
HAL Id: hal-04489988
https://hal.science/hal-04489988v2

Submitted on 6 Dec 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Statistical Modeling of soft magnetic composite’s
permeability

Frédéric Mazaleyrat

To cite this version:
Frédéric Mazaleyrat. Statistical Modeling of soft magnetic composite’s permeability. Journal of
Magnetism and Magnetic Materials, 2024, 612, pp.172646. �10.1016/j.jmmm.2024.172646�. �hal-
04489988v2�

https://hal.science/hal-04489988v2
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr


Statistical Modeling of soft magnetic composites’ permeability

Frédéric Mazaleyrat
aSATIE CNRS UMR 8029, Ecole normale superieure Paris-Saclay, 4 avenue des Sciences, Gif-sur-Yvette, 91190, France

Abstract

Soft magnetic composites (SMC) also known as powder cores are widely used in many applications because of their
linearity, controllable permeability and isotropy. Because of the distributed air gap, the permeability is governed
by the inner demagnetizing fields. To model the permeability dependence on the filling fraction, essentially two
approaches are used both based on spatial periodicity hypothesis: the non magnetic grain boundary model and
the effective medium theory. Actually, the first one works only for dense materials and the second works at low
concentration. Both need fitting of two parameters, the inner demagnetizing factor and the particle susceptibility,
just because the periodicity hypothesis is never verified for magnetic filling factors larger than 20%. A breakaway
model is proposed based on the computation of mathematical esperance of the statistical distribution of magnetic
chains and the subsequent determination of demagnetizing coefficient of an ellipsoid of equivalent aspect ratio. The
model is collated with permeability data from the literature for spherical or non-spherical particles based SMCs
and shows a excellent agreement with only one or even without fitting parameter in the whole concentration range.

Keywords: soft magnetic composite, powder core,

1. Introduction

Magnetic powder cores have been developed in the late
30s’ for the need of telecommunication industry. Load
coils used in telephone lines needed low loss linear ma-
terials with permeability from several tens to several
hundreds. Metal powders where mixed with few % of
diluent and fine ceramic powder and pressed with var-
ious pressures to manufacture the cores with the de-
sired permeability. In order to obtain low loss mate-
rial, zero magneto-cristalline anisotropy and zero mag-
netostriction was necessary, so molybdenum permalloy
was mostly used. Today, molybdenum permalloy pow-
der cores (MPP) are still wildly used in telecommuni-
cations and power electronics, and different powders are
also used for temperatures above 50°C such as Isoperm
(Fe50Ni50), Sendust (Fe with 10% Si and 5.5% Al in
mass), 6.5% silicon steel or iron carbonyl for high fre-
quency applications. During the 90’s two companies pro-
posed new soft magnetic composites (SMC) based on iron
powder compacted under high pressure and high temper-
ature that exhibits permeability above 100 together with
high induction and high Curie point. SMC are not only
compatible with electrical machines magnetic parts, they
also give one more degree of freedom in the design of ma-
chines by allowing the flux to circulate in 3D [1] and make
recycling easier. Since the early 2000’s many efforts have
been made to improve and create new SMCs based on
different fillers and binders [2, 3, 4, 5, 6, 7] with a recent
focus on nanostructured SMCs [8].

However, the problem of modeling the magnetic per-

meability of heterogeneous media, despite considerable
work done since the xixth century, still needs a model
able to address composites with concentrations from 0 to
1 with good accuracy compared to experiment, eventu-
ally taking the particle shape into account in a straight-
forward way. Indeed, from the beginning of electromag-
netism science the concept of demagnetizing field re-
mained one of the most difficult. Already touched ex-
perimentally by Michael Faraday about 1845, Maxwell
got deeper inside by deriving the expression of the de-
magnetizing factor of revolution ellipsoid. However, they
where effectively computed in a large range of aspect ra-
tio only in 1945 by Stoner [9] and the demagnetizing fac-
tors of general ellipsoids were calculated by Osborn [10]
the same year. For other shapes (cylinders, prisms) some
approximated expressions were known or deduced from
experiment by various authors (Du Bois, Ewing, Tanaka-
daté, in the 1885-1895 decade, see e.g. [11],) but because
the demagnetizing field is not homogeneous in a non el-
lipsoidal body, the demagnetizing factor depends on the
susceptibility of the material. Demagnetizing coefficients
of cylinders where exactly calculated by D.X. Chen only
in 1991 and improved in 2006 including negative suscep-
tibilities [12, 13], that of rectangular prisms by Aharoni
for χ = 0 in 1998 [14] and by D.X. Chen for χ , 0 [15]
in 2006. Non exhaustively, different recent contribution
may be quoted to show how the problem is current: ten-
sor approach, for a collection of ellipsoids with a distri-
bution of aspect ratio [16]; computation by finite element
method and subsequent mathematical fitting [17]; micro-
scopic approach, by Monte Carlo simulations of model

Preprint submitted to Journal of Magnetism and Magnetic Materials December 6, 2024



spin Hamiltonians [18]; derivation from Newtonian po-
tential [19]; 2D reluctance modeling [20]; superposition
principle applied to magnetic/non-magnetic disks stacks
[21]; mixing of two powders with different shapes [22] and
one should add that the discussion on the demagnetiza-
tion in hard magnetic solid bodies is still controversial
[23, 24].

The different models can be classified in two radically
different approaches: the reluctance model and the effec-
tive medium theory (EMT).

The reluctance model is often called non magnetic
grain boundary model (NMGB) [25] though the result
is similar to that of a magnetic ring with an air gap.
Indeed, applying Hopkinson’s law, a similar result was
already obtained by J.A. Ewing to determine the gap of
cut cores [26].

The EMT model is based on the classical concept orig-
inally developed by Rudolf Clausius [27] which consist
in considering a dielectric media as an electric dipole
located in a spherical cavity inside an homogenized
medium. The concept was developed by Garnett 1 to
model the optical properties of glasses with metal in-
clusions by in 1904 [28] and Bruggeman for the effec-
tive permittivity or conductivity of mixed media in 1935
[29]. Despite the age of the theory, there is still very
active researches in this fields concerning homogeniza-
tion of layered media with periodicity smaller than wave
length [30], permittivity of non linear media [31], quan-
tum dot arrays in graphene [32], electro-magnetic behav-
ior of cement paste [33] or magneto-electrics [34].

EMT has been applied to SMCs by Mattei et al. [35]
introducing the effect of particle shape [36]. They have
shown the existence of a magnetic percolation threshold
at 15% [37] and proposed different validations and im-
provements [38, 39, 40, 41]. More recently a tensor ap-
proach was proposed to take cubic magneto-crystalline
anisotropy of magnetic particles into account [42] and a
solution was given by Skomski for 2 types of particles [22].
However, all these studies were validated with relatively
low particles concentrations (< 50%). Good agreement
with the EMT approach has been shown studying up to
80% [36] keeping the concentration dependent demagne-
tizing coefficient as a fitting parameter [43, 44, 45].

The main problem of these models is that they con-
sider an isolated particle in a medium so they are ap-
plicable only to diluted media (filling factor is below the
percolation threshold, typically 20% for spheres). For in-
teracting particles media the effect of the demagnetizing
factor has to be fitted.

In this paper the two existing models will be first re-
viewed. A revision of the reluctance models will be pro-
posed and it will be compared to the homogenization
model and experimental data from low to high concen-

1The model is usually referred as ’Maxwell Garnett’, Maxwell
is the usual surname of Pr Garnett.

tration, showing the limits of these models. In the next
section, a new approach is proposed in which the SMC
is not considered periodic but as a statistical distribu-
tion of spherical particles forming magnetic percolation
paths which mean length depends explicitly on the filling
factor. Then the demagnetizing factor is computed from
which the effective permeability is deduced and the re-
sults are compared with experimental data in the whole
range of concentration. Finally, the model is extended to
non spherical particles.

2. Current models

2.1. Reluctance based models
The reluctance model, is from far the simplest. The

principle is to consider the powder as a magnetic circuit
with a gap. One should consider a simple cubic pack of
cubes having a edge D and separated by a non magnetic
layer of thickness δ. The total reluctance of the circuit
is the sum of the particle and the gap reluctance:

R = D

µ0µrD2 + δ

µ0D2 (1)

Writing the magnetomotive force according to Hopkin-
son’s law nI = RΦ with Φ = BD2 and nI = H(D + δ),
one easily gets the effective permeability 2:

µeff = D

D + δ
· µr

1+ δ
D µr

(2)

which is equivalent to the result given in [25] apart
form the unimportant geometrical factor under the con-
dition D ≫ δ. The ratio δ/D is actually a demagnetizing
coefficient associated to this geometry, it is related to the
filling fraction x by:

N = δ

D
= (x−1/3 −1) (3)

Experience shows that NMGB model agrees well with
MnZn ferrites which are composed of MnZn grains with
CaO ultra-thin insulating layer though, usually, the mag-
netic barrier is estimated from the model. Typically this
barrier is about few nm as shown by TEM in high perme-
ability Mn-Zn ferrite [47]. However, in Mn-Zn ferrites,
the magnetic fraction is over 95% and each grain is sep-
arated by the paramagnetic layer. In the usual form, the
model has major drawbacks:

• it systematically underestimate the effective perme-
ability if the fraction is lower than 90%

2The effective permeability of powder cores is usually defined as
the initial one µi, so the intrinsic bulk susceptibility/permeability
χ/µr is the initial one too. Alternatively, the models can be
used for the maximum (reversible) permeability and the bulk value
should be taken as the max (reversible) one. In most cases, due to
the demagnetizing effect,µi and µmax differs by less than 5%
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Figure 1: NMGB and EMT models compared to values of some
high permeability commercial SMCs (see references in Appendix
A) and to an experimental composite composed of 3µm iron spheres
[46].

• it has no physical meaning for small fractions be-
cause when δ > D, N > 1, i.e. x < 1

8 .

• µeff → 0 when x → 0

• µeff < 0 if δ
D > 1− 1

µr

• SMCs have imperfect insulation, which implies the
presence of magnetic contact between particles.

A more general approach would deduce the applied
field from Ampere’s theorem H(D + δ) = HiD + Hgδ
where the subscript i is for internal and g for gap. By
continuity of the normal component of B, one can write
that µ0Hg = Bi = µ0Hi +M . Combining these two equa-
tions leads to:

H = Hi + δ

D + δ
M (4)

Substituting M = χHi and putting B = µ0µeff H =
µ0(1 + χ)Hi yields a slightly different expression of the
effective permeability

µeff = 1+χ

1+ δ
D+δ χ

= 1+χ

1+(1−x1/3)χ
(5)

Within the limit of small gap and large susceptibility
this expression is equivalent to Eq. (2), but now it can
be seen that the demagnetizing coefficient has a different
expression and is never greater than 1. Also, the effective
permeability µeff → 1 if δ ≫ D. This correction of the
NMGB model improves the physical meaning and the
range of applicability of the model. It is well known that
the problem with NMGB model is due to the fact that
the main assumptions (i) the uniformity of the field in
the gap is clearly not justified if the filling fraction is not
very close to one, (ii) the regular cubic packing, i.e. 1D
approximation, is unrealistic.

A 2D extension of the model has already been pro-
posed by the author to apply to bcc packing of square
flakes [20]. Despite good agreement with nanocrystalline
flakes composites, it lacks by generality since it works
only for oriented square flakes with in-plane field.

2.2. Homogeneization models

The concept of homogenization was first applied to di-
electrics. In the original model, each individual electric
dipole is supposed to be located in a spherical cavity
in an uniformly polarized homogeneous medium corre-
sponding to the mean field produced by the contribu-
tions of all dipoles. The effective permittivity deduced
from this concept is given by Clausius-Mossotti relation
(see e.g. [48].) There are different improvements of the
model such as Garnett’s, to take into account the per-
mittivity of the host medium, or Bruggeman’s, which
considers two (or more) particles in an effective medium.
Among the different variants of the model [49], Brugge-
man’s is mostly used for magnetic composites [36] and
usually referred as effective medium theory (EMT). In
its scalar form, the effective permeability µeff is defined
from the relative permeability of each media µi, their
concentration ci and their demagnetizing coefficients Ni

by the expression:

∑
i

ciNi(µi −µeff )
µeff +Ni(µi −µeff ) = 0 (6)

In the present case, the material has 2 components only
one of which is ferromagnetic, µ1 = 1 + χ, µ2 = 1, N1 =
N2 = N , c1 = x and c2 = 1 − x. Written in terms of
susceptibility, the above equation is simplified as a second
order equation:

(1−N)χ2
eff +[1+(N −x)χ]χeff −xχ = 0 (7)

which has only one physical solution

χeff = −[1+(N−x)χ]+
√

[1+(N−x)χ]2+4(1−N)xχ
2(1−N) (8)
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For larger concentrations, χeff has the same order of
magnitude as χi so the last term of Eq. (7) is negligible
and a trivial solution is

lim
x→1

µeff = 1+ (x−N)χ−1
1−N

(9)

This linear dependence for high x versus the hyperbolic
one with NMGB is revealing the lack of coherence of
existing models.

On the over edge, for law concentrations, first order
expansion of Eq. (8) yields

lim
x→0

µeff = 1+ xχ

1+(N −x)χ (10)

furthermore if N ≫ x – i.e. any particle shape except
needles – and χi ≫ 1:

µeff ≈ 1+ x

N
(11)

As mentioned in the introduction, the problem is that
Neff has to be fitted from experiment. Mattei has pro-
posed an expression of Neff but it depends on the mag-
netic contrast α = (µi −µeff )/µeff leading to non explicit
solution of the problem [38].

Furthermore, the EMT can’t be applied for large parti-
cle fractions because the volume fraction itself is limited
by the shape of the particles. In the case of spheres, the
highest density is 74% for hcp or fcc packing, 63.6% for
random close packing. and even 53.6% for random loose
packing with a connectivity of 4 [50]. Indeed, it is im-
possible to keep the particles spherical above the limit of
60% so for any larger x, N is changed.

2.3. Comparison of the models with experiment
Concerning high permeability SMCs, it is observed

that none of these models can fit the data without a coef-
ficient adjustment corresponding to unreasonable parti-
cle geometries. In Fig. 1 (left box) reasonable agreement
is found in a very limited range by fitting the demagne-
tizing factor and the susceptibility. For NMGB model,
it has to be reduced — compared to a sphere — by a
factor 8 which may be justified qualitatively by the con-
tact between particles. However the experimental agree-
ment remains poor. For EMT, a good fitting is found
for N = 0.9 which seems quite unreasonable since N is
expected to be close to 1/3 and this value would corre-
sponds to a prolate ellipsoid of r = 5 with field parallel
to short axis. Furthermore, the permeability is below 10
for x < 0.8. Besides the models disagree on the value of
the susceptibility up to a factor of 5 or more. For low
concentrations (Fig. 1 right box), EMT is in very good
agreement with experience but needs two fitting param-
eters, here N = 0.27 and χ = 15. In contrast, NMGB
needs no fitting parameter, here χ = 1000, but 10 times
less or more wouldn’t make appreciable difference. Again
the experimental agreement is poor for NMGB.

This clearly shows that the two existing models hardly
agree on the value of N and χ. Furthermore, there is
a gap for fractions between 60 and 90% where none of
these models apply whereas powder cores have mostly a
magnetic particle concentration in this gap.

3. Model based on the Statistical Mean Chain
Approximation (SMCA)

3.1. Equivalent chain length

In order to take into account the random nature of
real SMCs, we first consider an infinite chain of spheres
composed of a fraction x of magnetic particles, 1 − x of
non magnetic particles or voids, both of diameter D. If
the voids are randomly distributed, the chain is actu-
ally composed of series of magnetic and non-magnetic
monomers, dimers, trimers, etc, separated by voids.

For example, if x = 0.5, the random chain can be
decomposed in ordered chains alternating single par-
ticles/voids units, particle/voids dimers, particle/voids
trimers, etc. with associated probability as illustrated in
Fig. 2. In contrast an ordered chain would be composed
of alternating single particles and voids.

In order to obtain the average chain length as a func-
tion x, the number of chains composed of n particles has
to be calculated as a function of x.

The event An corresponding to a chain of n particles
surrounded by 2 voids has the following probability to be
realized:

Pn(An) = xn(1−x)2 (12)

where xn corresponds with the particles and (1−x)2 with
the 2 voids.

The sum over all chain lengths is calculated from
Eq. (12)

(1−x)2
+∞∑
n=1

xn = (1−x)2

(+∞∑
n=0

xn −1
)

= (1−x)2
(

1
1−x

−1
)

= (1−x)x (13)

so Eq. (12) can be normalized with respect to Eq. (13)

Pn(An) = (1−x)xn−1 (14)

The average chain length is the expected value of
Eq. (14)
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Figure 2: Example of a random chain generated by a uniform probability with a treshold of 0.5 – black and white balls are equiprobable
– and the corresponding histogram.

a b c

Figure 3: 3 possible position of a magnetic particle (red ball) near-
est void (yellow balls). Scheme of a percolation path (a), the mean
magnetic path for same geometry (b), the 1D equivalent magnetic
path (c).

E[x] =
+∞∑
n=1

nPn(An)

= (1−x)
+∞∑
n=1

nxn−1

= (1−x) 1
(1−x)2

= 1
1−x

(15)

So finally, for any value of the filling fraction x, the
aspect ratio of the mean chain takes a remarkably simple
form:

r = ⟨ℓ⟩
D

= 1
1−x

(16)

were D is the diameter of the spheres. Going back to
the example when x = 0.5, r = 2 is found instead of 1 for
an ordered chain.

If x → 0, the chains are single particles, and if x → 1,
the chain is infinite.

In 3 dimensions, voids are no more distributed along
the chain but in the volume. In a simple cubic pack-
ing, voids around a magnetic particle can be localized
in the 3 directions (see left sketch in Fig. 3). However,
if the magnetic field is homogeneous and directed paral-
lel to one of the cube edges, we may consider only the
voids along a 1D chain, this is to say that percolation
path perpendicular to the field is not taken into account.

This situation is totally different from that of electrical
percolation. Indeed, in the scheme Fig. 3 (a) shows the
electrical percolation path and (b) the magnetic path for
the same geometry providing the susceptibility is rela-
tively small which is often the case for small particles.
So path (b) would be equivalent to (c). If the voids are
distributed with the same probability in the 3 directions,
the equivalent chain will have an aspect ratio:

r = ⟨ℓ⟩
D

= 1
1−x1/3 (17)

3.2. Effective demagnetizing factor
Now the problem is to determine the demagnetizing

factor associated with the equivalent chain. Here a clas-
sical assumption is made saying that a chain composed
of r particles (see Fig. 4a) exhibits a demagnetizing fac-
tor equivalent to a prolate ellipsoid of aspect ratio r (see
Fig. 4c) which is known from Eq. (17). Eventually this
model avoids the problem of compaction limits since par-
ticles may be distorted inside a chain with limited effect
on Neff (see Fig. 4b.)

Using one of the well known expression of the demag-
netizing factor of a prolate ellipsoid (here as formulated
by Stoner [9]),

N(r) = 1
r2 −1

[
r√

r2 −1
ln(r +

√
r2 −1)−1

]
(18)

one can easily compute the equivalent demagnetizing
factor as a function of the filling fraction thru Eq. (17).
This computation is compared with effective demagnetiz-
ing coefficients determined experimentally by Forrer with
iron balls [51] in Fig. 5. In this experiment Forrer consid-
ered that the demagnetizing factor can be determined as
the inverse of the initial slope of the anhysteretic curve,
χan witch is equivalent to the slope of the major hys-
teresis loop at H = Hc. For low concentrations as N is
low, the loop may be not saturated so the χan may be
underestimated and by consequence N may be overesti-
mated, which may explain the discrepancy between the
present model and the measurements. On the other side,
the demagnetizing coefficient of a n-spheres chain is ob-
viously larger than the ellipsoid having an aspect ratio
of n and the difference is more visible for small n. This
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a b c

Figure 4: Schemes of (a) a hard sphere chain, (b) a soft sphere
compressed chain, (c) the equivalent ellipsoid.
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Figure 5: Average demagnetizing factor of iron spheres composite
as a function of filling fraction (data are from Forrer [51])

may explains why the gap between the model and the
experiment is larger for small x, but evidently there is
a good agreement between the two without any fitting
parameter.

3.3. Permeability of magnetic spheres composites

Let us consider a SMC composed of spherical magnetic
particles dispersed in a zero susceptibility matrix such as
a para or diamagnetic binder. The field Ha required to
apply to the material to achieve the internal field Hi is
increased by the demagnetizing field according to:

Ha = Hi +Neff M = (1+Neff χ)Hi (19)

where Neff is the effective demagnetizing factor of the
equivalent average chain determined statistically. The
mean magnetization of the SMC can be written

M = χeff Ha = xχHi (20)

Substitution of Eq. (19) in Eq. (20) leads to

µeff = 1+ xχ

1+Neff χ
(21)
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Figure 6: Effective permeability dependence on the filling factor
parametrized by the susceptibility according to the present model.
(- -) exponential approximation Eq. (22), (—) long cylinder approx-
imation Eq. (23).

This expression makes physical sense since for x → 0
and χ → ∞ it leads exactly the same as EMT Eq. (11)
– where EMT works well –, and since for x → 1 it leads
exactly the same expression as modified NMBG Eq. (5) –
where NMGB works well – except for the new definition
of the demagnetizing factor.

A computation of the effective permeability as a func-
tion of the filling factor is shown for different values of
the susceptibility in Fig. 6. It is remarkable that for
x = 0.5 and susceptibilities above 99, the present model
give an effective permeability about 10 which is signifi-
cantly larger than that given by NMGB (only 2) and con-
trarily to EMT the linear behavior expected for x > 1/3
is not observed but an exponential one up to x ≈ 0.5. A
useful empirical approximation may be written:

µeff = 81x ∀x ⩽ 0.5 & χ ⩾ 99 (22)

Compared with experiment as shown in Fig. 7, a very
good fit of Weidenfeller’s [45] and Minot’s [46] low per-
meability composites is obtained by only adjusting the
susceptibility, contrarily to EMT that needs also N to
be fitted. Note that with the present model χ = 21 and
150 whereas χ = 16 and 52 with EMT.

For large concentrations, comparing with commercial
data (iron and permalloy based SMCs) shown in Fig. 8
highlights the efficiency of the model. Though signifi-
cant spread is observed – partly due to the uncertainty
on x values – data are best fitted with χ = 999 for low
concentrations and χ → ∞ for high concentrations. This
may be partly justified by the fact high density SMCs
are usually based on larger particles, thus having higher
susceptibility 3.

3By opposition to academic studies based on nearly spherical
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Figure 7: Comparison of the model with experience for low con-
centration SMCs based on spherical particles (top box). Data from
Weidenfeller are for Fe-Co-V spheres [45] and Minot’s for Fe sphere
[46] .

For dense media, because particle chains are very long,
a 1D model should be sufficient. If x → 1 the SMC should
be equivalent to a cylinder of aspect ratio r = 1/(1 − x).
Its demagnetizing coefficient can be approximated using
the fluxmetric demagnizing coefficient of a cylinder with
r > 20, Neff ≈ 1

2r2 , so Eq. (21) becomes

µeff = 1+ xχ

1+ 1
2 (1−x)2χ

∀x > 0.95. (23)

Surprisingly, the approximated model fits better the
data, but one has to be cautious because of the relatively
large scattering of data and also because particles where
assumed to be spherical and mono-dispersed in SMCA
which is clearly not the case in dense SMCs. Indeed, the
particles are not basically not spherical and hot pressing
strains them appreciably (see e.g.[52].)

3.4. Permeability of non-spherical magnetic particles
composites

If the particles are not spherical Eq. (18) should be
replaced by that of the corresponding shape (e.g. that of
a cylinder as computed by Chen [12].) However, expres-
sions using complete elliptic integrals are rather difficult
to implement. A simple approximation would be to con-
sider that the aspect ratio dependence for any shape is
the same as that of a prolate ellipsoid. In other words, if
Np is the demagnetizing coefficient of the particle, that
of the chain of aspect ratio r would be 3NpNeff (r) veri-
fying that in diluted media 3NpNeff (1) = Np. This leads
to the general expression:

and mono-disperse particles, in the same series of commercial data
the mean diameter of particles may depend on the filling factor
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Figure 8: Comparison of the model with experience for high con-
centration SMCs based on nearly random shaped particles (bottom
box). Data are from technical documentations, see Appendix A
.

µeff = 1+ xχ

1+3NpNeff χ
(24)

A parametric study of this equation is given in Fig. 9.
Qualitatively these curves look like in [36] except the
curvature which is more pronounced at same Np.

To collate with experimental data, a fitting of Np with
χ → ∞ is displayed Fig. 10. The best fit of experimental
curves is obtained for Np = 0.5 corresponding to r ≈ 1.8,
a realistic result considering the micrography of SMCs
[52] showing usually non equiaxis particles. In order to
demonstrate the validity of Eq. (24) in a more straight-
forward way, the case of SMC constituted of Finemet
flake is considered. Data correspond to particles sieved
with 160 and 80µm meshes, pressed in a resin and mea-
sured with a field perpendicular to pressure. Considering
each particle as 20 µm thick square prisms with 80 and
160µm edges, Np was calculated according to [14] and
Chen [15] with χ = 999 with in plane field. As the distri-
bution is not known, we took the mesh size as the flake
size. Eq. (24) was applied directly considering χ → ∞
without any kind of fitting. The result shown in Fig. 11
is surprisingly good in spite of the strong geometrical ap-
proximati;on. Taking into account the susceptibility of
the particle in the computation of Np yields a slightly
higher effective permeability but doesn’t change the or-
der of magnitude.

To compare with EMT, fitting the curve for the sam-
ples with 80 µm particles leads to a slightly higher ef-
fective demagnetizing coefficient (≈ 0.22) – which is self-
contradictory since in EMT Neff ⩽ Np – and χ ≈ 200
which is 2 orders of magnitude too small for Finemet, one
of the softest materials ever made (χ > 30 000). The only
limitation of the model at this stage is that non-spherical
particles must be oriented. This condition is however
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for χ = 999. Demagnetizing coefficients correspond to aspect ratio
of ∞, 32, 15, 7.5, 3, 1, 1/30, respectively

0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

filling factor

0

100

200

300

400

500

600

700

800

900

1000

pe
rm

ea
bi

lit
y

N = 0.2
1/3
0.5
MPP
Somalloy

Figure 10: Effect of the shape of the particles on the model for
χ → ∞ compared to high density SMC.

easily satisfied with flakes based composites since com-
paction under field or with a rotating piston naturally
turns flakes perpendicular to the pressing direction.

4. Conclusion

A new model for the permeability of SMCs has been
successfully developed based on simple statistical con-
siderations and classical concepts in electromagnetism.
The main strength of the model is the predetermina-
tion of the effective demagnetizing coefficient directly
from the filling fraction and the approximate shape of
the particles. For SMCs with a filling fraction less than
60% even the exact knowledge of the intrinsic suscepti-
bility is not necessary providing its value is greater than
100. Experimental collation is very good with compos-
ites made from spherical particles, but also for that based
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Figure 11: Permeability of Finemet SMCs as a function of filling
fraction. Particles are 20×80×80µm3 Finemet flakes. Markers are
data from V. Léger [20], demagnetizing coefficient of rectangular
prism is computed from [14] and [15].

on flake-shaped particles like milled nanocrystalline rib-
bons. Because the main parameter of the model Np is
determined independently and the second one χ doesn’t
require accurate determination – only the order of mag-
nitude is needed – the Statistical Mean Chain Approxi-
mation model is able to predict the permeability of SMCs
made from any particle shape and any magnetic mate-
rial. A small adjustment of Np may be necessary only in
the case of powders having indefinite particle shape.

To compare the models, the parameters of the models
are indicated in Table 1. In some cases, parameters are
obtained directly from the model (noted C in the table)
and in some cases they must be fitted. An assessment of
the quality of the fit is given in column Q together with
an assessment of the physical meaning (Φ) of the value
of the parameters. The NMGB model has clear physical
meaning but needs adjustment of Neff for dense SMCs
and the fitting is poor. On the over hand, EMT usually
yields good fitting but the two parameters must but ad-
justed, especially Neff that may be lower than Np for low
concentrations and much higher for high concentrations.
In contrast, the present model gives very good fit what-
ever is the concentration or the shape of the particles and
requires at maximum one parameter to be fitted, χ for
low permeability SMCs or Np when the particle shape
is undefined. If the particle shape is known and the in-
trinsic susceptibility large, even no fitting is needed. It is
thought that the present model based on a statistical ap-
proach is more versatile, robust and physically coherent,
the reason is clearly because usual models are based on
the spacial periodicity hypothesis which is never verified
in practice.

8



material model parameters scores
Neff χ Np Q Φ F

3µm spheres
NMGB C ∞ × P G 0
EMT 0.27 15 × VG VG 2
SMCA C 20 × VG VG 1

High density
SMCs

NMGB C/8 8000 × P P 2
EMT 0.9 1000 × VG P 2
SMCA C ∞ 0.5 VG VG 1

80µm
Nanocrystalline
composite

NMGB C 104 × G VG 0
EMT 0.22 100 C P P 2
SMCA C ∞ C VG VG 0

Table 1: Comparison of the models. Numbers are fitted values, ex-
cept the susceptibility of nanocrystalline flakes which was measured
before crushing of the ribbon; Q is quality of the fit; Φ the physical
coherence; P, G, VG are for poor, good, very good respectively;
F is the number of fitting parameters; C means predetermined by
calculation.
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Appendix A. Commercial references

MPP µi Somalloy µmax
14µ 14 110i 1P 220
26µ 26 110i 5P 220
60µ 60 130i 1P 290
75µ 75 130i 5P 350
90µ 90 700HR 1P 440

125µ 125 700 1P 540
160µ 160 700HR 5P 600
250µ 250 1000 5P 720
550µ 550 700 3P 850

1000 3P 950

MPP (Molly-Permalloy Powder) references used are
from Magnetics www.mag-inc.com.

Somalloy is a trade mark of Höganäs www.hoganas.
com/somaloy.

Atomet is a trade mark of Rio Tinto, prod-
uct reference EM1, µmax = 290 qmp-powders.
com/product-applications/components/
magnetic-applications/.
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