in untextured cubic polycrystalline materials with elongated grains using theoretical
2D and 3D proposed models. Also, a semi-analytical approach to estimate the attenuation of Rayleigh
waves is used. Numerical simulations are done with a finite element code using a space-discontinuous
Galerkin method and a Runge-Kutta time discretization scheme. The numerical and theoretical results
are compared to study the influence of the grain shape/rotation on the attenuation coefficient.
Mots clés — Space-discontinuous Galerkin method, ultrasonic attenuation, polycrystalline materials.

1 Introduction
Ultrasonic scattering can be studied by looking closer at ultrasonic amplitude attenuation and wave phase
velocity. In polycrystalline materials, scattering is mainly a result of wave interaction with the material
inhomogeneities. Indeed, in polycrystalline materials, the inhomogeneities can be summarized in the
relative crystallographic misorientation from grain to grain and the possible presence of multiple phases.
When it comes to surface waves, the unevenness of the boundary becomes also of interest. In particu-
lar, knowledge about the influence and relation of these inhomogeneities (grain size and shape, degree
of anisotropy, surface roughness, etc.) in ultrasonic attenuation is essential, as useful microstructural
information can be applied to characterization and defect control methodologies.

Several theoretical models have been developed, with earlier models devoting attention to the case
of randomly oriented, cubic crystals and equiaxed grains with the introduction of a two-point correlation
(TPC) spatial isotropic function. Stanke and Kino [1] introduced a unified theory that accounts for
an order of multiple scattering, based on Karal and Keller’s [2] approximation. Weaver [3], on the
contrary, based his work on Dyson’s equation. These two models also have led to extensions considering
more general grain shapes. Ahmed et al. [4] followed the work of Stanke and Kino [1] by introducing
a transverse isotropic TPC function. Yang et al. [5], implemented a general anisotropic function in
Weaver’s [3] equations and obtained a closed-form expression. Also, Calvet and Margerin [6] proposed
a spectral approach based on the work of Weaver [3] and Yang et al. [5], obtaining results up to the
geometric frequency region. Numerical simulations have been also carried out in equiaxed grains [7]
and elongated grains [8].

Regarding the study of surface wave scattering due to grain boundaries, Kaganova and Maradudin
[9] were able to obtain the dispersion relation for Rayleigh waves propagating in the plane surface of a
polycrystalline medium. More recently, Ryzy et al. [10] compared experimental Rayleigh wave attenu-
ation values with a proposed semi-analytical attenuation model, obtaining a somewhat good agreement
in the stochastic scattering region.

Few works have dealt with 2D ultrasonic scattering, which remains an interesting problem insofar
as it makes it possible to compare 2D and 3D models, analyze the dimensionality of grain diffusion
phenomena, and better understand their mechanism. In this work, Bai and Tie’s model [11, 12] for
bulk waves is recalled and then extended to the general case of elongated grains of ellipsoidal shape for
the 2D and 3D cases. Also, the methodology proposed by Ryzy et al. [10] is used to investigate in a
first approach the attenuation of Rayleigh waves in microstructures with elongated grains. Our theoret-
ical model is compared with numerical results, with emphasis on the main differences and similarities
between 3D and 2D results.
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2 General theoretical ultrasonic attenuation framework
2.1 Bulk waves ultrasonic attenuation considering elongated grains
This work follows the theoretical studies after Stanke and Kino’s [1] unified theory. The objective here
is to recall the equations used as a framework and extend Bai and Tie’s [11, 12] model to the case of
elongated grains.

Considering an ensemble of possible inhomogeneous media made of the same single polycrystalline
material and occupying Ω ⊂ Rdim,dim = 2,3. The polycrystalline material is defined by a position-
dependent elastic tensor C(x) and a constant density ρ. Following the proposed second-order series on
ε, the anisotropy factor, from [2], for the average expected propagating wave ⟨u⟩, the following equation
for ⟨u⟩ can be obtained:

L⟨u⟩− ε⟨L1⟩⟨u⟩− ε
2 [⟨L1L

−1L1⟩−⟨L1⟩L−1⟨L1⟩+ ⟨L2⟩
]
⟨u⟩= 0 (1)

In our case, the perturbation operators L and L1 can be defined as:

L= ρω
2u(x)+∇x

(
C0 : ε(u(x))

)
, ε

2L1 = ∇x (δC(x) : ε(u(x))) , ε
nLn = 0,∀n > 1 (2)

The deviation of the elastic tensor is considered to be the deviation of the heterogeneous medium
from its equivalent homogeneous medium δC(x) =C(x)−C0. The elastic tensor C0 is an equivalent
homogeneous tensor chosen as the Voigt average. This allows to define the operator L−1 as:

L−1u(x) =
∫

GT (x′;x)u(x′)dx′ (3)

where G(x′;x) is the dyadic Green function tensor. Furthermore, we consider the assumptions of single-
phase material and randomly oriented crystallographic axes, which means on average the medium is
isotropic ⟨δC(x)⟩ = 0. Also, assuming that the elastic tensor varies independently from grain to grain,
the following simplification for the elastic autocorrelation function can be made ⟨δC(x)⊗ δC(x′)⟩ =
⟨δCg ⊗ δCg⟩W (r). Where δCg is the elastic tensor variation in each grain which is constant. The av-
erage is considered to be the average overall crystallographic orientations, and the two-point correlation
(TPC) spatial function W (r) is the function responsible for the characteristic grain geometry description
by estimating the probability of two random points x and x′ being in the same grain, with r = x−x′.

Bai et al.’s [12] final expressions are obtained after applying the Born approximation, and therefore,
the here presented results are only valid in the Rayleigh and stochastic scattering regions. Then, solving
for the complex-valued wavenumber k, the following expressions for the attenuation can be obtained:

α
βγ,2D = Im

(
k0β⟨δC jβ jklδCmn jβ j⟩

2C0
jβ j jβ j

∫
∞

r=0

∫ 2π

θ=0
Gγ

km(r,θ)D
β

ln(r,θ)rdθdr

)
β,γ = L,T (4a)

α
βγ,3D = Im

(
k0β⟨δC jβ jklδCmn jβ j⟩

2C0
jβ j jβ j

∫
∞

r=0

∫
π

θ=0

∫ 2π

ϕ=0
Gγ

km(r,θ,ϕ)D
β

ln(r,θ,ϕ)r
2 sinθdϕdθdr

)
(4b)

where Gγ

km is the dyadic Green function in a 2D or 3D isotropic homogeneous medium, and its expression

can be found in equations (16, 17) in [12] and Dβ

ln =
∂2W (r)eikk̂·r

∂rn∂rl
is a second order derivative tensor.

In the 3D case, one can assume the elongated grains to have an ellipsoidal geometric shape. The
assumed grain shape can be represented by the anisotropic TPC function (5), which is the extended form
of the equiaxed TPC function. This function has been already used by [4], [5] and [6].

W (r) = e−
√
rTAr,A=

3

∑
i=1

1
a2

i
gi ⊗gi (5)

In equation (5), A is a second-order symmetric tensor composed by the inverse of a2
1,a

2
2,a

2
3, the

ellipsoidal radii in the local coordinate system of the ellipsoid (g1,g2,g3). In the definition of A, the
rotation of the grain is implicit, with its basis depending on the angles τ and ϕτ. These angles define the
orientation of the axis g3 as shown in Figure 1.

The function (5) leads to:
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Figure 1: Illustration of an ellipsoidal grain, where a1,a2,a3 are the ellipsoidal radii and τ,ϕτ are the orientation
angles of the ellipsoid principal axis g3 and θ,ϕ are the angles of the vector r.

Dβ(r) =

[
−A

r
+

(
1

r(r̂TAr̂)
+

1√
r̂TAr̂

)
(Ar̂)⊗ (Ar̂)−2ik0βk̂⊗s (Ar̂)−

√
r̂TAr̂k2

0β
k̂⊗ k̂

]
× er(ik0βk̂·r̂−

√
r̂TAr̂)

√
r̂TAr̂

(6)

where r = ∥r∥. We can define R = a3/a1 and R1 = a2/a1 as the two aspect ratios of the ellipsoid. The
grain can take any possible configuration in each axis of elongation g3 and g2 by tunning the ratios R and
R1 (cigar or pancake shape).

In the 2D case, one can start with an elongated 3D ellipsoidal grain and analyze a 2D cutting plane
section defined by a unit vector n̂. A 2D plane in a 3D microstructure might cut the grains into multiple
cross-sections. Here, we simplify by assuming that the 2D plane cuts the grains always by its center. The
intersection of an ellipsoid and a cutting plane will always result in an ellipse or a sphere at least.

One can define a plane t1,t2 perpendicular to the defined normal unit vector n̂. As we decided to fix
k̂= e3, we can set the axis t2 = k̂, and find t1 = k̂× n̂. It can be found that A2D can be written in terms
of A3D,t1,t2 as:

A2D =
2

∑
i, j=1

(t jA
3Dti)ti ⊗ t j (7)

Here, A2D as in the 3D case, is a second-order symmetric tensor. It describes an ellipse in the
orthonormal pair t1,t2. Since we decided to fix t2 = k̂ = e3, the possible choices for n̂ are reduced to
the options lying in the global coordinate system plane e1,e2. By rotating n̂ several ellipsoidal cross-
sections are possible to obtain, allowing a direct 2D and 3D comparison and analysis of the ultrasonic
attenuation dimensionality.

2.2 Semi-analytical approach to estimate the Rayleigh ultrasonic waves attenuation
Considering a 3D homogeneous semi-infinite medium defined by x1,x2 bounded by a plane perpendicular
to x2, the classical Rayleigh equation (8) can be obtained [13].

(2− c2
R

c2
T
)2 = 4

√
(1− c2

R

c2
L
)

√
(1− c2

R

c2
T
) (8)

where cL,cT ,cR are the longitudinal, transversal and Rayleigh wave velocities. Equation (8) can be
rationalized and introducing the dispersion relation c = ω/k, the equation (9) can be obtained.(

kL

kR

)6

−8
(

kT

kR

)4

+

(
24−16

(
kL

kT

)2
)(

kL

kR

)2

−16

(
1−
(

kL

kT

)2
)

= 0 (9)

Equation (9) can be used as a semi-analytical approximation to obtain the complex kR by knowing
the complex kL and kT as proposed by [10] with the assumption that the ratio between the imaginary
part and the real part of the complex wavenumber is much lower than one that is, αi/ki ≪ 1. The
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complex-valued wavenumbers can be obtained by any method such as the one proposed here. It is still
an approximation since the relation (9) is obtained by assuming an isotropic homogeneous medium and
real-valued wavenumbers ki, which is not the case for polycrystalline materials.

3 Numerically calculated attenuation from FE simulations
The numerical simulations are carried out using an in-house code with a space-discontinuous Galerkin
(sdG) method and an explicit Runge-Kutta scheme in time. Discontinuous Galerkin (DG) methods were
originally of interest when dealing with fluid mechanics since in some problems it is necessary to pre-
dict actual physical discontinuities [14]. More recently DG methods have been applied to elastodynamic
problems with material discontinuities [15]. The DG method used as a solver is a velocity-stress formu-
lation using spatially element-wise discontinuous finite element basis functions.

3.1 Space-discontinuous Galerkin framework
Considering the wave propagation problem in Ω and in the time interval [0,T ]. Within the framework
of the velocity-stress formulation, the governing equations of the elastic wave problem are put into the
first-order hyperbolic form, with primary unknowns the velocity and the stress fields (v,σ) [15].

∂tU +A∂x(U) = 0, A∂x

(
v
σ

)
=

(
−ρ−1Divxσ
−C : ε(v)

)
(10)

The idea is to approximate the solution with Uh = (vh σh)
T that are discontinuous between ele-

ments on a finite element mesh. Considering a finite element mesh of the discretized domain Ω, with E
being any element and E ′ any of the neighboring elements of E, the space dG variational formulation for
E can be put as ∀Wh(x) = (wh(x) τh(x))

T

(Wh,∂tUh)E +
(
Wh,A

∂x(Uh)
)

E
+
(
Wh, F̂n(Uh,U

′
h)−Fn(Uh)

)
∂E = 0 (11)

where (·, ·)E denotes the integration over the element E of the inner product between two vector or
tensor fields. F̂n(Uh,U

′
h) denotes the numerical flux that replaces the discontinuous flux Fn(Uh) on the

element boundary ∂E.
The sdG method is conditionally stable and therefore, the stability is subjected to the Courant-

Friedrichs-Lewy condition (CFL). Due to the two-field formulation, the number of degrees of freedom
considered is higher than a classical FE method and in consequence, it can be more memory-consuming.
However, due to the discontinuity, the resulting mass matrices are composed of diagonal element matri-
ces and together with the explicit time discretization, the parallelization strategies are straightforward.

3.2 Numerical setting and evaluation of the attenuation coefficient
The 3D and 2D microstructure samples are generated using the numerical tool neper [16] by tessellation
of the specified number of grains with average grain size distribution. To have elongated grains, a com-
bination of domain scaling and rotation is done, with a final result similar to those shown in Figure 2.
The grains are discretized by rasterization of the tessellation as structured FE meshes are used.

(a)
(b)

Figure 2: Illustration of (a) 2D and (b) 3D neper generated microstructures with elongated grains.

Simulations are carried out using a Ricker signal applied to the left edge of the sample along with
free boundary conditions on the right edge, and symmetric boundary conditions (SBCs) to the remaining
edges. The finite-element sizes are chosen such that h ≤ λ/10,h ≤ min(ai)/5. The time discretization is
calculated according to the CFL condition due to the schema used as ∆t =CFL∗h/cmax, with CFL = 0.2
for the specifically used sdG method.

4



The frequency-dependent amplitude attenuation is calculated using the Fourier Transform of the
incident and reflected velocity signals. The incident signal v̂i

y(p j, f ) is recorded at the probes p j at the
left edge, and the reflected signal v̂r

y(x j, f )1 is recorded at the probes x j at the right edge. Finally, the
equation (12) is used to estimate the attenuation:

α( f ) =−10
l

ln

(
∑

M
j=1

∣∣v̂r
y(x j, f )

∣∣2
∑

M
j=1

∣∣v̂i
y(p j, f )

∣∣2
)1/2

(12)

where M is the number of recording nodes at each edge and l is the distance traveled by the propagating
wave (Figure 2a). To achieve statistical convergence of the evaluated attenuation, several simulations
with the same grain configuration but re-randomized Euler angles are carried out. The final attenuation
is calculated as an ensemble average of the velocity signals of all the simulations.

4 Results
4.1 Comparison between 3D and 2D theoretical attenuation similarities and differences
We start by comparing the 3D and 2D theoretically estimated ultrasonic attenuation in a titanium-based
superalloy for which the material constants are presented in Table 1. The main idea is to analyze the in-
fluence of the grain’s orientation and the dimensionality in the attenuation. For this purpose, we consider
a grain with average radii a1 = 0.1 mm,a2 = 2a1,a3 = 5a1. Additionally, we consider three different
grain rotations (a), (b) and (c) as presented in Table 2. Moreover, we consider three choices (I, II, III as
shown in Table 2) of the unit normal vector n̂, representing three different 2D ellipses for each 3D case.

Table 1: Elastic constants and material properties of the titanium-based superalloy and the reference medium.
C1111 (GPa) C1122 (GPa) C1212 (GPa) εL εT ρ (kg/m3)

Titanium 134.0 110.0 36.0 2.74×10−2 1.19×10−1 4428
Reference medium
(Voigt average)

153.0 100.0 26.5 0 0 4428

Figure 3 presents the 3D and 2D obtained theoretical results. The obtained attenuation in 3D is com-
parable to that of previous works [4], [5] and [6]. In the Rayleigh scattering region, the 3D normalized
attenuation depends on the grain average volume and has a power behavior of α3D

L d ∝ ( f d)4, where d
is the grain average diameter. In contrast, the 2D normalized attenuation shows a clear cross-section
dependency α2D

L d ∝ ( f d)3 which can be seen explicitly. Looking at each 2D normalized curve one can
see that the curve with higher values of attenuation belongs to the planes with a higher cross-section area
(I)>(III)>(II) for all three rotations (a), (b) and (c).

At the stochastic scattering region, the normalized attenuation in 3D and 2D are dependent on d|| =
2a|| the grain size parallel to the wave propagation direction k̂. For a larger value of a|| ((a)>(b)>(c)
see Table 2 and Figures 3a, 3b, 3c), higher values of attenuation are reached. For each case (a), (b)
and (c), for each 2D normalized curve, despite the chosen plane (I), (II) or (III), the grain size parallel
to k̂ remains equal; therefore the convergence to the same attenuation values from the Rayleigh to the
stochastic region.

In the Rayleigh-to-stochastic transition region, the 3D attenuation takes higher values than the 2D
attenuation in each case, the same behavior as in the case of the equiaxed grains described by Bai et al.
[12]. In the 2D model, it is also interesting to notice that the cases (a.I) and (c.I) have the same cross-
section area due to the axes alignment chosen and therefore both curves (a.I) and (c.I) take the same
attenuation values in the lower frequency region (Figure 3a and Figure 3c). Nevertheless, it can be ap-
preciated that at the stochastic scattering region, curve (a.I) takes considerably higher attenuation values
than curve (c.I). This demonstrates the cross-section dependency at the Rayleigh scattering region, inde-
pendent of the grain rotation. At the same time, it demonstrates the ultrasonic attenuation dependency
on the grain rotation in the stochastic scattering region.

1Due to the superposition of the propagating and reflected wave, the signal v̂r
y(x j, f ) should be divided by two
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Table 2: Ellipse cross-section area (mm 2) and grain radius a|| (mm) resulting from each selected normal plane for
the three considered grain orientations.

(I) n̂= e1 (II) n̂= e2 (III) n̂= e1 +e2 a||
(a) g1 = e1,g2 = e2,g3 = e3 π/10 π/20 π/15.81 0.5
(b) g1 = e3,g2 = e1,g3 = e2 π/20 π/50 π/38.08 0.1

(c) g1 = e1,(g2,e2) = 1/
√

2,(g3,e3) = 1/
√

2 π/10 π/38.08 π/27.84 0.35

(a) (b)

(c)
Figure 3: Normalized 3D and 2D attenuation curves with d3 = 2a3 for a grain with three rotations corresponding
to those presented in Table 2 (a), (b) and (c) respectively.

4.2 Comparison between analytically and numerically estimated attenuation
Here we compare the theoretical model for the attenuation with the attenuation numerically evaluated
from simulations. In 3D the theoretical and numerical simulations were performed for a grain with
a3 = 5a2 = 5a1 with k̂= e3. As can be seen in Figure 4a, both normalized attenuation curves are in good
agreement in the upper part of the Rayleigh scattering region and the first part of the transition zone. The
highest relative difference is |αT H

L −αNUM
L |/αNUM

L = 34% at the lower frequency values of the numerical
curve. In 2D we considered a grain with a2 = 5a1, with k̂ = t2. In the 2D results, we can also see a
good agreement (Figure 4b) in the upper part of the Rayleigh scattering region and the upper part of the
transition zone. Around k0Ld2 ≈ 3.5 we find the highest relative difference of 44%. For both 3D and
2D, six simulations were carried out to have a better convergence of the obtained values. The differences
can be partially explained by the effect of SBCs which mirror boundary grains and can cause stronger
scattering along with the TPC function which ignores this effect [7]. In general, numerical results are
a better approach, since the multiple wave scattering is fully considered in contrast with the theoretical
model here proposed. In these results, since the simulations were performed in a material with a low level
of anisotropy, the numerical and theoretical results are not far from each other. This helps to validate the
theoretical model under the initially stated assumptions and limitations.

6



(a) (b)
Figure 4: Numerical and theoretical normalized attenuation curves comparison for (a) 3D grain with a3 = 5a2 =
5a1 and (b) 2D grain with a2 = 5a1.

4.3 Semi-analytical results for the Rayleigh surface wave attenuation
To compare the ultrasonic attenuation of longitudinal (L), transversal (T) and Rayleigh (R) waves, the
proposed methodology by Ryzy et al. [10] is used here as a first approach. In contrast with the model
considered by Ryzy et al. [10], the simulation here is done for an elongated grain aligned g3 = e3
with a2 = 2a1,a3 = 5a1 and a 2D plane defined by the normal n̂ = e1 which results in a 2D grain
with a2 = 5a1. The (R) attenuation curve, as can be seen in Figure 5a in 3D and in Figure 5b in 2D,
follows the attenuation curve of the transverse (T) wave. This is coherent with Ryzy’s [10] result which
partially predicts the experimental measures in the stochastic scattering region. However, there is an
overestimation of the power law obtained. For two experimental measures [10] obtained a relation ∝ f 1.61

and ∝ f 1.65. In contrast, the semi-analytical approach predicts the power law αR ∝ f 2 which is the same
power law for the (T) curve. In the Rayleigh scattering region, the (R) curve has a power law αR ∝ f 4 in
3D (Figure 5a) which is the same power law obtained by Kaganova et al. [9] for equiaxed grains.

(a) (b)
Figure 5: Normalized attenuation curves for L, T and R waves for (a) 3D elongated grain aligned g3 = e3 with
a2 = 2a1,a3 = 5a1 and k̂ = e3 and (b) 2D elongated grain obtained with a2 = 5a1 and k̂ = t2.

5 Conclusions and perspectives
A 3D and 2D model for the ultrasonic attenuation in microstructures with elongated grains was obtained.
Numerical simulations were carried out using an sdG method. Both theoretically and numerically es-
timated attenuations were found to be in good agreement, which shows the validity of the considered
assumptions in the theoretical models. Furthermore, the attenuation in the 2D case was found to be pro-
portional to the cross-section (power law of f 3, in contrast to the 3D case f 4) in the Rayleigh scattering
region. In the stochastic scattering region, both in 3D and 2D, the attenuation was found to be dependent
on the grain size parallel to the wave propagation direction k̂ (power law of f 2). As a first result, the
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Rayleigh wave attenuation in elongated grains was found to follow a behavior similar to the transverse
attenuation, however is already stated that the power law is overestimated in the higher frequencies. The
sdG-Runge Kutta is a versatile solver for which MPI parallelization strategies are straightforward to im-
plement. It is, however, necessary to have a balanced memory transfer between processes due to the
large number of degrees of freedom and therefore the memory that is occupied by the FE matrices. Op-
timization during the mesh distribution stage, looking for an even partition of memory required in each
process, is to be done. It is also intended in future work to carry out numerical simulations of Rayleigh
waves to have a more representative analysis of their scattering mechanisms.
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