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Abstract 

As climate stressors are impacting marine ecosystems and fisheries across the world, ecosystem models that incorporate environmen- 
tal variables are increasingly used to inform ecosystem-based fisheries management. The assumptions around the mechanistic links 
between climate stressors and the biological processes in these models are important, but the implications for model outcomes of 
which stressors are captured and how they affect modeled biological processes are seldom explored. Using a whole-ecosystem model 
(Atlantis) for the Gulf of Alaska, we explore the effects of capturing physical (increased temperature) and biogeochemical (decreased 

low trophic level productivity) climate stressors, and disentangle the effects of each stressor on the productivity of forage fish, ground- 
fish, and fish-eating seabirds. We then test the effects of alternative model specifications of temperature-driven habitat determination 

and bioenergetics. Increased temperature resulted in increased weight-at-age and higher natural mortality, while decreased productiv- 
ity resulted in decreased weight-at-age and higher natural mortality. Model specification of temperature dependence of movement and 

spawning influenced model outcomes, and decoupling these processes from temperature led to overly optimistic biomass predictions. 
As the use of ecosystem models to inform fisheries management becomes more operational, we illustrate that the assumptions around 

the links between climate stressors and ecological processes influence model outcomes. 

Keywords: climate stressors; temperature; productivity; end-to-end models; Atlantis; Gulf of Alaska; EBFM; ecosystem-based fisheries management 
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Introduction 

Climate stressors are impacting marine ecosystems and fish- 
eries globally (Hollowed et al. 2013 , Cooley et al. 2022 ).
Increased temperature and low trophic level (LTL) pro- 
ductivity shifts are among the key impacts anticipated in 

marine ecosystems under climate change (Heneghan et al.
2021 ). Global models of climate projections such as Earth 

System Models (ESM) generally agree in predicting that 
future warming will correspond to a decrease in primary 
© The Author(s) 2024. Published by Oxford University Press on behalf of Interna
article distributed under the terms of the Creative Commons Attribution License 
reuse, distribution, and reproduction in any medium, provided the original work 
roductivity at a global scale (Bopp et al. 2013 ), although
limate models developed as part of the latest Climate Model
ntercomparison Project (CMIP6) show larger inter-model 
ariability than previous iterations in CMIP5 (Lehner et al.
020 ). In Alaska, large marine ecosystems, including the 
ering Sea and the Gulf of Alaska (GOA), that support valu-
ble fisheries are experiencing the effects of climate variability
cross multiple time scales. Past climate events, including a
egime shift (Anderson and Piatt 1999 ) and the 2013–2016 
tional Council for the Exploration of the Sea. This is an Open Access 
( https:// creativecommons.org/ licenses/ by/ 4.0/ ), which permits unrestricted 
is properly cited. 
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arine heatwave (Di Lorenzo and Mantua 2016 ), altered
cosystem productivity and ultimately resulted in negative
ffects on Alaska fisheries, including the closure of the federal
acific cod ( Gadus macrocephalus ) fishery in the GOA in
020 (Barbeaux et al. 2020 ). Alaska’s marine ecosystems
re projected to experience altered biophysical conditions,
ncluding increased temperatures and more severe heatwaves,
n upcoming decades (Hicke et al. 2022 ). 

Multispecies and ecosystem models are increasingly used
s tools to inform ecosystem-based fisheries management
EBFM) (Craig and Link 2023 , Karp et al. 2023 ). In the Bering
ea, the Alaska Climate Integrated Modeling (ACLIM) project
Hollowed et al. 2020 ) has advanced our understanding of
limate effects and has illustrated that EBFM can mitigate
pecies declines (Holsman et al. 2020 ). In the GOA, climate-
nhanced multi-species and single-species statistical models
ave been applied to evaluate the effects of the 2013–2016
eatwave on Pacific cod (Barbeaux et al. 2020 ) and of variabil-
ty in bottom temperature on commercially important ground-
sh stocks (Adams et al. 2022 ). In addition, foundational
cosystem and multi-species modeling have been undertaken
n the region (Aydin et al. 2007 , Gaichas et al. 2015 ). How-
ver, efforts to integrate climate information into ecological
odels for the GOA remain limited compared to the Bering

ea, and this can hinder the uptake of climate considerations
n the fisheries management process (Holsman et al. 2019 ). 

Integrating mechanistic links between climate stressors and
iological processes into ecological models is an important
tep in model building, and it is critical when using these
odels to investigate climate scenarios in an EBFM context

Koenigstein et al. 2016 , Checkley et al. 2017 ). For global and
egional ecosystem models, assumptions about the linkages
etween climate stressors, such as increased temperature and
ecreased L TL productivity , and ecophysiology are particu-
arly important, but our understanding of such linkages is of-
en limited (Heneghan et al. 2021). Atlantis is a deterministic,
nd-to-end regional ecosystem simulation model that dynami-
ally couples physics, biology, and fisheries modules over time
nd in three-dimensional space (Fulton et al. 2011 ). Atlantis
imulates trophic interactions between species, and therefore
ffers the opportunity to test how links between climate stres-
ors and biological processes propagate upward through food
ebs to affect predators and fisheries across space. 
To date, the effects of different assumptions when integrat-

ng temperature and shifts in LTL productivity into complex
cosystem models have rarely been characterized. Here, we
pply an Atlantis model for the GOA, a marine ecosystem
usceptible to climate-driven productivity changes and pro-
ected to experience continued warming, to explore the ef-
ects of capturing physical (increased temperature) and bio-
eochemical (decreased LTL productivity) stressors, isolated
nd combined, to disentangle the effects of each stressor on
pecies productivity and model outcomes. We then test alter-
ative model specifications of (i) thermal tolerance windows
hat restrict movement and spawning of key species and (ii)
he shape of the bioenergetic response to increased tempera-
ure. We focus on these two biological processes because they
re the most common ways to link temperature to biology
n Atlantis (Audzijonyte et al. 2019 ), and because the impact
n metabolic responses to bioenergetics is also of broad in-
erest for other ecosystem models. We evaluate the effects of
ifferent parameterizations of these biological processes on
odel predictions of winners and losers under warm regimes
 r  
y evaluating species biomass, weight-at-age and numbers-at-
ge, and spatial patterns in abundance of selected species. We
how that assumptions about the mechanistic links between
limate stressors and ecological processes can greatly influence
odel outcomes. 

ethods 

tudy area 

he GOA is a temperate marine ecosystem with complex
athymetry and topography. High ecosystem productivity
long the GOA shelf is supported by the confluence of
ron in coastal runoff with nitrate from the deep basin,
ransported both vertically and horizontally across the shelf
y topographic stirring, wind stress curl, tides, and eddies
Stabeno et al. 2004 , Hermann et al. 2009 , Coyle et al. 2013 ,
019 ). This productivity of the GOA supports high species
iversity and valuable fisheries managed under state (0–3
m from shore) and federal (3–200 nm) jurisdictions in the
nited States, and federally (0–200 nm) in Canada (Ferriss
nd Zador 2022 ). Oceanographic data from throughout the
OA have shown that temperature has a strong seasonal

ignal with minima in March and maxima in August, and
hat freshwater input and stratification can cause cooler
emperatures near the surface in inshore waters during winter
onths (Stabeno et al. 2004 ). 

tlantis modeling framework 

tlantis is a whole-ecosystem, deterministic, spatially explicit
imulation modeling framework that couples physical, bio-
ogical, and socioeconomic (fisheries) submodels dynamically
Fulton et al. 2004 , 2011 , Audzijonyte et al. 2019 ). A detailed
escription of the development, data sources, assumptions,
alibration, and skill assessment of Atlantis GOA can be found
n the Supplementary Material S1 . Here, we briefly describe
he main features of the model. We refer to it hereafter as the
Base model” to distinguish it from alternative model specifi-
ations presented in the scenarios section below. 

odel domain 

he spatial domain of the model ( Fig. 1 ) extends from 170 

◦W
the western border of National Marine Fisheries Service
NMFS) area 610, off the eastern Aleutian Islands of Alaska,
SA] to the northern tip of Vancouver Island in British
olumbia, Canada (corresponding to the northern edge of

he California Current Atlantis model domain; Kaplan et
l. 2014 ). It is apportioned into 109 spatial polygons that
pproximate the bathymetry , oceanography , ecography , and
anagement area subdivisions of the region. Dynamic model
olygons (i.e. where biological and socioeconomic processes
re modeled) extend from the shoreline (excluding embay-
ents) to the 1000-m isobath along the continental slope. The
odel domain is separated from the surrounding ocean by
oundary polygons (shown in dark gray in Fig. 1), where wa-
er circulates but dynamic biological and socioeconomic pro-
esses are not resolved (Audzijonyte et al. 2019 ). 

The model was parameterized to resemble GOA biologi-
al conditions in the early 1990s. This period was chosen be-
ause these are the earliest years with adequate data availabil-
ty required to parameterize the model, and because of the
elative ecological stability of the GOA following a regime

https://academic.oup.com/icesjms/article-lookup/doi/10.1093/icesjms/fsae002#supplementary-data
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Figure 1. Spatial domain of the Atlantis GOA model. Boundary boxes where no biological processes or fisheries are evaluated are represented in dark 
gray. 
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shift event in the late 1970s (Anderson and Piatt 1999 ; see 
Supplementary Material S1 for details). 

Model physics 

To force the physical submodel, we mapped the output of a 
Regional Ocean Modeling System (ROMS) hindcast of the 
northeast Pacific at 10-km resolution (Hinckley et al. 2009 ,
Coyle et al. 2019 ) to the Atlantis GOA geometry. ROMS vari- 
ables used to force Atlantis were temperature, salinity, and 

water transport. We calibrated the Base model with physi- 
cal forcings from 1999 in a loop ( sensu Marshall et al. 2017 ) 
to eliminate the interannual variability of environmental vari- 
ables and thus minimize one source of uncertainty on model 
outcomes. Doing so allowed us to better evaluate the effects 
on model outcomes of forcing different climate stressors (in- 
creased temperature and decreased LTL productivity) and of 
using different model specifications of temperature responses.
ROMS forcings for the period 1996–2020 were available 
and the year 1999 was chosen because 1997–1998 were El 
Niño years characterized by warm temperatures in the GOA 

(Stabeno et al. 2004 ), and ROMS output for the first year of 
simulation run (1996) may have incorporated artifacts stem- 
ming from model initialization. Because we did not aim to re- 
produce accurate historical patterns in this study, which year 
was used to force model physics was deemed less important,
so long as it was prior to the onset of the heatwave in the GOA 

in 2013. 

Model biology 

We categorized the GOA food web into 78 functional groups 
of varying functional and taxonomic aggregation, with species 
of commercial and/or conservation interest represented as 
single-species groups. Vertebrates were modeled as age- 
structured populations (maximum 10 multi-year age classes),
while invertebrates were represented as biomass pools (Au- 
dzijonyte et al. 2019 ). We parameterized initial model condi- 
tions with species biomasses from 1990, or the closest year 
thereafter if information on 1990 was not available. We ob- 
tained biological parameters from GOA stock assessments,
or from studies from the region for non-assessed species 
( Supplementary Material S1 ). Trophic interactions were de- 
fined based on stomach content analyses of fish collected in 

NOAA’s Alaska Fisheries Science Center bottom trawl (Liv- 
ingston et al. 2017 ) and surface trawl surveys, or from the lit- 
erature when survey data were not available ( Supplementary 
Material S1 ). Notably, although 1999 was a La Niña year 
characterized by cool temperatures across the water column 

(Stabeno et al. 2004 ), conditions were on average slightly 
cooler in 1990 than in 1999. When ROMS output for the early 
990s will become available, temporal mismatches between 

nitial model biology and physics will be alleviated. 
In this study, we link temperature to biological processes 

f all 78 functional groups, but we focus on the effects of cli-
ate stressors on 17 groups: 6 plankton groups (diatoms and
icophytoplankton, microzooplankton, copepods, large zoo- 
lankton, and euphausiids); 5 forage fish groups that feed on
lankton and have been shown to respond negatively to warm
onditions (Baker et al. 2019 , von Biela et al. 2019 , Arimitsu et
l. 2021 ) (capelin Mallotus catervarius , Pacific sand lance Am-
odytes personatus , Pacific herring Clupea pallasii , eulachon 

haleichthys pacificus , and slope forage fish comprising Myc- 
ophidae and Bathylagidae); 4 commercially and ecologically 
mportant groundfish species that, combined, constitute most 
f the annual groundfish catch in the GOA (NPFMC 2019 )
walleye pollock, pollock hereafter, G. chalcogrammus ; Pa- 
ific cod G. macrocephalus ; arrowtooth flounder Atheresthes 
tomias ; and Pacific halibut Hippoglossus stenolepis ); and 2
roups of fish-eating seabirds (diving and surface-feeding) that 
ave shown negative responses to warm and food-limited con- 
itions (Piatt et al. 2020 , Arimitsu et al. 2021 ). 

patial distributions 

or functional groups sampled by bottom trawl survey gear,
e specified time-invariant spatial distributions across the At- 

antis model domain with geostatistical modeling (sdmTMB; 
nderson et al. 2022 ) of bottom trawl data from Alaska and

rom British Columbia ( Supplementary Material S1 ). Species 
istributions derived from spatial modeling of these data 
re representative of summer conditions because these are 
ummer/early fall surveys. For species not sampled by bot- 
om trawl gear (e.g. seabirds, marine mammals, and pelagic 
pecies), we used other spatially annotated data sources or the
iterature ( Supplementary Material S1 ). 

ishing mortality 

e represented fishing mortality as a fully selected F of 1 
4 F MSY 

or Tier 3 GOA stocks, and of 1 4 M for Tier 4 + (data moderate)
pecies. Tier 3 stocks are defined as having reliable point es-
imates of biomass and F MSY proxies (e.g. B35% and F35% ),
hile Tier 4 + stocks are defined as having reliable point esti-
ates of biomass and natural mortality (NPFMC 2019 ). Val-
es of F MSY and M were collated from recent stock assess-
ent models (Martin Dorn, UW, unpublished data), and are 

hus single-species estimates. This F represented light back- 
round fishing that had been used to calibrate the model
 Supplementary Material S1 ). This F was compatible with the
urpose of this study (i.e. evaluating modeled ecological re- 
ponses to climate stressors) because the focus of the current

https://academic.oup.com/icesjms/article-lookup/doi/10.1093/icesjms/fsae002#supplementary-data
https://academic.oup.com/icesjms/article-lookup/doi/10.1093/icesjms/fsae002#supplementary-data
https://academic.oup.com/icesjms/article-lookup/doi/10.1093/icesjms/fsae002#supplementary-data
https://academic.oup.com/icesjms/article-lookup/doi/10.1093/icesjms/fsae002#supplementary-data
https://academic.oup.com/icesjms/article-lookup/doi/10.1093/icesjms/fsae002#supplementary-data
https://academic.oup.com/icesjms/article-lookup/doi/10.1093/icesjms/fsae002#supplementary-data
https://academic.oup.com/icesjms/article-lookup/doi/10.1093/icesjms/fsae002#supplementary-data
https://academic.oup.com/icesjms/article-lookup/doi/10.1093/icesjms/fsae002#supplementary-data
https://academic.oup.com/icesjms/article-lookup/doi/10.1093/icesjms/fsae002#supplementary-data
https://academic.oup.com/icesjms/article-lookup/doi/10.1093/icesjms/fsae002#supplementary-data
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Figure 2. (a) Thermal niches for four key groundfish species in Atlantis GOA. Vertical dashed lines indicate minimum (blue) and maximum (red) tolerated 
temperatures; solid black lines indicate the scalar applied to abundance as a function of local temperature. (b) Bioenergetic response to temperature 
with unimodal formulation (solid lines) and default Atlantis Q 10 method (dashed lines). Red horizontal dotted line represents the maximum scalar applied 
to consumption for the unimodal response. 
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nalysis was not an accurate recreation of historical fishing
atterns, nor the evaluation of any particular fishing regime.
owever, some of the modeled species in the GOA were fished

t higher intensity than 

1 
4 F MSY in 1990 (model initial condi-

ions). Future analyses should consider the effects of fishing at
ifferent intensities. 

ntegrating temperature in the Base model 

emperature influences several processes in Atlantis, and
any options exist to regulate how biogeochemistry and biol-
gy are linked to temperature (Audzijonyte et al. 2019 ). Here,
e present the options that were chosen for the Base model. 

onstraints on movement and spawning 

or all vertebrates (except seabirds, which forage in the wa-
er but do not live in it), and for king crabs, other crabs, and
andalid shrimps, we applied temperature-dependent abun-
ance scalars that were a function of species-specific ther-
al tolerance windows ( Fig. 2 a). To this end, we set species-

pecific minimum and maximum tolerated temperatures based
n water temperature at location and depth of occurrence ob-
ained from AquaMaps ( www.aquamaps.org , Kaschner et al.
019 ). We used bottom temperatures for demersal and benthic
pecies, and surface temperatures for pelagic species, marine
ammals, and seabirds. These ranges are meant to represent

he maximum spatial footprint attainable by a species based
n its temperature preferences, and therefore the full tempera-
ure ranges provided by Kaschner et al. (2019) were used. For
onsistency with parameterization of bioenergetic responses
o temperature (see below), maxima from AquaMaps were
eplaced with values of maximum tolerated temperature from
dams et al. (2022) for pollock, Pacific cod, arrowtooth floun-
er, and Pacific halibut, which were estimated based on pub-
ished or fit bioenergetic models for each species and validated
ith diet data from the groundfish summer survey (Ciannelli
t al. 1998 , Holsman and Aydin 2015 , Holsman et al. 2022 ). 

Temperature also influences reproductive success of com-
ercially important groundfish species in the GOA, with tem-
eratures exceeding species-specific thresholds resulting in re-
uced hatching success or egg and larval survival. To cap-
ure the thermal sensitivity of reproductive processes in key
roundfish species, we defined thermal windows for spawn-
ng of pollock (0 −13 

◦C, Koenker et al. 2018 , Laurel et al.
018 , Kim et al. 2022 ), Pacific cod (3 −7 

◦C, Laurel and
ogers 2020 ), and Pacific halibut (3–10 

◦C, Liu et al. 1994 ).
he effects of temperature on arrowtooth flounder spawn-

ng and early life history are unclear (Doyle et al. 2018 ), and
hus were not modeled here. When temperature in a spatial
odel cell exceeds these species-specific bounds at the time of

pawning, no reproduction occurs in that cell for that species
Audzijonyte et al. 2019 ). The combination of temperature-
ased movement and reproduction constraints also means
hat any spawners are excluded from spawning grounds that
it outside the species thermal window. If no suitable cells
re found, complete reproductive failure occurs (Audzijonyte
t al. 2019 ). 

ioenergetics 

n Atlantis, temperature directly influences metabolic rates of
onsumers, the growth of primary producers, and basal bio-
eochemical processes like denitrification and detrital decay
Fulton et al. 2011 ). By default, a Q 10 coefficient approach is
sed, with vital rates multiplied by a monotonically increasing
emperature-dependent scalar T scalar 

T scalar = Q 

( T−T base ) 
10 ◦C 

10 , 

here T is the current temperature, T base is a baseline temper-
ture of 10 

◦C, and Q 10 defines the slope of the relationship

http://www.aquamaps.org
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and can be species-specific but is often set to 2.0 by default 
(Audzijonyte et al. 2019 ). This scalar is applied by default to 

a range of processes, including producer growth rate and, for 
consumers, rates of consumption, growth, and non-predation 

natural mortality. One limitation of this approach is that it im- 
plies that a complex, interacting suite of metabolic processes 
ramp up with temperature. 

In the bioenergetic literature, it is more typical that the con- 
sumption of ectotherms under increased temperature increase 
until an optimum temperature before declining (Kitchell et al.
1977 , Thornton & Lessem 1978 ). Previous multi-species mod- 
els in the North Pacific have included bioenergetic response 
to temperature in the form of a unimodal scalar on consump- 
tion and other metabolic processes of key groundfish species 
(CEATTLE: Holsman et al. 2016 , Adams et al. 2022 ). For con- 
sistency with other models in Alaska, we implemented a new 

temperature response in Atlantis to reproduce the CEATTLE 

formulation (Holsman and Aydin 2015 ): 

T corr = V 

X e X ( 1 −V ) , 

where: 

V = 

( T CM 

− T ) 
( T CM 

− T C0 ) 
, 

X = 

⎡ 

⎣ Z 

2 

( 

1 + 

(
1 + 

40 

Y 

)0 . 5 
) 2 

⎤ 

⎦ / 400 , 

Z = log ( Q 10 ) ( T CM 

− T C0 ) , 
Y = log ( Q 10 ) ( T CM 

− T C0 + 2 ) , 

where T C0 is the temperature of highest consumption, and 

T CM 

is the temperature above which no consumption oc- 
curs. In Atlantis GOA, we applied this unimodal response 
to walleye pollock, Pacific cod, arrowtooth flounder, and Pa- 
cific halibut, and parameterized the curve after Adams et al.
(2022) and references therein ( Supplementary Table S2.1 , Fig.
2 b). To capture important bioenergetic effects of warming 
on key GOA forage fish species (Arimitsu et al. 2021 ), we 
used the bioenergetic parameter values for walleye pollock 

( Supplementary Table S2.1 ) to parameterize the unimodal re- 
sponse of Pacific capelin, Pacific sand lance, Pacific herring,
slope forage fish, and eulachon. We chose pollock because, of 
the four species for which we had empirically derived bioen- 
ergetic parameters, it has the most similar life history to for- 
age fish, especially during the juvenile stage. Capelin occur- 
rence in Alaska declines steeply for temperatures higher than 

10.5 

◦C (McGowan et al. 2019 ), and mean water tempera- 
tures recorded from North Pacific herring stocks vary between 

7.5 

◦C and 12.75 

◦C (dos Santos Schmidt et al. 2021 ), suggest- 
ing that parameters for pollock constitute an acceptable ap- 
proximation. We applied the default response described above 
to the rest of the groups in the model. 

Model calibration and skill evaluation 

After the initial parameterization, input parameters of the 
Base model were tuned to meet a set of criteria: functional 
group persistence (i.e. no groups going extinct); model equi- 
librium (i.e. temporal stability of age and size structures); and 

the ability of the model to reproduce species biomass within 

the bounds of historical values (Kaplan and Marshall 2016 ).
To address the persistence criterion, we aimed for no func- 
tional groups to go extinct ( < 1% initial biomass). To evaluate 
model skill with respect to the equilibrium criterion, we calcu- 
lated the ratio of terminal biomass to initial biomass. Finally,
e evaluated whether terminal biomass was within historical 
alues (for groups where these were available). We evaluated 

he model against these criteria after a 30-year run, which was
elected as the length of the spin-up period for the simula-
ions in the present study (see below). Details on model cali-
ration and skill assessment can be found in Supplementary 
aterial S1 , Section 6. 

cenarios of climate stressors 

e evaluated the effects of climate stressors on model out-
omes by applying four scenarios with increased temperature 
nd decreased LTL productivity in isolation and in combina- 
ion. We simulated all scenarios for 50 years, which included
0 years of model spin-up (1999 conditions) and 20 years of
imulation with climate forcings. The spin-up period was nec- 
ssary to allow the model to cycle through initial instabilities
Pethybridge et al. 2019 ) and was applied to all scenarios. 

Scenario 1: Base model. This is the Atlantis GOA model,
alibrated ( Supplementary Material S1 ) and with the mech-
nistic integration of temperature as described above, forced 

ith physics (temperature, salinity, and hydrodynamics) from 

999. 
Scenario 2: Increased temperature. This scenario is the Base 
odel forced with physics from 2014, chosen as a year of
arm conditions in the GOA (Di Lorenzo and Mantua 2016 ).
he 2014 forcing was applied for 20 years after allowing for

he 30-year spin-up period with 1999 conditions (Base model).
ifferences in temperature between the 1999 and 2014 forc- 

ngs were up to 4 

◦C in some model cells during the summer
onths ( Supplementary Fig. S2.1 ). 
Scenario 3: Decreased L TL productivity . Growth rates of

iatoms, mesozooplankton (which represents copepods in At- 
antis GOA; see Supplementary Material S1 ), and euphausiids 
ere halved compared to the Base model for 20 years, after a
0-year spin-up. Halving growth rates for 20 years resulted in
 terminal biomass for these plankton groups of 40–60% the
iomass in the Base model ( Supplementary Fig. S2.2 ). 
Scenario 4: Increased temperature and decreased LTL pro- 

uctivity (Scenarios 2 and 3 combined). 
Scenarios 2, 3, and 4 were compared to the Base model in

erms of terminal (average of the last 5 years) biomass for each
unctional group, and weight-at-age and numbers-at-age for 
ertebrates. 

ensitivity tests: realism of thermal niches and 

ioenergetics 

o test the importance of different assumptions when mech- 
nistically integrating temperature in Atlantis GOA, we ran 

cenarios 1 and 2 (i.e. Base model and increased temperature)
nder five sets of assumptions about the effects of tempera-
ure on biology. These five model specifications aimed to rep-
esent higher and lower realism compared to the Base model.
hese sensitivity tests seek to identify aspects of structural un-
ertainty in the simulations that influence model projections 
nd therefore potential future fisheries management advice,
r that point to key data gaps (Geary et al. 2020 ). We com-
uted terminal biomass of the nine species for which we apply
nimodal bioenergetic responses in the Base model (i.e. pol- 

ock, Pacific cod, arrowtooth flounder, Pacific halibut, Pacific 
apelin, Pacific sand lance, Pacific herring, slope forage fish,
nd eulachon) and compared the following simulations: 
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(i) Higher realism: Winter spatial distributions. The Base
model used fixed ontogenetic spatial distributions
representative of summer conditions for groundfish
( Supplementary Material S1 ). However, several ground-
fish species in the GOA form spawning aggregations
during the winter months in areas that differ from those
used in the summer for foraging (Dunn & Matarese
1987 , Ciannelli et al. 2007 , Doyle et al. 2018 ). As a
result, spawning adults are expected to experience dif-
ferent local conditions during the spawning season. We
developed winter distributions for pollock, Pacific cod,
arrowtooth flounder, and Pacific halibut with catch data
from the Alaska Groundfish Observer Program (AFSC
and AKRO 2022 ) for October–March and a geostatis-
tical modeling framework that accounts for preferen-
tial sampling in fishery-dependent data (Alglave et al.
2022 ). No environmental variables were used in these
models, which only incorporated spatiotemporal auto-
correlation in fish catch per unit effort (CPUE) index.
Unlike the “summer” distribution models used in the
Base Atlantis GOA, these models did not account for
ontogenetic stages. 

(ii) Higher realism: All species used a unimodal bioen-
ergetic response with the formulation from Holsman
and Aydin (2015) . As in the Base model, the unimodal
responses of pollock, Pacific cod, arrowtooth floun-
der, and Pacific halibut were derived from CEATTLE.
Curves for all other fish species employed a default
Q 10 = 2 . 36 (Clarke 2004 ), a T CM 

equal to the max-
imum temperature from Kaschner et al. (2019) , and
T C0 = 0 . 7 T CM 

, based on an average T C0/ T CM 

= 0.7 for
the four CEATTLE species ( Supplementary Fig. S2.3 ).

(iii) Lower realism: No thermal niches constraining move-
ment and spawning (but bioenergetic responses being
applied like in the Base model). 

(iv) Lower realism: All species used the default monotonic
increasing Q 10 bioenergetic response to temperature
(see above). This response assumes that consumption,
growth, and natural mortality increase as a power
function of temperature. 

(v) Lower realism: No temperature sensitivities. None of
the limitations to movement and spawning, nor the
bioenergetic effects of temperature, were applied. 

esults 

odel calibration 

tlantis GOA was calibrated to 1990 conditions by tuning
nput parameters so that model outputs were as close as pos-
ible to the initial conditions after 30 years of model spin-
p ( sensu Kaplan & Marshall 2016 ). After a 30-year simu-
ation run, all model functional groups persisted in the Base
odel. Terminal biomass (5-year average) was between 0.5

nd 2 times the initial values for 57 model groups (73%), be-
ween 0.25 and 4 times the initial values for 12 groups (15%),
nd it was outside these bounds for 9 groups (10%), which
ncluded all 3 detritus groups, detritivorous meiobenthos, di-
toms, small phytoplankton, Pacific halibut, and coho salmon.
he size and age structures of vertebrates were calibrated to
e realistic and as similar as possible to the input conditions.
iomass estimates for Pacific cod and flathead sole were 3.1
nd 2.3 times the historical maximum values observed for
hese species, respectively, and for Pacific halibut, the demersal
helf rockfish complex, shallow- and deep-water flatfish, and
culpins, between 1.2 and 1.6 times the historical maxima. For
ll other groundfish groups, terminal biomass was within the
ounds of historical values in the model domain. However,
ccurate historical estimates were not available for all species.
ee Supplementary Material S1 (Section 6) for details. 

cenarios of climate stressors 

he effects of the different scenarios on model terminal
iomass are reported in Fig. 3 for the 17 selected func-
ional groups (see Supplementary Fig. S2.4 for results for
ll species). Responses to increased temperature in Scenario
 were species-specific, with some fish groups experienc-
ng increased terminal biomass in warm conditions (e.g. up
o + 10–11% for arrowtooth flounder and pollock, respec-
ively) and other groups decreased biomass (e.g. −17% for
lope forage fish, −10% for eulachon, and −9% for Pacific
od). Conversely , decreased L TL productivity in Scenario 3
ed to lower terminal biomass of diatoms ( −54%), mesozoo-
lankton ( −41%), euphausiids ( −46%), sand lance ( −43%),
apelin ( −38%), herring ( −17%), and eulachon ( −10%),
lthough declines became smaller for flatfish, gadids, and
eabirds. Increased temperature and decreased productivity
ad cumulative effects on terminal biomass in Scenario 4. 
Increased temperature in Scenario 2 resulted in higher

eight-at-age of all selected vertebrate groups after applying
he warm forcings for 20 years ( Supplementary Fig. S2.5 ),
ith notable increases for arrowtooth flounder, Pacific hal-

but, Pacific cod, and walleye pollock ( + 30%, + 24%, + 22%,
nd + 13%, respectively, mean across age classes, Fig. 4 ). For-
ge fish weight-at-age also responded positively to increased
emperature, but to a lesser extent (all changes ≤ 10%). De-
reased LTL productivity in Scenario 3 corresponded to sig-
ificantly lower weight-at-age of forage fish ( −30%, −30%,
8%, −12%, and −5% for capelin, sand lance, eulachon, her-

ing, and slope forage fish, respectively). Groundfish weight-
t-age was less affected by declines in LTL productivity (all
eclines ≤ 10%). In Scenario 4, opposite effects on weight-at-
ge from increased temperature and decreased LTL produc-
ivity partially counteracted each other, with net weight-at-
ge decreases in capelin, sand lance, and herring weight-at-age
 −24%, −25%, and −8%, respectively), increases in arrow-
ooth flounder, Pacific cod, and Pacific halibut weight-at-age
 + 16%, + 19%, and + 21%, respectively), and small effects on
ollock, eulachon, and seabirds. 
Increased temperature in Scenario 2 resulted in overall

ower numbers-at-age for most species when averaging across
ge classes ( Fig. 5 , Supplementary Fig. S2.6 ). However, for
ost fish groups, the number of individuals in the first age

lass increased in Scenario 2 (except for Pacific cod). Pa-
ific cod experienced the largest declines, with average de-
lines in numbers-at-age of −24% under increased tempera-
ure, followed by slope forage fish, Pacific halibut, arrowtooth
ounder, eulachon, and fish-eating seabirds ( −19%, −17%,
14%, −13%, and −10%, respectively). Decreased LTL pro-
uctivity in Scenario 3 resulted in reduced numbers-at-age for
and lance and capelin ( −22% and −11%, respectively), with
maller negative changes for other species and close to no ef-
ect on higher trophic levels, including fish-eating seabirds.
cenario 4 had cumulative effects from the other two scenar-
os and resulted in the largest decreases in numbers-at-age for
ll species. 
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Figure 3. R elativ e changes in terminal biomass (a v erage o v er the last 5 y ears) of 17 selected Atlantis GOA functional groups f or (left to right): Scenario 2 
(increased temperatures), Scenario 3 (50% reduction in lo w-trophic-le v el productivity), and Scenario 4 (Scenarios 2 and 3 combined) compared to the 
Base model (no climate stressors). Gray-dashed vertical lines represent values in the Base model, and red and blue horizontal segments and points 
represent positive and negative changes, respectively. 

Figure 4. R elativ e changes in w eight-at-age (a v erage o v er the last 5 y ears) of selected Atlantis GOA functional groups f or (left to right): Scenario 2 
(increased temperatures), Scenario 3 (50% reduction in lo w-trophic-le v el productivity), and Scenario 4 (Scenarios 2 and 3 combined) compared to the 
Base model (no climate stressors). Changes are shown by age class. Duration of age classes varies depending on life history. 
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Figure 5. R elativ e changes in numbers-at-age (a v erage o v er the last 5 y ears) of selected Atlantis GOA functional groups f or (left to right): Scenario 2 
(increased temperatures), Scenario 3 (50% reduction in lo w-trophic-le v el productivity), and Scenario 4 (Scenarios 2 and 3 combined) compared to the 
Base model (no climate stressors). Changes are shown by age class. Duration of age classes varies depending on life history. 
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ensitivity test results: realism of thermal niches 

nd bioenergetics 

or the sensitivity runs with higher realism (1 and 2), cap-
uring winter distributions for pollock, Pacific cod, arrow-
ooth flounder, and Pacific caused higher terminal biomass
or arrowtooth flounder, lower terminal biomass for Pacific
od, and negligible differences for pollock ( Fig. 6 ; also see
upplementary Fig. S2.7 for changes relative to the Base model
nstead of absolute values); and unimodal bioenergetic re-
ponses had negligible effects on terminal biomass for all
elected species, but appreciable differences for some other
roups, such as thornyheads, skates, Pacific hake, and coho
almon ( Supplementary Fig. S2.8 ). For the simulations with
ower realism (3–5), decoupling thermal tolerance niches from
ovement and spawning resulted in the model predicting
igher terminal biomass for all groundfish except pollock
likely because of the increase in its predators), but particu-
arly so for Pacific cod; applying a monotonic increasing Q 10 

elationship between vital rates and temperature had positive
ffects on arrowtooth flounder and Pacific halibut, negative
ffects on pollock, and negligible effects on Pacific cod; and
pplying no temperature sensitivity resulted in model outputs
eing decoupled from temperature forcings and very similar
iomasses under cold and warm temperatures. Effects on for-
ge fish species were small compared to the four groundfish
pecies. 

iscussion 

e developed a deterministic end-to-end Atlantis simulation
odel of the Gulf of Alaska (GOA), and we applied it to ex-
lore the effects of increased temperature and decreased low
rophic level (LTL) productivity on population-level outcomes
or ecologically and commercially important taxa. We found
hat increased temperature resulted in increased weight-at-age
nd natural mortality for most species, decreased LTL produc-
ivity resulted in decreased weight-at-age and increased mor-
ality, and the two combined had cumulative effects. We also
ound that not accounting for thermal limitations to move-
ent and spawning leads to overly optimistic predictions of

roundfish biomass in the presence of climate stressors, and
hat neglecting links between temperature and ecophysiology
imits our ability to explore climate scenarios using ecosystem
odels. 

imulating climate forcing scenarios 

n the increased temperature scenario (Scenario 2), terminal
tock biomass across most fish species showed a moderate
ncrease relative to the Base model. This increase was me-
iated by a positive change in weight-at-age under warmer
emperatures and under no food limitation. Bioenergetic the-
ry, largely based on empirical studies, postulates that global
arming is driving fish populations towards smaller termi-
al body sizes (reviewed in Lefevre et al. 2021 ). However, ob-
ervations of fish body growth in wild populations showed
hat 45% of species were larger in warmer water (Audzijonyte
t al. 2020 ). In the Bering Sea, weight-at-age of juvenile pol-
ock increases with temperature (Oke et al. 2022 ). The higher
eight-at-age under warm conditions predicted by our simu-

ations is in agreement with results from size spectrum mod-
ls where including temperature-dependent physiological pro-
esses led to increased consumption and growth and conse-
uently higher size-at-age for some species (Reum et al. 2020 ),
s well as laboratory evaluations for Alaska groundfish (Lau-
el et al. 2016 ). In the increased temperature scenario, the
ncrease in weight-at-age was driven by increased consump-
ion resulting from the bioenergetic response to temperature.
or species with the unimodal bioenergetic response, this in-
rease continued until the temperature of optimum consump-
ion ( T C0 ) was reached, while it was monotonic for species
ith the default Q 10 response. We found that the improve-
ent in weight-at-age under increased temperature and no

ood limitation was highest for arrowtooth flounder, which

https://academic.oup.com/icesjms/article-lookup/doi/10.1093/icesjms/fsae002#supplementary-data
https://academic.oup.com/icesjms/article-lookup/doi/10.1093/icesjms/fsae002#supplementary-data
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Figure 6. Terminal biomass (a v erage o v er the last 5 y ears) under different model specifications and assumptions (shapes) f or the effects of temperature 
on biology under higher model realism (winter distributions and unimodal bioenergetic responses) and lo w er model realism (no thermal constraints to 
mo v ement and reproduction, default monotonic bioenergetic responses, and no temperature sensitivities). Simulations under base conditions are in 
blue, increased temperature in red. 
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was the species with the highest T C0 and T CM 

and thus had 

the most to gain from warmer temperatures. 
Decreased LTL productivity had the largest effects on for- 

age fish weight-at-age and numbers-at-age, in particular sand 

lance and capelin, and some effects on the younger age classes 
of groundfish like pollock, which are also planktivorous.
However, bottom-up effects due to food limitation on both 

weight-at-age and numbers-at-age of the upper trophic levels 
were small compared to observations in the GOA (Arimitsu 

et al. 2021 ), indicating attenuation of bottom-up effects with 

increasing trophic level. These results contrast with findings of 
simulation studies with global ecosystem models, which have 
reported that climate-driven decreases in biomass can be am- 
plified at higher trophic levels (Lotze et al. 2019 ). In empirical 
data from the GOA, prolonged warm conditions and altered 

plankton productivity were observed to have severe cascading 
effects on the upper trophic levels (Suryan et al. 2021 ), caus- 
ing deteriorated condition in forage fish (Baker et al. 2019 ,
von Biela et al. 2019 ), recruitment failures in groundfish (Bar- 
beaux et al. 2020 ), reproductive failures and mass mortalities 
of seabirds (Piatt et al. 2020 ). These effects were diminished 

in Atlantis GOA, likely for two main reasons. First, prey en- 
ergy density is not modeled dynamically in Atlantis for plank- 
ton (Audzijonyte et al. 2019 ). During recent heatwave events 
in the GOA, zooplankton community composition shifted to- 
wards smaller species (Batten et al. 2018 ), which is hypothe- 
sized to have resulted in lower energy content for the upper 
trophic levels (von Biela et al. 2019 , Piatt et al. 2020 , Arim- 
itsu et al. 2021 ). Though forcing lower zooplankton biomass 
may approximate the trophic effects of decreased plankton en- 
ergy content, detrimental effects on upper trophic levels may 
have been less extreme in our model. Second, while the present 
analysis did not emphasize fishing, more realistic fishing mor- 
tality rates than the light background F used here may amplify 
negative effects of bottom-up processes on overall ecosystem 

productivity (Essington et al. 2015 ). Future applications of 
this model should consider fishing alongside climate drivers 
to better match expected ecosystem dynamics (Gaichas et al.
2010 ). 
When decreased LTL productivity was forced together with 

ncreased temperature, the beneficial effects of temperature on 

eight-at-age were curbed. While metabolic rates are gener- 
lly predicted to increase as temperature rises (Pörtner and 

arrell 2008 ), increased metabolic demand may not be met
y increased food availability if LTL productivity declines 
Lotze et al. 2019 ). Scenario 4 corresponded to warmer water,
hich consequently boosted metabolic rates, but combined 

ith lowered food availability. Heneghan et al. (2021) showed 

hat warming and decreased LTL productivity had additive 
ffects in explaining biomass declines in future projections.
his was true in our study when we evaluated effects of in-
reased temperature and decreased plankton productivity on 

umbers-at-age, but the two scenarios had opposite effects 
n weight-at-age. In the GOA, the combination of increased 

etabolic demand and the co-occurring food limitation dur- 
ng the 2013–2016 heatwave likely had detrimental effects on 

everal species (von Biela et al. 2019 , Barbeaux et al. 2020 ,
rimitsu et al. 2021 , Suryan et al. 2021). 
Reduced numbers-at-age of adults under warmer temper- 

tures were due to increased consumption from predators,
ut likely in part also to the amplifying effect of increased
emperature on background mortality. This agrees with sim- 
lation studies that have shown that climate-driven mortality 
n marine stocks is caused by increased metabolic rates and
ower food availability under warm, low productivity condi- 
ions (Carozza et al. 2019 , Koenigstein et al. 2022 ). The neg-
tive effects on numbers-at-age under increased temperature 
ere greatest on Pacific cod. This was likely due to the model

nclusion of a narrow temperature range for egg hatch success
f 3–7 

◦C (Laurel and Rogers 2020 ), which, in nature, likely
aused a loss of spawning habitat for this species in the GOA
uring the 2013–2016 heatwave. Notably, in the model, the 
rst age class of several fish groups was more abundant in
cenario 2 (increased temperature). This was likely because 
he reproductive output of age-structured populations in At- 
antis scales dynamically with the reserve nitrogen component 
f weight-at-age, with heavier fish producing more eggs and,
s a result, more recruits (Audzijonyte et al. 2019 ). 
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odel specification: realism of thermal niches and 

ioenergetics 

ncreasing the realism of the modeled thermal niches and
ioenergetics had stronger effects on functional groups that
ere parameterized to be more sensitive to temperature. For

xample, lower Pacific cod terminal biomass in the model
hat captured winter distributions suggested that tempera-
ure in the model cells where cod was distributed during the
inter increased enough to disrupt the stenothermic spawn-

ng. Bioenergetic winter stress is thought to have been one
mportant cause of population decline of Pacific cod in the
OA during the 2013–2016 heatwave (Barbeaux et al. 2020 ).
owever, summer and winter distributions for pollock were

lso different, with pollock aggregating around Kodiak Island
n the winter, but pollock terminal biomass was almost the
ame, highlighting the more eurythermic reproduction com-
ared to Pacific cod. Similarly, the significant increase in Pa-
ific cod terminal biomass when thermal limitations to spawn-
ng and movement were removed highlights that the stenother-
ic hatching success is an important control of cod popula-

ion size and dynamics. 
In general, this illustrates that, though it is difficult to pro-

ide a priori guidelines for which particular model specifica-
ion (e.g. bioenergetic formulation, thermal tolerance niches,
tc.) should be adopted in an ecosystem model application, ef-
ort should be made to capture the best available information
n species responses to climate stressors, especially for species
f interest. We highlight the value of testing competing speci-
cations of thermal sensitivities, in particular for model appli-
ations that address climate-related questions. While our em-
irical knowledge of thermal sensitivities of many fish species
s still limited, modelers should explore different parameteri-
ations of these processes to be aware of their effects on model
esults. 

onclusions 

arine ecosystems are expected to respond in complex ways
o future conditions of warmer water and shifts in low trophic
evel (L TL) productivity . In general, population biomass is ex-
ected to decline in a warmer future (Lotze et al. 2019 ). The
esults from this study highlight that, when selecting which
tressors should be forced on an ecosystem model, it is im-
ortant to capture the key ecological processes that drive the
ystem. For example, simply imposing increased temperature
orcings may not be sufficient if the system is also driven by
ther stressors, like shifts in primary productivity. Further-
ore, while it is important to evaluate alternative formula-

ions when linking environmental stressors to the modeled bi-
logical processes, using at least some form of temperature de-
endence is preferable to decoupling such processes from tem-
erature entirely. In our study, neglecting biological properties
ike thermal restrictions to habitat and bioenergetic responses
o temperature led to overly optimistic model outcomes, and
lso to lower variability of model-derived quantities as tem-
erature increased. 
The model was able to reproduce key patterns of

iomass, weight-at-age, and numbers-at-age for most func-
ional groups. For the present study, we aimed for species
ersistence and general model reasonability at equilibrium.
owever, for complex ecosystem models to be used as pro-

ection tools, a more thorough skill assessment is necessary,
articularly if the model aims to inform resource manage-
ent (Kaplan and Marshall 2016 ). Future model skill assess-
ent efforts may include, for example, matching observations

n hindcast, reproducing spatial and temporal variability at
any time scales, and matching expected productivity from

tock assessments or life history theory (Kaplan and Marshall
016 ). 
Effects of increased temperature and food limitation in our
odel were less pronounced than expected in the real world,
ossibly because Atlantis does not capture the observed de-
line in plankton energy content and because of the low back-
round fishing mortality applied in our simulations. Further-
ore, climate stressors other than temperature and shifts in

TL productivity will likely impact marine ecosystems with
limate variability, including ocean acidification and hypoxia,
hich may both contribute to altered fish condition under cli-
ate change (Lefevre et al. 2021 ). Our simulations did not

xplore these or other stressors, but Atlantis provides users
ith the option of activating sensitivity to pH (Marshall et al.
017 ) and oxygen (Audzijonyte et al. 2019 ), so the impact of
hese variables could be explored in the future. In addition,
he effects of climate stressors on the model should be evalu-
ted in the context of varying levels of fishing to explore the
elative importance of anthropogenic climate change and har-
esting stressors (Lotze et al. 2019 , Woodworth-Jefcoats et al.
019 ). 
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