

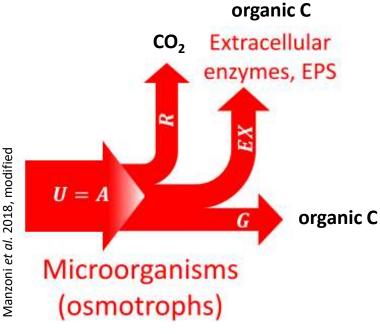
Beyond growth?

The significance of microbial maintenance for carbon-use efficiency in the light of soil carbon storage

Tobias Bölscher, Melanie Brunn, Tino Colombi, Luiz A. Domeignoz-Horta, Anke M. Herrmann, Katharina H.E. Meurer, Folasade K. Olagoke, Cordula Vogel

tobias.bolscher@inrae.fr

Swedish University of Agricultural Sciences

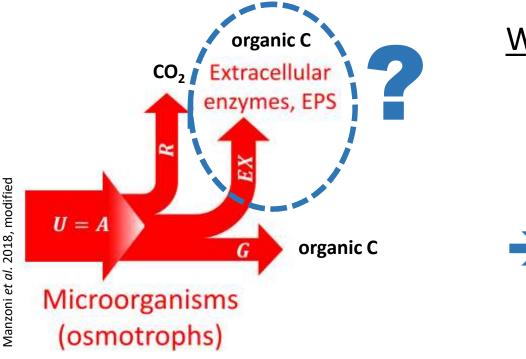

University of Zurich

Sharing not

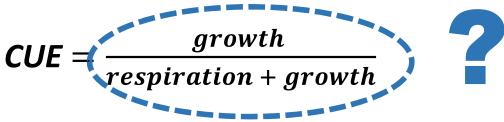
Microbial CUE: An ambiguous concept

- U = uptake
- A = assimilation
- R = respiration
- EX = exudation
- G = net growth
- CUE = carbon use efficiency

Sharing not permitted


Schimel et al. 2022 Soil. Biol. Biochem. 169; Manzoni et al. 2018 Biogeosciences. 15; Manzoni et al. 2012 New Phyt. 196

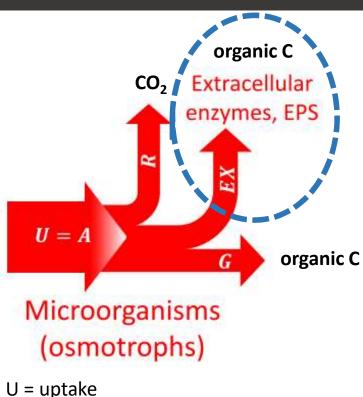
 $CUE = \frac{growth}{drowth}$


What we measure:

respiration + growth

Microbial CUE: An ambiguous concept

What we measure:


Apparent CUE !

- U = uptake
- A = assimilation
- R = respiration
- EX = exudation
- G = net growth
- CUE = carbon use efficiency

Schimel et al. 2022 Soil. Biol. Biochem. 169; Manzoni et al. 2018 Biogeosciences. 15; Manzoni et al. 2012 New Phyt. 196

Microbial CUE: An ambiguous concept

What we measure:

 $CUE = \frac{growth}{respiration + growth}$

➔ Apparent CUE

What we should measure:

 $CUE = \frac{growth + exudation}{respiration + growth + exudation}$

➔ Actual CUE

Schimel et al. 2022 Soil. Biol. Biochem. 169; Manzoni et al. 2018 Biogeosciences. 15; Manzoni et al. 2012 New Phyt. 196

Manzoni et al. 2018, modified

A = assimilation

R = respiration

EX = exudation G = net growth

CUE = carbon use efficiency

Question

Quantitative differences in *actual* and *apparent* CUE?

What we measure:

 $CUE = \frac{growth}{respiration + growth}$

➔ Apparent CUE

What we should measure:

 $CUE = \frac{growth + exudation}{respiration + growth + exudation}$

➔ Actual CUE

Question

Quantitative differences in *actual* and *apparent* CUE?

What we measure:

 $CUE = \frac{growth}{respiration + growth}$

What we should measure:

 $CUE = \frac{growth + exudation}{respiration + growth + exudation}$

→ Actual CUE

Predicting Long-Term Soil Carbon Storage from Short-Term Information

Riitta Hyvönen,* Göran I. Ågren, and Ernesto Bosatta

Published in Soil Sci. Soc. Am. J. 62:1000-1005 (1998).

→ CUE one of the most sensitive factor in soil C model!

Hyvönen et al. 1998 Soil Sci. Soc. Am. J. 62

Extracellular enzymes

Received: 12 August 2022	Accepted: 18 November 2022	
DOI: 10.1111/gcb.16544		
		Clobal Change Bio

RESEARCH ARTICLE

Substrate availability and not thermal acclimation controls microbial temperature sensitivity response to long-term warming

Luiz A. Domeignoz-Horta ^{1,2} Grace Pold ³ Hailey Erb ¹ David Sebag ^{4,5}
Eric Verrecchia ⁵ Trent Northen ^{6,7} Katherine Louie ⁷ Emiley Eloe-Fadrosh ⁷
Christa Pennacchio ⁷ Melissa A. Knorr ⁸ Serita D. Frey ⁸ Jerry M. Melillo ⁹
Kristen M. DeAngelis ¹ 💿

Field site: Harvard Forest Long-term Ecological Research

Soil warming experiments:

- 13 years
- 28 years

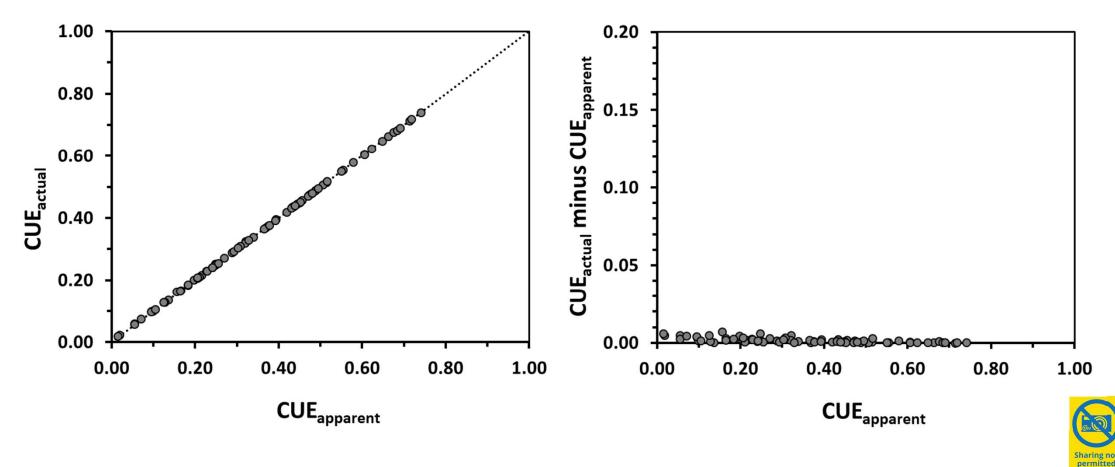
Treatments:

- ambient
- +5 °C

Sampling time:

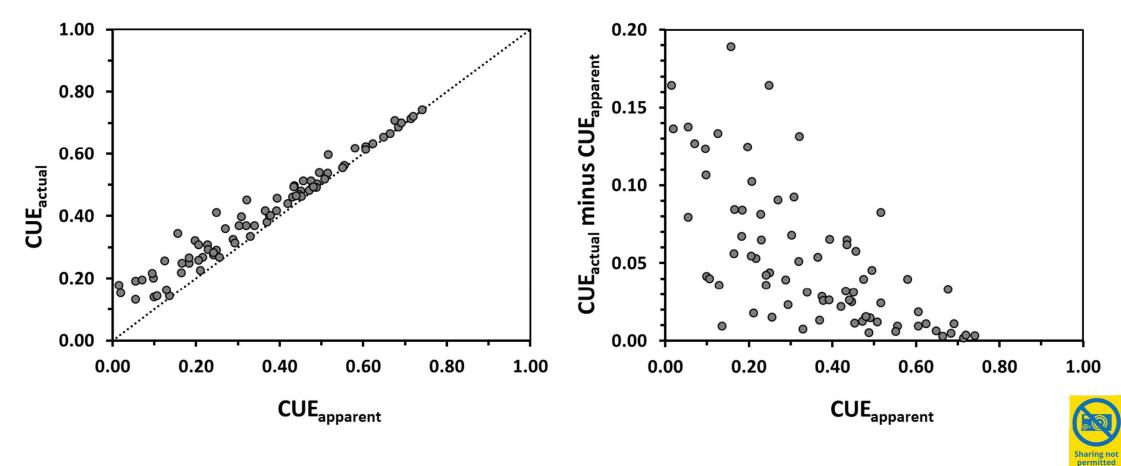
- July 2019
- October 2019

Sampling depth: 0-10 cm


Analyses:

- Microbial CUE (¹⁸O-water tracing)
- Enzyme activity (N-acetylglucosaminidase, phenol oxidase, peroxidase)
- → Enzyme turnover
- → Enzyme C pool size

Extracellular enzymes


Maintaining the existing exoenzyme pool (i.e. enzyme turnover)

•

Extracellular enzymes

Increasing the exoenzyme pool by 20 % (i.e. enzyme pool expansion)

(i)

Extracellular polymeric substances (EPS)

Biology and Fertility of Soils (2022) 58:435–457 https://doi.org/10.1007/s00374-022-01632-1

ORIGINAL PAPER

Importance of substrate quality and clay content on microbial extracellular polymeric substances production and aggregate stability in soils

 $\label{eq:Folasade K. Olagoke^1 \cdot Antje Bettermann^2 \cdot Phuong Thi Bich Nguyen^3 \cdot Marc Redmile-Gordon^4 \cdot Doreen Babin^2 \cdot Kornelia Smalla^2 \cdot Joseph Nesme^5 \cdot Søren J. Sørensen^5 \cdot Karsten Kalbitz^1 \cdot Cordula Vogel^1$

<u>Analyses</u>:

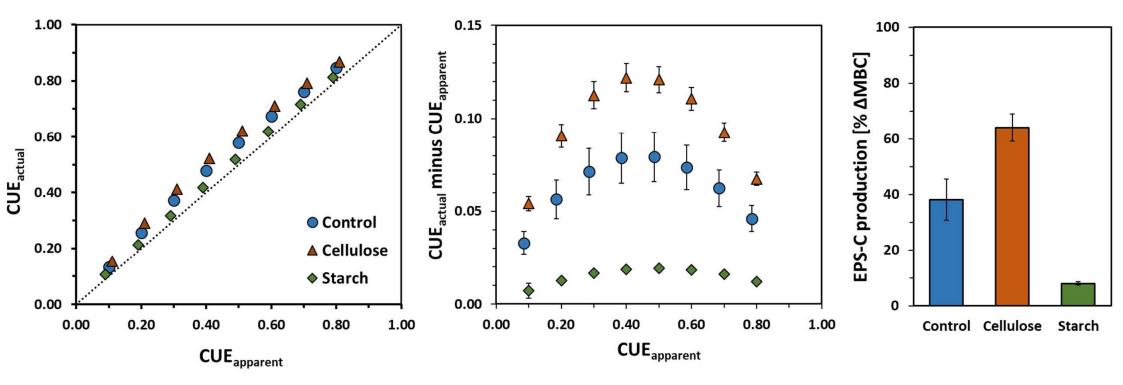
- Microbial biomass carbon
- Extracellular polymeric substances (polysaccharides, proteins)
- No cumulative respiration \rightarrow CUE_{apparent} assumed to be 0.10 0.80

Incubation experiment:

<u>Pre-treatments</u>:

- 1st pre-incubation to remove labile OM
- Removal of POM
- Aggregate crushing
- 2nd pre-incubation for microbial adaptation

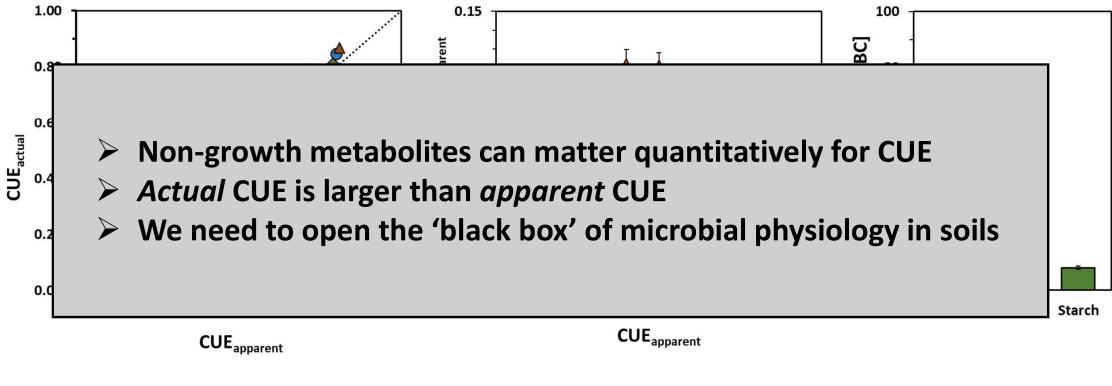
Treatments:


- Clay addition: +0, +0.1, **+1**, +10 % clay
- Substrate addition: cellulose, starch, control

Sampling harvest:

• Days **0, 3**, 10, 20, 40, 80

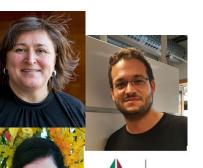
Extracellular polymeric substances (EPS)


<u>Results for</u>:

- +1 % clay treatments
- Changes between day 0 and 3 in MBC + EPS

EPS-C = extracellular polymeric substances carbon MBC = microbial biomass carbon

Extracellular polymeric substances (EPS)


<u>Results for</u>:

- +1 % clay treatments
- Changes between day 0 and 3 in MBC + EPS

EPS-C = extracellular polymeric substances carbon MBC = microbial biomass carbon

Acknowledgments

SILL

University of Zurich^{12H}

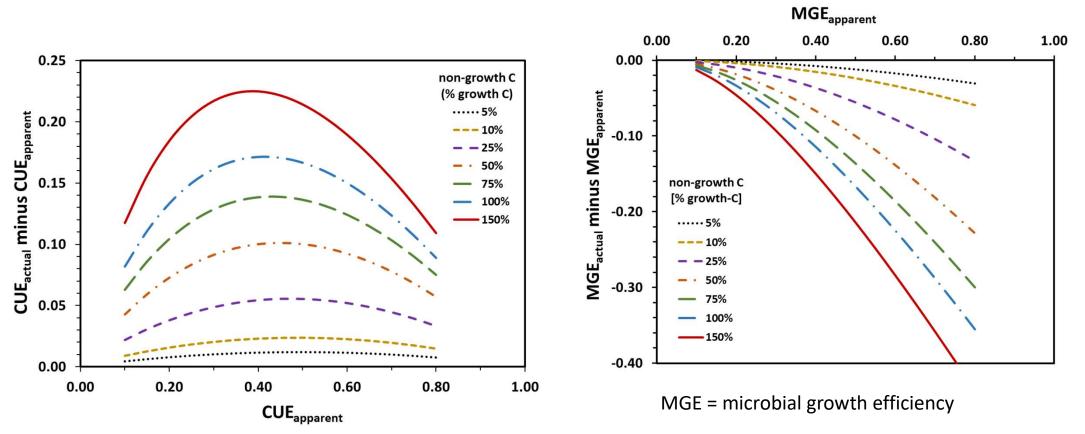
Thank you for your attention!

PhD possibilities:

LEROI: Linking the Energetic Return-On-Investment to microbial decomposition of organic soil amendments

Start: second half 2023 (negotiable) Paris-Saclay, France

Tobias Bölscher - <u>tobias.bolscher@inrae.fr</u> Claire Chenu – <u>claire.chenu@inrae.fr</u>



Swedish University of Agricultural Sciences

Theoretical considerations

