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Abstract

The CD8 T cell immune response operates at multiple temporal and spatial scales,

including all the early complex biochemical and biomechanical processes, up to long term

cell population behavior.

In order to model this response, we devised a multiscale agent-based approach using

Simuscale software. Within each agent (cell) of our model, we introduced a gene reg-
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ulatory network (GRN) based upon a piecewise deterministic Markov process (PDMP)

formalism. Cell fate – differentiation, proliferation, death – was coupled to the state of the

GRN through rule-based mechanisms. Cells interact in a 3D computational domain and

signal to each other via cell-cell contacts, influencing the GRN behavior.

Results show the ability of the model to correctly capture both population behaviour

and molecular time-dependent evolution. We examined the impact of several parameters

on molecular and population dynamics, and demonstrated the add-on value of using a

multiscale approach by showing that a higher degradation rate for the protein controlling

cell death induces a later peak in the response.

Keywords— Gene Regulatory Networks, cell population dynamics, CD8 T cells, stochastic gene

expression, multiscale modeling

1 Introduction

CD8 T cells are important for immune responses against viruses and intracellular bacteria, as well as

for tumor surveillance. A naive CD8 T cell gets activated when it recognizes an antigen presenting cell

(APC), through the formation of an immunological synapse [16]. Activated CD8 T cells first give rise

to proliferating memory precursor (MP) cells [54]. Such MP cells could represent bipotential cells that

face a choice between two fates: the terminally differentiated effector fate that is associated with the

repression of their self-renewing capacity and the activation of their effector function, and the memory

precursor fate that maintains their self-renewing capacity. Effector T cells massively proliferate while

acquiring their effector potential, which allows them to kill infected or antigen-bearing malignant cells,

before dying during the contraction phase. Meanwhile, part of MP cells differentiate into memory cells,

providing long-term protection against reinfection [29] The capacity to generate long-lived memory cells

during a primary immune response forms the basis for vaccination. At the end of the response, the

number of memory cells remains stable, since memory cells hardly ever proliferate or die [13, 39].

This entire process functions across various temporal and spatial scales, encompassing intricate

early biochemical and biomechanical processes, extending to the long-term behavior of cell populations.

Building a comprehensive computational model, where all relevant scales and their interactions would

be represented, would hold the potential to introduce new and more robust principles for designing

vaccines aimed at swiftly adapting pathogens. This perspective motivated the recent development of

advanced mathematical and computational models to depict these multiscale phenomena, moving us

towards a more comprehensive understanding of the CD8+ T cell response [5].
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There is a rich ecosystem of software developed to describe cell dynamics systems at different scales.

Software can be distributed into three main classes:

1. Description of cell population dynamics, such as Compucell3D [52], Physicell [19] or CellSys [23].

2. Description of both cellular and intracellular scale dynamics, such as Virtual Cell [12], COPASI

[24] or Smoldyn [3].

3. Description of coupling at least two different scales, like Vivarium [1], ENISI-MSM [59], EpiLog

[56] coupled with COPASI, MSM [53] or Tissue Forge [48]. One should also cite PhysiBoSS [36]

which results from the coupling of Physicell (processing up to 106 cells, but needs to run for

several days) with MaBoSS, a tool based on Boolean modeling [10].

These tools are limited in some aspects for example in the number of cells they can simulate, the explicit

description of a molecular level or their ability to deal with different cell types. Their computation

time is also often extremely slow, limiting the relevance of such computational models for performing

parameter estimation and model fitting, at least when dealing with highly proliferating cells. Indeed,

when the number of cells is only a few thousands, the calculation process becomes cumbersome and

time-consuming.

The development of a multiscale model of the immune response requires the ability to simulate the

molecular state of an expanding T cell population over several scales at the single-cell level, using a

realistic GRN that can reproduce stochastic gene expression behavior.

In [18, 44], CompuCell3D was coupled with a molecular network described by an ODE system.

Although these latest studies have qualitatively captured expected cellular and molecular behaviors,

enabling cellular decision-making, the molecular network was modeled as a fully deterministic system

using ODEs, whereas it is now accepted that gene expression at the single cell level is a stochastic

process [7, 11, 17, 45, 46, 49, 51].

We therefore describe here the use of Simuscale [8], which enabled us to simulate the dynamics of

interactions from the molecular to the cell-population scale, in conjunction with the use of a biologically

realistic mechanistic GRN based on a stochastic 2-state model for gene expression [22]. Simuscale

is particularly relevant to model and simulate differentiating cell populations, whose dynamics are

not solely dependent on biophysical rules. Thanks to appropriate parameter calibration, this study

demonstrates the ability to capture the expected time-dependent evolution of CD8 T cell population

dynamics. In addition, issues related to simulation time, variability, the dependence on the initial

condition of the number of cells in the population and differentiation states, were also addressed in this

study. Finally, we demonstrate the benefit of multiscale coupling by assessing the population behavior

(time of the peak of the response) as a function of a molecular parameter (protein half-life).
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2 Material, Methods and Models

2.1 Simuscale

Simuscale [8] is a multiscale individual-based modeling platform for performing numerical simulations

of heterogeneous populations of individual cells. Cells are assumed to evolve in time and interact phys-

ically and biochemically with each others. Models are described at two levels: cellular and population

level. The cellular level describes the dynamics of single cells, as defined by the user/modeler. Cells

have an internal state that includes default properties such as cell size and position, and may also

include cell-specific states (e.g., gene or protein expression). The population level describes the me-

chanical constraints and biochemical interactions between cells. Cells evolve in a bounded 3D domain,

and can divide or die. Cells are represented spatially as visco-elastic spheres with a rigid core.

Simuscale implements the physical simulator that manages the simulations at the population

level. Details of cellular dynamics to each cell are to be defined by the user. This makes Simuscale

modular, as it can accommodate any number of cell models within the same simulation, including

models with different modelling formalisms, such as ordinary and stochastic differential equations and

up to Piecewise Deterministic Markov Process (PDMPs, [22]). Biochemical interactions occur between

cells that are in contact with each other, through intercellular signals. Intercellular signals can be

known to all or to a subset of the cells only.

Simuscale expects an input file describing the initial cell population and numerical options. It

runs a simulation over a specified time interval, updating the cell population at given time steps, and it

generates an output file containing the state of each cell at each time step, and the tree of cell divisions

and deaths. All details regarding Simuscale can be found in Bernard et al. [8]

2.2 Gene Regulatory Network

The first step in building a multiscale model of the CD8 T cell immune response is to build a GRN

whose dynamics will drive each CD8 T cell fate (proliferation, death, differentiation).

We first build a simplified GRN, based on essential principles that allow each cell to be able to

proliferate, die, and differentiate in each relevant cell type (mainly, effector or memory CD8 T cell),

see Section 3.1. This GRN is made of 9 genes, which have no equivalent in a real-biological setting (yet

analogies are drawn in Section 3.2), each gene dynamics being driven by the gene model introduced in

Section 2.3.

In order to obtain realistic dynamics, we also consider an augmented GRN based on the 9-genes

GRN, to which three so-called ‘decorating genes’ are added to each main gene, resulting in a 36-genes
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GRN with the same properties. A “decorating gene” is activated by its main gene but does not act on

any downstream gene and therefore has no influence on the GRN dynamics.

The GRNs are dynamical mathematical models, based on the coupling of deterministic and proba-

bilistic formalisms, resulting in stochastic dynamics (see Section 2.3). In particular, genes of the GRN

can act on other genes of the GRN, either by activating or inhibiting their expression, resulting in

highly nonlinear dynamics.

It is important to note that each CD8 T cell will be embedded with the same GRN. Nonetheless,

depending on their previous experiences and interactions with other cells, CD8 T cell molecular, intra-

cellular states will differ from cell to cell and will be specific to each cell, thanks to individual values of

each gene expression in a given cell.

2.3 Gene model

Given the stochastic nature of gene expression at the single cell level [17, 32], we chose to model

the expression of each gene in the GRN (see Section 2.2) as a stochastic two-state model [42]. This

stochastic process consists of three components for each gene i, i ∈ {1, ..., n}: the promoter state Ei,

the mRNA level Mi and the protein level Pi.

The promoter can be in two states Ei = 0 or 1 (inactive or active). It opens with a rate kon and

closes with a rate koff . When the promoter is in the open state, mRNA gets synthetized at a rate s0 and

degraded at a rate d0. From mRNA, proteins get synthetized at a rate s1 and degraded at a rate d1.

Such a model can be implemented in a variety of formalisms [21]. In the present work we consider the

so-called bursty regime of the two-state model. It corresponds to the experimentally observed situation

where active periods are short and characterised by a high transcription rate, thereby generating bursts

of mRNA [51]. In such a regime, the promoter state no longer needs to be explicitly described since

active periods can be considered as infinitely short: random jumps will instantaneously increase the

amount of mRNA levels Mi.

The construction of a gene trajectory is as follows: starting from state (Mi(t), Pi(t)), the dynamics

of mRNA and protein levels are given byM ′
i = −d0,iMi,

P ′
i = s1,iMi − d1,iPi.

(1)

until a burst occurs for an isolated gene i, at rate kon,i. Following the burst, the quantity Mi jumps by

a random height according to an exponential law with rate koff,i/s0,i (see [21] or [57] for details of the

model). This stochastic model constructs a piecewise-deterministic Markov process (PDMP).
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To describe regulatory mechanisms within the GRN, we introduce the dependence of the burst

frequency upon the proteomic field and the external signalling activity, i.e. a burst occurs for gene i,

at a rate kθon,i(P, S), where P = (P1, . . . , Pn) is the protein level vector of all genes in the network and

S = (S1, . . . , Sm) is the signalling state vector of the network. For every i ∈ (1, . . . ,m), Si = 1 or 0

(active or inactive signalling). More precisely, in [21, 57], the burst rate of each gene i is calculated

using

kθon,i(P, S) = k0,i + (k1,i − k0,i)
(
1 + exp

(
−σθ

i (P, S)
))−1

, (2)

where k0,i and k1,i correspond respectively to the minimum and maximum burst frequencies of gene i,

and

σθ
i (P, S) = βi +

n∑
j=1

θijPj +

m∑
j=1

αSj , (3)

where βi is the basal activity of gene i [21], α is a signalling parameter, and θ = {θij}i,j∈{1,...,n}

is the gene-gene interaction matrix, representing the considered GRN (see Supplementary Figure 1).

Parameters θij can be positive or negative corresponding either to the activation or the inhibition

behaviour.

2.4 Cell types

When a simulation starts, there are two cell types in the population, APC and naive CD8 T cell. APC

do not possess an internal state, whereas we recall that all CD8 T cells share the same GRN structure

and CD8 cell types are defined as a function of the dynamical state of their GRN. A naive cell becomes

activated when it contacts an APC for a sufficiently long period of time. This “activated” state will

be transmitted throughout the descent of an activated cell. Activated CD8 T cells will then acquire

specific cell type identity as a function of their position in the gene expression space. They will be

considered bipotent if their protein levels in both genes 7 and 8 (see Section 3.1) are below certain

threshold values P ∗
7 and P ∗

8 , respectively. When P7 ≥ P ∗
7 while P8 < P ∗

8 , they will be considered

effector cells, and when P8 ≥ P ∗
8 , they will be considered memory cells. Table 1 summarizes all CD8 T

cell differentiation states considered in this work.
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Table 1: Differentiation states of CD8 T cells.

Cell type Definition

Naive No contact with an APC (inactivated)

Bipotent Activated, protein levels P7 < P ∗
7 , P8 < P ∗

8

Effector Activated, protein level P7 ≥ P ∗
7 , P8 < P ∗

8

Memory Activated, protein level P8 ≥ P ∗
8

2.5 Signalling

We consider two kinds of signals, namely APC signalling (via T cell-APC contact) and TCC signalling

(effector-T cell contact), inducing either activation or apoptosis in a CD8 T cell after its encounter with

an APC or an effector cell, respectively (see Figure 1).

A CD8 T cell perceives a signal from another cell (either an APC or an effector T cell) if

Ri +Rj < d(i, j), (4)

where Ri and Rj are the external radii of both cells and d(i, j) is the Euclidean distance between the

centers of the two cells. Condition (4) means that a CD8 T cell comes into contact with another cell if

their spheres intersect. Once a contact is detected, the phenotype of the contacting cell is determined

and the corresponding signalling (APC signalling or TCC signalling) is applied.

When a naive CD8 T cell encounters an APC (contacts on its surface), it receives an APC signalling,

which impacts the GRN behaviour (see below). It has been shown that when a CD8 T cell encounters

an APC, it adheres tightly to the APC for up to 20 hours in vitro before starting to proliferate [28].

Therefore, in the model, until the first proliferation occurs an activated T cell remains attached to

an APC, through adjusting the coefficient σT (Table 5). More precisely, when a naive CD8 T cell

encounters an APC, it tends to stay with this APC for a while thanks to a modification of its velocity

coefficient σT which takes a very low value. Then the APC signals to the T cell (APC signalling equals

1). If the activated CD8 T cell has not yet divided for the first time and the cumulative contact time

with the APC is greater than 10 hours (i.e. it only takes 5 hours if the CD8 T cell encounters 2 APCs

at the exact same time), gene number 1 is activated by the APC signaling (the level of expression of

this gene determines the first proliferation, see Section 3.1), with a signalling parameter α = 20 (no

unit) in order to strongly initiate gene expression. The effect of this value on model’s outputs has been

numerically investigated and shows very limited impact (Supplementary Figure 2). Noticeably, a CD8

T cell may leave the APC before its protein 1 level reaches the value required for first division (this is
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rare, but possible due to the probabilistic nature of the model). In this case, due to its fast mobility

(σT goes back to its initial value upon contact breaking), the CD8 T cell will easily contact a new APC,

its σT value will decrease again and its protein level will increase again rapidly.

In all cases, immediately after its first division, the CD8 T cell leaves the APC and moves randomly.

Further contacts with APC for this cell may occur, yet subsequent divisions will no longer depend on

the APC signalling. In particular, this will be the case for the daughter cells of activated cells, as we

assume that both daughter cells remember their mother’s first division, so they will not need to be

activated by the APC signalling in order to proliferate [55].

Concerning apoptosis, we assume effector CD8 T cells’ targets include all CD8 T cells, so fratricide

killing may occur [35, 50]. In this case, an effector cell sends an apoptotic signal called TCC signalling

to another CD8 T cell it contacts. This leads to an increase in gene 3 bursting frequency (see Section

3.1), and protein 3 level increases in the receiver cell, eventually resulting in its death. Only an effector

cell can emit TCC signalling. When a CD8 T cell receives a signal emitted by an effector cell, its TCC

signalling value equals 1 and its signalling parameter α equals 20 (no unit).

2.6 Initial conditions

Initial molecular content. In order to obtain realistic (i.e. non-zero) values for the initial molec-

ular content, we initialize each simulation with the values observed after 24 hours of simulating T cells

in the absence of APCs. Specifically, we run the simulation with 980 CD8 T cells in the absence of

APCs, so that they start to synthesize mRNAs and proteins without being activated. We then use

simulated quantities of mRNA and proteins as initial data for the naive cells of the next simulation,

where they are seeded in presence of APCs at time t = 0. Noticeably, APCs do not have a dynamical

internal state, only CD8 T cells do.

Initial positions in the computational domain. Initial positions of APCs and CD8 T cells

are uniformly randomized within the bounded computational domain (see Supplementary Figure 3).

2.7 Cell motion and fate

Cell movement. T cells move randomly in the computational domain. The random movement of

T cells was modelled through the use of a Gaussian distribution. More precisely, at each time step dt,

new 3D coordinates of CD8 T cells are updated by an amount identically distributed in each direction,
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as follows: 
dx =

√
dtσTN (0, 1),

dy =
√
dtσTN (0, 1),

dz =
√
dtσTN (0, 1),

(5)

where σT characterizes the velocity of the CD8 T cell when in contact or non-contact with an effector

cell or an APC (see Table 5).

Cell fate. Regarding the proliferation process, if a CD8 T cell reaches its maximum volume (through

the linear growth function of the current volume) and satisfies a condition on protein levels (P1 ≥ P ∗
1

for the first division, P2 ≥ P ∗
2 for subsequent divisions, see Section 3.1), then it divides into 2 daughter

cells of equal volume. At division, the molecular content C of the mother cell is normally distributed

between both daughter cells, and equals (1±0.2N (0, 0.2))C/2 when C is the protein concentration and

(1± 0.1N (0, 0.2))C/2 when C is the mRNA concentration.

Concerning apoptosis, if a CD8 T cell reaches the condition of death (protein level of gene 3 is

above a threshold value P ∗
3 ), then the cell disappears from the population immediately. We also set up

an APC death mechanism to ensure that they will start dying after day 12 (i.e. after the expansion

phase) and will disappear completely from the computational domain by day 20. This is a way to

mimic the displacement of CD8 T cells out of the APC-containing organ [41], or the eradication of the

antigen.

Cell differentiation is discussed in Section 2.4, see Table 1.

2.8 Simulation Parameters

All parameters used throughout this study are introduced in this section. Some parameters are needed

for the functioning of the core code of Simuscale , other parameters are specific to the CD8 T cell

simulation.

For running Simuscale simulations, we use an environment simulation domain inside a cube mea-

suring 40x40x40 (same unit as the initialized radius, see [8]). This is what will be called ‘computational

domain’ in this paper. Assuming cells are around 10 µm in diameter, a space unit (SU) would corre-

spond to around 7 µm, for a domain side approximately 300 µm in length. Each cell is a sphere with a

maximum volume of 2 SU3 and a minimum volume of 1 SU3. There is a linear growth function, where

the initial volume of each cell is randomly chosen in the range [1, 2], and the growth factor is fixed at

2dt/10, i.e. it takes 10 hours for a cell with a minimum volume to reach its maximum volume.
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Table 2: Parameter values of the gene-gene interaction matrix. Parameters θi,j give the value

of the action of gene i onto gene j, while parameters θi,i.j represent the interaction between

gene i and its three decorating genes i.j (j ∈ {1, 2, 3}).

Parameter θ1,2 θ2,2 θ2,3 θ2,4 θ3,3 θ4,5 θ4,6 θ5,5 θ5,6 θ5,7

Value 40 16 -10 16 60 16 16 90 -150 25

Parameter θ6,5 θ6,6 θ6,8 θ8,2 θ8,9 θ9,3 θi,i.j All other θi,j

Value -150 90 15 -800 530 -3000 15 0

The time step of all simulations is set to dt = 0.1 hour, and the final simulation time is 960 hours,

i.e. 40 days.

For T cell specific simulations, various parameters associated with cell fate, motion, and contacts

must be defined. We will first focus on parameters related to gene dynamics.

The βi parameter represents the basal activity of gene i, in a logarithmic scale, in the absence

of any stimulation (see equation (3)). Its value was arbitrarily fixed to βi = −5 for all genes i and

allowed to reproduce consistent behaviors of gene dynamics. Values of the parameters of the gene-gene

interaction matrix are shown in Table 2.

Values of protein degradation rates for all genes are given in Table 3. Since d1 ≪ d0, we kept

the degradation rate of mRNA equal to 1 for all genes, so d0,i = 1 for i ∈ {1, . . . , n}, and varied

only the protein degradation rates. Those are chosen to progressively decrease along the main GRN,

thus creating a delay in expressions and a wave-like behavior of signal propagation in the GRN [9].

Burst frequency of gene i is defined by koff,i/s0,i, whose value has been chosen to correspond to an

exponential distribution of bursts with mean µ = 50. The effect of this value on model’s outputs has

been numerically investigated and shows limited impact (Supplementary Figure 2).

Threshold values for proteins defining the cell types are given in Table 4.

Finally, Table 5 presents the velocity coefficients of CD8 T cells in different cases. The default

behavior of CD8 T cells is to move randomly and fast. When in contact with another T cell, they

reduce their speed, and almost stick to an APC when they first encounter the APC, until their first

proliferation occurs. Consequently, three different velocity parameters are used depending on the

situation.
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Table 3: Gene kinetic parameters. Values of: protein degradation rates d1,i of gene i ; protein

degradation rates d1,i.j of decorating genes i.j, j ∈ {1, 2, 3}, of gene i ; burst frequency koff,i/s0,i

of gene i ; synthesis rates s1,i of gene i proteins (translation rates).

Protein degradation rate d1,1 d1,2 d1,3 d1,4 d1,5 d1,6

Value 0.03 0.021 0.021 0.02 0.019 0.009

Protein degradation rate d1,7 d1,8 d1,9 d1,i.j

Value 0.02 0.00014 0.00013 0.03

Synthesis rate koff,i/s0,i s1,i

Value 0.02 0.01d1,x

Table 4: Protein threshold values. P ∗
i is the threshold value for the protein of gene i, used to

define cell fate (proliferation, apoptosis) and differentiation states, see Table 1.

Parameter P ∗
1 P ∗

2 P ∗
3 P ∗

7 P ∗
8

Value 0.5 0.4 0.75 0.01 0.02

2.9 Model’s outputs and simulations

All simulations are performed by running Simuscale code on a computation platform of the “Pôle Sci-

entifique de Modélisation Numérique” (PSMN) of ENS Lyon. During each simulation, all cell population

information is recorded, including the total number of cells in the population, cell identity, coordinates,

volume, signalling, cell type and molecular content. This information is then post-processed on personal

computers, using Python and R tools. All figures related to model’s outputs presented in this paper

have been generated from the outputs of the simulations and plotted with Python and R.

Typical simulation times range from a few minutes (35 CD8 T cells and 25 APCs initially) to a few

hours (1960 CD8 T cells and 1400 APCs initially ). It took only 2h to simulate the simulation associated

to the largest initial cell counts in this study (average value over 10 simulations), executed on PSMN’s

partition Cascade with 96 cores and 384 GB RAM (for more details, see https://www.ens-lyon.

fr/PSMN/Documentation/clusters_usage/partitions_overview.html). All codes are available at

https://gitlab.inria.fr/thinnguy/Simuscale_Lymphocytes

It is important to note that among the functionalities of Simuscale there is the possibility to color-

code cells according to the quantitative value of any cellular variable. Coupled with a video display of
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Table 5: CD8 T cell velocities.

σT Contact behaviour with respect to cell velocity

5 no contact with others/after first division upon encountering APC

0.02 contact with an APC

0.8 contact with an effector cell

the output, this is an invaluable feature of the model to:

1. Verify the correct functioning of the model. For example do divisions occur as planned when a

certain value of P2 is reached, as expected?

2. For many biologists ”seeing is believing”. Videos are therefore the perfect medium for interactions

between modellers and biologists.

3. In the present work there is no resulting 3D structure since cell movement tends to homogenize

spatial cellular localisation, but for modeling spatially constrained structures, this output would

be critical.

As an illustrative example, a movie of the CD8 T cell population dynamics is available at:

https://gitlab.inria.fr/thinnguy/Simuscale_Lymphocytes/ (Pop T cell APC.mov). All rele-

vant cellular variables are examined during the course of the response.

2.10 Sensitivity analysis

We perform a sensitivity analysis in Section 3.6. We consider two types of influence: either a sensitivity

to initial conditions or to molecular parameters. In each case, we fix parameter values, perform 10

simulations, calculate the mean and standard deviations of the outputs, and compute variables of

interest.

Variables of interest are: the number of CD8 T cells at the peak of the response; the ratio between

the average number of CD8 T cells at the peak of the response and the initial number of CD8 T cells;

the time of the response peak; the average number of memory CD8 T cells at the end of the simulation

(t = 40 days); the ratio between the average number of memory CD8 T cells at the end of the simulation

and the average number of CD8 T cells at the peak of the response.

The influence of initial conditions is assessed by either using different CD8 T cell and APC initial

cell counts, but preserving the ratio T cell counts/APC counts (ratio equals to 1.4), or by fixing the
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initial number of CD8 T cells (two values were used, 210 and 980 cells) and varying the initial number

of APCs (with T cell/APC ratios ranging in [0.3; 8.4]).

The influence of molecular content is assessed by computing variables of interest for various values

of some molecular parameters, including: the degradation rates of proteins 2, 3, and 6 that determine

proliferation, apoptosis and memory T cell differentiation, respectively. These parameters have been

selected based on the a priori essential roles played by genes 2, 3 and 6 in controling CD8 T cell fate.

3 Results

3.1 A model involving a gene regulatory network constructed by 9 genes

For the intracellular scale, we first build a GRN composed of 9 genes (see Figure 1A), which triggers

the proliferation, apoptosis, and differentiation of a single cell. All genes are hereafter denoted Gi,

i = 1, . . . , 9. From now on, we refer to this GRN as a ‘principle-based GRN’, since it is built upon few

principles required to reproduce the main features of a CD8 T cell immune response. The logic behind

this GRN is as follows.

First, APC signalling duration (cumulative contact time with APC is greater than 10 hours [28])

activates G1, which leads to the first proliferation of CD8 T cells when the protein concentration of G1

reaches a threshold value P ∗
1 and the cell has doubled its volume (volume is equal to 2). After division,

the activated CD8 T cell leaves the APC due to an increased velocity coefficient and the activation

stops. As long as all APCs have not been eliminated, activated CD8 T cells can encounter APC again

but they do not really attach to APC due to their high velocity.

In the meantime, G1 activates G2, which also activates itself in order to maintain a strong prolifer-

ation phase at the beginning of the immune response. The second and subsequent proliferation events

are based on G2 dynamics: when the G2 protein level exceeds a threshold value P ∗
2 then cells divide.

Also, G2 inhibits G3, which induces CD8 T cell apoptosis above a threshold value P ∗
3 . Gene G3 is

activated through TCC signalling and G3 also activates itself.

Furthermore, G2 activates G4, which simultaneously activates two genes, G5 and G6. There is a

toggle switch between these two genes which then creates the differentiation states. G5 activates G7,

which will be the marker for the effector phenotype (when the protein of this gene exceeds a value P ∗
7 ).

In addition, G6 activates G8, which induces the memory phenotype (when its protein concentration

reaches a threshold value P ∗
8 ). Gene G8 inhibits G2 to mimic cell cycle exit of memory cells. Finally,

G8 activates G9, which inhibits G3, leading to memory cell long-term survival.

All threshold values are shown in Table 4.
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Figure 1: Schematic representation of the GRN. (A) The core circuitry of the principle-based

GRN using 9 genes. The notation Gi corresponds to the gene number i. APC signalling and

TCC signalling are perceived when CD8 T cells are in contact with APCs or effector cells,

respectively. The green (resp. red) arrows represent activation (resp. inhibition). (B) The

augmented GRN, made of 36 genes, incorporates the core principle-based GRN together with

“decorating” genes. The gene Gi.j, j ∈ {1, 2, 3}, is the j-th gene activated by gene i.
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For application purposes that require many more genes in the network (see Section 3.5), we also

added so-called “decorating genes” to the principle-based GRN, resulting in a second GRN model

(hereafter referred to as the ‘augmented model’). More precisely, each gene, from G1 to G9 of the

principle-based GRN, simultaneously activates n redundant “decorating genes” that have no impact on

the GRN dynamics. In the next sections, we illustrate the results with simulations of the augmented

GRN, including three (n = 3) “decorating genes” for each main gene (see Figure 1B).

3.2 Biological rationale for our GRN

It is important to note that the principle-based GRN was built in order to satisfy minimal requirements

imposed by a realistic description of the CD8 T cell immune response: it required genes able to induce

proliferation, death and differentiation of CD8 T cells, therefore there is no reason any gene in this GRN

has an equivalent specific gene in a real biological setting. Nevertheless, one could draw the following

analogies between the principle-based GRN introduced previously and known genes.

1. G1 is activated by APC signalling and leads to the first cell division of activated cells. This has

been shown to be a function carried by the mTORC1 gene [37].

2. G2 drives the second and subsequent divisions. This role can be carried by the IL-2R gene [30],

which also amplifies itself as IL-2 signalling promotes further IL-2R expression [15].

3. G3 leads to programmed cell death (apoptosis), which is known to be the activity of Fas [33]. In

such a case, the TCC signalling could be seen as FasL signalling [40].

4. G5 and G6 are involved in a toggle switch, leading to the differentiation states. Two members of

the T-box transcription factors have been demonstrated to play this critical role: T-bet (G5) [27]

and Eomesodermin (G6) [26], which promote effector and memory differentiation, respectively.

Similar tandems could be Id2/Id3 and Blimp1/Bcl-6 [29].

5. G7 is a marker for the effector phenotype. Many genes could fall in this category, but since in

this model effector cells have the capacity to kill through the TCC signalling, FasL is one obvious

candidate for this function [2].

6. G8 is a marker for the memory phenotype, limits growth and prevents death by apoptosis, a role

for which FOXO1 gene would be a relevant candidate [25, 14].

7. Finally, G9 is activated by G8 and inhibits death, a role known to be played by the antiapoptotic

gene Bcl-2 [20].
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Figure 2: Time-dependent evolution of differentiation states of the CD8 T cell population over

10 simulations (mean (solid line) ± std (shaded area)). The green, brown, blue, and yellow

lines present the total number of naive, bipotent, effector, and memory phenotype of CD8 T

cells, respectively, and the red line the total number of CD8 T cells.

3.3 Population trajectory and differentiation states of a reference case

We first focus on the results obtained for a reference case, i.e. an initial population composed with 980

CD8 T cells and 700 APCs. All the parameters used to perform simulations can be found in Section 2.8.

Figure 2 shows the evolution of the CD8 T lymphocyte population and of each sub-population of

differentiated cells (Naive, Bipotent, Effector and Memory populations). Results represent average and

standard deviations over 10 simulations (using different random generator seeds). The results capture

the expected dynamics of the CD8 T cell population qualitatively, i.e. naive cells rapidly disappear,

differentiating into bipotent cells that further generate effector or memory cells. In the effector state,

cells proliferate rapidly, reaching a peak followed by a contraction phase, at which point memory cells
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appear and accumulate. In the last phase, only memory cells remain that form a stable population (see

[54]).

From a more quantitative perspective, after 18 hours, all 980 naive cells initially present (green

solid line) have become activated by contacting with APCs, 72% of the activated cells became bipotent

cells (brown) while 28% differentiated into effector cells (blue). Bipotent cells gradually transform into

effector cells, which proliferate very rapidly and reach a peak between days 5 and 10 post-immunization.

On average, a total of 16, 422 T cells (red) were formed at the peak (a 16.8 fold expansion) and 1, 637

memory cells (yellow) remain in the population at the end of the simulation (40 days). For more details

about cell numbers and standard deviations, see Table 6.

Noticeably, despite the stochasticity introduced at the molecular level with the mRNA bursting

regime and at the cellular level with the random cell movement, the resulting output from 10 indepen-

dent simulations is remarkably predictable, with little variation between two simulations of the model,

characterized by small standard deviations (see Figure 2, where standard deviations are illustrated by

narrow shaded areas around the mean, and Table 6).

3.4 Time-dependent evolution of mRNA and protein

Having demonstrated a robust behavior of the model at the cellular level, we then assess its behavior at

the molecular level. For this we plot in Figure 3 the histograms over time of mRNA expression for the

9 core genes of the augmented GRN through one simulation randomly selected from the 10 simulations

(Figure 2). The times at which those distributions are shown were chosen to capture the early phase of

expansion, the contraction phase and were more widely spaced for the final memory generation phase.

Altogether the genes display the expected dynamics. G1 shows a very brief period of activation,

due to its early activation by APC signalling which stops after the first division. G2 shows a much

more sustained period of activation during the expansion phase. G3 is mostly expressed during the

contraction phase and both G2 and G3 expressions go towards 0 at the end of the simulation. The

frequency of G4 mRNA expression follows the distribution of G2, because G2 activates G4. The

expression of G7 and G8 mirrors that of G5 and G6, which are mutually exclusive as expected from

their toggle switch connection.

It is important to note that those distributions harbour the characteristics known for patterns of

gene expression at the single cell level, i.e. a strong zero component and a long tailed distribution. We

have previously shown that the ability to generate realistic scRNA-seq datasets was a key asset of the

bursty model [21].

We then explore the behaviour of the molecular model at the protein level. Figure 4 shows the time-
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Figure 3: Time dependent evolution of mRNA distributions of 9 genes (see Figure 1A): x-axis

shows the value of mRNA+1 in logarithmic scale, while y-axis shows the frequency observed

at different time points.
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dependent evolution of the mean expression of each protein across all cells, for the same simulation.

Here too, the expected behaviour is observed.

The mean protein expression of G1 (blue line) first increases sharply, then decreases after 1 or 2

days, correctly representing the expected action of G1 in the GRN. While P2 increases and quickly

reaches a peak (orange line), P3 slowly increases (green line) due to the inhibition of G3 by G2. When

P2 decreases then P3 increases sharply and reaches a peak around the time of the response peak. Since

G4 is activated by G2, the growth pattern of P4 is similar to that of P2. The toggle switch between

G5 and G6 is visible in the mean protein expression between P5 (purple) and P6 (brown). This is

mirrored in changes between P7 and P8, with the expression of G7 (pink line) increasing initially and

decreasing as G8 increases. Similarly, G8 activates G9, then the yellow line of G9 rises following the

increase of G8.

One should also notice that the time-dependent evolution of the average protein amount is associ-

ated with small standard deviations (represented by very narrow shaded areas around the mean), hence

highlighting a pretty reproducible behaviour of the model.

3.5 UMAP analysis

The highly dimensional nature of scRNAseq data has called for the development of suitable dimension-

ality reduction techniques. Among those, the UMAP representation (Uniform Manifold Approximation

and Projection [6]) has established itself as one of the most popular. We therefore assess the ability of

the model to produce a relevant UMAP representation of the CD8 differentiation sequence (Figure 5).

Our initial attempt at obtaining a UMAP representation of the model output based on the principle-

based GRN gave rise to not very realistic images (see Supplementary Figure 4). At that stage we

reasoned that the amount of information provided to the UMAP algorithm might have been too sparse.

We therefore decided to add “decorating genes” (see Section 3.1) and used the augmented GRN instead.

The decorating genes do not participate in the dynamics of the network, but add some redundant

information that proved to be required to obtain the final correct UMAP representation observed on

Figure 5.

On Figure 5A, one can clearly see the time-dependent trajectory evolution of the CD8 T cell

population, starting at day 0 on the right and going to day 40 to the top left. The UMAP representation

therefore reveals a correct temporal arrangement of the cells.

Figure 5B presents the trajectory evolution of the CD8 T cell population as a function of their

differentiation states. We can see that at day 0 most cells are naive cells (green in both figures)

clustered close together, since their initial molecule content is almost 0. Bipotent cells appear at an
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Figure 4: Time-dependent mean protein expressions over 10 simulations across all cells. Shown

is the mean (solid line) ± std (shaded area) for the 9 main genes of the augmented GRN.

early stage (brown in 5B)) and then become effector or memory cells, giving rise to two branches of

cells. This clearly shows the correct behavior of the G5/G6 toggle switch pushing cells out of their

bipotent state and forcing them into an effector or memory fate. The vast majority of cells are effector

cells (blue in 5B) around day 6, but there is no effector cell left by day 40, suggesting that they have

gone through the expected contraction phase. Indeed, at the end of the simulation, i.e. on day 40

(yellow color code in 5A), only memory cells remain.
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A

B

Figure 5: UMAP representation of CD8 T cell population dynamics over time. (A) Cells are

color-coded as a function of the time they were observed. The same time points are displayed

as in Figure 3. (B) The same graph, where the cells are now color-coded according to their

phenotype.

21



3.6 Sensitivity to parameter values variations

To analyze the impact of some parameters on the model behavior, we first assess the role played by

the initial number of cells. Table 6 shows the effect of varying simultaneously the initial T cell number

and the initial APC number, while keeping the same initial T cell/APC ratio, or keeping the initial T

cell number constant (either 210 or 980) and varying the initial APC number. We measure the impact

of varying those numbers on five variables:

1. The number of T cells at the peak of the response;

2. The ratio between the average number of T cells at the peak of the response and the initial

number of T cells;

3. The time of the response peak;

4. The average number of memory T cells at the end of the simulation;

5. The ratio between the average number of memory T cells at the end of the simulation and the

average number of T cells at the peak of the response.

We first explore the impact of modifying initial cell counts while keeping a constant ratio of T cells

to APCs (equal to 1.4) on the overall amount of cells. One can see in Table 6 that there is a steady

monotonous increase in the number of cells at the peak. Nevertheless if one examines the ratio between

the average number of T cells at the peak of the response and the initial number of T cells, the situation

is very different as illustrated in Figure 6A. There is initially an increase in this variable, which then

stabilizes in a very narrow range between 16.2 and 16.8. This amplification ratio therefore appears as a

relatively robust emerging property of the model and suggests a minimal initial cell density is required

for the optimal expansion of the effector population, as observed ex vivo [43].

One should note that the maximum number of cells generated was more than 32, 000 cells, high-

lighting the ability of the model to generate very large amounts of cells. The computational time was

only 2h in this case (see Section 2.5).

We then explore the impact of varying the initial number of APCs while keeping constant the

initial number of T cells (210 or 980). Larger ratios yield weaker cellular expansions in both situations

(Figure 6B), highlighting a positive effect of the antigen load on CD8 T cell expansion [38]. The range

of values we used indicates there may be an optimal ratio of 2 APCs for 1 T cell, when 980 CD8 T cells

are initially seeded.

We finally can demonstrate that the ratio between the average number of memory T cells at the end

of the simulation and the average number of T cells at the peak of the response is quite insensitive to
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Table 6: Comparative values of different initial data, where protein degradation rate of G3

equals 0.021. All ratios are computed using mean values of specified quantities.

T

cell

APC Ratio

T

cell/

APC

T cell at the

peak (mean ±

std)

Ratio T

cell at

the

peak/

initial T

cell

Time of

the peak

(days)

(mean ±

std)

Memory cell

at the end

(mean ± std)

Ratio

Mem-

ory/ T

cell at

the peak

(%)

35 25 1.4 500 ± 37 14.3 7.2 ± 0.5 61 ± 11 12

70 50 1.4 1,135 ± 29 16.2 6.7 ± 0.2 121 ± 10 11

140 100 1.4 2,292 ± 48 16.4 6.4 ± 0.2 228 ± 26 10

210 150 1.4 3,469 ± 62 16.5 6.2 ± 0.1 357 ± 37 10

980 700 1.4 16,422 ± 235 16.8 6.0 ± 0.1 1,637 ± 72 10

1,960 1,400 1.4 32,802 ± 165 16.7 6.0 ± 0.1 3,150 ± 95 10

210 25 8.4 2,177 ± 128 10.4 7.4 ± 0.2 257 ± 19 12

210 50 4.2 2,924 ± 101 13.9 6.8 ± 0.2 286± 32 10

210 210 1.0 3,583 ± 45 17.1 6.2 ± 0.1 351 ± 44 10

210 420 0.5 3,596 ± 78 17.1 6.0 ± 0.1 395 ± 42 11

210 630 0.4 3,577 ± 57 17.0 6.0 ± 0.1 368 ± 24 10

980 117 8.4 12,724 ± 472 13.0 7.1 ± 0.1 1,337 ± 87 11

980 175 5.6 14,592 ± 426 14.9 6.7 ± 0.1 1,472 ± 79 10

980 1,050 0.9 16,502 ± 274 16.8 6.0 ± 0.1 1,686 ± 106 10

980 1,960 0.5 16,750 ± 229 17.1 6.0 ± 0.1 1,738 ± 76 10

980 2,800 0.4 16,744 ± 284 17.1 6.0 ± 0.1 1,733 ± 115 10
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Figure 6: Comparison of variables of interest when varying initial cell counts. (A) Average cell

expansion at the peak of the response as a function of initial cell numbers over 10 simulations.

(B) Average cell expansion at the peak of the response as a function of the ratio of initial T

cells to APCs counts, in two cases comprising 210 and 980 T cells. (C) Ratio of the average

memory cell counts at the end of the simulation to average T cells count at the peak, as a

function of the ratio of initial T cells to APCs counts, in two cases comprising 210 and 980

T cells. (D) Effect of proteins 2, 3 and 6 degradation rates upon the time of the peak (for

a Ratio T cells/APC equals 1.4). Reference values of protein degradation rates are given in

Table 3.
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the initial APCs to T cells ratio (Figure 6C), highlighting the initial antigen load does not influence the

extent of cellular contraction after the peak of the response, as demonstrated in vivo [4]. It turns out

that the value of this variable proved to be extremely robust, around 10%−12% in all of the situations

tested (see Table 6), which corresponds to in vivo situations [39].

Investigating the impact of molecular processes on the dynamics of the immune response through

variations of different parameters (see Section 2.10) showed, as expected, that variations of Protein 2

degradation rate mostly impact the production of T cells at the peak of the response while variations

of Protein 6 degradation rate mostly impact the generation of memory cells (Supplementary Figure 5).

However, although the time at which the peak is observed is around 6-7 days and does not seem sensitive

to initial cell counts, we could demonstrate the role played by the degradation rate of Protein 3 in setting

the time of the response peak (Figure 6D and Table 7). Indeed the time at which the expansion phase

reaches its peak value is monotonically decreasing as a function of the degradation rate.

We can therefore show the functional impact of a molecular parameter value of the molecular GRN

at the cell population level: a higher degradation rate for the protein controlling cell death induces an

earlier peak in the response. The accumulation of P3 up to its threshold value to induce death takes

longer time with a more unstable protein, suggesting a higher degradation rate allows the expanding

population to reach its maximum more rapidly (even though this earlier peak is associated with less

T cells at the peak, see Supplementary Figure 5 and Table 7), although more complex explanations

might be at stake. This is however a very interesting result which illustrates the benefit of this model,

since it can only be obtained with the proper coupling of all scales and the inclusion of a mechanistic

gene model.

4 Discussion

In this work, we have presented a multiscale model of the CD8 T cell immune response, from naive

to memory cells, in which cell behavior (proliferation, apoptosis or differentiation) is determined by

molecular intracellular dynamics. We have demonstrated that this modeling approach can be used

to correctly reproduce the expected population dynamics of CD8 T cells [54], using a 9-component

principle-based GRN.

The use of a mechanistic model of gene expression, the two-state model in its bursty regime [22],

allowed us to obtain at all time points a realistic distribution of the amount of mRNAs. It is important

to point out that these types of expression distributions are the main output of scRNAseq experiment

and therefore comparing distributions represent a natural way to compare a model output to exper-

imentally observed values [58]. The model-generated distributions can be used for comparison with
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Table 7: Effects of protein degradation rates d1,· of genes 2, 3 and 6 on various variables of

interest. In each case, initial cell counts are: 980 T cells and 700 APC (ratio equals 1.4).

Value T cell at the

peak (mean ±

std)

Ratio T cell

at the peak/

initial T cell

Time of the

peak (days)

(mean ±

std)

Memory

cell at the

end (mean

± std)

Ratio

Memory/ T

cell at the

peak (%)

d1,2

0.023 19,821± 190 20 6.2± 0.1 1,918± 82 10

0.022 18,029± 150 18.4 6.1± 0.1 1,783± 68 10

0.021 16,422 ± 235 16.8 6.0 ± 0.1 1,637 ± 72 10

0.02 14,944± 150 15.3 6.0± 0.1 1,493± 93 10

0.019 13,453± 138 13.7 5.9± 0.1 1,371± 64 10

0.018 12,125± 101 12.4 5.9± 0.1 1,205± 51 10

d1,3

0.027 12,941 ± 120 13.2 5.3±0.1 1,582 ± 46 12

0.025 13,899 ± 110 14.2 5.5± 0.1 1,601± 57 12

0.023 15,105 ± 173 15.4 5.8 ± 0.1 1,632 ± 47 11

0.021 16,422 ± 235 16.8 6.0 ± 0.1 1,637 ± 72 10

0.019 17,400 ± 684 17.7 6.4 ± 0.1 1,592 ± 76 9

0.017 19,107 ± 600 19.5 6.8 ± 0.1 1,562 ± 137 8

0.015 21,305 ± 466 21.7 7.3 ± 0.1 1,672 ± 84 8

0.013 23,857 ± 258 24.3 7.9 ± 0.1 1,746 ± 87 7

d1,6

0.013 15,433± 162 15.8 5.8± 0.1 1,983± 98 13

0.011 15,990± 88 16.3 6.0±0.1 1,857± 40 12

0.009 16,422 ± 235 16.8 6.0 ± 0.1 1,637 ± 72 10

0.07 16,620± 155 17.0 6.1 ±0.1 1,312± 81 8

0.05 16,881± 109 17.2 6.2± 0.1 785± 43 5
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experimental distributions, for instance using the Kantorovitch distance [9]. Interestingly, the output

of the model makes it also possible to extract single-cell proteomics, therefore while it is currently

challenging to perform single-cell proteomics [31] we can make predictions using our modeling and

simulation framework.

UMAP representation is also a natural way of comparing the output of a model and an experimental

single-cell dataset (see e.g. [58]). In our case, the GRN we introduced was able to correctly generate

a time-dependent evolution of single cells at the molecular level, and we could observe the expected

time-dependent trajectory in the UMAP space, as well as the branching resulting from the decision

making process through the toggle switch as observed experimentally [54].

One of the main difficulties we encountered deals with the parameterization of the model. Numerous

parameters have to be defined both at the molecular and at the cellular levels (see Section 2). Since

the aim of this work was to establish a proof-of-concept that we could reproduce expected dynamics,

parameters were tuned for such a purpose. In trying to improve the realism of our model, more values

should be estimated from experimentally measured datasets. However, it is a notoriously difficult task

to obtain realistic values for certain molecular parameters, such as degradation rates, from experiments

[47].

Although a full sensitivity analysis was beyond the scope of the present work, we nevertheless

could analyze the impact of a few parameters. Quite interestingly, some characteristic population-level

behavior of the model proved to be very robust to specific influences. Besides robust parameters,

there are also some for which a sensitivity analysis will be required, such as the interaction strength

of the toggle switch between G5 and G6, or the time-dependent parameters for cell-cell interaction.

Preliminary testing shows that varying those parameters may well change the population dynamics, as

well as the differentiation states.

Such a sensitivity analysis will be facilitated by two important characteristics of the model:

1. The extremely low variation between two repeats will be critical, allowing us to reduce the amount

of necessary repeats to run them in parallel on a computing cluster.

2. Concerning the runtime in Simuscale , it is significantly faster and more competitive than

previous software. The most extensive task (simulating 32,000 cells at the peak of the response)

took 62min to be executed on an Apple M2 Pro with 32GB of memory.

Once the parameters had been calibrated, the model proved to be able to reconstruct the temporal

dynamics of the CD8 T cell population in general, and of each differentiation state in particular.

The next step in our approach will consist in changing the principle-based GRN to a more realistic

one. We are currently in the process of using CARDAMOM [58] to infer a GRN from the time-stamped
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scRNAseq data from [34]. Interestingly, the model described in the present work already gives us an

idea of 1) what to expect, i.e. we need at least a toggle switch, which will lead to the differentiation

state of the cell; and 2) where the signals should affect GRN behavior, i.e. APC signalling should

influence the proliferation, and TCC signalling should impact the death. Moreover, our experience

in choosing the degradation rate parameter values will be useful too, as long as they have not been

experimentally determined. Finally in the case where we will try to fit experimental data, the mRNAs

distributions observed experimentally will be compared directly to the model output, and the model

parameters will be adjusted to minimize any discrepancy.

There are a number of changes that can be envisioned to improve the modeling approach:

1. The 3D domain represented in Simuscale is currently a fixed-size cube, which can be reduced

to speed up the contraction phase. It could also be enlarged or its shape be modified, to assess

the influence on the population dynamics.

2. All cellular decisions are built upon the crossing of a given threshold level. We could assess the

impact of changing this rule for a more realistic one that would make the probability of a decision

to depend upon a given protein level.

3. As of now, signalling can only be modeled by cell-to-cell contact. However, we have previously

demonstrated the impact of the local diffusion of IL2 on the CD8 T cell response [18]. We could

therefore implement a diffusion process in the extracellular space, although it would have to be

carefully drafted not to slow down the code execution too significantly.
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Supplementary Figure 1: A schematic representation of a GRN connecting genes in the bursty

regime. Two genes Gi and Gj are represented.
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Supplementary Figure 2: Effect of variations of parameters α and µ on variables of interest.

(A) The ratio between CD8 T cells at the peak of the response and the initial T cell number.

(B) The time of the peak. (C) The ratio between memory T cells at the end of the simulation

and the number of T cells at the peak of the response. Reference values are α = 20 and µ = 50,

as indicated in the text. (D) Evolution of the total population of CD8 T cells for several values

of µ, corresponding to ±20% of the reference value µ = 50.
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Supplementary Figure 3: Random positions of cells at the beginning of a simulation.
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A B

Supplementary Figure 4: UMAP representation of CD8 T cell population dynamics over time

using either (A) only the 9-genes principle-based GRN, or (B) the augmented GRN, based

on the 9 core genes plus the 27 “decorating” genes. The figure in (B) is repeated here from

Figure 5A, to allow direct comparison.

32



A.

B.

Supplementary Figure 5: Effect of proteins 2, 3 and 6 degradation rates on variables of interest:

(A) the ratio between CD8 T cells at the peak of the response and the initial T cell number,

(B) the ratio between memory T cells at the end of the simulation and the number of T cells

at the peak of the response. In both cases, the ratio T cells/APC equals 1.4, and reference

values for protein degradation rates are given in Table 3.
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