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Abstract

The CD8 T cell immune response operates at multiple temporal and spatial

scales, including all the early complex biochemical and biomechanical processes, up

to long term cell population behavior.

In order to model this response, we devised a multiscale agent-based approach

using Simuscale software. Within each agent (cell) of our model, we introduced
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a gene regulatory network (GRN) based upon a piecewise deterministic Markov

process (PDMP) formalism. Cell fate – differentiation, proliferation, death – was

coupled to the state of the GRN through rule-based mechanisms. Cells interact in a

3D computational domain and signal to each other via cell-cell contacts, influencing

the GRN behavior.

Results show the ability of the model to correctly capture both population be-

haviour and molecular time-dependent evolution. We examined the impact of several

parameters on molecular and population dynamics, and demonstrated the add-on

value of using a multiscale approach by showing the influence of molecular param-

eters, particularly protein degradation rates, on the outcome of the response, such

as effector and memory cell counts.

Keywords: Gene Regulatory Networks, Cell population dynamics, CD8 T cell immune

response, Stochastic gene expression, Multiscale modeling

1 Introduction

CD8 T cells are important for immune responses against viruses and intracellular bac-

teria, as well as for tumor surveillance. A naive CD8 T cell gets activated when it

recognizes an antigen presenting cell (APC), through the formation of an immunological

synapse [1]. Activated CD8 T cells first give rise to proliferating memory precursor (MP)

cells [2]. Such MP cells could represent bipotential cells that face a choice between two

fates: the terminally differentiated effector fate that is associated with the repression of

their self-renewing capacity and the activation of their effector function, and the mem-

ory precursor fate that maintains their self-renewing capacity. Effector T cells massively

proliferate while acquiring their effector potential, which allows them to kill infected or

antigen-bearing malignant cells, before dying during the contraction phase. Meanwhile,

part of MP cells differentiate into memory cells, providing long-term protection against

reinfection [3] The capacity to generate long-lived memory cells during a primary im-

mune response forms the basis for vaccination. At the end of the response, the number

of memory cells remains stable, since memory cells hardly ever proliferate or die [4, 5].
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This entire process functions across various temporal and spatial scales, encompassing

intricate early biochemical and biomechanical processes, extending to the long-term

behavior of cell populations. Building a comprehensive computational model, where all

relevant scales and their interactions would be represented, would hold the potential

to introduce new and more robust principles for designing vaccines aimed at swiftly

adapting pathogens. This perspective motivated the recent development of advanced

mathematical and computational models to depict these multiscale phenomena, moving

us towards a more comprehensive understanding of the CD8+ T cell response [6].

There is a rich ecosystem of software developed to describe cell dynamics systems at

different scales. Software can be distributed into three main classes:

1. Description of cell population dynamics, such as Compucell3D [7], Physicell [8] or

CellSys [9].

2. Description of both cellular and intracellular scale dynamics, such as Virtual Cell

[10], COPASI [11] or Smoldyn [12].

3. Description of coupling at least two different scales, like Vivarium [13], ENISI-

MSM [14], EpiLog [15] coupled with COPASI, MSM [16] or Tissue Forge [17].

One should also cite PhysiBoSS [18] which results from the coupling of Physicell

(processing up to 106 cells, but needs to run for several days) with MaBoSS, a tool

based on Boolean modeling [19].

These tools are limited in some aspects for example in the number of cells they can

simulate, the explicit description of a molecular level or their ability to deal with different

cell types. Their computation time is also often extremely slow, limiting the relevance

of such computational models for performing parameter estimation and model fitting,

at least when dealing with highly proliferating cells. Indeed, when the number of cells is

only a few thousands, the calculation process becomes cumbersome and time-consuming.

The development of a multiscale model of the immune response requires the ability

to simulate the molecular state of an expanding T cell population over several scales at
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the single-cell level, using a realistic GRN that can reproduce stochastic gene expression

behavior.

In [20, 21], CompuCell3D was coupled with a molecular network described by an

ODE system. Although these latest studies have qualitatively captured expected cellular

and molecular behaviors, enabling cellular decision-making, the molecular network was

modeled as a fully deterministic system using ODEs, whereas it is now accepted that

gene expression at the single cell level is a stochastic process [22, 23, 24, 25, 26, 27, 28].

We therefore describe here the use of Simuscale [29], which enabled us to simulate

the dynamics of interactions from the molecular to the cell-population scale, in con-

junction with the use of a biologically realistic mechanistic GRN based on a stochastic

2-state model for gene expression [30]. Noticeably, we introduce a GRN that does not

include real genes (as in [20, 21, 31] for instance) since such approaches did not prove

neither to allow better characterization of the biological process nor to provide access to

relevant parameter values. We then decided to highlight the feasibility of implementing

a multiscale computational model whose GRN would enable to reproduce the dynamics

observed with single cell RNA-sequencing data by using an ad hoc GRN, that could be

later replaced by an experimentally inferred GRN. Simuscale is particularly relevant

to model and simulate differentiating cell populations, whose dynamics are not solely

dependent on biophysical rules.

Thanks to appropriate parameter calibration, this study demonstrates the ability

to capture the expected time-dependent evolution of CD8 T cell population dynamics.

In addition, issues related to simulation time, variability, the dependence on the initial

condition of the number of cells in the population and differentiation states, were also

addressed in this study. Finally, we demonstrate the benefit of multiscale coupling by

assessing the population behavior (time of the peak of the response) as a function of a

molecular parameter (protein half-life).
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2 Material, Methods and Models

2.1 Simuscale

Simuscale [29] is a multiscale individual-based modeling platform for performing nu-

merical simulations of heterogeneous populations of individual cells. Cells are assumed

to evolve in time and interact physically and biochemically with each others. Models are

described at two levels: cellular and population level. The cellular level describes the

dynamics of single cells, as defined by the user/modeler. Cells have an internal state that

includes default properties such as cell size and position, and may also include cell-specific

states (e.g., gene or protein expression). The population level describes the mechanical

constraints and biochemical interactions between cells. Cells evolve in a bounded 3D

domain, and can divide or die. Cells are represented spatially as visco-elastic spheres

with a rigid core.

Simuscale implements the physical simulator that manages the simulations at the

population level. Details of cellular dynamics to each cell are to be defined by the

user. This makes Simuscale modular, as it can accommodate any number of cell mod-

els within the same simulation, including models with different modelling formalisms,

such as ordinary and stochastic differential equations and up to Piecewise Deterministic

Markov Process (PDMPs, [30]). Biochemical interactions occur between cells that are in

contact with each other, through intercellular signals. Intercellular signals can be known

to all or to a subset of the cells only.

Simuscale expects an input file describing the initial cell population and numerical

options. It runs a simulation over a specified time interval, updating the cell population

at given time steps, and it generates an output file containing the state of each cell at

each time step, and the tree of cell divisions and deaths. All details regarding Simuscale

can be found in Bernard et al. [29]
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2.2 Gene Regulatory Network

The first step in building a multiscale model of the CD8 T cell immune response is

to build a GRN whose dynamics will drive each CD8 T cell fate (proliferation, death,

differentiation).

We first build a simplified GRN, based on essential principles that allow each cell to

be able to proliferate, die, and differentiate in each relevant cell type (mainly, effector

or memory CD8 T cell), see Section 3.1. This GRN is made of 9 genes, which have no

equivalent in a real-biological setting (yet analogies are drawn in Section 3.2), each gene

dynamics being driven by the gene model introduced in Section 2.3.

In order to obtain realistic dynamics, we also consider an augmented GRN based on

the 9-genes GRN, to which three so-called ‘decorating genes’ are added to each main

gene, resulting in a 36-genes GRN with the same properties. A “decorating gene” is

activated by its main gene but does not act on any downstream gene and therefore has

no influence on the GRN dynamics.

The GRNs are dynamical mathematical models, based on the coupling of determin-

istic and probabilistic formalisms, resulting in stochastic dynamics (see Section 2.3). In

particular, genes of the GRN can act on other genes of the GRN, either by activating or

inhibiting their expression, resulting in highly nonlinear dynamics.

It is important to note that each CD8 T cell will be embedded with the same GRN.

Nonetheless, depending on their previous experiences and interactions with other cells,

CD8 T cell molecular, intracellular states will differ from cell to cell and will be specific

to each cell, thanks to individual values of each gene expression in a given cell.

2.3 Gene model

Given the stochastic nature of gene expression at the single cell level [24, 32], we chose

to model the expression of each gene in the GRN (see Section 2.2) as a stochastic two-

state model [33]. This stochastic process consists of three components for each gene i,

i ∈ {1, ..., n}: the promoter state Ei, the mRNA level Mi and the protein level Pi.

The promoter can be in two states Ei = 0 or 1 (inactive or active). It opens with
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a rate kon and closes with a rate koff . When the promoter is in the open state, mRNA

gets synthetized at a rate s0 and degraded at a rate d0. From mRNA, proteins get

synthetized at a rate s1 and degraded at a rate d1.

Such a model can be implemented in a variety of formalisms [34]. In the present

work we consider the so-called bursty regime of the two-state model. It corresponds to

the experimentally observed situation where active periods are short and characterised

by a high transcription rate, thereby generating bursts of mRNA [28]. In such a regime,

the promoter state no longer needs to be explicitly described since active periods can be

considered as infinitely short: random jumps will instantaneously increase the amount

of mRNA levels Mi.

The construction of a gene trajectory is as follows: starting from state (Mi(t), Pi(t)),

the dynamics of mRNA and protein levels are given by
M ′i = −d0,iMi,

P ′i = s1,iMi − d1,iPi.

(1)

until a burst occurs for an isolated gene i, at rate kon,i. Following the burst, the quantity

Mi jumps by a random height according to an exponential law with rate koff,i/s0,i (see

[34] or [35] for details of the model). This stochastic model constructs a piecewise-

deterministic Markov process (PDMP).

To describe regulatory mechanisms within the GRN, we introduce the dependence of

the burst frequency upon the proteomic field and the external signalling activity, i.e. a

burst occurs for gene i, at a rate kθon,i(P, S), where P = (P1, . . . , Pn) is the protein level

vector of all genes in the network and S = (S1, . . . , Sm) is the signalling state vector of

the network. For every i ∈ (1, . . . ,m), Si = 1 or 0 (active or inactive signalling). More

precisely, in [34, 35], the burst rate of each gene i is calculated using

kθon,i(P, S) = k0,i + (k1,i − k0,i)
(

1 + exp
(
−σθi (P, S)

))−1
, (2)

where k0,i and k1,i correspond respectively to the minimum and maximum burst fre-
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quencies of gene i, and

σθi (P, S) = βi +

n∑
j=1

θijPj +

m∑
j=1

αSj , (3)

where βi is the basal activity of gene i [34], α is a signalling parameter, and θ =

{θij}i,j∈{1,...,n} is the gene-gene interaction matrix, representing the considered GRN

(see Supplementary Figure 1). Parameters θij can be positive or negative corresponding

either to the activation or the inhibition behaviour.

2.4 Cell types

When a simulation starts, there are two cell types in the population, APC and naive

CD8 T cell. APC do not possess an internal state, whereas we recall that all CD8 T

cells share the same GRN structure and CD8 cell types are defined as a function of the

dynamical state of their GRN. A naive cell is activated as soon as it encounters an APC.

This “activated” state will be transmitted throughout the descent of an activated cell.

Activated CD8 T cells will then acquire specific cell type identity as a function of their

position in the gene expression space. They will be considered bipotent if their protein

levels in both genes 7 and 8 (see Section 3.1) are below certain threshold values P ∗7 and

P ∗8 , respectively. When P7 ≥ P ∗7 while P8 < P ∗8 , they will be considered effector cells, and

when P8 ≥ P ∗8 , they will be considered memory cells. Noticeably, when P8 ≥ P ∗8 then,

thanks to the toggle switch between genes 5 and 6, gene 7 will be inhibited and unlikely

to satisfy P7 ≥ P ∗7 (if it happens, then a cell would opt for the memory phenotype, in

order to avoid undefined phenotypes and to prevent the generation of immortal effector

cells associated with P7 ≥ P ∗7 and a strong inhibition of gene 3). Table 1 summarizes all

CD8 T cell differentiation states considered in this work.

2.5 Signalling

We consider two kinds of signals, namely APC signalling (via T cell-APC contact) and

TCC signalling (effector-T cell contact), inducing either activation or apoptosis in a CD8

T cell after its encounter with an APC or an effector cell, respectively (see Figure 1).
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Table 1: Differentiation states of CD8 T cells.

Cell type Definition

Naive No contact with an APC (inactivated)

Bipotent Activated, protein levels P7 < P ∗7 , P8 < P ∗8

Effector Activated, protein level P7 ≥ P ∗7 , P8 < P ∗8

Memory Activated, protein level P8 ≥ P ∗8

A CD8 T cell perceives a signal from another cell (either an APC or an effector T

cell) if

Ri +Rj < d(i, j), (4)

where Ri and Rj are the external radii of both cells and d(i, j) is the Euclidean distance

between the centers of the two cells. Condition (4) means that a CD8 T cell comes

into contact with another cell if their spheres intersect. Once a contact is detected, the

phenotype of the contacting cell is determined and the corresponding signalling (APC

signalling or TCC signalling) is applied.

When a naive CD8 T cell encounters an APC (contacts on its surface), it receives an

APC signalling, which impacts the GRN behaviour (see below). T cells integrate APC

signalling in a cumulative way (that is, signals from exposure to any APC are cumulated).

It has been shown that when a CD8 T cell encounters an APC, it adheres tightly to

the APC for up to 20 hours in vitro before starting to proliferate [36]. Therefore, in

the model, until the first proliferation occurs an activated T cell remains attached to

an APC, through adjusting the coefficient σT (see Section 2.7). More precisely, when a

naive CD8 T cell encounters an APC, it tends to stay with this APC for a while thanks

to a modification of its velocity coefficient σT which takes a very low value. Then the

APC signals to the T cell (APC signalling equals 1). If the activated CD8 T cell has not

yet divided for the first time and the cumulative contact time with the APC is greater

than 10 hours (i.e. it only takes 5 hours if the CD8 T cell encounters 2 APCs at the exact

same time), gene number 1 is activated by the APC signaling (the level of expression of

9



this gene determines the first proliferation, see Section 3.1), with a signalling parameter

α = 20 (no unit) in order to strongly initiate gene expression. The effect of this value

on model’s outputs has been numerically investigated and shows very limited impact

(Supplementary Figure 2). Noticeably, a CD8 T cell may leave the APC before its

protein 1 level reaches the value required for first division (this is rare, but possible

due to the probabilistic nature of the model), the level of proteins then remains at the

level before contact breaking (save for protein degradation) and will increase upon new

contact with APC. In this case, due to its fast mobility (σT goes back to its initial value

upon contact breaking), the CD8 T cell will easily contact a new APC, its σT value will

decrease again and its protein level will increase again rapidly.

In all cases, immediately after its first division, the CD8 T cell leaves the APC and

moves randomly. Further contacts with APC for this cell may occur, yet subsequent

divisions will no longer depend on the APC signalling. In particular, this will be the

case for the daughter cells of activated cells, as we assume that both daughter cells

remember their mother’s first division, so they will not need to be activated by the APC

signalling in order to proliferate [37]. In addition, both daughter cells dissociate from the

APC, due to their fast motility (σT returns to its initial value after the first division).

Concerning apoptosis, we assume effector CD8 T cells’ targets include all CD8 T

cells, so fratricide killing may occur [38, 39]. In this case, an effector cell sends an

apoptotic signal called TCC signalling to another CD8 T cell it contacts. This leads to

an increase in gene 3 bursting frequency (see Section 3.1), and protein 3 level increases

in the receiver cell, eventually resulting in its death. Only an effector cell can emit TCC

signalling. When a CD8 T cell receives a signal emitted by an effector cell, its TCC

signalling value equals 1 and its signalling parameter α equals 20 (no unit).

2.6 Initial conditions

Initial molecular content In order to obtain realistic values for the initial molecular

content, we initialize each simulation with the values observed after 24 hours of simu-

lating T cells in the absence of APCs. Specifically, we run the simulation with 980 CD8
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Table 2: CD8 T cell velocities.

σT Contact behaviour with respect to cell velocity

5 no contact with others/after first division upon encountering APC

0.02 contact with an APC

0.8 contact with an effector cell

T cells in the absence of APCs, so that they start to synthesize mRNAs and proteins

without being activated. We then use simulated quantities of mRNA and proteins as

initial data for the naive cells of the next simulation, where they are seeded in presence

of APCs at time t = 0.

Initial positions in the computational domain Initial positions of APCs and

CD8 T cells are uniformly randomized within the bounded computational domain (see

Supplementary Figure 3).

2.7 Cell motion and fate

Cell movement T cells move randomly in the computational domain. The random

movement of T cells was modelled through the use of a Gaussian distribution. More

precisely, at each time step dt, new 3D coordinates of CD8 T cells are updated by an

amount identically distributed in each direction, as follows:
dx =

√
dtσTN (0, 1),

dy =
√
dtσTN (0, 1),

dz =
√
dtσTN (0, 1),

(5)

where σT characterizes the velocity of the CD8 T cell when in contact or non-contact

with an effector cell or an APC (see Table 2).

Cell fate Regarding the proliferation process, if a CD8 T cell reaches its maximum

volume (through the linear growth function of the current volume) and satisfies a condi-
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tion on protein levels (P1 ≥ P ∗1 for the first division, P2 ≥ P ∗2 for subsequent divisions,

see Section 3.1), then it divides into 2 daughter cells of equal volume. At division, the

molecular content C of the mother cell is normally distributed between both daugh-

ter cells, and equals (1 ± 0.2N (0, 0.2))C/2 when C is the protein concentration and

(1 ± 0.1N (0, 0.2))C/2 when C is the mRNA concentration. No proliferation program

has been implemented, so cells can potentially divide without any limitation. However,

due to differentiation (in memory cell) and apoptosis (see below), CD8 T cells either die

or lose their ability to proliferate (memory phenotype). No more than 10 divisions have

been observed for a single cell (lineage) in all simulations introduced in this manuscript.

Concerning apoptosis, if a CD8 T cell reaches the condition of death (protein level

of gene 3 is above a threshold value P ∗3 ), then the cell disappears from the population

immediately. We also set up an APC death mechanism to ensure that they will start

dying after day 12 (i.e. after the expansion phase) and will disappear completely from

the computational domain by day 20. This is a way to mimic the displacement of CD8

T cells out of the APC-containing organ [40], or the eradication of the antigen.

Cell differentiation is discussed in Section 2.4, see Table 1.

2.8 Simulation Parameters

All parameters used throughout this study are introduced in this section. Some param-

eters are needed for the functioning of the core code of Simuscale, other parameters are

specific to the CD8 T cell simulation.

For running Simuscale simulations, we use an environment simulation domain inside

a cube measuring 40x40x40 (same unit as the initialized radius, see [29]). This is what

will be called ‘computational domain’ in this paper. Assuming cells are around 10 µm

in diameter, a space unit (SU) would correspond to around 7 µm, for a domain side

approximately 300 µm in length. Each cell is a sphere with a maximum volume of 2 SU3

and a minimum volume of 1 SU3. There is a linear growth function, where the initial

volume of each cell is randomly chosen in the range [1, 2], and the growth factor is fixed

at 2dt/10, i.e. it takes 10 hours for a cell with a minimum volume to reach its maximum
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Table 3: Parameter values of the gene-gene interaction matrix. Parameters θi,j

give the value of the action of gene i onto gene j, while parameters θi,i.j represent the

interaction between gene i and its three decorating genes i.j (j ∈ {1, 2, 3}).

Parameter θ1,2 θ2,2 θ2,3 θ2,4 θ3,3 θ4,5 θ4,6 θ5,5 θ5,6 θ5,7

Value 40 16 -10 16 60 16 16 90 -150 25

Parameter θ6,5 θ6,6 θ6,8 θ8,2 θ8,9 θ9,3 θi,i.j All other θi,j

Value -150 90 15 -800 530 -3000 15 0

volume.

The time step of all simulations is set to dt = 0.1 hour, and the final simulation time

is 960 hours, i.e. 40 days.

For T cell specific simulations, various parameters associated with cell fate, motion,

and contacts must be defined. We will first focus on parameters related to gene dynamics.

The βi parameter represents the basal activity of gene i, in a logarithmic scale, in the

absence of any stimulation (see equation (3)). Its value was arbitrarily fixed to βi = −5

for all genes i and allowed to reproduce consistent behaviors of gene dynamics. Values

of the parameters of the gene-gene interaction matrix are shown in Table 3.

Values of protein degradation rates for all genes are given in Table 4. Since d1 �

d0, we kept the degradation rate of mRNA equal to 1 for all genes, so d0,i = 1 for

i ∈ {1, . . . , n}, and varied only the protein degradation rates. Those are chosen to

progressively decrease along the main GRN, thus creating a delay in expressions and

a wave-like behavior of signal propagation in the GRN [41]. Burst frequency of gene i

is defined by koff,i/s0,i, whose value has been chosen to correspond to an exponential

distribution of bursts with mean µ = 50. The effect of this value on model’s outputs has

been numerically investigated and shows limited impact (Supplementary Figure 2).

Threshold values for proteins defining the cell types are given in Table 5.

Finally, Table 2 presents the velocity coefficients of CD8 T cells in different cases.

The default behavior of CD8 T cells is to move randomly and fast. When in contact

13



Table 4: Gene kinetic parameters. Values of: protein degradation rates d1,i of gene

i ; protein degradation rates d1,i.j of decorating genes i.j, j ∈ {1, 2, 3}, of gene i ; burst

frequency koff,i/s0,i of gene i ; synthesis rates s1,i of gene i proteins (translation rates).

Protein degradation rate d1,1 d1,2 d1,3 d1,4 d1,5 d1,6

Value 0.03 0.021 0.021 0.02 0.019 0.009

Protein degradation rate d1,7 d1,8 d1,9 d1,i.j

Value 0.02 0.00014 0.00013 0.03

Synthesis rate koff,i/s0,i s1,i

Value 0.02 0.01d1,x

Table 5: Protein threshold values. P ∗i is the threshold value for the protein of gene i,

used to define cell fate (proliferation, apoptosis) and differentiation states, see Table 1.

Parameter P ∗1 P ∗2 P ∗3 P ∗7 P ∗8

Value 0.5 0.4 0.75 0.01 0.02
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with another T cell, they reduce their speed, and almost stick to an APC when they first

encounter the APC, until their first proliferation occurs. Consequently, three different

velocity parameters are used depending on the situation.

2.9 Model’s outputs and simulations

All simulations are performed by running Simuscale code on a computation platform of

the “Pôle Scientifique de Modélisation Numérique” (PSMN) of ENS Lyon. During each

simulation, all cell population information is recorded, including the total number of cells

in the population, cell identity, coordinates, volume, signalling, cell type and molecular

content. This information is then post-processed on personal computers, using Python

and R tools. All figures related to model’s outputs presented in this paper have been

generated from the outputs of the simulations and plotted with Python and R.

Simulations of the GRN have been performed through a C++ code embedded in

Simuscale and adapted from the Python code in Herbach [42].

Typical simulation times range from a few minutes (35 CD8 T cells and 25 APCs

initially) to a few hours (1, 960 CD8 T cells and 1, 400 APCs initially). It took only 2h to

simulate the simulation associated to the largest initial cell counts in this study (average

value over 10 simulations), executed on PSMN’s partition Cascade with 96 cores and

384 GB RAM (for more details, see https://www.ens-lyon.fr/PSMN/Documentation/

clusters_usage/partitions_overview.html). All codes are available at https://

gitlab.inria.fr/thinnguy/Simuscale_Lymphocytes

The maximum number of cells simultaneously simulated is slightly over 32, 000 cells

(corresponding to the highest initial condition), while the maximum number of cells the

computational domain can contain is 64, 000 cells. With parameter values used and

mentioned in this paper, no crowding effect can be observed.

It is important to note that among the functionalities of Simuscale there is the

possibility to color-code cells according to the quantitative value of any cellular variable.

Coupled with a video display of the output, this is an invaluable feature of the model

to:
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1. Verify the correct functioning of the model. For example do divisions occur as

planned when a certain value of P2 is reached, as expected?

2. For many biologists ”seeing is believing”. Videos are therefore the perfect medium

for interactions between modellers and biologists.

3. In the present work there is no resulting 3D structure since cell movement tends

to homogenize spatial cellular localisation, but for modeling spatially constrained

structures, this output would be critical.

As an illustrative example, a movie of the CD8 T cell population dynamics is available at:

https://gitlab.inria.fr/thinnguy/Simuscale_Lymphocytes/ (Pop T cell APC.mov).

All relevant cellular variables are examined during the course of the response.

2.10 Sensitivity analysis

We perform a sensitivity analysis in Section 3.6. Variables of interest are: the number of

CD8 T cells at the peak of the response; the ratio between the average number of CD8

T cells at the peak of the response and the initial number of CD8 T cells; the time of the

response peak; the average number of memory CD8 T cells at the end of the simulation

(t = 40 days); the ratio between the average number of memory CD8 T cells at the end

of the simulation and the average number of CD8 T cells at the peak of the response.

First, we perform a local sensitivity analysis and consider two types of influence:

either a sensitivity to initial conditions or to molecular parameters. In each case, we fix

parameter values, perform 10 simulations, calculate the mean and standard deviations

of the outputs, and compute variables of interest.

The influence of initial conditions is assessed by either using different CD8 T cell

and APC initial cell counts, but preserving the ratio T cell counts/APC counts (ratio

equals to 1.4), or by fixing the initial number of CD8 T cells (two values were used, 210

and 980 cells) and varying the initial number of APCs (with T cell/APC ratios ranging

in [0.3; 8.4]).
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The influence of molecular content is assessed by computing variables of interest for

various values of some molecular parameters: the degradation rates of proteins 2, 3, and

6 that determine proliferation, apoptosis and memory T cell differentiation, respectively.

These parameters have been selected based on the a priori essential roles played by genes

2, 3 and 6 in controling CD8 T cell fate.

Second, we perform a higher dimensional sensitivity analysis using the Random Bal-

ance Designs–Fourier Amplitude Sensitivity Test (RBD-FAST) implementation of the

SALib Python library [43, 44, 45]. Briefly, RBD-FAST is a numerical method for comput-

ing the main (first-order) effects in global sensitivity analysis, measuring the contribution

of each parameter to the model’s output variance. RBD-FAST has the advantage that

it does not require a specific sampling method nor a specific number of samples. This

is useful because numerical simulations may not be necessarily successful for all sets of

parameter values (see Section 3.6).

We performed this global sensitivity analysis on the nine degradation rates d1,1 to

d1,9, on intervals ranging ±20% of their nominal values, with all other parameter values

fixed. We sampled 1,000 degradation parameter sets using a Latin Hypercube Sampling

(LHS) algorithm implemented in scipy.stats.qmc.LatinHypercube. Initial populations

were set to 980 T cells and 700 APCs. For each parameter and each response variable,

the first-order sensitivity and the 95% confidence interval were obtained from the RBD-

FAST method.

3 Results

3.1 A model involving a gene regulatory network constructed by 9

genes

For the intracellular scale, we first build a GRN composed of 9 genes (see Figure 1.A),

which triggers the proliferation, apoptosis, and differentiation of a single cell. All genes

are hereafter denoted Gi, i = 1, . . . , 9. From now on, we refer to this GRN as a ‘principle-
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based GRN’, since it is built upon few principles required to reproduce the main features

of a CD8 T cell immune response. The logic behind this GRN is as follows.

First, APC signalling duration (cumulative contact time with APC is greater than 10

hours [36]) activates G1, which leads to the first proliferation of CD8 T cells when the

protein concentration of G1 reaches a threshold value P ∗1 and the cell has doubled its

volume (volume is equal to 2). After division, the activated CD8 T cell leaves the APC

due to an increased velocity coefficient and the activation stops. As long as all APCs

have not been eliminated, activated CD8 T cells can encounter APC again but they do

not really attach to APC due to their high velocity.

In the meantime, G1 activates G2, which also activates itself in order to maintain

a strong proliferation phase at the beginning of the immune response. The second and

subsequent proliferation events are based on G2 dynamics: when the G2 protein level

exceeds a threshold value P ∗2 then cells divide. Also, G2 inhibits G3, which induces

CD8 T cell apoptosis above a threshold value P ∗3 . Gene G3 is activated through TCC

signalling and G3 also activates itself.

Furthermore, G2 activates G4, which simultaneously activates two genes, G5 and G6.

There is a toggle switch between these two genes which then creates the differentiation

states. G5 activates G7, which will be the marker for the effector phenotype (when the

protein of this gene exceeds a value P ∗7 ). In addition, G6 activates G8, which induces

the memory phenotype (when its protein concentration reaches a threshold value P ∗8 ).

Gene G8 inhibits G2 to mimic cell cycle exit of memory cells. Finally, G8 activates G9,

which inhibits G3, leading to memory cell long-term survival.

All threshold values are shown in Table 5.

For application purposes that require many more genes in the network (see Section

3.5), we also added so-called “decorating genes” to the principle-based GRN, resulting

in a second GRN model (hereafter referred to as the ‘augmented model’). More pre-

cisely, each gene, from G1 to G9 of the principle-based GRN, simultaneously activates n

redundant “decorating genes” that have no impact on the GRN dynamics. In the next

sections, we illustrate the results with simulations of the augmented GRN, including
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Figure 1: Schematic representation of the GRN. (A) The core circuitry of the

principle-based GRN using 9 genes. The notation Gi corresponds to the gene number i.

APC signalling and TCC signalling are perceived when CD8 T cells are in contact with

APCs or effector cells, respectively. The green (resp. red) arrows represent activation

(resp. inhibition). (B) The augmented GRN, made of 36 genes, incorporates the core

principle-based GRN together with “decorating” genes. The gene Gi.j, j ∈ {1, 2, 3}, is

the j-th gene activated by gene i. Networks have been drawn using the plot network

function of the Harissa package [42]
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three (n = 3) “decorating genes” for each main gene (see Figure 1.B).

3.2 Biological rationale for our GRN

It is important to note that the principle-based GRN was built in order to satisfy minimal

requirements imposed by a realistic description of the CD8 T cell immune response: it

required genes able to induce proliferation, death and differentiation of CD8 T cells,

therefore there is no reason any gene in this GRN has an equivalent specific gene in a

real biological setting. Nevertheless, one could draw the following analogies between the

principle-based GRN introduced previously and known genes.

1. G1 is activated by APC signalling and leads to the first cell division of activated

cells. This has been shown to be a function carried by the mTORC1 gene [46].

2. G2 drives the second and subsequent divisions. This role can be carried by the IL-

2R gene [47], which also amplifies itself as IL-2 signalling promotes further IL-2R

expression [48].

3. G3 leads to programmed cell death (apoptosis), which is known to be the activity

of Fas [49]. In such a case, the TCC signalling could be seen as FasL signalling

[50].

4. G5 andG6 are involved in a toggle switch, leading to the differentiation states. Two

members of the T-box transcription factors have been demonstrated to play this

critical role: T-bet (G5) [51] and Eomesodermin (G6) [52], which promote effector

and memory differentiation, respectively. Similar tandems could be Id2/Id3 and

Blimp1/Bcl-6 [3].

5. G7 is a marker for the effector phenotype. Many genes could fall in this category,

but since in this model effector cells have the capacity to kill through the TCC

signalling, FasL is one obvious candidate for this function [53].

6. G8 is a marker for the memory phenotype, limits growth and prevents death by

apoptosis, a role for which FOXO1 gene would be a relevant candidate [54, 55].
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7. Finally, G9 is activated by G8 and inhibits death, a role known to be played by

the antiapoptotic gene Bcl-2 [56].

3.3 Population trajectory and differentiation states of a reference case

We first focus on the results obtained for a reference case, i.e. an initial population

composed with 980 CD8 T cells and 700 APCs. All the parameters used to perform

simulations can be found in Section 2.8.

Figure 2 shows the evolution of the CD8 T lymphocyte population and of each sub-

population of differentiated cells (Naive, Bipotent, Effector and Memory populations).

Results represent average and standard deviations over 10 simulations (using different

random generator seeds). The results capture the expected dynamics of the CD8 T cell

population qualitatively, i.e. naive cells rapidly disappear, differentiating into bipotent

cells that further generate effector or memory cells. In the effector state, cells proliferate

rapidly, reaching a peak followed by a contraction phase, at which point memory cells

appear and accumulate. In the last phase, only memory cells remain that form a stable

population (see [2]).

From a more quantitative perspective, after 18 hours, all 980 naive cells initially

present (green solid line) have become activated by contacting with APCs, 72% of the

activated cells became bipotent cells (brown) while 28% differentiated into effector cells

(blue). Bipotent cells gradually transform into effector cells, which proliferate very

rapidly and reach a peak between days 5 and 10 post-immunization. On average, a

total of 16, 422 T cells (red) were formed at the peak (a 16.8 fold expansion) and 1, 637

memory cells (yellow) remain in the population at the end of the simulation (40 days).

For more details about cell numbers and standard deviations, see Table 6.

Noticeably, despite the stochasticity introduced at the molecular level with the

mRNA bursting regime and at the cellular level with the random cell movement, the

resulting output from 10 independent simulations is remarkably predictable, with little

variation between two simulations of the model, characterized by small standard devi-

ations (see Figure 2, where standard deviations are illustrated by narrow shaded areas
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Figure 2: Time-dependent evolution of differentiation states of the CD8 T cell

population over 10 simulations (mean (solid line) ± std (shaded area)). The green,

brown, blue, and yellow lines present the total number of naive, bipotent, effector, and

memory phenotype of CD8 T cells, respectively, and the red line the total number of

CD8 T cells.
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around the mean, and Table 6).

3.4 Time-dependent evolution of mRNA and protein

Having demonstrated a robust behavior of the model at the cellular level, we then assess

its behavior at the molecular level. For this we plot in Figure 3 the histograms over

time of mRNA expression for the 9 core genes of the augmented GRN through one

simulation randomly selected from the 10 simulations (Figure 2). The times at which

those distributions are shown were chosen to capture the early phase of expansion, the

contraction phase and were more widely spaced for the final memory generation phase.

Altogether the genes display the expected dynamics. G1 shows a very brief period of

activation, due to its early activation by APC signalling which stops after the first divi-

sion. G2 shows a much more sustained period of activation during the expansion phase.

G3 is mostly expressed during the contraction phase and both G2 and G3 expressions go

towards 0 at the end of the simulation. The frequency of G4 mRNA expression follows

the distribution of G2, because G2 activates G4. The expression of G7 and G8 mirrors

that of G5 and G6, which are mutually exclusive as expected from their toggle switch

connection.

It is important to note that those distributions harbour the characteristics known for

patterns of gene expression at the single cell level, i.e. a strong zero component and a

long tailed distribution. We have previously shown that the ability to generate realistic

scRNA-seq datasets was a key asset of the bursty model [34].

We then explore the behaviour of the molecular model at the protein level. Figure 4

shows the time-dependent evolution of the mean expression of each protein across all

cells, for the same simulation. Here too, the expected behaviour is observed.

The mean protein expression of G1 (blue line) first increases sharply, then decreases

after 1 or 2 days, correctly representing the expected action of G1 in the GRN. While

P2 increases and quickly reaches a peak (orange line), P3 slowly increases (green line)

due to the inhibition of G3 by G2. When P2 decreases then P3 increases sharply and

reaches a peak around the time of the response peak. Since G4 is activated by G2, the
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Figure 3: Time dependent evolution of mRNA distributions of 9 genes (see

Figure 1.A): x-axis shows the value of mRNA+1 in logarithmic scale, while y-axis shows

the frequency occurrence in the cell population observed at different time points.
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growth pattern of P4 is similar to that of P2. The toggle switch between G5 and G6

is visible in the mean protein expression between P5 (purple) and P6 (brown). This is

mirrored in changes between P7 and P8, with the expression of G7 (pink line) increasing

initially and decreasing as G8 increases. Similarly, G8 activates G9, then the yellow line

of G9 rises following the increase of G8.

One should also notice that the time-dependent evolution of the average protein

amount is associated with small standard deviations (represented by very narrow shaded

areas around the mean), hence highlighting a pretty reproducible behaviour of the model.

3.5 UMAP analysis

The highly dimensional nature of scRNAseq data has called for the development of

suitable dimensionality reduction techniques. Among those, the UMAP representation

(Uniform Manifold Approximation and Projection [57]) has established itself as one of

the most popular. We therefore assess the ability of the model to produce a relevant

UMAP representation of the CD8 differentiation sequence (Figure 5).

Our initial attempt at obtaining a UMAP representation of the model output based

on the principle-based GRN gave rise to not very realistic images (see Supplementary

Figure 4). At that stage we reasoned that the amount of information provided to the

UMAP algorithm might have been too sparse. We therefore decided to add “decorating

genes” (see Section 3.1) and used the augmented GRN instead. The decorating genes

do not participate in the dynamics of the network, but add some redundant information

that proved to be required to obtain the final correct UMAP representation observed on

Figure 5.

On Figure 5.A, one can clearly see the time-dependent trajectory evolution of the

CD8 T cell population, starting at day 0 on the right and going to day 40 to the top

left. The UMAP representation therefore reveals a correct temporal arrangement of the

cells.

Figure 5.B presents the trajectory evolution of the CD8 T cell population as a func-

tion of their differentiation states. We can see that at day 0 most cells are naive cells
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Figure 4: Time-dependent normalized mean protein expressions over 10 sim-

ulations across all cells. Shown is the mean (solid line) ± std (shaded area) for the

9 main genes of the augmented GRN.
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A.

B.

Figure 5: UMAP representation of CD8 T cell population dynamics over time.

(A) Cells are color-coded as a function of the time they were observed. The same time

points are displayed as in Figure 3. (B) The same graph, where the cells are now color-

coded according to their phenotype.
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(green in both figures) clustered close together, since their initial molecule content is

almost 0. Bipotent cells appear at an early stage (brown in Figure 5.B)) and then be-

come effector or memory cells, giving rise to two branches of cells. This clearly shows the

correct behavior of the G5/G6 toggle switch pushing cells out of their bipotent state and

forcing them into an effector or memory fate. The vast majority of cells are effector cells

(blue in Figure 5.B) around day 6, but there is no effector cell left by day 40, suggesting

that they have gone through the expected contraction phase. Indeed, at the end of the

simulation, i.e. on day 40 (yellow color code in 5.A), only memory cells remain.

3.6 Parameter sensitivity analysis

To analyze the impact of some parameters on the model behavior, we first assess the

role played by the initial number of cells. Table 6 recapitulates the results of the local

sensitivity analysis.

We first explore the impact of modifying initial cell counts while keeping a constant

ratio of T cells to APCs (equal to 1.4) on the overall amount of cells. One can see in

Table 6 that there is a steady monotonous increase in the number of cells at the peak.

Nevertheless if one examines the ratio between the average number of T cells at the

peak of the response and the initial number of T cells, the situation is very different

as illustrated in Figure 6.A. There is initially an increase in this variable, which then

stabilizes in a very narrow range between 16.2 and 16.8. This amplification ratio therefore

appears as a relatively robust emerging property of the model and suggests a minimal

initial cell density is required for the optimal expansion of the effector population, as

observed ex vivo [58].

One should note that the maximum number of cells generated was more than 32, 000

cells, highlighting the ability of the model to generate very large amounts of cells. The

computational time was only 2h in this case (see Section 2.9).

We then explore the impact of varying the initial number of APCs while keeping

constant the initial number of T cells (210 or 980). Larger ratios yield weaker cellular

expansions in both situations (Figure 6.B), highlighting a positive effect of the antigen
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Table 6: Comparative values of different initial data, where protein degrada-

tion rate of G3 equals 0.021. All ratios are computed using mean values of specified

quantities.

T

cell

APC Ratio

T

cell/

APC

T cell at the

peak (mean ±

std)

Ratio

T cell

at the

peak/

initial

T cell

Time of

the peak

(days)

(mean ±

std)

Memory cell

at the end

(mean ± std)

Ratio

Mem-

ory/

T cell

at the

peak

(%)

35 25 1.4 500 ± 37 14.3 7.2 ± 0.5 61 ± 11 12

70 50 1.4 1,135 ± 29 16.2 6.7 ± 0.2 121 ± 10 11

140 100 1.4 2,292 ± 48 16.4 6.4 ± 0.2 228 ± 26 10

210 150 1.4 3,469 ± 62 16.5 6.2 ± 0.1 357 ± 37 10

980 700 1.4 16,422 ± 235 16.8 6.0 ± 0.1 1,637 ± 72 10

1,960 1,400 1.4 32,802 ± 165 16.7 6.0 ± 0.1 3,150 ± 95 10

210 25 8.4 2,177 ± 128 10.4 7.4 ± 0.2 257 ± 19 12

210 50 4.2 2,924 ± 101 13.9 6.8 ± 0.2 286± 32 10

210 210 1.0 3,583 ± 45 17.1 6.2 ± 0.1 351 ± 44 10

210 420 0.5 3,596 ± 78 17.1 6.0 ± 0.1 395 ± 42 11

210 630 0.4 3,577 ± 57 17.0 6.0 ± 0.1 368 ± 24 10

980 117 8.4 12,724 ± 472 13.0 7.1 ± 0.1 1,337 ± 87 11

980 175 5.6 14,592 ± 426 14.9 6.7 ± 0.1 1,472 ± 79 10

980 1,050 0.9 16,502 ± 274 16.8 6.0 ± 0.1 1,686 ± 106 10

980 1,960 0.5 16,750 ± 229 17.1 6.0 ± 0.1 1,738 ± 76 10

980 2,800 0.4 16,744 ± 284 17.1 6.0 ± 0.1 1,733 ± 115 10
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A. B.

C. D.

Figure 6: Comparison of variables of interest when varying initial cell counts

and protein degradation rates. (A) Average cell expansion at the peak of the

response as a function of initial cell numbers over 10 simulations. (B) Average cell

expansion at the peak of the response as a function of the ratio of initial T cells to

APCs counts, in two cases comprising 210 and 980 T cells. (C) Ratio of the average

memory cell counts at the end of the simulation to average T cells count at the peak,

as a function of the ratio of initial T cells to APCs counts, in two cases comprising 210

and 980 T cells. (D) Effect of proteins 2, 3 and 6 degradation rates upon the time of

the peak (for a Ratio T cells/APC equals 1.4). Reference values of protein degradation

rates are given in Table 4.
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density on CD8 T cell expansion [59]. The range of values we used indicates there may

be an optimal ratio of 1 T cell to 2 APC, when 980 CD8 T cells are initially seeded,

since the highest total number of CD8 T cells is observed with this ratio (see Table 6).

We finally can demonstrate that the ratio between the average number of memory T

cells at the end of the simulation and the average number of T cells at the peak of the

response is quite insensitive to the initial APCs to T cells ratio (Figure 6.C), highlighting

the initial antigen density does not influence the extent of cellular contraction after the

peak of the response, as demonstrated in vivo [60]. It turns out that the value of this

variable proved to be extremely robust, around 10%−12% in all of the situations tested

(see Table 6), which corresponds to in vivo situations [5].

Investigating the impact of molecular processes on the dynamics of the immune re-

sponse through variations of different parameters (see Section 2.10) showed, as expected,

that variations of Protein 2 degradation rate mostly impact the production of T cells at

the peak of the response while variations of Protein 6 degradation rate mostly impact

the generation of memory cells (Supplementary Figure 5). However, although the time

at which the peak is observed is around 6-7 days and does not seem sensitive to initial

cell counts, we could demonstrate the role played by the degradation rate of Protein

3 in setting the time of the response peak (Figure 6.D and Table 7). Indeed the time

at which the expansion phase reaches its peak value is monotonically decreasing as a

function of the degradation rate.

In order to investigate the robustness of the model to parameter changes, we next

performed a higher-dimensional sensitivity analysis. We focused on the contribution of

protein degradation rates, d1,i, i = 1, ..., 9, to the variations of the model’s outputs by

computing first-order sensitivity indices over four cell population characteristics. Out

of the 1, 000 sampled protein degradation parameter sets, 996 simulations (99.6%) were

successful; the remaining four simulations either ran out of memory or were aborted

after 10.5 hours of execution.

Figure 7 shows the first-order index and the 95% confidence intervals obtained for

each protein degradation rate. As a result, the T cell count at the peak mostly depends
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Table 7: Effects of protein degradation rates d1,· of genes 2, 3 and 6 on various

variables of interest. In each case, initial cell counts are: 980 T cells and 700 APC

(ratio equals 1.4).

Value T cell at the

peak (mean ±

std)

Ratio T cell

at the peak/

initial T cell

Time of the

peak (days)

(mean ±

std)

Memory cell

at the end

(mean ± std)

Ratio

Mem-

ory/ T

cell at

the peak

(%)

d1,2

0.023 19,821± 190 20 6.2± 0.1 1,918± 82 10

0.022 18,029± 150 18.4 6.1± 0.1 1,783± 68 10

0.021 16,422 ± 235 16.8 6.0 ± 0.1 1,637 ± 72 10

0.02 14,944± 150 15.3 6.0± 0.1 1,493± 93 10

0.019 13,453± 138 13.7 5.9± 0.1 1,371± 64 10

0.018 12,125± 101 12.4 5.9± 0.1 1,205± 51 10

d1,3

0.027 12,941 ± 120 13.2 5.3±0.1 1,582 ± 46 12

0.025 13,899 ± 110 14.2 5.5± 0.1 1,601± 57 12

0.023 15,105 ± 173 15.4 5.8 ± 0.1 1,632 ± 47 11

0.021 16,422 ± 235 16.8 6.0 ± 0.1 1,637 ± 72 10

0.019 17,400 ± 684 17.7 6.4 ± 0.1 1,592 ± 76 9

0.017 19,107 ± 600 19.5 6.8 ± 0.1 1,562 ± 137 8

0.015 21,305 ± 466 21.7 7.3 ± 0.1 1,672 ± 84 8

0.013 23,857 ± 258 24.3 7.9 ± 0.1 1,746 ± 87 7

d1,6

0.013 15,433± 162 15.8 5.8± 0.1 1,983± 98 13

0.011 15,990± 88 16.3 6.0±0.1 1,857± 40 12

0.009 16,422 ± 235 16.8 6.0 ± 0.1 1,637 ± 72 10

0.07 16,620± 155 17.0 6.1 ±0.1 1,312± 81 8

0.05 16,881± 109 17.2 6.2± 0.1 785± 43 5
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Figure 7: First-order sensitivity results for the protein degradation rates. First-order

sensitivity index and 95% confidence interval are displayed for each protein degradation

rate and for (A) the number of T cells at the peak, (B) the time of the peak of the

response, (C) the number of memory cells at the end of the response, (D) the ratio

between the number of memory cells at the end of the response and the number of T

cells at the peak of the response. Color code is the same as in Figure 4.
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on d1,2, followed by d1,3, and the time to peak mostly depends on d1,3, followed by d1,2.

Memory cell numbers at the end of the response mostly depend on d1,2, and to a lesser

but significant extent on d1,7 and d1,6. The ratio of memory cells at the end of the

response to T cell count at the peak mostly depends on d1,7, followed by d1,6 and d1,3.

Overall cell population characteristics are consistent with results obtained with the

local sensitivity analysis. In particular, variations of key features are similar (Supple-

mentary Figure 6). The absolute variation of T cell count at the peak of the response

was approximately 3-fold, while the time of the peak varied by around 2 days, with

variations between days 5 and 8 (Figure 6.D), and the ratio between memory T cells

at the end of the response and the number of T cells at the peak ranges in the interval

[0.05; 0.15].

Interestingly, although the number of memory cells at the end of the simulation

depends strongly on d1,2 (first-order index equals approximately 60%), no influence of

d1,2 was observed on the ratio between memory cells at the end of the response and

the number of T cells at the peak (Figure 7.D), as already identified from the local

sensitivity analysis (Supplementary Figure 5.B). Yet, this ratio depends on d1,3 and

d1,6 (around 20% each), see Figure 7.D and Supplementary Figure 5.B. In addition,

it strongly depends on d1,7 (almost 40%). This latter degradation rate is associated

with the gene responsible for differentiation in effector cells, and its impact on the ratio

between memory cells at the end of the response and the number of T cells at the peak

can only occur through indirect mechanisms.

Sensitivity analysis can therefore show the functional impact of a molecular param-

eter value of the molecular GRN at the cell population level: a higher degradation rate

for the protein controlling cell death induces an earlier peak in the response. The accu-

mulation of P3 up to its threshold value to induce death takes longer time with a more

unstable protein, suggesting a higher degradation rate allows the expanding population

to reach its maximum more rapidly (even though this earlier peak is associated with less

T cells at the peak, see Supplementary Figure 5 and Table 7), although more complex

explanations might be at stake. This is however a very interesting result which illus-
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trates the benefit of this model, since it can only be obtained with the proper coupling

of all scales and the inclusion of a mechanistic gene model. To a lesser extent, a partial

global sensitivity analysis highlights the robustness of the cell population dynamics with

respect to the protein degradation rates. In particular, it stresses the indirect influence

of a molecular parameter (degradation rate of the protein controlling the differentiation

in effector cells) on a measure of the efficiency of the response (ratio memory cell count

at the end of the response over T cell count at the peak).

4 Discussion

In this work, we have presented a multiscale model of the CD8 T cell immune response,

from naive to memory cells, in which cell behavior (proliferation, apoptosis or differ-

entiation) is determined by molecular intracellular dynamics. We have demonstrated

that this modeling approach can be used to correctly reproduce the expected population

dynamics of CD8 T cells [2], using a 9-component principle-based GRN.

The use of a mechanistic model of gene expression, the two-state model in its bursty

regime [30], allowed us to obtain at all time points a realistic distribution of the amount

of mRNAs. It is important to point out that these types of expression distributions

are the main output of scRNAseq experiment and therefore comparing distributions

represent a natural way to compare a model output to experimentally observed values

[61]. The model-generated distributions can be used for comparison with experimental

distributions, for instance using the Kantorovitch distance [41]. Interestingly, the output

of the model makes it also possible to extract single-cell proteomics, therefore while it

is currently challenging to perform single-cell proteomics [62] we can make predictions

using our modeling and simulation framework.

UMAP representation is also a natural way of comparing the output of a model and

an experimental single-cell dataset (see e.g. [61]). In our case, the GRN we introduced

was able to correctly generate a time-dependent evolution of single cells at the molecular

level, and we could observe the expected time-dependent trajectory in the UMAP space,

35



as well as the branching resulting from the decision making process through the toggle

switch as observed experimentally [2].

Cell dynamics illustrated in Figure 2 highlight a very limited run-to-run variability.

Although we do not have a clear explanation for this observation, it may be noted that

the model comprises both stochastic and deterministic parts, and sometimes stochastic

process may be negligible before deterministic ones, the reasons being not straightfor-

ward. For instance, when the initial cell population is smaller then run-to-run variability

is larger, yet this may not be a consequence of the initial amount of cells solely: the

size of the computational domain, cells movement speed, activation times, dynamics of

interacting genes, to name but a few processes, certainly play a role in that observation

too. A consequence of this low variability is the possibility to theoretically develop a

mean-field model for the cell population dynamics. Nevertheless, such a model would be

close to several CD8 T cell population dynamics models available in the literature (in

the form of an evolution equation with reaction terms accounting for cell proliferation

and death) and would not account for the stochastic molecular dynamics driving cell

behavior, while this is the purpose of developing multiscale models.

One of the main difficulties we encountered deals with the parameterization of the

model. Numerous parameters have to be defined both at the molecular and at the cel-

lular levels (see Section 2). For instance, all parameter values used in the gene-gene

interaction matrix were based on previous experiences with such models, since values

of such parameters cannot be found in the literature (mainly because such parameters

depend on modeling choices). Since the aim of this work was to establish a proof-of-

concept that we could reproduce expected dynamics, parameters were tuned for such

a purpose. In trying to improve the realism of our model, more values should be esti-

mated from experimentally measured datasets. However, it is a notoriously difficult task

to obtain realistic values for certain molecular parameters, such as degradation rates,

from experiments [63]. The runtime in Simuscale being significantly faster and more

competitive than previous software, it is an advantage for estimating more parameter

values.
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Although a full sensitivity analysis was beyond the scope of the present work, we

nevertheless could analyze the impact of a few parameters through a local sensitivity

analysis and a global sensitivity analysis on protein degradation rates. Quite inter-

estingly, some characteristic population-level behavior of the model proved to be very

robust to specific influences. Besides robust parameters, there are also some for which

a more in-depth sensitivity analysis will be required, such as the interaction strength

of the toggle switch between G5 and G6, or the time-dependent parameters for cell-cell

interaction. Preliminary testing shows that varying those parameters may well change

the population dynamics, as well as the differentiation states.

The partial global sensitivity analysis performed on the protein degradation rates

showed the feasibility of such an analysis applied to population models driven by molec-

ular interactions. It highlighted dependencies on parameters that had not emerged from

the local sensitivity analysis. As expected, parameters d1,2 and d1,3, controlling cell

proliferation and cell death, accounted for most of the variance in the response variables

associated with the expansion phase. Yet, parameters d1,7, d1,2 and d1,6, associated with

the effector phenotype, the control of cell proliferation and the memory phenotype, were

found important for the formation of memory cells and the balance between memory

cells at the end of the response and number of cells at the peak, which is a measure of

the quality of the CD8 T cell response. Such a global sensitivity analysis may provide

hints on how complex interactions between molecular processes result in specific cell

population dynamics.

The next step in our approach will consist in changing the principle-based GRN to a

more realistic one. We are currently in the process of using CARDAMOM [61] to infer

a GRN from the time-stamped scRNAseq data from [64]. In particular, CARDAMOM

would infer gene-gene interaction parameters. Interestingly, the model described in the

present work already gives us an idea of 1) what to expect, i.e. we need at least a toggle

switch, which will lead to the differentiation state of the cell; and 2) where the signals

should affect GRN behavior, i.e. APC signalling should influence the proliferation, and

TCC signalling should impact the death. Moreover, our experience in choosing the
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degradation rate parameter values will be useful too, as long as they have not been

experimentally determined. Finally in the case where we will try to fit experimental

data, the mRNAs distributions observed experimentally will be compared directly to the

model output, and the model parameters will be adjusted to minimize any discrepancy.

There are a number of changes that can be envisioned to improve the modeling

approach:

1. The 3D domain represented in Simuscale is currently a fixed-size cube, which can

be reduced to speed up the contraction phase. It could also be enlarged or its

shape be modified, to assess the influence on the population dynamics.

2. All cellular decisions are built upon the crossing of a given threshold level. We

could assess the impact of changing this rule for a more realistic one that would

make the probability of a decision to depend upon a given protein level.

3. As of now, signalling can only be modeled by cell-to-cell contact. However, we have

previously demonstrated the impact of the local diffusion of IL2 on the CD8 T cell

response [20]. We could therefore implement a diffusion process in the extracellular

space, although it would have to be carefully drafted not to slow down the code

execution too significantly.

4. Different CD8 T cell phenotypes have been considered in this work, based on

Todorov et al. (2022), but noticeably not all phenotypes have been considered.

This is the case for exhausted CD8 T cells, which would be highly relevant when

studying chronic infections or cancer-induced immune response. Adding another

phenotype would require developing a branch of the GRN associated to this dif-

ferentiation, and specific to the considered phenotype.
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Supplementary Figure 1: A schematic representation of a GRN connecting genes in the

bursty regime. Two genes Gi and Gj are represented.
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Supplementary Figure 2: Effect of variations of parameters α (signalling parameter) and

µ (mean of the exponential distribution of the bursts) on variables of interest. (A) The

ratio between CD8 T cells at the peak of the response and the initial T cell number.

(B) The time of the peak. (C) The ratio between memory T cells at the end of the

simulation and the number of T cells at the peak of the response. Reference values are

α = 20 and µ = 50, as indicated in the text. (D) Evolution of the total population of

CD8 T cells for several values of µ, corresponding to ±20% of the reference value µ = 50.
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Supplementary Figure 3: Random positions of cells at the beginning of a simulation.
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A B

Supplementary Figure 4: UMAP representation of CD8 T cell population dynamics over

time using either (A) only the 9-genes principle-based GRN, or (B) the augmented GRN,

based on the 9 core genes plus the 27 “decorating” genes. The figure in (B) is repeated

here from Figure 5A, to allow direct comparison.
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B.

Supplementary Figure 5: Effect of proteins 2, 3 and 6 degradation rates on variables of

interest: (A) the ratio between CD8 T cells at the peak of the response and the initial

T cell number, (B) the ratio between memory T cells at the end of the simulation and

the number of T cells at the peak of the response. In both cases, the ratio T cells/APC

equals 1.4, and reference values for protein degradation rates are given in Table 3.
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Supplementary Figure 6: Distribution of variables of interest obtained from 1,000 sam-

ples generated by LHS. (A) The time of the peak. (B) The number of T cells at the peak.

(C) The ratio between T cells at the peak and the initial T cell number (initial T cell

number equals 980, unchanged). (D) Memory cell counts at the end of the simulation.

(E) The ratio between memory T cells at the end of the simulation and the number of

T cells at the peak. Red points (blue lines) are the mean values (standard deviations).
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