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Abstract

The literature of numerical modeling of 3D woven composite reinforcements shows that a wide range of
impressive studies have been carried out in the last two decades. During this period, two distinct strategies
have emerged: the predictive approaches that call for a mechanical construction as well as numerical sim-
ulations (e.g., FE method), and the descriptive approaches that are devoted to extracting the geometry of
a real textile from micro-tomographic images. In the former methods, different geometrical and mechanical
strategies have been employed for mimicking the yarn behavior at either the meso- or sub-mesoscales. And
in the latter ones, different approaches ranging from ad hoc image processing pipelines up to more advanced
machine learning strategies have been used but only at the mesoscale. This paper aims to highlight the
advantages and ideal usecases of each method as well as for each analysis scale (meso- or sub-mesoscale). A
common terminology is proposed for organizing and discussing the various meso- and sub-mesoscale strate-
gies. It should be noted that this work only covers the modeling strategies for the textile reinforcement (i.e.,
dry fabric), thus meso- or macroscale analyses of complete composites are not discussed.
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1. Introduction

The rapid growth of woven composite materials in many industries is a testimony of their excellent
mechanical properties. Indeed, woven composites have appeared in new applications requiring high specific
properties (e.g., strength to weight ratio). Some examples of their use in the aeronautics, automotive and
naval industries are: the composite fan blades and fan case in the LEAP engine that provide superior
damage tolerance and increased aerodynamics [1], composite automotive structural parts that reduce fuel
consumption while maintaining high resistance and rigidity [2], and composite bridge deck with increased
resistance to corrosion and fatigue [3].

This is particularly important for 3D woven composite materials, since they can be used for manufacturing
complete components with complex 3D shapes. Indeed, the manufacturing process does play an important
role in defining the mechanical behavior of the composite since each of the steps could modify (to different
degrees) the structure of the reinforcement [4]. These steps include the main processes of weaving, forming
and molding, as well as some manual intermediate steps (e.g., draping). Moreover, by (locally) customizing
their three-dimensional weaving pattern [5], they can be engineered to present targeted behaviors to complex
loads [6, 7]. These characteristics have helped in widening their use.

Commonly, computations at the scale of the part are performed using local descriptions of the material
properties (e.g., stiffness, permeability) but not their detailed structure so as to considerably reduce overall
computational cost. Hence, decent calculations on parts with complex shape and large size are possible.

*Corresponding author.
Email address: yanneck.wielhorski@safrangroup.com (Yanneck Wielhorski)

Preprint submitted to Composites Part A March 5, 2024



This approach, called homogenization, refers to the process of replacing multi-phase material properties
and a known detailed geometry by a simpler equivalent single-phase material over a Representative Volume
Element (RVE). The change from a finer scale to a coarser one usually relies on homogenized constitutive
laws relating average fields (e.g., strain, stress, pressure, fluid flow) [8].

Homogenization techniques applied on 3D woven composites have been successful in showing failure
and damage initiation at the lower scales while also highlighting the in-plane and out-of-plane mechanical
properties [9, 10]. However, they have been shown less well suited for modeling the progression of failure
or damage since they cannot capture the local variations in the stress state resulting from the internal
architecture [11, 12] (e.g., fiber matrix decohesion, fiber breakage). Thus, in order to account for the
intrinsic heterogeneous nature of composites (e.g., highly anisotropic behavior), homogenization techniques
require a rich underlying nonlinear continuum theory [13].

In such a manner, numerical modeling at the mesoscopic scale (mesoscale for brevity) provides better
design and analysis capabilities by providing an accurate description of these complex internal geometrical
features. Mesoscale modeling seeks a faithful description of the textile reinforcement (and possibly ma-
trix constituent) so as to characterize and predict their final physical properties and behavior. Here, the
multiscale nature of the composite (fiber, yarn, textile, composite) [14] is not only acknowledged but also
taken into consideration. In particular, the spatial modeling of the textile geometry focuses on capturing
a good “mean” behavior of the entire fabric, as well as obtaining a faithful characterization of the yarn
variability (e.g., thickness, width, spacing [15]), making a compromise between the modeling accuracy and
the computational cost [16].

Amongst the various modeling strategies, two main distinct philosophies (categories) can be distin-
guished: the predictive and the descriptive ones. On the one hand, the predictive approaches are based
on a nominal (idealized) geometry of the textile. These methods demand varying degrees of knowledge on
the (fiber and) yarn mechanical behavior (e.g., constitutive laws) since they resort to numerical simulations
that aim at representing (more or less faithfully) the physical phenomena participating in the manufacturing
process (e.g., compression and bending of yarns and their rearrangement). They are the preferred method
for textile modeling, insomuch as they are implemented in Textile Geometry Pre-Processors (TGP) packages
such as WiseTex [14], TexGen [17] or Textile Generating Software (TGS) such as MultiFil [18].

On the other hand, the descriptive strategies characterize a real textile using image processing tech-
niques on X-ray tomographic images (which allow observing inside the material). This acquisition method
usually requires a precise calibration so as to provide 3D images with sufficient contrast and spatial resolu-
tion for segmenting the yarn structures [19, 20]. While this methods can provide a very detailed geometry
of a woven part, some effort is required in order to allow for generalization to variants of the material (e.g.,
different compaction levels).

It is worth mentioning that the aforementioned classification of approaches into predictive and descriptive
ones is a novel contribution of this work. Indeed, previous reviews on this matter do not require such
vocabulary as they have mainly focused on only one of these strategies. For example, while Lomov et al. [14],
Ansar et al. [21] and Gereke and Cherif [22]| reviewed works on predictive methods, Naouar et al. [23] did
so for descriptive ones. Additionally, the present review paper will gather state-of-the-art methods, which
call for more advanced computing techniques than those previously cited reviews.

The article is structured as follows. Section 2 presents a general overview of 3D woven fabrics and
highlight the particular features of 3D woven composites. Similarly, section 3 focuses on the yarn, a central
element of interest for every modeling strategy. It also presents some general concepts that intend to unify
the variety of ideas employed in the literature. Next, in sight of the diverse nature of these approaches, the
details of each of the descriptive and predictive strategies found in the literature are provided in sections 4
and 5, along with an analysis of their advantages and limitations. Moreover, summary tables and charts are
provided so as to allow for swift comparisons between the many approaches. These two sections constitute
the main contribution of this paper. Finally, section 6 provides some concluding remarks.



2. 3D woven interlock fabrics: an overview

Multi-layer 3D woven reinforcements are obtained by the textile process of weaving (in contrast with
other textile techniques such as braiding, stitching and knitting) [21, 24, 25]. This process consists in
interlacing yarns following a weaving pattern. The latter is defined over a unit cell and tiled most often
periodically along two orthogonal directions, warp and weft, in the weaving plane. Then, as the warp yarns
(those inserted along the warp orientation) are fed into the Jacquard loom through the heddles, a selection
of those is selected and lifted following the weaving pattern [26]. This process creates a space (between warp
yarns) into which the weft yarns are inserted (orthogonally) by means of a weaving shuttle. The reed (a
device resembling a comb) is then used to separate and space the warp yarns across the width of the fabric
and to press the weft yarns (also known as fill or pick yarns) against the already woven part.

During the weaving process, the binder yarns (also called z-yarns), usually placed along the warp orien-
tation, are introduced through the thickness so as to reinforce the textile. This feature considerably lessens
the delamination phenomena [27] since they interlock the remaining (non interlaced) yarns. It should be
noted that the binder yarns are not necessarily different from the others but often do present a lower fiber
count. Also, if the weaving pattern is designed as such, all yarns in a given orientation (e.g., warp) can
behave as binder yarns. These 3D woven preforms with only three yarn sets (warp, weft and binders) are
called interlock fabrics [28].

Moreover, the number of interlocked layers divides woven preforms into through-the-thickness interlock
and layer-to-layer interlock (also called ply-to-ply interlock). While binder yarns interlace all the layers in a
through-the-thickness interlock, they only interlace one or a few layers at a time in a layer-to-layer interlock
(e.g., b-layer interlock). Similarly, the binder yarn undulation divides woven preforms into angle-interlock
and orthogonal-interlock.

This undulation angle (measured with respect to the horizontal weaving plane) is a right angle for
orthogonal interlock fabrics. In this case, the binder yarns “cut across” the textile in the thickness direction.
On the contrary, when the binder yarns interlace more than one column simultaneously, the fabric is an
angle interlock one (acute undulation angle).

By combining the two previous segmentation schemes [21], 3D interlock composites can be categorized
into four categories. However, given that no layer-to-layer orthogonal interlock composites were found in the
literature covered by the present paper (numerical modeling), only the three other categories are considered.
Figure 1 shows the configurations for the different interlock patterns along with the references in which they
are studied. Based on the number of published literature, the orthogonal through-the-thickness interlock
type is the one that has received the most attention in the numerical modeling community. In general, the
through-the-thickness interlock architecture has been well studied [27], notably for its tensile and compressive
behavior.

Furthermore, a feature of interest of some textile preforms is the satin, essentially a two-dimensional
weave on the surface of the fabric that differs from the bulk one [29]. Surface weave yarns are generally
incorporated into the structure so as to provide a smooth fabric surface. As such, they contribute the
least to the mechanical properties of the composite but protect the core textile from surface damage that is
susceptible to occur during processing or service. This is yet another example of the customization that 3D
weaving composites offer.

Once the textile reinforcement has been woven, the forming and matrix injection processes follow. As
its name suggest, the forming process of reinforcements consists in shaping the “flat” textile into its “final”
3D shape. For particularly complex shapes, the forming process is a crucial step, since it could lead to
undesired weaving defects such as waviness, wrinkles or locking [13, 30, 31|. Then, the matrix is added using
one of the many processes of Liquid Composite Molding family [32, 33, 34| (e.g., Resin Transfer Molding
or Vacuum-Assisted Resin Transfer Molding). Finally, according to the type of matrix employed, 3D woven
composites can be categorized into organic matrix composites (OMC) [35] or ceramic matrix composites
(CMC) [36].



Through-the-thickness angle interlock
2000-2010 [14, 37, 38, 39|
2011-2015  [40, 41, 42, 43, 44]
2016-2021 [27, 45, 46, 47]

Orthogonal through-the-thickness interlock

2000-2010 [26, 37, 48, 49]

2011-2015 [11, 31, 40, 42, 44, 50, 51, 52, 53, 54, 55]

2016-2021 [5, 12, 27, 46, 47, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65]

Layer-to-layer angle interlock
2000-2010 |9, 37, 39, 66, 67, 68|
2011-2015  [40, 52]
2016-2021 [18, 27, 46, 47, 65, 69, 70, 71, 72, 73, 74, 75]

Figure 1: Configurations for interlock types (graphics from Gereke and Cherif [22]) and segmentation of
literature by year of publication

3. Yarns: physical features and modeling strategies

The goal of textile modeling is to provide a faithful spatial description of the yarns. This includes the
yarn path (also known as yarn center line) as well as the associated cross sections all along the yarn. The
former is usually modeled as a 3D curve and the latter as 2D shapes on planes perpendicular to the yarn path
tangent. The determination of both yarn path and cross section is essential since they play an important role
in the mechanical properties of the woven preform. For example, a correct calculation of the out-of-plane
crimp depends on an accurate prediction of the yarn path [14]. Similarly, a faithful prediction of yarn cross
section deformations will allow for a precise estimation of the intra-yarn fiber volume fraction [50, 56, 74, 76].

In sight of the complexity introduced by the fibers, describing the yarn can be done either at the
mesoscale or at the sub-mesoscale. While mesoscale modeling aims at capturing the phenomenology of
the yarn behavior by considering geometrical or physical constraints, the sub-mesoscale modeling resorts
to describing the behavior of the constituting fibers, or more precisely, the behavior of “virtual fibers”, an
abstraction of fiber bundles that will be discussed below. In both cases, the aim is to properly capture the
yarn deformations within the textile, either by employing “complex” formulations for the yarn cross section
(mesoscale modeling) or by employing smaller entities (sub-mesoscale modeling) with simple constitutive
laws and interactions but whose collective behavior reproduces that of the yarn.

Some studies are devoted to modeling the yarn without any consideration for the “real” physical behavior.
In such surrogate methods, the purely geometrical (the oldest one) [17, 77, 78] and hollow tube modeling [16]
could be mentioned. These alternative approaches allow one to describe the yarn behavior as accurately as
possible without requiring complex identification of the yarn deformation modes.

It is noteworthy that the mesoscale geometrical model can also form the basis for the mechanically
based models [38, 79, 80|, aiming to identify each of the yarn deformation modes that take place during
the manufacturing processes. Indeed, these mechanical methods are usually based on the purely geometrical
ones, as they provide the initial textile configuration. In this context, the yarn is represented as a continuum
media for which the mechanical properties are not derived from the lower scale but rather from a top-down
approach. Within this latter, general considerations such as “mechanical objectivity” or frame indifference are
used together with postulated simplifying assumptions [38]. Examples of such assumptions are the absence
of coupling between different deformation modes, or polynomial expansion of the mechanical response along



specific strain directions. In such an approach, mechanical properties have to be identified from tests, as if
they were the fundamental constituents [80, 81, 82].

In the sub-mesoscale approach, it is natural to envision the mechanical behavior of yarns as resulting
from a homogenization of its elementary constituents (the fibers). However, a textile simulation taking into
account the behaviors of all fibers (typically 10* to 10° fibers per yarn), as well as their interactions, is
unfeasible since the computational cost would be prohibitive. To get around this issue, a micromechanical
approach was introduced: the yarns are described by a bundle of virtual fibers each “grouping” many real
fibers [83, 84, 85, 86, 87]. This simple idea brings down the “prohibitive calculation” into a more manageable
one.

Such simulations, while “simpler” than a complete one, still need to solve the many contact interactions
between virtual fibers [18, 83]. Indeed, a direct comparison between methods is not possible since varying
either the number of degrees of freedom for the constitutive laws (mechanically based) or the number of
virtual fibers for sub-mesoscale model would change the computational time gap. So, the merit of this
approach is a realistic description of the fibers and possibly their interactions but the main drawback is the
high cost due to the complex determination of contacts and friction. This branch of mechanics, that deals
with infinite stiffness contrasts (rigid cross sections, inextensible fibers, but null tangent stiffness of frictional
forces in the slip regime) is called “non-smooth” mechanics [88, 89], is very challenging numerically and leads
to a strong motivation to go to fewer fibers.

Overall, the rationale behind this approach is the following: an infinite number of fibers leads to a well-
defined continuum model, where the number of fibers no longer plays a role. Thus, even with much fewer
“equivalent” fibers (i.e., grouping elementary fibers together into bundles), the asymptotic continuum regime
may be very accurately reproduced. Hence, a very good picture of the yarn behavior can be achieved at low
cost.

Finally, the choice of method should be made with regards to the trade-off between a desired geometrical
and mechanical precision and an accessible computing time, according to the purpose of the simulation.

3.1. Physical description

While at the mesoscale, the yarn is the elementary entity of the textile reinforcement, at a sub-mesoscale
(microscale) it can no longer be seen as such (a single entity). Indeed, a yarn is composed of an assembly
of many unidirectional fibers, also called filaments. The number of fibers for typical yarns is in the order of
thousands or tenths of thousands (e.g., 6k=6,000 fibers, 12k [50] or 48k [18]).

The overall yarn mechanical behavior is defined by that of the individual fibers, as well as the internal
cohesion forces acting on them. It has been shown that understanding internal yarn cohesion forces is
paramount to properly model the yarn mechanical behavior [17, 90, 91, 92]. Indeed, the two factors that
contribute to this cohesion, the internal fiber arrangement and the sizing agent, need to be studied.

The sizing agent is a coating that, when applied to the fibers, allows them to stick to each other at the
microscale and protects them from friction damage [93]. Hence, it prevents internal fiber slippage as well
as yarn fraying during yarn deformation [94]. Besides, wear of the sizing layer could change the friction
force and therefore the surface state of the fiber [94, 95|. Tourlonias et al. [93] showed that the greater
the wear of sizing layer, the lower the coefficient of variation. Many recent studies are devoted to quantify
inter-tow frictional behavior including notably effects of the angle on the tow-tow friction coefficient [95, 96].
Moreover, Wu et al. [97] have studied the effect of normal load on the frictional and wear behavior of carbon
fiber by simulating the tow-on-tool friction relevant to the beating-up motion of three-dimensional weaving
process. They showed that the coefficient of friction increases with the increase of normal loads.

Yet, the sizing agent alone is not strong enough to prevent the yarn to be separated into individual fibers
or bundles of fibers when the yarn section is compressed. Hence, yarns can be twisted so as to encourage a
better yarn cohesion (see figure 2). Indeed, a high twist factor will stiffen the yarn since it will experience
less flattening under lateral pressure [90, 98]. Note that the range of the twist factor could be wide: from
20 [18] to 55 [64] and even 410 [99] turns (twists) per meter (tpm). However, it will also induce irreversible
deformations of yarn cross section due to increased cohesion as fibers are pressed against each other (specially
under tension) [100].



(a) 1-ply (b) 3-ply

Figure 2: Synchrotron images of yarns from Sibellas et al. [99]

In some works, the yarn is referred to as tow before twisting (i.e., a tow is a bundle of continuous
untwisted fibers) [14, 43, 67, 101]. Moreover a yarn can be composed of multiple tows twisted together (the
individual tows are not twisted). In such case, the yarn is known as n-ply, where n denoted the number of
tows that compose it [99].

It is important to note that the yarn twist generates the migration of the outer plies towards the core
of the yarn section [102], along with a diverse distribution of fiber orientations. Not only this favors strong
heterogeneity of the local fiber orientation within plies, but also the local distribution of fibers orientation
evolves with the distance to the yarn axis.

In addition to the fiber orientation, the fiber geometry (aspect ratio, cross section, waviness) and the
amount of fibers have been shown to have an impact on micro-mechanisms that induce yarn deformation [99,
103, 104]. They, along with the intra-yarn fiber volume fraction (also called fiber packing density [105]),
have a direct impact on the many contact features which include the number of contact interactions, their
orientation, their spatial distribution, and the geometry of the contact surface [103]). These considerations
further highlight the nonlinear response observed during yarn compression [103] or tension [104].

Badel et al. [38] obtained covariograms of the spatial distribution of yarn fibers on a deformed reinforce-
ment (after shearing or biaxial tensile tests) since the significant initial dispersion of the fiber distribution in
the undeformed state make the covariograms unusable. They note that a sample can be assumed isotropic
when the covariograms look alike in both directions (of the cross sectional images). The observed quasi-
homogeneous distribution of fibers validates the mechanical assumption of transverse isotropy. However,
this is a necessary but not sufficient condition since the case of a twisted yarn invalids the mirror symmetry
with respect to a plane including the yarn longitudinal axis.

3.2. Surrogate modeling

Surrogate models propose representations that can be seen as analogous to actual yarn behavior. Hence
no physical foundations are explicitly needed. Two main surrogate methods are to be considered: geometrical
modeling and a technique based on hollow tubes. While the former attempts to describe yarn body (yarn
path and shape cross section variations) using purely geometrically features, the latter relies on an artificial
shrinking and dilation of the yarn cross section under a fluid flux simulation.

3.2.1. Geometrical description

Multiple strategies exist for constructing mathematical models that describe the yarn. The objective
here is to provide an “usable” 3D model that captures the yarn as it evolves along the textile. Constructing
such model requires [91]: (i) a representation of the yarn path, (ii) a description of the cross section, and
(iii) a meshing strategy. Concerning the first and second elements, the notion of interpolations schemes and
parametrization functions is paramount. Their use allows to reduce the number of control points (variables)
required for describing the desired shapes. Then, given that most applications need the 3D model in the
form of a 3D mesh (either surface or volume), the third step is usually a required post-processing one. The
complexity of this final step is directly related to the approaches followed for obtaining the 3D model.

The yarn path can be seen as a parametric function that outputs a 3D position for a given curvilinear
distance along the yarn. The most general approach for representing a yarn path is to specify a (discrete)
set of master points (also called master nodes or control nodes) [11, 17, 42, 106], and interpolate between
them.
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Figure 3: Analytical yarn cross sections of width w and height h modeled (a) using a power ellipse
with exponents [0.5,1,2,3] (from blue to purple), and (b) with a lenticular shape with distortion distance
[-h/3,—h/6,0,h/6,h/3] (from blue to green)

One of the most common interpolation schemes employed are spline functions. A spline is a curve that is
formed from a collection of simple segments connected end-to-end. These segments are polynomial functions
with defined boundary conditions (e.g., periodicity of the curve) so that their junctions are fairly smooth
(i.e., Cq continuity for cubic splines). Different methods for defining these boundary conditions have been
explored: cubic Bézier splines, natural cubic splines, and periodic cubic splines [17, 42, 61, 67, 107]. From
those, Bézier splines (B-splines) are the most popular [91].

Alternatively, a combination of sinusoidal curves and segment lines [77, 98, 108, 109] or a cubic polynomial
curve [110] have also been employed for describing the yarn path. However, spline curves are preferred to
polynomial ones. Not only they can achieve similar results for low order polynomials, but they also avoid
the undesired oscillations that occur at the curve boundaries for high order polynomials [17].

Nonetheless, it should be noted that splines can also be sensitive to initial conditions. Hence, small
perturbations to the master points may lead to drastically different paths. A simple strategy proposed for
alleviating this problem consists in inserting two adjacent points (before and after) any master point [91].

Generally, a yarn cross section is a closed 2D shape anchored to a master point of the yarn path. These
shapes are embedded in a plane orthogonal to the yarn path. They can also be described using a set of
points and interpolation functions (e.g., closed polygons [106] or spline curves). However, the most common
approach is to employ parametric functions to describe them [108]. These include common (algebraic) curves
such as circles [77, 107, 108], rectangles [14, 66], ellipses [14, 17, 61, 66, 77, 78, 108]. Geometrical shapes such
as racetrack shapes [77, 111] (also known as a stadium shape), (convex) power ellipses [17, 112] or lenticular
shapes [14, 17, 66, 112, 113| have also been proposed (see figure 3 for the latter two cases).

It is important to note that, while some works employ constant cross sections along the yarn |77, 114],
other studies have shown that this assumption is not valid for most cases [42, 90, 98, 115]. Similarly,
few observations have shown cross sections to be dissymmetric from top to bottom [113]. Hence, the
lenticular shapes can be particularly attractive since they can be made to display this type of bottom-top
dissymmetry [17, 116] (see figure 3) whereas they remain left-right symmetrical (vertical direction).

Finally, different meshing strategies can be employed for obtaining the complete yarn model. The
simplest approach consists in sweeping a predefined constant cross section along the yarn path [77, 109] as
it can be seen in figure 4. If this cross section is previously meshed, it will provide a volume mesh of the
yarn [114]. An improvement over this method consists in connecting consecutive cross sections by building
triangular or rectangular surface facets between control points. However, this approach requires that the
cross sections have the same number of points. Furthermore a more advanced approach is to interpolate
between consecutive cross sections using linear or cubic interpolation functions [17, 117]. As can be seen
in figure 5, this latter approach can even be applied between cross sections of different shapes.

3.2.2. Hollow tubes

Stig and Hallstrom [16] developed the so called hollow shell method, in which the yarn is described
as a tube with transversely isotropic walls (see figure 6). These initial tubes are obtained using the TGP
TexGen [17] that provides the idealized yarn paths. Moreover, the authors note that these initial yarn
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Figure 5: Results from Priyanka et al. [117] for interpolation between ellipse, lenticular, power ellipse and
rectangular shapes assigned at each yarn node (from left to right)

trajectories do not appear to influence the final textile architecture significantly.

The hollow tubes that compose this geometrical model are first shrunk. As such, the now smaller circular
yarn cross sections guarantee that no yarn inter-penetration occurs. Then, an explicit FE model, similar to a
fluid flux simulation, under general contact conditions is employed for expanding the yarns until they satisfy
the desired average yarn volume fraction (using the average global and intra-yarn fiber volume fractions). A
constant fluid flux is chosen for the yarn expansion, increasing the volume of the tubes linearly at low rate
avoiding inertia effect.

As figure 7 shows, the resulting model successfully captures the yarn deformations. Note that radial
expansion is obtained by conferring a low transverse stiffness to the tubes. This is obtained by ensuring that
the longitudinal Young’s modulus is considerably more prominent than the transverse properties. Moreover,
the tube walls need to be thick enough and the shear stiffness small enough to prevent local buckling.

3.3. Mesomechanical models

While surrogate modelings as such geometrical approaches or hollow tubes attempt to depict the yarn
shape without actual physical foundations, the classical continuum mechanics (Cauchy material) could be
introduced by modeling a realistic yarn behavior. Nevertheless, this is still not a complete model since
it does not take into account all couplings between fibers rigidities and interactions inside the yarn body.
In reality, the yarn has plastic deformations but, due to the complexity of phenomena involved, most
approaches choose to work within the elastic theory framework and thus reduce the number of degrees of
freedom required. This continuum approach for mechanical behavior is based on constitutive equations able
to cope with the large displacements and large strains that yarns exhibit (i.e., finite strain theory). These

Area

Local fibre
Centroid orientation

Figure 6: Two slices of a strand from the tube model from Stig and Hallstrom [118].



Figure 7: Results from Stig and Hallstrom [16], comparison between (a) a CT scan of a dry weave sample,
and (b) the corresponding section in obtained FE model

include two relevant constitutive law families: hyper- and hypo- elastic formulations [30, 38, 79, 80, 119,
120, 121, 122, 123, 124].

On the one hand, a hyper-elastic formulation is based on a strain energy density, which is a potential
from which the stress can be computed, and guarantees thermodynamic consistency (energy conservation
and no dissipation). As a result, energy and stress are independent of the strain history. On the other hand,
the hypo-elastic formulation is based on an incremental formulation where the stress rate is related to
the strain rate. Such laws are easy to formulate, and to adapt. However, they come with no guarantee of
thermodynamic consistency and may exhibit a strain history dependence.

In both approaches, two fundamental pillars must be followed. First, the deformation modes that the
constitutive equation has to depict [123] are to be identified. And second, they must fulfill the principle
of material indifference. Hence, relationships between objective quantities need to be expressed, these are
independent of the observer and the framework in which it is applied.

Elasticity in the nonlinear range must be established in terms of a hyperelastic strain energy potential [79,
125]. The formulation of hyper-elastic laws implies that the free energy per unit volume of the reference
configuration can be represented as a function of the deformation gradient and as such it respects the material
objectivity condition [120]. In the large displacement/small strain case, the linear constitutive equation can
be expressed through the second Piola—Kirchhoff stress tensor which is the derivative of the elastic strain
energy potential with respect to the right Cauchy-Green strain tensor. Bonet and Burton [79] presented a
transversely isotropic hyperelastic functional that can be used for large strain applications.

To satisfy the existence of a strain energy, two conditions on the strain energy function are required: its
quasi-convexity and its coercivity. Indeed, in order to guarantee the existence of solutions in large strain
elasticity, the free energy function has to be convex or quasi-convex [126]. However, due to the difficulty to
prove the quasiconvexity condition, a stronger one of polyconvexity has been introduced by Ball [127]. Then
by ensuring, the polyconvexity of the strain energy function, each energy term related to the deformation
gradient (i.e., deformations of line, surface and volume) have to be convex. This notion of convexity of the
strain-energy function is very important, since it guarantees a physically meaningful mechanical behavior.
This polyconvex strain energy functions could hence a priori satisfy the condition of the stress-free natural
state [126].

The strain energy of an orthotropic law must only depend on strain tensor invariants to satisfy the condi-
tion of material symmetry. For instance, the strain-energy function of an isotropic hyper-elastic material can
be expressed as a scalar-valued function of the three principal invariants of the Cauchy-Green deformation
tensor according to the tensor function representation theorems [128]. For a transversely isotropic material,
the strain energy is dependent upon two additional invariants related to the main fiber direction captured
in the structure tensor [79]. Unsurprisingly, all approaches found in the literature model the yarn with a
transversely isotropic behavior (although this choice is incompatible with yarn twisting).

Charmetant et al. [80] proposed the idea to relate these five standard invariants of the strain energy with

9



four “physically-based” invariants related to uncoupled deformation modes of the yarn (see figure 8). These
describe the preferred directions (local orientations) of the material in: (i) elongation and (ii) shear along
the yarn direction, as well as (iii) compaction and (iv) shear in the transverse direction (i.e., of the yarn
cross section). Despite probable couplings between deformation modes, the complete strain energy function
is postulated to be equal to the sum of the strain energy of each deformation mode for the hyper-elastic
law [80]. Although this law has mechanical and thermodynamical soundness, its constitutive parameters
need to be identified from experiments performed at the mesoscale (because the law is not derived from
an up-scaling procedure). The low symmetry of yarns (even ignoring their chiral character) implies a large
number of invariants and an exponential growth of constitutive parameter numbers with the order of the
polynomial expansion of the free energy in those parameters. Since these constitutive parameters need to be
identified experimentally, coupling of modes with high order polynomials leads to an un-affordable number
(and complexity) of mechanical tests. This is also a strong argument for postulating decoupling between
different modes, although this is not motivated by first principles, nor experimental observations.

Additionally, the Taylor (polynomial) expansion for the hyper-elastic formulation does not consider
asymptotic behaviors. Yet, this type of behaviors is characteristic of many important quantities such as the
limit density of fibers inside the volume (i.e., maximum fiber volume fraction). Hence, accounting for the
maximum surface deformation will require a very large number of terms, and a very slow convergence to the
asymptotic regime.

In a hypo-elastic formulation, the objective Cauchy stress rate is related to the strain rate by a fourth
order hypo-elastic tensor which depends on either stress or strain [129]. Here, one of the main difficulties
is the choice of a suitable objective stress rate. This problem of objectivity stems from the difficulty of
following the anisotropic (even orthotropic) directions. Indeed, the derivative with respect to time of an
objective tensor might not be necessarily objective. For such a reason, specific objective derivatives have
been constructed in order to remove parasitic rotations given by the strong anisotropy.

Hagege [130] has shown that the use of a classical objective derivation, such as Green-Naghdi and
Jaumann, does not guarantee the objectivity of the behavior law. Indeed, the directions of anisotropy do
not precisely follow the landmarks related to these derivatives, which rotate according to average rotations
of the material.

Badel et al. [38] proposed to split the strain tensor into uncoupled deviatoric and spherical parts express-
ing longitudinal and transverse deformations. They asserted that under transverse compaction the material
becomes stiffer in both spherical and deviatoric behaviors due to the high packing density. They added
that with a pre-tension the compaction is stiffer. Nevertheless, the influence of longitudinal tension on the
deviatoric behavior was neglected due to its arduous quantification. Moreover, to keep the yarn bending
stiffness low, the longitudinal shear moduli are significantly lower than the longitudinal Young’s modulus.

In both hypo- and hyper-elastic laws, the material coefficients of the yarn constitutive tensor need to be
identified from different experimental tests. For example, the hypo-elastic law formulated by Badel et al. [38]
required the identification of 4 parameters, whereas the hyper-elastic law developed by Charmetant et al. [80]
law required the identification of 8 parameters (4 for elongation, 2 for compaction, 1 for distorsion and 1 for
longitudinal shear strain energy), in their simple linear regime. While longitudinal Young modulus could
be determined directly from a tension test on a single yarn, the identification of the transverse behavior is
performed on a glass fiber plain weave fabric through an equibiaxial tension and pure shear tests attempting
to significantly squeeze the yarns.

It is important to note that the number of coefficients to identify will depend on the basic assumptions
the authors make (e.g., orthotropic or isotropic behavior, deformation modes required) in addition to the
basic hypo- or hyper-elastic laws. Hence, a direct comparison between both approaches cannot be done
without taking into account these basic assumptions made by the authors. Moreover, they are useful in
limiting the exponential inflation of constitutive parameters.

3.4. Micromechanical models

The virtual fibers in interaction have been used for the construction of micromechanical models due to
the ease it provides. In a general sense, this astute modeling attempts at capturing the large deformation of
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Figure 8: Deformation modes of the yarn proposed by Charmetant et al. [80]: (a) elongation, (b) compaction
of the cross section, (c¢) distortion of the cross section and (d) longitudinal shear; the arrow indicates the
direction of fiber

the yarn cross section through the relative motion of the virtual fibers with a very small number of degrees
of freedom. Indeed, many yarn features, such as cross section deformations and bending stiffness, can be
captured using a limited number of virtual fibers instead of the thousands of real ones (e.g., 25 virtual fibers
can describe a yarn composed of 48k carbon fibers [18]).

The required constitutive parameters are those of the elementary fibers (considered as made out of an
isotropic linear elastic solid) and their frictional properties. This very low number of parameters, whose
value are a priori known or at least easily accessible, is the major strength of this approach.

This sub-mesoscale approach requires careful consideration of the many contact-friction interactions [18,
52, 131] between virtual fibers. This interaction limits their relative displacement within the yarn and
effectively determines the highest intra-yarn fiber volume factor that can be achieved. Clearly such strategy,
guarantees that yarn inter-penetrations are completely avoided. It is to be noted that this is one of the most
severe limitations of geometrical approaches.

Moreover, this sub-mesoscale approach gives access to sub-mesoscale information that can be exploited
at the mesoscale. For example, the mean yarn orientation can be obtained by integrating the orientation
of the virtual fibers along the yarn path. Similarly, intra-yarn fiber volume fraction can be computed by
analyzing the arrangement and cross section of the virtual fibers within the yarn cross section (the latter
needs to be identified). Indeed, the modeling complexity introduced by the intra-yarn fiber volume fraction
not being constant through the yarn can be readily captured by the virtual fibers although more subtle
properties require more and more numerous fibers.

3.4.1. Virtual fiber concept

From a practical standpoint, to perform a simulation using virtual fibers, it is important to determine
(i) their geometry, (ii) their initial arrangement, (iii) the number of virtual fibers that will be used, (iv) their
mechanical properties, and (v) that of their interactions.

The number of virtual fibers used for representing a yarn is a trade-off between model fidelity (e.g.,
complex yarn cross sections) and numerical complexity. Clearly, an increased number of virtual fibers per
yarn, will better capture the yarn features and better approximate the overall yarn mechanical behavior.
However, it will limit the number of yarns per unit cell that can be reasonably computed. As such, for
a given simulation, there exists a “sufficient” number of virtual fibers that attains the desired complexity
while providing results in a reasonable time frame. This issue has been explored by Green et al. [52] and
Daelemans et al. [45] by comparing their simulations to X-ray tomography images of real fabric. While
Daelemans et al. focused on a small number of virtual fibers (7, 19 and 37), Green et al. explored higher
values (19, 37, 61 and 91). While the results from both authors differ, the chosen number of virtual fibers for
the former is 19 and for the latter is 61, in both cases the choice was made by comparing the improvements
on the overall yarn deformation (cross section shapes) with respect to the computational time and stability.
For example, in the worst case a 50% increase of virtual fibers lead to a 140% increase in computational
time. The authors propose, as a rule-of-thumb, that the number of virtual fibers should be chosen so as to
guarantee that at least two or three virtual fibers be present across the thickness in the minimum dimension
when the yarn is in its deformed state. Zhou et al. [84] performed a similar analysis and concluded that in
most cases 19 to 50 virtual fibers might be sufficient to represent the yarn cross section geometry.

Next, the matter of virtual fibers disposition at the initial state has been explored by many. Frequently
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used initial arrangement patterns are concentric circular [39, 44], elliptical [131] and hexagonal compact [18,
67] around the tow central line. It should be noted that, while this notion is nonexistent for the case of real
fibers, it has been observed that it does play an important role in numerical simulations. For example, the
choice of an hexagonal compact pattern (or a more globally dense one) numerically increases the intra-yarn
fiber volume fraction, ideally up to a limit of approximately 91%. Although, Green et al. [11] observed that,
for a real yarn, a value higher than 70-75% is impossible to reach since the fibers might be slightly misaligned
or subjected to mutual entanglement. This high packing density could lead to dilatancy (under shearing)
as well as strongly decreasing the mean free path (or distance between contacts) of fibers. The combination
of these effects could considerably increase the yarn rigidity for bending and transverse compaction. Then,
the main issue should not reside in numerically solving the problems that result from models with higher
packing, but rather in limiting them to realistic packing levels. For example, Moustacas et al. [92] proposed
to introduce a random internal sinusoidal perturbation of the virtual fiber paths. Thus, an initial intra-yarn
fiber volume fraction lower than the one given by the standard hexagonal compact form can be achieved.
While the addition of disorder in virtual fibers distribution attempts to reach a real yarn trend, its sinusoidal
form does not allow to highlight the differential movement of virtual fibers in the cross section. Moreover,
a (yarn) twisting step can also be considered during the initialization of virtual fibers [17, 18, 64, 91, 92| in
order to maintain the internal yarn cohesion.

Next, with regards to the fiber geometry, Durville et al. [18] employed a simple relationship for defining
the virtual fibers radii:

NR? = nr?

where N is the number of virtual fibers chosen to describe the yarn, n is the number of (real) fibers within
the yarn, r the radius of these fibers and R the radius of the virtual fibers. This kind of “natural” equivalence
is widely spread as initial configuration [44, 52, 67, 87]. This relationship ensures a starting constant intra-
yarn fiber volume fraction regardless of the virtual fibers radii and an identical extensional stiffness, with
the same constituting material properties. However, bending stiffness may not always be properly scaled
through this equivalence.

3.4.2. Virtual fiber models

Two approaches have been found in the literature: the digital element method [83] and the beam
model [85, 86].

The digital element method proposed by Wang and Sun [83] discretizes the yarn into pin-connected
(ball joint) digital rod elements. As such, a yarn is considered as a flexible 1D component with a (constant)
circular cross section with the yarn flexibility being conveyed by frictionless pin connections. The authors
estimate that the length of the digital elements needs to be relatively small (around half the radius of the
virtual fiber) for conferring realistic yarn flexibility. Next, Zhou et al. [84] extend on the concept by modeling
the yarn as a bundle of digital element chains, hence it is called the multi-chain digital element model. Both
approaches (using one or multiple virtual fibers) were successfully employed for simulating the weaving and
forming processes of 3D preforms.

The beam model proposed by Durville [85, 86] models the virtual fiber as a collection of beams. A
finite strain beam formulation is employed in order to capture large deformations and admit contact-friction
interactions. The stress—strain relationship for the beam model is based on a standard 3D constitutive law,
such as the isotropic Saint Venant—Kirchhoff model, and leans on the virtual work principle for determining
the static mechanical equilibrium. This virtual fiber formulation includes an enriched kinematics of the
yarn cross section deformation. It approximates the affine transformation between the beam in an idealized
state (constant circular cross section) and the beam in the deformed state (deformed cross sections) using a
first order Taylor expansion. This approach was successful in simulating the unit cell of an angle interlock
reinforcement containing 64 yarns, each of which was made of 25 virtual fibers [18] (1600 virtual fibers
in total). Then, Moustacas et al. [73, 132] extended the initial enriched kinematics using a higher order
Taylor expansion and implemented a decoupling of kinematic orders for the strain Green-Lagrange tensor
calculation and also for the internal virtual work. This allows to set different behavior constitutive law
(e.g., transverse isotropic Neo-Hookean) according to the kinematic order. Such method allows fine tuning

12



the deformations involved in a given loading case. For example, this extension was successful in simulating
transversal compaction of a yarn using only one kinematically enriched beam. However, although this
mesomechanical approach allows greater transverse deformations of the cross sections, the process of setting
different mechanical behaviors according to the kinematic orders emphasizes the question of the choice of
the constitutive laws to fit the yarn behavior. It is of interest to emphasize that such an evolution can be
compared with the mesoscale surrogate model: the number virtual fibers is now decreased to one, getting
rid of the difficulty related to the computation of all frictional contacts, but at the expense of introducing
a phenomenological constitutive law for the cross section, and an ad hoc parametrization of its shape.

Very recently, Daelemans et al. [87] proposed hybrid virtual fibers by overlaying the truss elements
with beam elements. The idea is that the truss elements will determine the properties in the fiber direction
such as the tensile stiffness, while the beam elements will confer the bending stiffness. The second moment
of inertia is adapting by changing either the Young’s modulus or the beam element radius.

It is noteworthy that the digital and the beam models follow opposite trends. While Zhou et al. [84]
extends the approach of Wang and Sun [83] from one to multiple virtual fibers, Moustacas et al. [73] do the
opposite with the approach of Durville [85]. On the one hand, the digital element method embraces the
sub-mesoscale approach as demonstrated by the virtual fibers not increasing in complexity. On the other
hand, the beam model migrates towards a mesoscale one by enriching the virtual fiber formulation and
eventually decreasing the number of employed virtual fibers. Both strategies reflect on the freedom provided
by this approach. Finally, hybrid virtual fibers have emerged by superposing digital and beam models [87].

3.4.8. Fiber interaction models

The problem of fiber interactions, due to its highly “non-smooth” mechanical character, calls for sophis-
ticated treatments. The determination of contact surfaces, or the determination of their sticking or slipping
character are by consequence very lengthy operations. As such, it imposes a limit on the number of virtual
fibers that can be reasonably simulated (in a given reasonable time frame).

In the methods considered, two interaction conditions are commonly used for the virtual fibers: sticking
and sliding. Here, the interaction force is composed of a normal component that accounts for the effects of
pure contact and a tangential one related to the friction effects. The normal direction in the contact zones is
orthogonal to the surfaces of the virtual fibers (their normal vectors can be shown to be necessarily collinear
and opposite).

In order to simulate contact-friction interaction between virtual fibers, Wang and Sun [83] introduced
contact elements between any two nodes when the distance between them is shorter than the virtual fiber
diameter. These contact elements can support compression in the direction of the contact line and friction in
the directions orthogonal to it (along the contact surface). Finally, an incremental method is used to simulate
the contact process. The advantage of this approach is that contact is probed only from a discrete set of
predefined points (the center of the rod elements). However, its drawback is that very accurate determination
of the yarn surface normal and tangent vectors as well as the magnitude of the compressive forces are not
attained. Hence, the effective coefficient of friction is not exactly the one introduced at each elementary
contact. So an “artificial friction” (determined by the lateral component of the calculated compressive force)
is set to prevent relative sliding motion between digital chains even when the friction coefficient is assumed
to be zero. The authors suggest that to avoid this “artificial friction” the digital element length have to be
inferior than 1/4 of its diameter.

Subsequently, Miao et al. [39] improved the previous the contact-interaction algorithm by introducing
two modifications: the calculations of the contact element length (i.e., distance between virtual fibers) and of
the direction of compressive contact force between two digital chains (assumed to be perpendicular to digital
chain). Indeed, the new algorithm is based upon a node-to-element distance rather than a node-to-node
distance.

Durville [131] propose a method based on the determination of pairs of material particles predicted to
enter into contact. This process follows the following stages: (i) determine the pairs of discrete contact
elements by finding regions where contact is likely to occur (i.e., proximity zones), (ii) compute an inter-
mediate geometry for each zone as the average between the two parts of yarn path close to each other, and
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(iii) choose a pair of particles candidates to contact on each of the surfaces amongst all points of this in-
termediate geometry. In this context, Moustacas et al. [73] improved the contact formulation by describing
the intermediate geometry as a two-dimensional shape required by the yarn deformations offered by the
enriched kinematics. This supplementary numerical sophistication provides a much more realistic contact
geometry at the expense of a higher computation cost.

3.4.4. Towards the mesoscale

Once a desired textile configuration has been obtained (e.g., a target overall fiber volume fraction or
a target compaction level), the yarns are reconstructed from the virtual fibers that compose them. This
reconstruction operation is a common practice since it does help in alleviating subsequent simulations (e.g.,
less contact interactions to compute). In a general sense, the conversion from virtual fibers to yarns consists
in: (i) computing the yarn path and cross sections, and (ii) obtaining the yarn surface.

Clearly, the first step requires a more sophisticated solution than the second one. It usually consists
in first estimating the yarn path from the geometric center of the virtual fibers [51]. This path is then
discretized by placing planes orthogonal to it at predefined intervals. Cross sections of the yarn need to
be computed from the intersection of the virtual fibers with those planes. Placing them orthogonal to the
yarn path avoids getting skewed cross sections in high crimp cases. The yarn path can then be updated by
joining the centers of the newly obtained cross sections.

While the task of computing the yarn cross section may appear at first sight as a simple problem, it is
quite arduous. First of all, the problem is a conceptual one since the yarn cross section is a useful geometrical
abstraction that results from the arrangement of fibers. As such, it can be defined as the smallest region that
encompasses all of the fibers within the yarn [106]. This problem is conceptually similar to that of finding
the convex hull (also called convex envelope) of a set of points. This operation can be seen as stretching a
rubber band around the subset of outer-most points [51]. However, as figure 9 shows, a convex shape may
not suffice for properly capturing the cross section. This can lead to an overestimation of yarn area and
cause significant inter-penetrations [133], especially for high compaction values (i.e., very thin yarns).

For such reasons, Green et al. [11, 133] used the (locally-)modified version of the convex hull algorithm
proposed by Gofman (see figure 9). They apply the method to the virtual fibers by only considering their
center points (i.e., no cross section). Then, consider an expansion of the found polygon by the radius of the
elements in a direction perpendicular to the tangent of the polygon. This modified algorithm is driven by
two parameters: (i) the number of neighbors taken into account when calculating the local average distance,
and (ii) the search radius for the next candidate as proportional to the inter-fiber average distance. As
such, any new point in the cross section will lie within the allowed search radius of the previous one and
will creates a new line segment with the smallest external angle from the previous line segment, thereby
defining a polygonal cross section. Let us to underline that in case of an infinite search radius, the simple
convex hull is recovered and all points in the set become possible candidates. This additional control over
the convex hull algorithm allows adjusting the desired level of smoothness of the cross section. However,
it does not guarantee that consecutive cross sections will employ the same number of points. Hence, the
authors employ a cubic interpolation function so as to provide a smooth transition between cross sections
and generate a volume which can then be meshed.

A similar approach is followed by Said et al. [51] who developed a method that consists in shrinking
an initial polygon (with a fixed number of points) down to the limits defined by the (outer) points. This
approach, unlike the previous one, fixes the discretization of the yarn cross section. Such feature is useful
for computing the yarn envelope, since the points in consecutive cross sections can simply be connected.

Alternatively, some authors [18, 44] have employed a variation of the ball-pivoting algorithm [135]. Here,
the underlying concept is relatively simple: a circle of a given radius pivots from one sample point to another
one, connecting them through edges. Clearly, according to the radius of the pivoting ball and the curvature
of the outline, some points may not be reached by the pivoting ball.

It should be noted that, while this reconstruction step is the last one in the sub-mesoscale modeling
chain, it deserves just as much consideration as the others. Indeed, given the considerable amount of
effort and resources already devoted to obtaining a satisfactory arrangement of virtual fibers, it would
be counterproductive not to do so. Moreover, this reconstruction operation must balance accuracy and
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Figure 9: Example from Green et al. [133] that illustrates the application of (a)-(b) the classical convex hull
and (c¢)-(d) the modified convex hull applied to two different yarn cross sections

complexity of the final yarn model (e.g., properly describing a yarn cross section using the least amount of
points).

Finally, these methods tend to overlook the fact that the new entities may no longer satisfy the same
equilibrium conditions as their elementary virtual ones. Indeed, in terms of mechanical behavior, a dual-scale
approach would better capture the kinematics of the complete textile. However, as the present calculations
are mostly employed as initialization for subsequent ones, these differences should remain negligible.

3.5. Summary

As described in the previous sections, the numerical approaches devoted to yarn modeling are definitely
various, creative and clever. This demonstrates the complexity to predict the yarn shape as well as to
describe its deformation (i.e., mechanical behavior). Table 1 summarizes the different modeling methods
used in the literature.

Part of the complexity related to this task stems from the fact that the yarn is a collection of fibers.
Indeed, their large number, their various orientations (twist factor, number of plies), make them very difficult
to describe in spite of their individual simplicity (rigid cross-section, Coulomb solid friction) which require
very few parameters. Indeed, this difficulty can be traced back to the great contrast between fiber properties
(e.g., between longitudinal and transverse elastic modulii) or geometrical properties (e.g., between radius
and length) which set this kind of problem as a non-smooth mechanics one. Moreover, the local arrangement
of fibers can also play an important role in endowing the yarn with locally varying properties.

In this sense, surrogate models such as geometrical modeling propose an attractive alternative.
Indeed, via purely geometrical means they attempt to capture the observed yarn variability instead of
modeling the complex yarn behavior. In some cases, this representation can be simplified so as to depict an
idealized version of the yarn (e.g., constant circular cross section). In other cases however, these models can
be enriched with e.g., interpolating functions so as to capture the evolution of yarn cross sections along the
yarn path, or surface-tension terms to smooth their boundary.

While purely geometrical models are limited in their representation capabilities (e.g., capturing the “real”
evolution of the yarn shape), they do provide a very good mesoscale initialization for mesomechanical
models. These simulate the yarn under external mechanical loadings, hence require behavior laws to be
defined. The most common ones have employed hyper- and hypo-elasticity frameworks. These two do
capture the overall yarn behavior accurately, however they are limited in two aspects: (i) capturing the
large yarn deformation at very low energies (at the beginning of the weaving) and (ii) capturing plastic
deformations during the life of the yarn.

Micromechanical models emerge as a compromise between the simpler geometrical models and the
complex mechanical ones. Sub-mesoscale models group bundles of fibers into the so-called “virtual fibers”
as an alternative to the unaccessible modeling all the real fibers. Even though virtual fibers still require
mechanical laws to describe their response, these are much simpler than the ones used in meso mechanical
modeling (i.e., hyper- and hypo-elastic laws). However, they involve intra-yarn contact interactions that
need to be computed (i.e., heavy computational cost). The number of virtual fibers per yarn used in the
literature is summarized in table 2.
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Table 1: Segmentation of yarn modeling references by model type and publication year

Model type 1997-2005 2006-2013 2014-2021 Total
Hollow shell [16, 118§] 2
Hyper-elastic [79, 120] [80, 122, 136] [31, 137, 138] 8
Hypo-elastic [129, 130, 139] |38, 140] [123, 141, 142] 8
Digital /truss element  [83, 84| (39, 44| [45, 50, 57, 64, 143, 144] 10
Beam element [48, 85, 86] [17, 67, 131]  [L1, 18, 51, 52, 73, 76, 92| 13
Hybrid element [87] 1

It is important to note that, because of their sound micromechanical basis, virtual fiber models have
the potential to bridge the scales up to the textile (e.g., transverse compaction test on a 5-layer angle-
interlock textile [18]). This is also true for mesoscale approaches, but at the expense of having to calibrate
the constitutive parameters of the yarns, often available only at the textile scale. Indeed, while the tensile
behavior can be easily determined at the yarn scale, other deformation modes require ingenious experimental
devices to do so. In addition to the yarn behavior, special attention should be paid to the inter-yarn
interaction (contact and friction).

Both sub-mesoscale and mesoscale approaches have the potential to provide an accurate representation
of the yarn behavior. The fidelity of this representation is dependent on factors such as the number of the
considered degrees of freedom or the quality of the identification procedures for the constitutive laws. Using
the beam model as an example, similar results for capturing the nonlinearities of a compaction test have been
obtained at the sub-mesoscale [92] with 169 virtual fibers and at the mesoscale [73] with only one virtual
fiber per yarn but with a third order enriched kinematics (which in turn requires many parameters). As
such, the choice between a sub-mesoscale or mesoscale modeling approach is dependent on the desired yarn
features to be captured (e.g., geometrical shape, mechanical behavior). Indeed one can make the analogy
between the number of virtual fibers employed for a sub-mesoscale approach and the number of degrees of
freedom of a behavior law used at the mesoscale. As a rule-of-thumb, it has been shown that few dozens of
virtual fibers are needed to approximate a continuum (e.g., according to different authors, from 19 [45] to
91 [87]).

It is important to highlight that, for the case of virtual fibers and mechanical modeling, the choice of an
initialization scheme is very important. For example, most sub-mesoscale approaches initialize virtual fibers
with an hexagonal arrangement and most mesoscale approaches shrink the initial yarn cross sections so as to
avoid interpenetations. While these strategies are useful, they often lead to unrealistically high initial intra-
yarn fiber volume fractions. In this sense, solutions such as initial perturbations [92] or yarn inflation [16]
can guarantee that a more realistic intra-yarn fiber volume fraction is achieved. On the contrary, the model
should not be initialized with an intra-yarn fiber volume fraction too small because it could then be difficult
to reach the desired final value. Overall, in order to accurately capture the evolution of the yarn shape
under external loadings and to avoid spurious corrective methods, it is rather advised to initialize the yarn
shape and volume as close as possible to reality.

As a final note, no literature has been found on the relationship between intra-yarn fiber volume fraction
and yarn twisting. A consequence of this seemingly trivial connection is that while the intra-yarn fiber
volume fraction for twisted yarns will not vary much when subjected to external loads, it will do so for
untwisted yarns or yarns with low twist count. Indeed the internal cohesion in the twisted yarns will allow
less relative motion of the fibers that compose it.

16



Table 2: Number of virtual fibers per yarn used in the literature

Nb.  2001-2007 2008-2014 2015-2021 Total
1-7 (83, 86] [44] [45, 144] 5
16-30  [17] 39, 44, 52, 67] [18, 45, 64, 144] 9
32-55 [39, 52, 84, 131] [45, 64, 144] 7
61-91 [39, 44, 50, 51, 52]  [76, 87, 143, 144] 9
275-1183 [143] 1

4. Predictive approaches

For around two decades, Textile Generating Pre-Processors (TGP), such as WiseTex and TexGen, have
been widely developed with the goal of numerically describing textile reinforcements (woven, braided and
knitted) at the mesoscale with as few parameters as possible. They are “simple” geometry-based algorithms
with idealized yarn paths and cross sections all along the principal direction. Similarly, Textile Generation
Softwares (TGS) have also been developed with the goal of predicting realistic geometries by incorporating
the mechanical behavior of the textile constituents. In many cases, TGP models can be used as initialization
for TGS simulations.

The inherent challenge in predictive textile modeling is to accurately (realistically) describe the textile
topology as well as the yarn morphology (i.e., yarn path and cross sections), in particular at contact points
between yarns. Indeed, an accurate representation of yarn path is crucial since waviness plays a significant
role in the mechanical properties of the textile. Similarly, the many yarn cross sections (different along
the yarn path) determine the local intra-yarn fiber volume fraction and thus its response to transverse
compression, bending and traction.

All models start with the nominal textile topology (i.e., weaving pattern) and, by means of a constitutive
law that describes the yarn mechanical behavior, evolve from an “initial state” to an “as-woven” one. The
latter tries to attain the configuration of the textile right after being woven and before any further processing
(e.g., forming). Furthermore, the employed constitutive law may provide either a very realistic and accurate
description of the yarn mechanical properties, or opt for a more empirical and simpler geometry-based one.
In particular, the differentiating factor between the two main types of predictive modeling is the ambition of
modeling the weaving process or not. Indeed, reaching the as-woven state without taking into account the
detailed history of the weaving process (e.g., neglecting self-balanced internal residual stress field) requires
many clever numerical shortcuts.

Once the (stress-free) “as-woven” state has been obtained, the next step is to simulate the forming process
so as to reach an “as-manufactured” state. This final step consists in bringing the textile to a target shape,
along with a target overall fiber volume fraction. In other words, the as-woven geometry serves as starting
point for the as-manufactured simulation, hence it is a necessary step for describing the forming process.

Finally, the advantages of obtaining a realistic mesoscale description of the composite are many. For
example, such model can be exploited for predicting the mechanical properties of the final part (e.g., stiffness,
vibration modes, damage). Similarly, it can be used to analyze and optimize either the weaving or forming
processes, or even the textile architecture parameters. The ability to perform these calculations numerically,
without requiring many expensive manufacturing iterations (i.e., trial-and-error), is the key to performance
enhancement, with the bonus of cost-effective improvements.

4.1. Simulating the weaving process

At mesoscale, the simulation of the weaving process requires a suitable mechanical behavior law and a
finite deformation framework that properly accounts for geometrical non-linearities. In both cases, math-
ematical rigor and numerical efficiency and robustness are paramount. Despite the ambition of this task,
many authors have tried to simulate the weaving process with different approaches allowing for a more or
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Figure 10: Results for Zhou et al. [84], simulation of the 2D weaving the process using (a) single and (b)
multi digital-chain element methods

less faithful woven geometrical description. In fact, this approach has already been explored for the case of
2D textiles [84] and 3D braids [83] using the digital element approach (see section 3.4.2), and has only very
recently been done so for 3D woven composites [64]. Before detailing these recent works on 3D woven, it
may be useful to recall the principles that guided the 2D woven and 3D braided (even if they are out of the
scope of this paper).

First, Wang and Sun [83] simulated the 3D braiding process using one virtual fiber (digital chain) per
yarn. They neglected yarn stretch since its elongation was assumed to be too small to affect the micro-
deformations. Therefore, the stiffness of all the digital elements was replaced by a penalty factor with a
large positive value. Besides, the authors used the stiffness perturbation method to avoid singular global
stiffness matrix (e.g., when any two neighboring digital-rod elements are aligned along the same straight
line). Finally, positive yarn tension was applied to ensure the stability during the braiding process.

Then, Zhou et al. [84] extended the braiding process simulation to the 2D weaving process by employing
either one or multiple virtual fibers per yarn (see figure 10). Here, inter-fiber slippage is also taken into
account with inter-fiber solid friction interaction. Moreover, they assume that the yarn has a smooth
surface with a zero-friction coefficient. These conditions allow to capture both yarn motion and cross
section deformation.

Finally, Yang et al. [64] performed an impressive sub-mesoscale weaving simulation of a 3D through-the-
thickness orthogonal interlock. They also employed the digital chain method (19, 30 and 55 virtual fibers
per yarn) and an Abaqus explicit solver with linear elastic assumption for the yarn behavior. Additionally,
the twist process is also simulated using Abaqus with a friction coefficient of 0.3 (measurements performed
on quartz fibers [143]). They aim for 55 twists per meter on 3-ply warp, 10-ply weft, and 1-ply binder
yarns. During the weaving simulation, tensions of 0.75 N and 0.25 N (measurements made by [145]) were
applied to the moving ends of warp and binder yarns respectively. In each weaving cycle, the beating-up
motions are simulated by moving the weft yarns along the warp and binder direction. Finally, transverse
compression simulation is performed in order to reach around 43% of fiber volume fraction. These steps are
shown in figure 11 along with a comparison of the obtained model with an observed sample. It can be seen
that very realistic results are achieved by this approach.

4.2. Using surrogate modeling

Since the “as-woven” configuration is a priori unknown without a complete simulation of the weaving
process (as in the previous section), the type of works that employ surrogate modeling do so by creating a
starting configuration from which any further state (e.g., as-woven, as-manufactured) can be achieved by
simulation. In many cases, a “loose-weave” geometry is chosen, such that it respects the topology but with
much separated yarns so as to avoid initial yarn interpenetration. Here, the well-known TGP can be used to
get a nominal idealized geometry with these features. Additionally, most works enrich this initial geometry
with measured textile characteristics (e.g., yarn spacing) so that it can get as close as possible to the target
one.
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Figure 11: Results for Yang et al. [64], sub-mesoscale simulations of (a) the 3D weaving and (b) compression
processes, and comparison between (c) sub-mesoscale model and (d) tomographic image

4.2.1. Textile and yarn features

The most essential parameter for properly describing a textile architecture is the weaving pattern. This
parameter defines the type of reinforcement as well as providing a collection of “instructions” that define the
relative positioning of yarns within a unit cell. By construction, it also determines some other topological
parameters, such as the number of layers per column. Then, in order to fully define a textile reinforcement
other geometrical parameters, such as yarn column spacing, are needed. Additionally, further information
about the yarns needs to be provided (e.g., number of plies, twisting amount, linear density).

Another important parameter is the textile thickness. This geometrical feature, along with others of
more numerical nature (e.g., dimensions of the Representative Elementary Volume), establish other textile
characteristics such as the overall fiber volume fraction or the out-of-plane crimp. Experimentally, the
thickness can be measured by compressing a fabric between two plates with a relatively small force [17]
(Kawabata Evaluation System). Nowadays, X-ray tomography is mainly used for this task [52] since it can
provide a more precise quantification of the fiber volume fraction as well as the out-of-plane crimp. This
latter quantity is defined as the ratio between the curvilinear length and the end-to-end length [68].

Following this reasoning, one could argue that measuring some textile parameters can be seen as path
for improving the prediction capabilities of numerical models, albeit at the cost of manufacturing samples
and devising measuring methods. For example, Lin et al. [42] inspected samples using optical microscopy
(LM) and scanning electron microscopy (SEM) for extracting more realistic measurements of the yarn
cross sections. Similarly, depending on the chosen simulation strategy, other non-textile parameters (i.e.,
mechanical parameters) may be required.

Finally, some recent efforts have been deployed to reduce as much as possible the number of parameters
necessary to describe an as-woven architecture. Xu et al. [46] found that thirteen parameters are enough
for completely defining the topology and geometry for a wide range of 2D and 3D weave architectures: five
for the topology, and eight for the geometry (one of which is introduced for a convenient meshing procedure
while the others are conventionally employed in modeling of textile composites).
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4.2.2. Teatile Geometry Pre-Processor (TGP)

For the last two decades, WiseTex [48] and TexGen [17] have been the TGP of choice for many wishing
to model realistic 2D and 3D textile architectures. These have also been called meso-level textile processor
(MLTP) [146].

WiseTex is a TGP which originates from KU Leuven (Belgium) and has been developed by Lomov
et al. [14, 48, 147| capable of generating 2D and 3D fabrics with a minimum number of textile and yarn
parameters. It defines the weaving pattern using a matrix coding method which describes the relative
position of yarns. Then, the textile parametrization includes the weaving pattern and the inter-yarn distance.
Next, the yarn properties that need to be defined are: yarn cross section type, yarn cross section dimensions
(both in the free state), linear yarn densities, coefficient of friction between yarns. Currently, WiseTex
supports cross sections of either circular, elliptical, lenticular, or rectangular shape. Usually, the shape in
the free state is assumed to be circular or elliptic and the diameter is related to a few factors [14, 147]: the
linear yarn density, the fiber density, its twist factor, and the intra-yarn fiber packing. Moreover, although
these cross sections are fixed to be constant along the yarn path in the free state, they can vary in the
relaxed state.

Undoubtedly, the most difficult parameters to define are the yarn bending and compression stiffness.
Indeed, both play significant roles in the determination of the fabric micro-geometry, such as cross section
shape and fabric thickness.

Internally, WiseTex subdivides both weft and warp yarns into “intervals of crimp” that represent segments
of yarn between two consecutive intersections (figure 12). The shape of the yarn in this interval is computed
using the principle of minimum of bending energy [148]. The idea is that for a given relative crimp height
(crimp height over distance between the interval ends spacing), the yarn path, defined on a 2D plane,
is computed by minimizing the bending energy. The latter is proportional to the experimental bending
rigidity of the yarn, which depend on the curvature, and to the characteristic function of the crimp interval.
Moreover, while bending and torsion behaviors are first assumed linear with constant rigidities [14], the
bending rigidity is then set to depend non-lineary on the local curvature [148]. Then, the final relaxed yarn
shape on the interval can be deduced from the computed transversal forces acting on it as yarn dimensions
(in the direction and normal to the compressive force) have been measured experimentally in a compression
test. Sometimes, a flat middle surface for each layer is enforced for the sake of convergence [40].

Finally, WiseTex also provides as output of the simulation the mechanical properties of the yarns. It
allows extracting the local fiber packing within the yarn, the cross-sectional dimensions as well as the yarn
curvature. For the micro to mesoscale transition, a Mori-Tanaka model is used for micro-homogenization [48]
and also determining the stiffness tensor of the composite [66] during the meso to macroscale transition.

TexGen is an open source TGP developed at the University of Nottingham by Sherburn [17] and based
on former works from Robitaille et al. [101, 149, 150]. The textile parameters it accepts are the weaving
pattern, the number of warp and weft columns and layers, and the column spacing. Concerning the yarn
cross section, depending on the targeted fabric it admits circular, elliptical, power ellipse, lenticular, race-
track, polygon or hybrid shapes [106]. The latter is useful for reducing yarn inter-penetration as it allows to
set any combination of the ellipse, power ellipse, lenticular sections to a selected sector of the cross section.
Some yarn properties can also be defined: yarn linear density, fiber density, fiber diameter, number of fibers
per yarn and the elastic properties of the fiber. These are currently used in the calculation of the fiber
volume fraction as well as within the export functions to calculate the yarn or composite properties. Note
that, TexGen does not require the bending rigidity to be defined.

Recently, UnitCells was developed by Li et al. [53] as an add-on to Abaqus based on TexGen and
HyperMesh. This tool, also developed at the University of Nottingham, allows leveraging the strengths of
each of these softwares (simulation, textile geometry, meshing) so as to get a complete composite material
characterization tool.

DMFA (Digital Fabric Mechanics Analyzer) is an open source software developed at Kansas State
University based on works of Wang and Sun [83] and Zhou et al. [84]. Consequently, it implements the
digital element method detailed in section 3.4.2. It should be noted that DFMA is itself also a TGS since
it uses a main solver for performing the TGP function, for performing simulation of the weaving process
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Figure 12: Representation of the mesoscale woven structure from WiseTex on a crimp interval proposed
by Verpoest and Lomov [148]
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<>

(a) Loose-weave model (b) As-manufactured model (c) CT scan

Figure 13: Results from Green et al. [52] for simulation of an orthogonal through-the-thickness interlock

for 2D woven and 3D braided fabrics, as well as for performing fabric stress, strength deformation, impact,
molding and draping analyses.

Finally, some recent works have found alternatives to the previously listed TGP. For example, Daelemans
et al. [45] developed an in-house Python script, while Mahadik and Hallett [67] and Dewangan and Pani-
grahi [63] employed the FE softwares MSC Patran and Digimat [151], respectively. Just like with UnitCells,
these approaches that employ FE solvers offer complete solutions that integrate the preparation, simulation
and post-processing (e.g., Digimat also integrates a mean-field homogenization of yarns).

4.2.8. Towards the “as-woven” state

Mahadik and Hallett [67] use a beam element formulation and an in-house TGP script (using MSC
Patran) for obtaining the initial idealized geometry. This initial configuration is converted into a FE mesh
that depicts the loose-woven state (see figure 13a). Next, loading of yarns is simulated to generate an as-
woven fabric. This deformation is modeled as a step-by-step process of applying tension forces to the yarns,
subdividing them into more virtual fibers and relaxing the unbalanced stresses. Here a temperature drop is
applied on the binder yarns causing them to contract and hence apply compaction forces to the fabric until
a desired thickness is achieved. This strategy follows the previously discussed analogy with thermo-elasticity
to tune the eigen strain. Finally, to reach the “as-manufactured” configuration, transverse compaction is
performed with rigid plates until the target thickness is reached.

Green et al. [52] improve the method proposed by Mahadik and Hallett [67] through their use of TexGen
as TGP, see figure 13b. Then, Said et al. [51] profit from the flexible geometric description provided by
TexGen to also describe the final as-manufactured textile at the mesoscale, see figure 14. And, Daelemans
et al. [45] adapt the method to the digital element method since, unlike the beam element formulation,
truss element-based virtual fibers have no bending stiffness (hence no need to artificially reduce it). Also,
Daelemans et al. [45] use Abaqus for all FE simulations, unlike previous authors that use LS-DYNA.

21



Figure 14: Results of the mesoscale reconstruction from Said et al. [51] for an orthogonal through-the-
thickness interlock

Miao et al. [39] propose a static relaxation approach based on the (multi-chain) digital element
method [84]. This method is an alternative to the very expensive step-by-step process of textile simula-
tion [83, 84]. Indeed, it achieves a reduction of 90% of the computational cost by modifying the contact-
interaction algorithm (section 3.4.3) and neglecting the effects of yarn-to-yarn and chain-to-chain friction
on micro-geometries. The proposed approach starts with an initial configuration provided either by using
a TGP or by a simple simulation of the textile process using only one virtual fiber per yarn (i.e., DFMA).
Then, this mesoscale description of the textile is converted into a sub-mesoscale one by subdividing each
yarn into multiple virtual fibers. Afterwards, a pre-tensile-strain (or stress) is applied to each virtual fiber
in order to imitate the tension effect that produces a tight fabric structure. This produces unbalanced forces
at nodes. Upon relaxation, the fabric reaches a new equilibrium state (i.e., the as-woven state).

Huang et al. [44] and Drach et al. [50] propose fiber-level dynamic relaxation procedure using periodic
boundary conditions and a (virtual) dynamical framework to attain a balanced rest configuration. Just as
Miao et al. [39] do, they employ DFMA as a TGP for obtaining an initial configuration using only one
virtual fiber per yarn, and then subdividing each yarn into multiple virtual fibers and re-discretizing each
virtual fiber at each simulation step. However, unlike static simulations that require the global stiffness
matrix be computed in each iteration [39], the dynamic relaxation process does not. This leads to a multi-
level relaxation procedure that significantly reduces computing time. It should be noted that with this
strategy the stiffness matrix is often either singular or ill-conditioned due to the virtual fiber flexibility. This
results in slow convergence rate. Then, the proposed approach consists in increasing the number of virtual
fibers at each relaxation step. With each simulation step in the dynamic relaxation loop including 4 sub-
steps: (i) a predetermined tension is applied to yarns, (ii) the periodic boundary zone is established through a
mapping process, (iii) contacts between fibers and nodes are determined, and (iv) nodal forces, accelerations,
velocities, displacements as well as new nodal locations are computed within the unit cell. This relaxation
process gradually dissipates the potential energy through an addition of a damping coefficient. The numerical
simulation continues until the potential energy approaches a minimum state and the kinetic energy vanishes.

Very recently, Daelemans et al. [87] developed an overlay mesh technique by decoupling the in-plane
and out-of-plane properties of the virtual fiber. They create hybrid virtual fibers with truss elements that
determine the properties in the fiber direction (tensile stiffness), and beam elements that provide bending
stiffness without affecting the properties along the fiber (i.e., negligible Young’s modulus). The proposed
method uses DFMA as a TGP and Abaqus for the as-woven simulation using the same procedure as Green
et al. [52]. Then, through-thickness compression (quasi-static explicit simulation) is performed for achieving
the as-manufactured state. Note that the contact between the virtual fiber is imposed on the truss elements
only and is defined by Abaqus General Contact algorithm. This method is a continuation of the works
of Daelemans et al. [45].

Durville [85, 86] developed MultiFil, a quasi-static algorithm based on the modeling of a collection
of elastic beams (i.e., yarn beam model). Unlike previous methods, the initial configuration used here is
not a loose-weave one, but a completely inter-penetrated one where all yarns have straight trajectories and
are placed on the same plane (see figure 15a). Then, a contact-friction algorithm is used for progressively
separating the yarns until the textile topology is restored (see figure 15). Here the topology is used to
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Figure 15: Results from Durville et al. [18] showing (a)—(b) the starting interpenetrated configuration,
followed by (c)—(e) the separation steps

Figure 16: Results from Moustacas et al. [73] for an as-woven state of an angle layer-to-layer weave simulated
at the mesoscale

manage the yarns displacement into the correct direction by setting the orientation of the contact surface.
After all yarns are completely separated, the relaxation process of the entangled structure is performed. It
consists in solving for the displacement field of all virtual fibers via a weak formulation based on the virtual
work principle. Here, the internal virtual work is formulated in a (finite transformation) Lagrangian setting
where (hyper-)elasticity of the virtual fibers, contact and friction between them and boundary conditions
can be exploited. Recently, the works of Moustacas et al. [73, 132] on the enriched beam kinematics have
been implemented in MultiFil. Thus, making it one of the few TGS that can inherently simulate both at
the sub-meso and mesoscale (see figure 16).

4.8. Summary

As it can be seen in table 3, a clear distinction can be made between Textile Geometry Pre-Processors
(TGP) and Textile Generation Softwares (TGS). Here, the determining factor are their respective input and
outputs. Among all cited softwares, both WiseTex and DFMA are complete modeling suites that integrate
both TGP and TGS. As such, not only can they provide an initial idealized geometry, but they also perform
simulations to attain the as-woven and as-manufactured states. Table 4 displays the use of the different
TGP and TGS through the years.

Most works employ the well established TGP and TGS tools (e.g., WiseTex, TexGen, DFMA, MultiFil)
for obtaining the as-woven configuration. They have the advantage of requiring considerably less parameters
than the alternative (simulation of the weaving process). Thus, they demand a relatively lower computational
effort. For doing so, they employ some ingenious modeling strategies, capable of correctly describing the
reinforcement and capturing most of the mechanical and geometrical properties of the yarns. In this sense
a correct evaluation of these parameters has proven to be very important.

Instead, Yang et al. [64] opt for a less explored route and show that a complete simulation of the
3D weaving process is possible. Obviously, this presents some major caveats such as requiring elevated
computing resources or the need for more parameters. Indeed, the authors did not give many details on
some implementation aspects nor on the definition of some key parameters. Future improvements on this
technique could consider further mechanical states that the yarns experience during the weaving process,
such as initial pre-tension, inter-yarn friction during beating-up motions or natural relaxation.
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Table 3: Summary of predictive methods (surrogate modeling only), the different input and output config-
urations are shown in italics and the software types representing their relative steps are shown in bold

Feeding parameters
% In-house scripts TexGen
& | Daelemans et al. [45] Sherburn [17] WiseT: DFMA
- iseTex
Idealized geometry Lomov et al. [48)] Wang and Sun [83]
8 MultiFil UnitCells Zhou et al. [84]
= Durville [86] | Li et al. [53]
As woven / as manufactured
Table 4: Segmentation of the literature on predictive approaches by publication year
Softwares  1997-2005 2006-2013 2014-2021 Total
WiseTex  [14, 48, 109, 147, 148] |26, 49, 66, 114, 152] [31, 40, 146] 11
TexGen [16, 17, 42, 106, 118] [5, 11, 12, 51, 52, 53, 56, 60, 153] 14
DFMA  [83, 84] [39] [44, 45, 50, 57, 87] 8
MultiFil  [85, 86] [131] [18, 73, 92]
UnitCells [46, 53] 2

It is interesting to note that, from most of the literature, sub-mesoscale modeling is considered as more
attractive than the more difficult mesoscale approaches. Indeed, the abstraction provided by the virtual
fibers allows for strategies such as progressive refinement (i.e., adding more and more virtual fibers to their
yarns [44]) and capture more accurately the non-homogeneous geometry of the as-woven yarns. This strategy
has proven satisfactory for studies using TexGen and DFMA as TGP. In this sense, the recent developments
of MultiFil made possible the use of the same beam model formulation for either a sub-meso or mesoscale
modeling, just by increasing the number of degrees of freedom for the beam cross section.

Similarly, while most works seek an initial configuration that depicts the textile in a yarn interpenetration-
free state, MultiFil [18, 86, 131] does the opposite. Indeed, these works start with an initial configuration
that is not physically admissible in which yarns are inter-penetrated. Then, a progressive separation driven
by a sophisticated contact-friction algorithm is performed to remove the yarn inter-penetration of the “fully
compacted” configuration. As such, it avoids resorting fictitious tensioning operations such as those used
by Green et al. [52], Said et al. [51] and Daelemans et al. [45] (i.e., contraction of yarns).

Finally, it is noteworthy that the “ubiquity” of many predictive softwares has led developers to integrate
their simulation capabilities into most of the fully-fledged softwares. That is the case of DFMA, used both
with Abaqus or LS-DYNA, and UnitCells, that extends TexGen features by taking advantage of Abaqus and
HyperMesh. On the contrary, WiseTex provides a fully integrated package along with its “brothers” Vox-
Tex (in imagery) and FlowTex (in permeability analyses). This all-encompassing strategy allows complete
analysis pipelines on most of the aspects of 3D woven textiles, but also hinders its applicability in other FE
contexts.

5. Descriptive approaches

This collection of methods relies on images, more precisely volume images (or 3D images) of real samples.
These images are obtained using high-resolution X-ray computed tomography (u-CT), a method of choice
that gives access to the inner structure of the material in a nondestructive fashion. As such, the goal of
descriptive modeling is to extract usable textile models from these images. These textile models usually
take the form of either geometrical descriptors (see section 3.2.1) or Finite Element (FE) meshes. For both
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cases, image processing and statistical analysis techniques are required for reliably extracting the required
information. Poor contrast, image noise and standard tomographic artefacts are common challenges that
need to be addressed.

It is important to note that, unlike the case of 2D composites, research on 3D woven composites is still
actively being developed. Nonetheless, some innovative methods have been proposed by building upon the
experience on 2D weaves.

Indeed, two distinct types of approaches have been identified in the literature. The first type of methods
aim at obtaining voxel-masks for each of the segmented entities. These are then converted into usable mod-
els (e.g., FE meshes) and usually require an intermediate clean-up step (e.g., removing spurious segmented
voxels). The second type of methods integrates all steps into complete procedures. As such, unlike previ-
ous methods that optimize (e.g., tune) each individual step individually, these methods do reach a global
minimum (as defined by a loss function). Both of these strategies have shown to yield satisfactory results
for different types of interlock composites at different image resolutions (from around 1pm [38, 54, 82] up
to 25um [38, 69, 154, 155, 156]).

5.1. Segmentation using voxel masks

This group of methods “transform” the image information (i.e., gray level values) into feature information.
This latter representation (often high-dimensional) provides different novel criteria that can be employed
for separating the entities of interest. This is often performed using advanced statistical methods, such as
clustering analysis.

The most common strategy for performing this “transformation” is based on the analysis of the preferen-
tial orientation of the local image texture [55, 157]. Clearly, the motivation behind this type of approaches
stems from the highly oriented nature of the yarns that compose the textiles. Hence, it seems natural to
exploit such information for identifying and further segmenting yarns. Next, a more abstract approach based
on the texture of the components was proposed [54]. This demonstrates a move towards a more abstract
conceptualization of the image characteristics. Such trend is even more clear in the novel deep learning
applications [62, 75] wherein the feature information is autonomously learnt by the Convolutional Neural
Networks (CNN). These CNN are capable of constructing complex models by assembling simpler patterns
in the training data.

5.1.1. Using the structure tensor

The structure tensor [158] (also known as symmetry tensor, orientation tensor, inertia tensor or moment
tensor) is a useful tool used to compute or represent local orientation fields. Its analytical extension to yield
the generalized structure tensor [159] allows to detect more intricate patterns than straight lines and edges,
hence propelling for its use as an unsupervised method for segmenting image textures [160]. For a given
image H and its gradient V H, the structure tensor is defined as

S=K=*(VH®VH)

with K being either a simple normalized ([ K = 1) integration window or a Gaussian kernel. As from
its definition, S is a non-negative symmetric 3 x 3 matrix, that can be diagonalized, so that, at each voxel
location, the principal orientations of anisotropy are obtained by the eigenvectors, denoting the (local)
directions with the largest and the smallest changes in gray levels, while the magnitude of the change
is associated to eigenvalues. A proper choice of K is fundamental for allowing an average integration
comparable to yarn cross section, avoiding confusion of yarn orientation. As a consequence, the largest
eigenvalue should surpass the level of noise in the image, hence it cannot be too small.

As seen in figure 17, for segmentation tasks, the structure tensor is used to differentiate between fully
isotropic regions (e.g., the pore space between yarns, where all eigenvalues are similar, represented here
by spherical glyphs) and highly anisotropic ones (e.g., the interlaced yarns, denoted by glyphs flattened
along the fiber path, and elongated along the two transverse principal orientations to the yarn path). This
simplicity and effectiveness in terms of accuracy has made it the preferred tool for segmenting tomographic
images of woven textiles, both for 2D [82] or 3D weaves [55, 157, 161].
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However this orientation information provided by the structure tensor by itself is, in most cases, im-
practical for a direct segmentation procedure. For such reason, it is usual to condense this information
into some key features, such as the degree of anisotropy [55]. This latter, defined as the complement to
1 of the ratio between the smallest and the largest eigenvalue of the structure tensor, tends towards 0 for
isotropic components (matrix, air) and 1 for anisotropic ones (yarns, fibrous plies). Similarly, it can also be
augmented by other pertinent features, such as the local average gray value (within the same integration
window) [55, 157, 161].

However, a “simple” threshold on either of these features will not provide the best results [55]. For
example, ring artefacts may be confused with yarns, or, for the case of 3D textiles, the features associated
to the binder yarns are neither very different nor similar to the weft and warp ones. Moreover, textiles with
elevated compaction levels tend to present multiple yarns in contact (even at high resolution), making their
separation non trivial. In such cases, a proper definition of the yarn contours becomes a complex task.

This leads to the natural choice of clustering analysis for classifying each voxel in the image, and relating
it to a multi-dimensional vector collecting all these features (e.g., eigenvalues, eigenvectors, average gray
level, orientation vector, degree of anisotropy), naturally exploitable for multi-class classification algorithms.

Straumit et al. [55] employ an unsupervised clustering technique called k-means that aims to partition
the data points into k clusters where each point belongs to the cluster with the nearest centroid. They
carry two analyses on image features: the first one relates the local degree of anisotropy with the local
average gray value, whilst the second employs the degree of anisotropy along with the warp component of
the orientation vector. As reported in figure 18 they find that by employing this method, only few entities
can be separated (for example, the second analysis separates the yarns of different orientations (i.e., the
weft from the warp), while the first one only the reinforcement from the matrix and air). Moreover, it has
been shown that k-means clustering for segmenting woven textiles produces an underestimation of the solid
volume fraction with respect to the volume of yarns [154].

Hence, Liu et al. [157] propose a supervised approach using a multi-variate Gaussian Mixture Model
(GMM) pertaining to a three-component feature vector. This contains: (i) the average gray value, (ii) the
degree of anisotropy, and (iii) the orientation vector in the form of an azimuthal angle. The algorithm
optimizes a defined number of Gaussian distributions, each related to a material component (in this case
three Gaussians representing the matrix, the warp and the weft), and seeks the optimal mean and variance
of each distribution. The authors propose to initialize the Gaussians with some carefully chosen small 3D
regions. The resulting segmentation (shown in figure 19) provides the complete separation of the three
different materials (i.e., yarns, resin and voids) and the subdivision of the yarns cluster. However, the
algorithm has issues in cases of contacting yarns (e.g., the warp and the binders) and gathers them into a
unique group, noted “collective warps”. Finally, due to the non-local nature of the approach, the yarns may
require some clean-up as post-processing.

These previous methods (using k-means [55] and GMM [157]) have been implemented into the VoxTex
software developed by the Composite Materials Group from the KU Leuven (Belgium). It is also important
to note that a complete separation of weft, warp and binder yarns cannot be achieved only with these tools
and require further processing (to be detailed in the next section) but they provide a very solid ground for
segmentation.

5.1.2. Surrogate modeling of images

Naouar et al. [54] propose a novel approach based on texture analysis based on the well known Haralick
texture features [162, 163]. These features characterize the pixels with respect to their intensity and spatial
neighbors.

Obtaining these features is a three step process. First, the original image is quantized so as to obtain
a reduced (discrete) number of gray levels. Second, the distribution of co-occurring gray level values at a
given offset is computed using a sliding window for all pixels in the image. And third, useful statistics from
the co-occurrence matrices are extracted, these are the Haralick features. This allows obtaining a vector of
features for each pixel in the original image.

In the study of Naouar et al. [54], the authors analyze different Haralick features and empirically retain
only one. Effectively, they obtain another image (of the same size as the original) with the gray values
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Figure 17: Visualization of an ideal application of the structure tensor on a p-CT image (a slice shown here)
with the principal orientations depicted by the corresponding glyphs. Note that the anisotropic glyphs are

similar to flat disks with normals aligned with the yarn orientation.
<

: —
.

-

(b) (c)

Figure 18: Segmentation results for Straumit et al. [55] (a) p-CT image, (b) k-means clustering by the
anisotropy and average gray value, (c) k-means clustering by the degree of anisotropy and warp component

of the orientation vector
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Figure 19: Segmentation results for Liu et al. [157], the segmented unit cell with matrix hidden (a) p-CT

image, (b) constructed feature space, (c) results using GMM
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(c)

Figure 20: Segmentation results for Naouar et al. [54] (a) chosen textural feature, (b) segmentation by
thresholding, (c) final results by morphological operations

representing the relative texture differences instead of the X-ray attenuation. The studied material is a
through-the-thickness orthogonal interlock. Then, a simple thresholding followed by some standard mor-
phological operations (dilation, erosion) lead to the final segmentation. The results are shown in figure 20.

5.1.8. Deep learning applications

Ali et al. [62, 164] propose to employ DeepLab v3+ [165], a state-of-the-art CNN in semantic seg-
mentation with encoder and decoder modules (in this context, semantic segmentation is identical to plain
segmentation). The encoder module produces multi-scale high level feature representations (see figure 21a)
thanks to a residual network ResNet18 [166] pre-trained on more than a million images from the ImageNet
dataset [167]. Next, the decoder module refines the segmentation results along object boundaries by access-
ing an intermediate representation of the same ResNet18 and combining it with the feature map from the
encoder module. The authors employ a 2D strategy for the segmentation (i.e., independently feed slices of
the stack to the network), albeit they use a less than common top-down approach (i.e., the slices are taken
in the thickness direction). The slices are then manually annotated using the MATLAB Image Labeler Tool.
They perform this operation for a 2D plain woven glass fabric and a 3D orthogonal woven carbon fabric,
hence constructing two training datasets. These are then used to train two different networks, the results
are shown in figure 21b. By comparing the segmentation results to the ground truth, the authors note that
the performance for the binder yarns is lesser than that for the warp and weft yarns. This is to be expected,
since the orthogonal binder yarns are barely visible in the chosen slicing view (parallel to the textile plane).

It should be noted that the authors also construct two more “virtual” datasets (one for each type of
fabric) and train two more networks. Clearly, the motivation for segmenting these virtual images (for which
everything is perfectly known) is not to exploit the segmentation results but to “assess” the performance of
the network. However, it could be argued that such evaluation is highly dependent of the chosen method
for constructing these virtual images and not inherent to the neural architecture.

Recently, Blusseau et al. [75] proposed two approaches for semantic segmentation using a U-Net [168]
architecture. The first approach consists in predicting the yarn center lines by analyzing 2D slices of a 3D
volume. This requires the yarn paths to be annotated so that the center points are know for any given
slice. These are encoded as binary masks in which the pixels closest to any center point are valued 1 and all
other are valued 0. As expected, the output of this approach requires heavy post-processing for identifying
the actual center points from the predicted score maps. The second approach aims at predicting the signed
distance function for each yarn cross section. This approach should be more robust than the first one
since it is a generalization of the former. However, given that the only given information are the manually
annotated yarn paths, they employ a sequence of fine-tuned morphological operations to construct some
annotations. It should be noted that, while this pseudo-labeling may not be perfect, it is much easier to
obtain than doing it manually and should provide enough information for the networks to learn the yarn
signature. Finally, both methods are tested on two 3D woven composites with different compaction levels.
They explore different configurations: training different networks on each sample (independently), on each
yarn orientation, or combining both samples. The best results are obtained for the first approach when
training on both samples (compacted and un-compacted) but only on the warp orientation.
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Figure 21: Results from Ali et al. [62] using a CNN, (a) some of the automatically learnt features (i.e.,
descriptors), and (b) results on a 2D fabric

5.2. Obtaining usable textile models

In the previous section, all methods output voxel-wise binary masks for each identified instance. Hence,
unless a voxel-based formalism is employed [10], they do necessitate further processing in order to provide
usable textile models (e.g., FE meshes).

Moreover, given that these approaches perform the segmentation on a “feature-space”, they cannot guar-
antee spatial consistency. For such reasons, they often require some post-processing “clean-up” steps before
and after the construction of the textile models. These are performed using tools as simple as morphological
operations [54] or as unusual as the cellular automata [55].

It is important to recall that the previous methods are only capable of distinguishing between yarn orien-
tations (e.g., weft, warp, binder) but not of isolating each yarn. For cases in which the yarns are not heavily
compacted, simple morphological operations can be employed (e.g., connected components) [54]. However,
in more complex cases, such as two yarns of the same type being in contact, some manual intervention may
be necessary [169].

Most meshing strategies require these last two steps of clean-up and yarn isolation as mandatory pre-
processing. However a novel pipeline that encompasses all these steps as been proposed [161, 170]. These
two radically different strategies will be detailed in the following.

5.2.1. Meshing-only strategies

Naouar et al. [54] proposes an expansion algorithm for meshing each cross section. First a rough ap-
proximation of the cross section is obtained by overlapping a grid of contiguous equilateral triangles and
selecting only those fully included within (see figure 22a). This mesh is then expanded using a linear elastic
formulation until the section boundaries are reached (see figure 22b). Finally, only the boundary nodes are
kept and a Delaunay triangulation is used for meshing the surface (see figure 22¢). This last step helps in
avoiding badly conditioned meshes. Finally, the independently optimized meshes for two consecutive cross
sections are joined together using prismatic (wedge) elements. A final resulting mesh is shown in figure 22.

Huang et al. [59] use a dual kriging interpolation method for estimating parametric surfaces from series
of selected representative slices. This step however creates yarn interpenetration that is dealt with using
a voxel formalism. As such, the voxel description of the yarns is first contracted so as to guarantee no
intersections. Then, each yarn is dilated iteratively until it reaches the original border or another yarn.
Finally, a parametric model is fitted again on these voxel representations. Given that the authors chose to
use the same formalism as in TexGen, they are limited in the variety of cross sections and are forced to keep
a uniform shape for each yarn type (e.g., lenticular, power ellipse).

It should be noted that the motivation behind this complicated procedure (from parametric to voxel
descriptions and back to a parametric one) is not clear. Moreover, the end result (using the TexGen
formalism) looses much of the precision achieved at previous steps.
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Figure 22: Meshing strategy for yarn cross sections proposed by Naouar et al. [54], (a) initial grid-like
configuration, (b) after linear expansion, and (c) after Delaunay triangulation. Note that only the boundary
nodes are kept in the last step

Ewert et al. [169] extract the section boundaries (edge detection) and use the remaining point coordinates
for fitting basis splines on it. These are then used to construct NURBS surfaces by interpolating between
the fitted splines. Next, these parametric surfaces are imported into a meshing software so as to fill the
yarns using tetrahedral elements. Importantly, in order to be able to properly mesh the matrix too, the
authors take care of separating the yarn surfaces (by contracting them) so as to guarantee gaps between any
contacting yarns. Finally, the remaining empty space is meshed to generate the matrix volume. The results
for a unit cell volume are shown in figure 24b, where the volume results from two mirror operations since
only a quarter of the unit cell was meshed.

It should be noted that, only Naouar et al. [54] is constructing the textile model starting from automat-
ically obtained results (see previous section). Indeed, the works of Huang et al. [59] and Ewert et al. [169]
are based on manual segmentation of the images using either custom or readily available software (e.g.,
ImageJ). However, in principle, these methods could be used in conjunction with any of those that provide
binary masks (e.g., those using the structure tensor or deep learning).

5.2.2. Integrated modeling pipeline

Wintiba et al. [161] provide an integrated meshing method, capable of transforming the resulting voxel
mask from VoxTex software [55, 157], into a full textile model in the form of a conformal FE mesh.

They propose to use the alpha shape [171] operation on the binary masks. The alpha shape is a gen-
eralization of the convex hull that consists in enveloping a cloud of points so as to describe its boundary.
The MATLAB implementation of the alpha shape provides great versatility since it allows for interactive
manipulation (e.g., to tighten or loosen the fit around the points). Indeed, unlike the convex hull, the alpha
shape is capable of extracting individual entities.

When applied to the binary masks, the alpha shape will provide (triangular) individual surfaces of the
single yarns (i.e., identification of yarn contours). For the case of the weft mask, no issues are found since
there are no contacting weft yarns. Yet, for the case of “collective warps” mask (see previous section), the
obtained surfaces merge at times the warp and binder yarns. In order to properly isolate these yarns, the
local orientations are employed to identify the only horizontal structures (warp yarns) from the undulating
ones that correspond to binder yarns. The alpha shape for the warp yarns is computed followed by the same
operation on the remaining binder yarns. See figure 23 for the intermediate results of this step.

Given that the alpha shapes for each yarn orientation are computed independently, some yarn interpen-
etration remain. Here, the authors propose the use of a level set method for identifying the interface surface
between contacting yarns. They estimate the signed distance function by dilation of the yarn surfaces in
regular intervals. As such, they profit from the information readily available from the alpha shapes.

Finally, the transition from the level set geometry to a tetrahedral mesh is performed using a multi-step
process [170]. First, the marching cubes algorithm is applied on the level set geometry to obtain a triangular
mesh of the surfaces. While the resulting triangulation tends to present ill-shaped elements (e.g., too small
or narrow), they serve as a constraint for the tetrahedral mesh generation process. This latter is obtained
by Delaunay triangulation. Again, this triangulation is not guaranteed to construct “high-quality” meshes,
hence the resulting volume mesh is deformed so as to obtain a fictitious mechanical equilibrium in which
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Figure 23: Processing steps of Wintiba et al. [161] (a) alpha shapes describing the yarn surfaces, and (b)
isolation of some yarns
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Figure 24: Resulting FE meshes obtained by: (a) Naouar et al. [54], (b) Ewert et al. [169], (¢) Wintiba
et al. [161]

the element edges approximate to a desired average element length. The resulting high fidelity mesh is
illustrated in figure 24c.

5.3. Segmentation using integrated methods

These integrated methods employ some previous knowledge about the textile being analyzed. While this
does require some previous work to be performed, they have the advantage of being able to benefit from any
information that is available from a previous analysis (e.g., the yarn ID can be known beforehand from the
textile model).

Here, the methods using geometrical priors start with a known textile definition and seek to optimize its
parameters (e.g., yarns cross sections). Given that the topology is known, these methods have the advantage
of being extremely robust to cases in which two (or more) yarns are so heavily compressed against each other,
that they become visually indistinguishable. Indeed, the final result will always produce the expected number
of yarns.

A recent use of deep learning within an integrated pipeline has also been proposed. This presents a clear
departure from the previous applications that would output voxel masks (e.g., Ali et al. [62]), thus requiring
post-processing for obtaining the textile model.

5.8.1. Geometrical priors

Bénézech and Couégnat [69] proposed a segmentation approach that employs a parametrized geometrical
model that is iteratively improved using a heuristic optimization process. The employed parametrization
follows the same principles as outlined in section 3 with the yarn cross sections being described using either
ellipses or polygons. Importantly, the yarn paths are initialized by manually defining a reduced number of
control points. Moreover, the optimization consists in minimizing an objective function that estimates the
correctness of the geometrical model at a given state. This function is given as the weighted sum of three
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Figure 25: Segmentation results from Bénézech and Couégnat [69] with geometrical prior on a CMC woven
junction

terms, with the weighting terms being adapted during the global iterations of the algorithm. These terms
are:

e A mask similarity metric that promotes the matching of the envelope of the geometrical model with
the boundaries between matrix and reinforcement. This is obtained by computing the Jaccard index,
also known as Intersection over Union (IoU), between the voxelized geometrical model and the binary
mask of the textile.

e A constraints metric that promotes the consistency between the local directions of the yarns (from
the structure tensor) and the direction of each segment of the geometrical model (from the local yarn
path).

e A regularization metric that penalizes unrealistic yarn configurations (e.g., aspect ratio of a cross
section exceeding a given limit) and yarn interpenetration (from the voxelized geometrical model).

Given that the objective function is not guaranteed to be smooth nor convex, the authors propose a heuristic
optimization scheme. This method, similar to a Monte-Carlo procedure, that consists in randomly permuting
some of the geometrical parameters and evaluating if the similarity score increases or decreases. If the
permutation is beneficial, it is kept, otherwise the parameters revert back to their previous values. For
simplicity, the authors perform this operation on local subsets of the global model and optimize them
simultaneously (while avoiding race conditions between consecutive subsets). Moreover, they propose to
start with a “simplified” model using only elliptical cross sections (the yarn path is known from the initial
manual operation). Then, after some iterations (e.g., a third of the total) the elliptical cross sections are
switched to polygonal ones.

The method was successfully applied on a couple of layer-to-layer interlock samples and a complex woven
junction, see figure 25. The analysis of this 800 x 800 x 300 voxel volume took around 30 hours on a 40-core
CPU with a manual pre-processing of around 6 hours (identification of yarn paths). As the authors remark,
while the computation time is considerable, the “effective” time of the manual identification of the yarn
paths is mostly accessible and even more so considering the complexity of the analyzed volume.

Mendoza et al. [72] proposed a correlation framework in which a prior textile model is “deformed” so
as to conform to a CT image. The method is based on a non-rigid image registration procedure between
a voxelized version of the textile model and the CT image. It should be noted that, while the geometrical
model employed here is based on elliptical cross sections, these are only “effective” once the final model has
been obtained. As a matter of fact, the geometrical model is “smoothened” during the voxelization process
so that the obtained gray levels indicate a function to the closest yarn path. This function is valued one at
the yarn path and linearly decreases towards zero at the yarn envelope, it is also valued zero for all voxels
not contained by any yarn.

The method employs a multi-scale registration process using Digital Volume Correlation [71]. The
principle is to subsample both images (model and CT) and use the results from registration at the coarser
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Figure 26: Results from Mendoza et al. [74] using FE simulations and CNN, (a) original CT volume, and
(b) obtained mesh

scale to initialize registration at the finer scale. Three additional scales (each time halving the resolution) are
used for first globally aligning the textile and, as the finer scales are explored, locally adjusting the yarns. It
should be noted that the “smooth” voxelization of the geometrical model allows the registration to be more
tolerant on the inaccurate placement of the yarn boundaries and mainly focus on the yarn path. Therefore,
after registration has converged, only the yarn paths are kept and elliptical cross section are attributed to
all yarns. Moreover, if a more precise segmentation is desired for cross sections, this result could be used
as initialization for methods such as the one proposed by Bénézech and Couégnat [69]. Finally, the method
was applied on a pair of through-the-thickness angle interlock samples. Moreover, the method was able to
cope with missing yarns and correctly placed the theoretical yarns (from the prior model) where these would
be in the real textile.

5.3.2. Deep learning

Mendoza et al. [74] pose the problem of yarn segmentation as one “instance segmentation” via key points
estimation. Typically, instance segmentation consists in performing object detection along with semantic
segmentation. In this case, the semantic segmentation is replaced by key point estimation. Here the objective
is two-fold: to detect yarns in a given image, and to describe each yarn using the respective key points. It
should be noted the meshing procedure is trivial after a key point description of the yarns is obtained, as it
can be as simple as connecting the key points to form either linear, surface or volume elements.

CNN have proven to be very effective for problems such as these (e.g., human pose estimation). However,
one of the biggest challenges with this type of approaches is the need for well-annotated data. In this case,
as they analyze 2D slices of the 3D volume (in the warp and weft orientations), the dataset should consist
on pairs of CT slices and lists of manually identified key points (for each yarn present in the image). In
order to avoid this laborious process, the authors propose to use FE simulations to construct a synthetic
database. However, while these may provide “perfectly” placed key points for every cross section, the images
one would obtain from the voxelization of the deformed FE models do not bear any resemblance to real CT
images. For such a reason, a U-Net architecture [168] is proposed for solving the image translation problem
that would convert any simply labeled image (e.g., simple voxelization of a textile model) into a realistic CT
image. In order to do so, the yarn paths of a real CT volume are manually annotated and a simple textile
model is constructed using elliptical shapes. The U-Net is then trained on slices from this pair of images
(textile model as input and CT as output). After training of the U-Net, a 12-step compaction is performed
on a numerical textile and these FE meshes are converted into realistic looking CT images.

Then, a Mask R-CNN architecture [172] is trained on these 12 new volumes. Here the network is given
as input the “pseudo” CT images and is tasked with predicting the key points extracted from the FE meshes
(10 points describing the yarn cross section contour and 1 center key point for the yarn path). Finally,
after training, the Mask R-CNN model is used on a real sample and the results of connecting the key
points is shown in figure 26. It is important to note that, even when the Mask R-CNN was trained on
uniquely numerical data, the pseudo CT images produced by the U-Net are so realistic that it is capable of
generalizing to real CT images.
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5.4. Summary

A summary of the reviewed methods can be seen in table 5. Here, each approach is shown according to
the position it holds in the processing chain. It can be seen that most methods approach the individual steps
using different “building blocks” that can almost be freely assembled. This can be seen in the continuity
between the works of Liu et al. [157] and Wintiba et al. [161], for example. Moreover, these could lead to
novel procedures (i.e., pipelines). For example, in principle, one should be able to combine the segmentation
step of Liu et al. [157] with the cleaning methodology of Straumit et al. [55] and the meshing strategy of
Naouar et al. [54].

Unfortunately, these methods only allow for the information to flow in a single direction. More precisely,
once one step has been accomplished, it is never questioned again and the subsequent methods cannot benefit
for any information that may have been available previously. A clear example is the complete procedure
developed by Naouar et al. [54] (segmentation, cleaning, meshing) in which each step is performed completely
independently from each other.

A novel class of methods emerges which aims at integrating the once individual collection of steps into
a complete chain where each link can iteratively be refined so that a global consistency is achieved. For
example, the technique proposed by Bénézech and Couégnat [69] aims at incorporating all these similar
steps into a holistic optimization scheme. Then, all the uncertainties and errors made from each step are
accounted for and optimized so as to minimize them altogether. The same can be said for the strategy
employed by Wintiba et al. [161] since they encompass the process from binary masks up to textile models.

The same evolution could be observed in the manner in which the image information is analyzed. Indeed,
the most natural approach of exploiting the highly oriented nature of the material lead to earlier methods
based on the structure tensor [55, 157]. Then, a more pragmatic conception using deep neural networks [62,
74, 75] was proposed. These do not seek to identify or define physically relevant quantities but rather exploit
and benefit from the tremendous progress of completely general and mostly agnostic methods stemming
from deep learning. While currently these methods are only in their infancy (i.e., using “off-the-shelf” CNN
architectures), their efficiency could dramatically be enhanced as soon as a more specialized and tailored
frameworks become available.

By combining these two trends, one could image descriptive modeling techniques of the future to be
end-to-end (i.e., integrated pipelines) and based on advanced learning or optimization methods. These
approaches would avoid the seemingly necessary step of using binary mask and directly provide the necessary
elements for constructing the textile models. Indeed the works of Wintiba et al. [161], Bénézech and
Couégnat [69] and Mendoza et al. [72, 74] point towards this philosophy.

Finally, only the works of Straumit et al. [55] and Liu et al. [157] are currently accessible to the general
public through the VoxTex software. Additionally, only the method proposed by Bénézech and Couégnat [69]
shows to be capable of extracting the textile model of volumes bigger than the unit cell. The scalability
options for the other approaches remains to be proven.
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Table 5: Summary of descriptive methods in the literature, the different input and output elements are
shown in bold and the individual steps are shown in italics

Segmentation Cleaning Meshing
Dual kriging
Huang et al. [59]
g NURBS
i S | Ewert et al. [169]
Texture analysis é Morphological operators § Elastic expansion
Naouar et al. [54] > Naouar et al. [54] £ | Naouar et al. [54] g
- k-means = Cellular automata 53 g
O | Straumit et al. [55] | @ Straumit et al. [55] o
A Deep Lab v3+ E
Ali et al. [62, 164] B
U-Net Morphological operators
Blusseau et al. [75] Blusseau et al. [75]
GMM Alpha shape
Liu et al. [157] Wintiba et al. [161]

Deformable model
Bénézech and Couégnat [69]

Registration method
Mendoza et al. [72]
Mask R-CNN with U-Net
Mendoza et al. [74]
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6. Conclusion

After this overall review of the wide and rich literature about the numerical modeling of woven com-
posites, the diversity and cleverness of different approaches proposed to connect the theoretical design of a
sophisticated engineered material with outstanding performance to its concrete manufacturing (in particular
through tomographic observation) is astounding. The available variety of approaches is a vivid testimony
of the creativity that has been deployed to address these questions.

The purpose of this review, and hence of its conclusion, is not to give figures of merit to these numerous
works. Not only they have different qualities and limitations, but the fine-tuning of the trade-off between
simplicity and sophistication is highly subjective. Moreover, they do not all focus on the very same goal and
hence any ranking would be unfair. Nevertheless, a distant-view of this beautiful panorama, allows some
general observations to be made, and trends to be identified.

Overall, two distinct strategies have emerged from the bibliography: the predictive and the descriptive
approaches. While the former attempts to predict the as-woven and as-manufactured states of woven
fabrics starting from yarn properties and textile design, the latter extracts the mesoscale geometry of actual
preforms from p-CT images. Predicting the actual structure of a fabric, or reading it from an image are
both challenging.

Topology is important as it defines the woven structure, but it is clearly insufficient to be usable by itself.
Geometry at first has to come into play, but also reveals to be limited. Then, mechanical modeling of yarns is
a natural extension. Yet, some extreme cases of constitutive laws do capture geometry and not much more.
For instance a constant density of fibers in yarn cross-sections can be seen either as a geometrical constraint
(e.g., cross-section area not being smaller than a prescribed threshold) or a mechanical one (divergence of
the bulk modulus for a defined fiber volume fraction). In particular, mechanical modeling introduces such
a constraint only as an asymptotic regime (allowing for some variations around this limit), and hence may
reveal to be both, more flexible and more realistic.

However, this flexibility comes with a cost: dealing with the mechanics of yarns, a complicated topic
on itself. On the one hand, mesoscale modeling treats the yarn as a single entity with phenomenological
properties, thus requiring the identification of material parameters from experimental tests. On the other
hand, sub-mesoscale modeling treats the yarn as a collection of virtual fibers that collectively mimic the
yarn behavior with very few parameters, however it needs to deal with the issues related to non-smooth
mechanics (i.e., contact and friction). Both strategies have shown impressive results and have permitted
gaining further insight on woven composites (beyond the scope of the present study) such as resin infiltration
or mechanical properties of finished parts (stiffness, resistance to fracture, damage, or fatigue). It may be
interesting to note that some aspects that are absolutely crucial from a technological point of view are
seldom discussed in the literature (e.g., the role of the fiber sizing, the presence of a controlled amount of
water during weaving or forming, the twisting of yarns for weaving, etc.).

Clearly, tomography of real textile has the undeniable advantage of reality. Yet, being descriptive of
a particular (physical) state, it lacks the ability to forecast how the textile would behave under future
conditions. These questions can however be addressed by properly extracting the constituents in the image,
and endowing them with the above discussed geometrical and mechanical properties. It should be noted
that this “enrichment” of the yarn could serve as a useful regularization for the ill-posed problem of image
segmentation. Moreover, by exploiting image registration (e.g., between two samples), this model could
be transferred to a comparable but different weave, hence allowing to transport any available relevant
information (e.g., properties, yarn label, FE mesh).

From the above considerations, it is obvious that descriptive and predictive are not opposed but com-
plementary. It is only through their composition that a fair description of the textile may be reached. Here,
the composition implies that no intrinsic hierarchy between the different tools is imposed a priori. Indeed,
since they all bear some pieces of information, they should all be conceived for allowing information to flow
in both directions (as either input or output). Moreover, the trustworthiness of the different quantities, be
they mechanical or geometrical properties, may be questioned and possibly revisited so that they provide a
better account of the observations, and finally providing a validated global overview.

As a final comment, the success of the recent artificial intelligence or machine learning approaches that

36



were mentioned in this review is astounding. This success is all the more fascinating considering that the
mechanical modeling, just advocated to be the key to empowering the descriptive approach, is not explicitly
taken into account. Hence, it may be tempting to envision a characterization of the woven composite as a
comprehensive object, with its topology, geometry and mechanics should be treated as a whole regardless the
approach (including machine learning). In this direction, the inclusion of topology preserving constraints
in deep neural networks, for instance, has been shown to lead to more efficient and more reliable data
interpretation. Constitutive law identification from data-driven approaches can also be seen as a recent
and attractive trend. The association of these different tools, in a version more dedicated or specialized to
fabrics, may constitute in the years to come, a formidable way to further progress in getting the best of
these quite remarkable materials.
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