Dark matter measurements combining stellar and H i kinematics: 30 per cent 1σ outliers with low dark matter content at 5 R e
Résumé
ABSTRACT We construct the Schwarzschild dynamical models for 11 early-type galaxies with the SAURON and Mitchell stellar IFUs out to 2–4Re, and construct dynamical models with combined stellar and H i kinematics for a subsample of four galaxies with H i velocity fields out to 10Re obtained from the Westerbork Synthesis Radio Telescope, thus robustly obtaining the dark matter content out to large radii for these galaxies. Adopting a generalized-NFW dark matter profile, we measure an NFW-like density cusp in the dark matter inner slopes for all sample galaxies, with a mean value of 1.00 ± 0.04 (rms scatter 0.15). The mean dark matter fraction for the sample is 0.2 within 1Re, and increases to 0.4 at 2Re, and 0.6 at 5Re. The dark matter fractions within 1Re of these galaxies are systematically lower than the predictions of both the TNG-100 and EAGLE simulations. For the dark matter fractions within 2Re and 5Re, 40 and 70 per cent galaxies are 1σ consistent with either the TNG-100 or the EAGLE predictions, while the remaining 60 and 30 per cent galaxies lie below the 1σ region. Combined with 36 galaxies with dark matter fractions measured out to 5Re in the literature, about 10 per cent of these 47 galaxies lie below the 3σ region of the TNG-100 or EAGLE predictions.
Domaines
Planète et Univers [physics]Origine | Fichiers éditeurs autorisés sur une archive ouverte |
---|---|
Licence |